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Abstract—Industrial Internet of Things (IIoT) has been
shown to be of great value to the deployment of smart
industrial environment. With the immense growth of IoT
devices, dynamic spectrum sharing is introduced, envis-
aged as a promising solution to the spectrum shortage
in IIoT. Meanwhile, cyber-physical safety issue remains
to be a great concern for the reliable operation of IIoT
system. In this paper, we consider the dynamic spectrum
access in IIoT under a Received Signal Strength (RSS)
based adversarial localization attack. We employ a practical
and effective power perturbation approach to mitigate the
localization threat on the IoT devices and cast the privacy-
preserving spectrum sharing problem as a stochastic chan-
nel selection game. To address the randomness induced
by the power perturbation approach, we develop a two-
timescale distributed learning algorithm that converges
almost surely to the set of correlated equilibria of the
game. The numerical results show the convergence of the
algorithm and corroborate that the design of two-timescale
learning process effectively alleviates the network through-
put degradation brought by the power perturbation proce-
dure.

Index Terms—Spectrum access, ICPS security, dis-
tributed algorithm, game theory.

I. INTRODUCTION

RECENT years have witnessed the innovation of mod-

ern industrial environment driven by the technology

advancement of wireless communication, industrial control,

artificial intelligence, and big data, etc. Under the support of

the next-generation cyber-physical system (CPS) [2], Industrial

Internet of Things (IIoT) has become one of the key building
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Fig. 1: An illustration of RSS based adversarial localization

attack on an unmanned ground delivery system consisting of

robotic vehicles belonging to two companies (differentiated by

the colors). d1, d2, d3 are distance estimations extracted from

RSS measurements at three different positions, and are utilized

to localize the target via trilateration technique.

blocks of smart industrial applications including smart grid,

smart factory, smart logistic management, and intelligent trans-

portation system [3]. In these applications, the interconnected

IoT devices continuously send the real-time industrial data to

the IoT gateways that forward the data to the cloud/fog server

for further processing and analysis [4].

With the expanding scale of IoT devices, the tremendous

industrial data generated has put an increasing demand on

bandwidth resources, which poses a significant challenge on

the industrial spectrum management. To address the spectrum

shortage, database-assisted spectrum access has been intro-

duced where IoT are informed with the dynamic spectrum

availability by a geo-location database, and access vacant

licensed channels opportunistically [5], [6]. The key challenge

of dynamic spectrum access remains as how to coordinate

the spectrum sharing in a distributed way, so that the mutual

interference between devices having access to the same vacant

channel can be effectively mitigated [6]. To this end, game

theoretic models have been adopted for solving dynamic

spectrum access problem, where devices are interpreted as

selfish players making channel access decisions strategically

to maximize their payoffs [7].
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In addition to the spectrum scarcity, cyber-physical security

remains to be another challenge for reliable operation of IIoT.

As a main building block of industrial CPS, IIoT integrates

the control, networking and computing components, providing

fundamental supports for generation, collection and exchange

of security-critical and privacy-sensitive data. The critical

importance of IIoT makes itself an attractive and valuable

target for cyber-physical attacks [8]. While extensive studies

have been concerning the cyber-attacks and corresponding

defenses, relatively less attention has been paid to the physical-

layer attacks in IIoT. As a key vulnerability, the geo-location

information of IoT devices, once being compromised, would

put the device into great danger, which is extremely harmful

for the reliability and safety of IIoT system.

In this study, we consider a practical RSS based adversarial

localization attack that has been shown to be effective in

pinpointing wireless IoT devices [9]. As illustrated in Fig. 1,

given a few RSS measurements collected within the vicinity of

the victim, the adversary can easily carry out the localization

attack using existing triangulation technique [10]. Compared

with localization approaches using other physical-layer infor-

mations (e.g., time of arrival (TOA), time difference of arrival

(TDOA), angle of arrival (AOA) [11]), RSS based localization

requires neither complex hardware nor active communication

with the victim, which can be easily implemented by the

adversary in practice.

Many efforts have been made on developing countermea-

sures to mitigate physical-layer localization attacks, such as

deploying directional antenna to limit transmission coverage

[12] and creating ghost locations to misguide adversaries

via device-level cooperation [13]. However, these approaches

might be costly and difficult for widely system deployment,

given the fact that IoT devices are generally of small size

with limited computation and energy resources. Therefore, we

consider using the light-weight power perturbation approach

to combat the RSS based localization attack [14]. The main

idea behind is to add random noise to the transmission power

level of IoT devices, with the aim to effectively lower the

adversaries’ localization accuracy [15].

Despite its practicability and effectiveness, the random

power perturbation approach would result in inaccurate in-

terference evaluation at IoT devices, which inevitably incurs

performance degradation (e.g., throughput reduction) to the

spectrum sharing system. Thus motivated, the goal of this

study is to develop an effective spectrum sharing scheme in

IIoT that can at the same time protect device’s location privacy

via transmission power perturbation.

Following [16], we formulate the privacy-preserving spec-

trum access problem as a stochastic game where IoT devices

update their channel selection choices dynamically with the

objective of maximizing their utilities, as will be defined in

Section III-A. We analyze the dynamics of the game based on

the characterization of the equilibrium criteria. Specifically,

we consider the correlated equilibrium (CE), a generalization

of Nash equilibrium, which allows for dependencies among

players’ strategies and is easily amenable to distributed im-

plementation [17].

To solve for the CE of the channel selection game under the

impact of random power perturbation, in this study we devise

a two-timescale distributed learning algorithm. Specifically, at

a slower timescale, each IoT device evolves her channel se-

lection strategy according to a modified regret-based rule [18]

using the locally maintained estimated utility. At a relatively

faster timescale, the estimated utility keeps being updated

via a learning process to address the randomness introduced

by the power perturbation, which facilitates more effective

strategy learning at the slower timescale. We show that under

mild conditions on the learning timescales, the empirical

frequency of users’ joint actions converges to the set of CE.

The simulation results show that, under the random power per-

turbation, our two-timescale learning algorithm outperforms

the single timescale learning algorithm involving only the

strategy adaptation of channel selection, which corroborates

that the proposed two-timescale learning algorithm helps strike

a balance between the system throughput and location privacy.

Summarizing, we have made the following contributions:

• We identify the issue of RSS based adversarial local-

ization attacks against IoT devices in database-assisted

spectrum access, and consider a light-weight power per-

turbation approach to reduce the localization accuracy.

• We jointly study the dynamic spectrum access and

location privacy protection by formulating a privacy-

preserving channel selection game where IoT devices use

perturbed transmission power level and strategically make

channel selection decisions to maximize their utilities.

• We propose a two-timescale learning algorithm based on

regret learning rule, which converges weakly to the set of

correlated equilibria and is shown to outperform the sin-

gle timescale learning approach in alleviating the system

throughput degradation from random power perturbation.

The remainder of the paper is organized as follows. We

first discuss the related work in Section II. In Section III,

we describe the system model of privacy-preserving spectrum

sharing scheme. In Section IV, we present the game theoretic

problem formulation and introduce the no-regret based learn-

ing rule. We propose the two-timescale learning algorithm for

privacy-preserving spectrum sharing in Section V, followed by

Section VI which evaluates the effectiveness and performance

of the proposed algorithm. Finally, we conclude the paper in

Section VII.

II. RELATED WORK

Spectrum management techniques have been widely

adopted into smart IIoT designs to meet the high QoS re-

quirement for data communication, which helps to establish

strong interconnection among industrial sensor, actuators and

systems. For instances, Cao et al. in [19] explored oppor-

tunistic accessibility of multiple channels to enhance the state

estimation performance in a CPS with linear state dynamics.

In [20], Chiwewe et al. provided an overview of different

techniques for spectrum management in cognitive radio based

industrial wireless sensor network, and also explored the

application of game theoretic modeling for spectrum sharing

schemes.

Along a different avenue, industrial cyber-physical security

issues have recently garnered much attention by both industry
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and academic communities, with great efforts focusing on the

cyberattacks over industrial CPS [8]. In [21], the authors pro-

posed a CPS security framework that distinguished the cyber,

cyber-physical, and physical components in a CPS system, and

surveyed over both potential and reported attacks as well as

existing solutions. Particularly, in [22], the authors focused

on the data privacy vulnerability of smart meters in smart grid

system, and provided a thorough discussion on the state-of-the-

art mitigation solutions. And in [23], the authors discussed the

the security and privacy challenges within emerging smart city

applications such as intelligent healthcare and transportation

system.

By contrast, the adversarial localization attack considered

in this study is a typical physical-layer attack targeting on

wireless sensor networks in general [14]. To combat such

threats, one main approach is to obfuscate the physical in-

formation of the transmitted signal that can be potentially

utilized by adversaries to infer the users’ locations. In [14]

and [15], mobile devices were designed to strategically reduce

their transmission power so as to reduce the number of adver-

saries that can collaboratively carry out RSS-based localization

attacks, or to degrade the accuracy of the adversarial localiza-

tion. In [24], Wang et al. focused on the design of directional

antenna to address the physical-layer location privacy attacks.

In [25], Gao et al. considered the location privacy protection

in a cognitive radio network similar to ours. While instead

of the RSS-based attack, they considered an attack model that

inferred a secondary user’s location through her used channels,

and the threat was mitigated by choosing channels in favor of

the most stable ones.

Different from most of the existing works, in this paper

we jointly consider the spectrum management and locational

privacy protection. The idea of the proposed two-timescale

learning algorithm is inspired by [26], which studied the

interference mitigation in decentralized small-cells networks

using a reinforcement learning based algorithms. Perhaps The

most related work to ours is [1], which investigated the

location privacy protection under the scenario of socially-

aware dynamic spectrum access by using game theoretic

modeling. In this study, we consider a different equilibrium

criteria (i.e., correlated equilibrium) which generalizes the

Nash equilibrium considered in [1] by relaxing the indepen-

dence assumption on the players’ channel selection strategies.

In addition, the IoT devices are designed to adapt strategy

following the regret-based rule [27] instead of the Stochastic

Fictitious Play dynamics used in [1].

III. SYSTEM MODEL FOR LOCATIONAL PRIVACY
PRESERVING SPECTRUM SHARING

A. Basic Setting

According to the recent ruling by FCC [28], in database-

assisted spectrum access, each white-space user will first send

a spectrum access request to a database, and the database

will reveal the vacant TV channels at a particular location

to that user. We consider such a spectrum access network

with a set A = {1, 2, · · · ,M} of primary channels (e.g.,

TV channels). And a set V = {1, 2, · · · , N} of secondary

users (i.e., IoT devices) try to access these channels when

the channels are not occupied by licensed users. In particular,

each user n ∈ V can access a subset of available channels

Mn ⊆ A, as revealed by the database. Apparently, without

proper coordination among secondary users, the conflict on

channel usage may occur, and the generated interference

could severely degrade the network performance. Accordingly,
database-assisted spectrum access boils down to the dynamic
channel allocation among secondary users, in a time-varying
channel occupancy and interference environment.
To capture the physical coupling among IoT devices, we

assume a physical interference model. Specifically, we denote

an ∈ Mn as the channel that user n ∈ V have accessed,

and denote the channel gain on her communication link as

gan
nn. We then let gan

mn denote the channel gain of an over the

interference link between user m ∈ V and user n. The noise

of channel an on the link of user n is denoted as Nan . The

Signal-to-Interference and Noise Ratio (SINR) γn(Pn) of user
n can be written as

γn(Pn) =
Png

an
nn∑

m∈V/{n} Pmgan
mn1{am=an} +Nan

, (1)

where Pn is the transmission power used by user n; the

indicator function 1{am=an} is equal to 1 when user m and

user n access to the same channel (i.e., am = an), and zero

otherwise. We let W denote the bandwidth, and define the

individual utility of user n as her throughput with power level

Pn,
Un = W log[1 + γn(Pn)]. (2)

We also assume that all the IoT device can be categorized

into different groups according to the functionality or pro-

prietary. In the example of unmanned delivery system shown

in Fig. 1, the in-group relationship of unmanned vehicles is

illustrated by the different colors. For each user n ∈ V , we
let Nn denote the set of other users belong to the same group

as user n, and define her group utility as her individual utility

plus the sum of the utilities of her group neighbors, weighted

by a factor en ∈ [0, 1], i.e.,

Sn = Un + en
∑

m∈Nn

Um. (3)

We use such a group utility model to capture the underlying

social coupling among homogeneous IoT devices within the

same group. Intuitively, the larger the value of en, the stronger
the social connection that device n has with respect to the

group she is associated with.

B. Random Power Perturbation against RSS-based Lo-
cation Privacy Attack

1) RSS-based Location Privacy Attack: In this study, we

consider a PHY-layer adversary model that employs the Re-

ceived Signal Strength (RSS) based localization technique to

compromise target users’ location privacy. RSS-based local-

ization captures the transmitted signal and can establish the

mapping between the distance and the RSS according to the

signal propagation model [14], [15]. As illustrated in Fig.

1, each adversary can collect a sequence of RSS levels of
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the transmitted signal from the target user1, and obtain an

estimation of the distance using via Maximum Likelihood

estimation [30]. Then an approximate location of the target

user can be jointly determined by a trilateration using a set of

distance estimations and the corresponding physical positions

of the adversary.

2) Random Power Perturbation: To combat RSS-based

location privacy attack, we employ a local random power

perturbation approach aiming to introduce uncertainties to

adversaries’ localization outcome [15]. To this end, each

user is allowed to dynamically and randomly change her

transmission power level on purpose. The noisy measurements

of RSS obtained at the adversary could effectively enlarge the

uncertainty region of target user’s position, which reduces the

localization accuracy.

To avoid extra interference to the primary users, we restrict

the random power perturbation component to be negative

biased. Specifically, the perturbed transmission power of user

n is given by Pn = p + Δpn, which is the sum of the

regular transmission power level p > 0 and a perturbation

term Δpn, generated following one-side truncated exponential

distribution whose pdf is given as

f(Δpn|b, p̄) =
1
b
exp(Δpn/b)

1− exp(p̄/b)
, Δpn ∈ (−p̄, 0], (4)

with p̄ denotes the maximum perturbation level beyond which

the SINR of IoT device might be unacceptable for normal

data transmission. The parameter b > 0 characterizes the

“expected” power perturbation level specified by the user, as

will be further discussed in Section VI.

IV. PRIVACY-PRESERVING SPECTRUM SHARING

In this section, we cast the spectrum sharing problem as a

stochastic channel selection game, and introduce the no-regret

matching rule, which can calculate the correlated equilibrium

of a non-cooperative game in a distributed manner.

A. Stochastic Channel Selection Game for Spectrum
Sharing

In our study, we formulate a stochastic channel selection

game where all the IoT users are modeled as self-interested

players interacting strategically and repeatedly with each other,

aiming to maximize their expected group utilities in the long

run2. The action space of each player n ∈ V is the set

of available channels Mn that user n can access. We let

a = (a1, a2, · · · , aN ) ∈ M denote the joint spectrum access

profile of all the users, where M �
∏N

n=1Mn. To facilitate

the evaluation of each user’s long-term expected group util-

ities, we denote ΔMn as the mixed strategy space of user

n, and let πn =
(
π(an,1), π(an,2), · · · , π(an,|Mn|)

) ∈ ΔMn

denote user n’s mixed strategy, a probability distribution over

Mn with q(an,i) representing the probability of selecting the

1For instance, through the RF fingerprint technique [29], a receiver
can identify a wireless card by analyzing imperfections in the analog
components of the signal.

2We use the terms “user” and “player” interchangeably throughout the
paper.

channel an,i. It follows that the joint mixed-strategy over all

players is π = (π1, π2, · · · , πN ) ∈ ΔM �
∏N

n=1ΔMn, and

the joint strategy of players excluding user n can be denoted

as π−n = (π1, · · · , πn−1, πn+1, · · · , πN ) by convention. We

further denote π(a) as the probability of joint action a ∈ M
being played.

Summarizing, we cast the privacy-preserving spectrum shar-

ing problem as a non-cooperative game denoted by a 3-tuple

Γ =
(V,ΔM, {Sn}Nn=1

)
. The equilibrium criteria considered

in our study is the correlated equilibrium, which generalizes

the Nash equilibrium by permitting players’ strategies to

be dependent. Mathematically, a correlated equilibrium is a

convex polytope with its extrema points corresponding to the

set of Nash equilibria. Thereby, in general, a better overall

performance can be achieved under the correlated equilibrium

than that under a Nash equilibrium. The formal definition of

correlated equilibrium is given below.

Definition 1 (Correlated Equilibrium). A probability distribu-
tion π∗ on ΔM is a correlated equilibrium (CE) of game Γ if,
∀n ∈ V , ∀an,i, an,j ∈ Mn, the expected group utility satisfies
the following,∑

a∈M:an=an,i

π∗(a) [Sn(an,j , a−n)− Sn(a)] ≤ 0. (5)

Remarks. To get a concrete sense of the correlated equilib-

rium herein, one can view π∗ as a strategy recommendation

provided by the trusted spectrum database. With the implicit

assumption that other users’ strategies follow the given rec-

ommendation, it is of best interest of each user to also follow

the recommended strategy. In other words, a user could not

obtain a better expected group utility by deviating from the

CE unilaterally.

Theorem 1. (Existence of CE) There exists at least a CE in
the stochastic channel selection game Γ.

Since our channel selection game Γ consists of finite player

set and action set, it falls into the category of finite game,

which is guaranteed to possess a nonempty set of correlated

equilibria [17].

B. No-regret Matching Rule
In this section, we briefly introduce the no-regret matching

rule which is developed for searching a correlated equilibrium

of a non-cooperative game in a distributed way [27]. By this

rule, a regret measure is used to quantify the performance gain

or loss of players’ action adjustments. The key idea is to let

each user learns the regret of playing each particular action,

aiming to minimize the average regret over time.

Specifically, for each user n ∈ V , given her opponents’

actions a−n, the difference between averaged group utility

under current action atn = an,i and that under any other action

an,j �= an,i until time t can be measured as

Dt
n(an,j , an,i) =∑

l≤t Sn(an,j , al
−n)1{al

n=an,i}
t

−
∑

l≤t Sn(al)1{al
n=an,i}

t
,

(6)
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where the second term quantifies the average group utility

perceived by user n under action an,i until time t, and the first

term indicates the average utility she would have obtained if

she had chosen an,j every time when an,i was played. Then

user n’s “regret” for not having played action an,j , instead
of an,i in the previous plays, is given as Rt

n(an,j , an,i) =
max {Dt

n(an,j , an,i), 0}. Intuitively, user n would regret if an

alternate action could have brought her higher utility.

Based on the regret measures at time t, user n adapts her

action according to the probabilistic strategy given as follows,{
qt+1
n (an,j) =

1
μR

t
n(an,j , an,i), ∀an,j ∈ Mn/{an,i},

qt+1
n (an,i) = 1−∑

an,j �=an,i
qt+1
n (an,j).

(7)

Here the probability of changing to an alternate action an,j ∈
Mn/{an,i} is proportional to the corresponding regret mea-

sure Rt
n(an,j , an,i). The parameter μ is chosen to be a large

value to guarantee that there is always a positive probability of

remaining at the currently selected channel. A higher μ lowers

the probability of switching to an alternate channel, therefore

can be treated as an ‘inertia’ parameter. The algorithm then

moves on by users updating their regret measures at time step

t + 1. For each joint action a ∈ M, we let f t(a) ∈ ΔM
denote its empirical distribution by time slot t, expressed as

f t(a) =
1

t

∑
l≤t

1{al=a}. (8)

It is well-known that for a non-cooperative game, with players

updating their strategies following the no-regret matching rule,

the empirical distributions f t converges (with probability one)

to the set of correlated equilibria as t → ∞ [27].

There are two challenges that hinders us from directly

using the no-regret matching rule in solving our stochastic

channel selection game. Firstly, due to the use of random

power perturbation procedure, the group utility of each user

is corrupted with random noise, which inevitably leads to

inaccurate ‘regret’ measurements and possibly problematic CE

of the game.

Further, according to (6), to compute the regret for not hav-

ing chosen an alternative channel an,j , user n needs to eval-

uate her potentially perceivable group utility Sn(an,j , al
−n)

under an,j every time when action an,i was played at time step

l < t, which is infeasible since user n does not possess the

global information of other users’ individual utility functions

as well as their selected channels a−n.

To tackle these two challenges, in the next section, we

devise a two-timescale learning algorithm, by which users

learn their underlying noisy group utilities in the ‘faster’ learn-

ing process, while adapting their channel selection strategies

following a modified regret-based rule in the ‘slower’ learning

process.

V. DISTRIBUTED REGRET-BASED LEARNING FOR
PRIVACY-PRESERVING SPECTRUM SHARING

In this section, we introduce the two-timescale distributed

algorithm for finding the CE for our channel selection game,

and provide a theoretic analysis on the long-run weak conver-

gence of the algorithm under mild conditions.

A. Two-timescale Regret-based Learning Algorithm
The learning algorithm, as outlined in Algorithm 1, consists

of a ‘faster’ and a ‘slower’ learning process. Specifically, on a

faster timescale, each user continuously updates the expected

group utility corresponding to each available channel given

the noisy utility observation at each time step. Calibrating to

the maintained expected group utility, each user adapts her

strategy by following the regret-based learning rule at the

‘slower’ time scale. In what follows, we elaborate further on

‘faster’ and ‘slower’ learning processes, respectively.
1) Utility learning on a faster timescale: In the ‘faster’

learning process, user n maintains a vector ŝtn =(
Ŝt
n(an,1), Ŝ

t
n(an,2), · · · , Ŝt

n(an,|Mn|)
)
, with each element

Ŝt
n(an,i) denoting the estimated group utility under action an,i

at time step t. As time evolves, the estimated group utility is

updated as follows:

Ŝt
n(an,i) = (1− λt)Ŝt−1

n (an,i) + λt1{at
n=an,i}S

t
n(a

t
n), (9)

where 0 < λt < 1 denotes the learning rate. Specifically,

for each user n, St
n(a

t
n) is obtained by first measuring its

own received interference U t
n(a

t
n), querying the U t

m received

by each user m ∈ Nn
3, and then conducting the summation

according to (3). Note that at each iteration t, only the element

Ŝt
n(an,i) of vector s

t
n is actually updated. Through this recur-

sive utility learning process, user n can asymptotically form

accurate evaluation of the expected group utility which ensures

that the strategy learning on slower timescale can finally reach

the set of CE.

Algorithm 1 Two-timescale Distributed Learning Algorithm

1: initialization: For each user n,
2: Initialize s0n, and the regret measures

R0
n(an,j , an,i), ∀an,i, an,j ∈ Mn.

3: Randomly select a channel an,i ∈ an with initial proba-

bility q0n(an,i) =
1

|Mn| .
4: Set the learning rate λ0 and ε0; set the parameter γ.
5: end initialization
6: loop for each user n ∈ V in parallel:

7: ‘Faster’ learning process:
8: Measure the received interference and compute the

personal throughput U t
n(a

t
n) by (2).

9: Enquiry the individual utility of neighbors and com-

pute instantaneous group utility St
n(a

t
n) by (3).

10: Update the estimation of expected utility Ŝt
n(a

t
n) by

(9).

11: ‘Slower’ learning process:
12: Calculate the instantaneous regret Qt

n(an,j , an,i) ac-

cording to (11), and compute the regret measures

Dt
n(an,j , an,i) according to (10).

13: Update the channel selection strategy {qtn(an)} ac-

cording to (12), and randomly select a channel at+1
n based

on {qtn(an)}.
14: t ← t+ 1.
15: end loop

3The information exchange among two users within a same group
could be fulfilled via a common control channel.
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2) Strategy adaptation on a slower timescale: At the slower

timescale, we implement a modified regret-based learning

procedure developed based on the standard no-regret rule as

introduced in Section IV-B.

In particular, each user n updates the averaged group util-

ity difference Dt
n(an,j , an,i) between each alternative action

an,j ∈ Mn/{an,i} and the current action an,i recursively as

follows,

Dt
n(an,j , an,i) = (1− εt)Dt−1

n (an,j , an,i) + εtQt
n(an,j , an,i),

(10)

where Qt
n(an,j , an,i) � [Sn(an,j , at

−n) − Sn(at)]1{at
n=an,i}

is defined as the instantaneous regret for not playing actions

an,j instead of an,i at time t. The learning rate 0 < εt < 1
determines the timescale of the regret-based strategy learning,

and should be set in accordance with the value of λt to

guarantee the convergence to the CE, to be discussed next.

Note that (10) generalizes (6) and can reduce to (6) with

learning rate εt being set to 1/t.
As mentioned in the previous section, the perceivable

utility under an alternate action an,j �= an,i at time t,
Sn(an,j , at

−n)1{at
n=an,i}, is challenging to compute without

the knowledge of other users’ actions at
−n and their individual

utility functions. Thus, we resort to the modified no-regret

matching rule [18], and replace the explicit perceivable util-

ity with an estimated term
qtn(an,i)
qtn(an,j)

1{at
n=an,j}Sn(at), where

qtn(an,j) and qtn(an,i) are the probabilities of choosing the

two actions being considered. In particular, user n calculates

her instantaneous regret at time t according to the following

equation:

Qt
n(an,j , an,i) �

[
qtn(an,i)

qtn(an,j)
1{at

n=an,j} − 1{at
n=an,i}

]
Ŝt
n(an,i).

(11)

And we again define the “regret” measure for not hav-

ing played an,j instead of an,i as Rt
n(an,j , an,i) =

max{Dt
n(an,j , an,i), 0}. Simply put, the regret measure char-

acterizes the difference of the averaged group utility between

an,j and an,i. And the weight
qtn(an,i)
qtn(an,j)

is employed to nor-

malize the instantaneous group utility to make the two terms

in the brackets comparable.

With the regret measure Rt
n(an,j , an,i), each user updates

her strategy as follows:⎧⎪⎪⎨
⎪⎪⎩
qtn(an,j) = (1− δt)min

{
Rt

n(an,j ,an,i)
μ , 1

|Mn|−1

}
+ δt

|Mn| ,

∀an,j �= an,i,

qtn(an,i) = 1−∑
an,j �=an,i

qtn(an,j),
(12)

where μ > 2Smax(|M| − 1) with Smax denotes an upper

bound on a user’s group utiltiy. Since
qtn(an,i)
qtn(an,j)

can go un-

bounded, to guarantee that qtn(an,i) ≥ 0, we take the minimum

of the weighted regret term and 1
|Mn|−1 . Given the updated

strategy, each user then adjusts her channel selection and

proceeds to update her regret measures in the next time step.

Notice that by introducing the parameter δ, the strategy

update rule (12) strikes an exploration-exploitation trade-off.

On one hand, an alternate action with a larger ‘regret’ will

have a larger probability of being chosen, which can be

Environment

User User

User

… …
Faster utility
learning Eq.(9)

Slower strategy
adaptation

Eqs.(10) (11) (12)

St
n(a

t
n)

Ŝt
n(an,1), · · · ,

Ŝt
n(an,|Mn|)

qtn(an,1), · · · ,
qtn(an,|Mn|)

at+1
n

Fig. 2: Illustration of the coupling of utility learning (on faster

timescale) and strategy adaptation (on slower timescale) at

time t.

regarded as the exploitation process for a better strategy. On

the other hand, each of the alternate actions will be selected

with a probability of at least δt

|Mn| , enabling the exploration

of the strategy space. As a result, each action could be visited

for enough amount of times, which is the necessity for the

convergence of both strategy adaptation and utility learning.

By standard, we set a diminishing weight δt = 1/tρ with

ρ < 1/4 in order to guarantee the convergence of the strategy

adaptation. For clarification, we use Fig. 2 to illustrate the

coupling of the two learning processes at an arbitrary time

step t. Simply put, in the proposed regret-based two-timescale

learning algorithm, users synchronously learn their long-term

group utilities in parallel to the adaptation of their strategies

in favor of channels with higher ‘regret’. At each iteration,

each user makes use of her maintained average regret matrix

to calculate the instantaneous regret measure, leading to a

computational complexity of O(|Mn|). Next, we evaluate the

convergence performance of our proposed learning algorithm.

B. Convergence Analysis

In this section, we analyze the convergence behavior of

Algorithm 1. We resort to the two-timescale extension of

standard Stochastic approximation theory to show the weakly

convergence of game Γ to the set of correlated equilibria. The

idea is to let the utility learning and regret-based strategy

adaptation proceed simultaneously with different step-size

schedules so that the regret-based strategy learning runs on

a slower effective timescale and sees the utility learning as

quasi-static. Our main result is given in the following theorem.

Assumption 1. For each user n ∈ V , the conditions C1-C3
are satisfied,

C1 : lim
t→∞

∑
t≥0

λt
n = +∞, lim

t→∞

∑
t≥0

(λt
n)

2 < +∞. (13)

C2 : lim
t→∞

∑
t≥0

εtn = +∞, lim
t→∞

∑
t≥0

(εtn)
2 < +∞. (14)

C3 : lim
t→∞

εtn
λt
n

= 0. (15)

Theorem 2. (Convergence of Algorithm 1) Let f t ∈ ΔM be
the empirical distribution as defined in (8). With εt = 1/t in
(10) and Assumption 1 being satisfied, Algorithm 1 converges
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almost surely to the set of CE {π∗} of the game Γ with π∗ =
(π∗

1 , π
∗
2 , · · · , π∗

N ) ∈ ΔM. In particular, we have,

lim
t→∞ Ŝt

n(an,i) = S̄n(an,i, π
∗
−n), ∀n ∈ V, ∀i = 1, · · · , |Mn|,

(16)

and f t a.s.−−→ {π∗} as t → ∞. (17)

where S̄n(an,i, π
∗
−n) is the expected group utility of user n

with action an,i and others’ strategies π∗
−n.

The main idea of the proof is to first introduce the continu-

ous time interpolated process of the discrete learning process

(9) and (10), which can be shown to be the asymptotic pseu-

dotrajectory of the semiflow corresponding to the differential

inclusion defined by the two learning dynamics [31]. Thus the

limiting behaviors of the sequences {Sn(a)} and {π(a)} can

be studied via the differential inclusion. By combining the

asynchronous stochastic approximation framework [32], and

under the Assumption 1, we can obtain the asymptotic weak

convergence result of the two concurrent learning processes.

Due to the lack of space, we leave the detailed proof to the

online appendix [33].

VI. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed

two-timescale distributed learning algorithm for the privacy-

preserving spectrum sharing.

A. Simulation Setup
We consider a database-assisted spectrum access network

consisting of N = 80 IoT devices that are randomly scattered

in a square area of 1 km × 1 km and are categorized into either

one of two groups with equal probability. For each secondary

user n, we set the transmission power before being perturbed

as Pn = 100 mW [28] and the available channel set Mn = A
withM = 5 by default. We consider a Rayleigh fading channel

environment where the channel gain between user n and m
is inversely proportional to their physical distance powered by

the path-loss factor α = 4. The background interference power

Nan for each user n using channel an is uniformly assigned

in the interval of [-100,-90] dBm. The weight factor en for

each user n in either group is generated following a uniform

distribution U(emin, 1) with emin = 0.5 by default.

In our experiment, we let each user randomly perturb her

transmission power level to combat the RSS based localization

attack (as introduced in Section III-B), where each user’s

privacy protection level is quantified by the expected value of

power perturbation E(Δpn). According to (4), we can derive

the expression for the expected value of power perturbation

term as E(Δpn) = b
[
1−(k+1) exp(−k)

1−exp(−k)

]
, where k = p̄/b > 0.

We fix p̄ = 15mW and set b = 12 by default such that the

mean perturbation level is about -6mW. For the two-timescale

learning algorithm, we set the learning rate λt = t−0.5 and

εt = t−0.2 in Algorithm 1. The value of hyperparameters are

determined through a tuning process so that the conditions

C1-C3 are satisfied. In addition, we let ρ = 1/8 as it is used

in [18].

B. Results and Discussions
1) Convergence performance: We first examine the con-

vergence performance of our algorithm. We adjust the value

of b so that the mean value of power perturbation magni-

tude is -5 mW and the minimum group-relationship strength

emin = 0.5. We first run the experiment with different number

of available channels, M = 4, 5, 6. The network throughput

T = 1
N

∑
n∈V Tn is used as the performance metric, where

Tn denotes the average throughput of user n. From Fig.

3a, we observe that the proposed algorithm converges within

1500 iterations in general with increased number of channels

leading to longer convergence time. It can be observed that

changing the size of channel set does not impact the maximum

achievable network throughput, which accounts for about 90%

of the optimal network throughput. For an arbitrary selected

user #10, we further evaluate the convergence of her strategies

over each of the available channels, as shown in Fig. 3b.
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Fig. 3: Convergence performance of two-timescale distributed

learning algorithm.

2) Comparative studies on the throughput-privacy tradeoff:
We next investigate the tradeoffs between network throughput

and location privacy under different levels of power pertur-

bation. We use the default setting of M = 5, emin = 0.5,
and run the experiment under different levels of power per-

turbation. Specifically, we change the value of parameter b so

that the mean value of perturbation power level varies from

0mW to -9mW. For the comparative study, we consider two

benchmarks: (a) the single timescale learning algorithm that

merely consists of strategy adaptation based on modified regret

based learning (RBL) as introduced in Section V-A2; (b) the
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two-timescale learning algorithm involving a utility learning as

well as a strategy adaptation following the Stochastic Fictitious

Play (SFP) [1].

As shown in Fig. 4, in general, the system throughput

decreases as expected with the increase of mean power per-

turbation level. Meanwhile, it is clear that the throughput of

single timescale learning using RBL degrades much faster as

the privacy preserving level increases, compared with other

two approaches that involve both utility learning and strategy

adaptation. This indicates the effectiveness of using a parallel

utility learning to calibrate the noisy utility observation, which

helps balance the location privacy protection with the network

performance (i.e., system throughput).

It can also be seen that the throughput obtained by our

proposed algorithm outweighs the one obtained using the two-

timescale learning approach introduced in [1] by 5% in aver-

age. This can be explained by the different Equilibrium criteria

used in the two studies. By definition, Nash equilibrium uses

an underlying assumption that players’ strategies are mutually

independent. While the correlated equilibrium considered in

this study generalizes the Nash equilibrium by allowing the

strategies to be dependent among players. As the correlated

equilibrium is mathematically equivalent to a convex polytope

with its extrema points corresponding to the set of Nash

equilibria, it is likely to exhibits better performance in general.
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Fig. 4: Performance comparisons among different learning

algorithms under varying power perturbation level.

3) The impact of system scale and group-relationship
strength: We finally examine the network impact to the system

performance. We run the experiment with increasing emin

from 0.5 to 0.9 for three cases with different network scale,

i.e., N = 80, 100, 120. As illustrated in Fig. 5, the network

throughput grows in general as the system scale enlarges. Also,

it can be seen that the throughput experiences a monotonically

increase as the strength of in-group relationship increases. For

the cases with N = 80, 100, 120, approximately 14.5%, 15%,

and 16.4% performance gains are achieved, respectively, when

emin is increased from 0.5 to 0.9, which indicates that the

system would benefit from users behaving more altruistically.
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Fig. 5: Impact of total number of users N and minimum in-

group relationship strength μmin on network throughput.

VII. CONCLUSION

In this paper, we studied database-assisted spectrum sharing

in the system of Industrial Internet of Things (IIoT). To ad-

dress the RSS-based location privacy attack, a random power

perturbation approach is applied to reduce the localization

accuracy of adversaries. We cast the privacy-preserving spec-

trum sharing as a stochastic channel selection game among

socially coupled IoT devices. Based on no regret dynamics,

we develop a two-timescale distributed learning algorithm in

which each device continuously estimates her group utility and

adapts her strategy in favor of reduced regrets. Our proposed

algorithm is shown to weakly converge towards the set of

correlated equilibria and exhibits significant outperformance

against the single timescale learning approach involving only

strategy adaptation. Thereby, our approach helps to strike a

balance between location privacy protection and enhancing

network performance in IIoT system.
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