
AutoShrink: A Topology-aware NAS for Discovering Efficient Neural Architecture

Tunhou Zhang,1 Hsin-Pai Cheng,1 Zhenwen Li,2 Feng Yan,3 Chengyu Huang,4 Hai Li,1 Yiran Chen1

1ECE Department, Duke University, Durham, NC 27708
2Institute of Computational Linguistics, Peking University, Beijing, China

3CSE Department, University of Nevada, Reno, NV 89557
4Department of Electronic Engineering, Tsinghua University, Beijing

{tunhou.zhang,dave.cheng,hai.li,yiran.chen}@duke.edu,
lizhenwen@pku.edu.cn, fyan@unr.edu, huangcy16@mails.tsinghua.edu.cn

Abstract

Resource is an important constraint when deploying Deep
Neural Networks (DNNs) on mobile and edge devices. Exist-
ing works commonly adopt the cell-based search approach,
which limits the flexibility of network patterns in learned cell
structures. Moreover, due to the topology-agnostic nature of
existing works, including both cell-based and node-based ap-
proaches, the search process is time consuming and the per-
formance of found architecture may be sub-optimal. To ad-
dress these problems, we propose AutoShrink, a topology-
aware Neural Architecture Search (NAS) for searching ef-
ficient building blocks of neural architectures. Our method
is node-based and thus can learn flexible network patterns
in cell structures within a topological search space. Directed
Acyclic Graphs (DAGs) are used to abstract DNN architec-
tures and progressively optimize the cell structure through
edge shrinking. As the search space intrinsically reduces as
the edges are progressively shrunk, AutoShrink explores more
flexible search space with even less search time. We evalu-
ate AutoShrink on image classification and language tasks by
crafting ShrinkCNN and ShrinkRNN models. ShrinkCNN is
able to achieve up to 48% parameter reduction and save 34%
Multiply-Accumulates (MACs) on ImageNet-1K with com-
parable accuracy of state-of-the-art (SOTA) models. Specifi-
cally, both ShrinkCNN and ShrinkRNN are crafted within 1.5
GPU hours, which is 7.2× and 6.7× faster than the crafting
time of SOTA CNN and RNN models, respectively.

1 Introduction
Neural Architecture Search (NAS) emerged only in recent
years but has already demonstrated great strength in de-
signing neural architectures automatically. Many research
works show that neural architectures obtained from NAS
surpass the performance of the hand-crafted counterpart
for challenging tasks, such as computer vision and natu-
ral language processing (Liu, Simonyan, and Yang 2018;
Long et al. 2015; Tan et al. 2019; Tan and Le 2019). The
study on NAS methods in early stage concentrated on seek-
ing large-scale neural architectures that can provide record
breaking performance (Long et al. 2015). As computational
power and computing time are not taken into considera-
tion, the redundancy is inevitable for the models obtained
by these methods.

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

DNN Architecture Cell Topology

Cell 1

Cell 2

Cell N

Node Operation &
Edge Operation

Figure 1: Neural architecture structure and cell topology.
A DNN architecture is composed of several cell structures
(Cell 1, Cell 2, ...). The cell topology of a cell denotes the
network connectivity patterns within the cell structure. For
a cell topology, operators are abstracted as nodes and tensor
distributions are taken as edges, through which the tensors
are communicated.

Figure 1 depicts the neural architecture hierarchical struc-
ture and its building block – cell structures, the topology of
which can be descried as node operations and the connec-
tivity between nodes, i.e., edge operations. When search-
ing for more efficient neural architectures, the cell-based
search approach is commonly employed (Tan and Le 2019;
Cai, Zhu, and Han 2018). These methods adopt the architec-
ture motifs from hand-crafted models (e.g., MobileNetV2)
as backbone structures. The found architectures have com-
pact structure and compelling performance. However, the
cell-based approach heavily relies on existing cell structures
and has constrained search space. It is not able to further
discover the topology of an existing cell structure, which is
likely to induce performance degradation.

While the node-based approach does not depend on ex-
isting cell structures, the topology-agnostic mechanism, i.e.,
pre-defined node graph topology, is utilized to optimize the
corresponding operations (Liu, Simonyan, and Yang 2018;
Pham et al. 2018). It is impossible to fully explore the net-
work connectivity patterns within cell structures. The re-
cently proposed randomly wired neural networks (Xie et
al. 2019) utilizes a random graph priors to facilitating the
interaction of tensors in DNN architectures. However, its
topology-agnostic nature makes the crafted models prone to
structural redundancy and sub-optimal performance.

ar
X

iv
:1

91
1.

09
25

1v
1

 [c
s.L

G
]

21
 N

ov
 2

01
9

In this paper, we propose AutoShrink—a topology-aware
NAS methodology. By exploring the cell topology within
cell structures, we aim to improve the performance and ef-
ficiency of found neural architecture and avoid the search
space explosion due to the increased cell topology dimen-
sion. More specific, AutoShrink adopts a node-based search
strategy by abstracting DNN operations as nodes in Directed
Acyclic Graphs (DAGs) and the distribution of tensors as
edges between nodes. The search starts with a complete
DAG and leverage its interconnected topology to fully uti-
lize the flow of tensor between nodes. To reduce the risk
of space explosion, we introduce a topology knowledge ac-
cumulation mechanism and progressively optimize the cell
structure through edge shrinking. AutoShrink can explore
the significantly larger and more flexible search space with
less search time as the search space is intrinsically reduced
with the shrinking of edges.

AutoShrink supports a wide range of applications, includ-
ing Convolutional Neural Network (CNN)-based and Recur-
rent Neural Network (RNN)-based models. We prototype
AutoShrink and conduct a case study for crafting mobile-
friendly neural architectures, where efficiency plays a crit-
ical role due to the highly constraint computing resources.
We evaluate AutoShrink for CNN and RNN architecture
search on image classification and language tasks, respec-
tively. ShrinkCNN that is crafted over the ImageNet-1K
dataset (Deng et al. 2009) has the similar accuracy perfor-
mance as state-of-the-art (SOTA) techniques. Meanwhile,
it has only 3.6M parameters, 48% or 25% reduction com-
pared to the hand-crafted MobileNetV2 (6.9M) (Sandler
et al. 2018) or MNasNet-A (4.8M) (Tan et al. 2019), re-
spectively. In terms of computational cost, ShrinkCNN cuts
of 34% MACs compared to MobileNetV2 while providing
the similar accuracy. ShrinkRNN, a RNN model discov-
ered using the Penn-Treebank dataset (Marcus et al. 1994),
achieves competitive performance with SOTA models by
taking only 1.5 GPU hours search time, which is 6.7× faster
than ENAS (Pham et al. 2018) and 16× faster than the first-
order DARTS (Liu, Simonyan, and Yang 2018).

2 Related Work
Neural Architecture Search (NAS) promotes the design of
SOTA and efficient neural architectures by exploring combi-
nations of node operations, activation functions, etc. Some
existing works (Cai, Zhu, and Han 2018; Wu et al. 2019;
Tan et al. 2019) adopt the cell-based neural architecture
search which reuses architecture motifs from hand-crafted
architectures. Despite such architecture motifs help reduce
the search space, the fixed topology of existing cell struc-
tures severely restrict the utilization of information flow be-
tween nodes, which may lead to degraded performance of
found architectures.

Recent studies (Pham et al. 2018; Liu, Simonyan, and
Yang 2018) explore the node-based approach, which relaxes
the design space to a combination of node operations in-
stead of constructing with predefined cells. However, all
these explorations take a topology-agnostic mechanism: the
node graph topology is fixed before kicking off the search
process and optimizing the corresponding operations. As a

result, structural and topological knowledge cannot be ex-
plored and accumulated during the search process, leading
to sub-optimal performance and long search time.
Wired Neural Architectures is proposed recently and at-
tracted a lot of attention (Xie et al. 2019; Wortsman, Farhadi,
and Rastegari 2019; Cheng et al. 2019). Random wiring (Xie
et al. 2019) shows that random graphs generated by stochas-
tic network generators can provide strong priors for network
connectivity patterns. The flow of tensors in such a random
wiring allows more feature interaction and thus enhances the
performance of found DNN architectures. However, uncon-
strained random wiring may lead to an explosion of memory
consumption due to the aggregation of tensors (e.g., addition
and concatenation) in DNN operations. More importantly,
network generators can only learn the hyperparameters used
to generate the random graphs (e.g., edge connection proba-
bility, degree sequence distribution of each node, etc.), rather
than the actual knowledge of the graph topology.
Network Morphism attempts to morph the architecture of
a neural network but keeps its functionality (Wei et al. 2016;
Gordon et al. 2018). These methods mainly focus on mor-
phing the depth, width, and kernel size of a network, or
optimizing parallel towers in Inception-like DNN architec-
tures (Szegedy et al. 2016). The knowledge of cell topology
is hardly inherited. Moreover, structure optimization based
on network morphism can be time-consuming as it takes
thousands of optimization steps to explore a competitive
child network.

3 Methodology
3.1 An Overview of AutoShrink Workflow
Our proposed AutoShrink is a topology-aware NAS method-
ology for discovering efficient DNN architecture. More
specifically, it explores the cell topology by progressively re-
moving those redundant edges that do not contribute much
to the model performance. Such an approach indeed present
a knowledge accumulation mechanism for the topology. As
such, AutoShrink is able to search larger and more flexible
space by paying reasonable search time.

Figure 2 depicts the workflow of AutoShrink for a cell
topology that is initially abstracted as a complete DAG. We
progressively optimize its structure through the following
four phases iteratively.
• Phase A: For a cell topology, construct the topology

shrink space by removing one edge at a time and collecting
all the derived candidates.
• Phase B: Randomly select K candidate cell structures

from the topology shrink space and formulate K according
to DNN architectures.
• Phase C: Collect the search metrics on the proxy dataset

and use it to identify the best candidate cell topology from
the K randomly chosen candidates.
• Phase D: Update the cell topology for the next iteration

with the best one identified in Phase C. Because the new cell
topology is derived by removing one edge from the previous
iteration, the update process is called as edge shrinking.

The AutoShrink workflow is an iterative process and even-
tually stops when no edge exists in the cell topology of in-

Figure 2: An overview of AutoShrink workflow. A: Construct a topology shrink space for a cell topology by iteratively removing
one edge. B: Randomly select K-candidate from the topology shrink space. C: These selected candidates are evaluated by
efficiency-aware search metric. D: The architecture that performs the best in evaluation is used to update the cell topology. The
different node colors in a cell topology represent different operations.

(a) CNN node operation (b) RNN node operation

Figure 3: Node operations for CNN and RNN. Input nodes
are first aggregated and processed by the DNN operation.
The output will then be distributed to other connected nodes.

terest. More details of the workflow is elaborated in Sec-
tions 3.2∼3.4. The best candidate cell topologies obtained
at the end of all the iterations will be collected and used for
the post-shrink architecture construction, see Section 3.5.

3.2 Cell Topology
The main optimization objective of the proposed AutoShrink
is cell topology, which represents the network connectivity
patterns of a cell structure. A cell topology is denoted as a
DAG G = (V, E), where DNN operations are abstracted as
nodes (V) and the distribution of tensors are represented as
edges (E) connecting nodes.

A node operation denotes a DNN operation ov that pro-
cesses the aggregation of tensors from other nodes and
produces an output tensor xv . ov is parameterized by its
weight parameters wv . It can be a convolutional layer when
searching for CNN architectures, or a recurrent layer fol-
lowed by a unique activation function, such as ReLU and
tanh, when searching for RNN architectures. Unlike random
wiring (Xie et al. 2019) that assigns identical DNN opera-
tion for each node v, we assign each node v ∈ V a unique
DNN operation ov to expand the search space.

Figure 3(a) illustrates a CNN node operation. Existing
works (Xie et al. 2019) apply element-wise addition during
the aggregation of tensors from different nodes. To preserve
the interaction of tensors, we use filter concatenation to ag-
gregate tensors from different nodes and enable the flow of

information between different layers. The aggregated ten-
sor is then processed by a convolution operation to produce
an output tensor for the current node. Given k input tensors
x1, x2, ..., xk, the node v computes the output tensors as:

xv = ov(Concat[x1, x2, ..., xk]), (1)

where Concat denotes the filter concatenation.
Figure 3(b) gives an example of RNN node operation.

Each of the input tensors is passed through a recurrent
layer for a transformation. The transformed tensors are then
summed to form an aggregated tensor, which is passed
through a non-linear activation function to produce the out-
put tensor for this node. Inspired by the memory mecha-
nism in Recurrent Highway Networks (RHN) (Zilly et al.
2017), we use a highway bypass between adjacent nodes to
get memory state. Given k input tensors x1, x2, ..., xk, the
node v computes the output tensors as:

ci = σ(xi · w1
i), (2)

xv =

k∑

i=1

ci ⊗ a(xi · w2
i) + (1− ci)⊗ xi, (3)

where ⊗ denotes the element-wise multiplication, w1
i is

highway gate parameters, and w2
i is transform matrices. σ

denotes the sigmoid activation function, and a represents
the assigned activation function for the current node.

A DAG that represents a cell topology can be directly
mapped to an unique DNN building block. During the map-
ping, a node that does not have any input connections are
dropped. The output for the building block can be con-
structed from the leaf nodes with zero out-degree. For CNN
architectures, the leaf nodes are concatenated within the last
dimension to produce an output feature map for the building
block. For RNN architectures, the leaf nodes are averaged to
produce an output feature map.

3.3 Topological Search Space Construction
Random wiring (Xie et al. 2019) uses identical DNN oper-
ation (e.g., a 3×3 separable convolution) for all the nodes.
Our proposed AutoShrink removes this constraint and con-
structs a topological search space to enable the exploration
of more flexible cell topology.

In CNN architecture search, each node can choose either
1×1 convolution or depth-wise separable 3×3 convolution

as its operation. As batch normalization (Ioffe and Szegedy
2015) speed up DNN training, every convolution operation
adopts a Convolution-BatchNorm-ReLU triplet. For RNN
architectures, we extend the search space by randomly as-
signing unique non-linear function to each node following
the recurrent layer. The non-linear functions include ReLU,
sigmoid, tanh, and identity mapping.

3.4 Edge Shrinking
AutoShrink progressively optimizes the cell structure in a
crafted topology shrink space. In every iteration, AutoShrink
compares the performance of candidate structures and accu-
mulates topological knowledge.
Topology shrink space is used to describe the possible
topological reduction during edge shrinking for improving
the cell structure. The topology shrink space π is defined
as a full set of all possible cell structures that can be de-
rived by applying graph damage (i.e., removing one edge

from the existing graph) to the current cell topology g(t) =
(V (t), E(t)) at time t, such as

π(g(t)) = {(V (t), E(t) − {e})|∀e ∈ E(t)}. (4)

Candidate cell structures. Considering the large topology
shrink space induced by the node connection possibilities
at time t, we adopt K-candidate selection strategy. It ran-
domly picks only K candidate cell structures from the topol-
ogy shrink space, and accumulates the topological knowl-
edge from only the best candidate cell structure according to
the search metrics. This aggressive optimization immensely
reduces the topology shrink space. As our results in Sec-
tion 4.3 shall show, such an aggressive reduction in topology
shrink space does not degrade much performance because
the accumulated topological knowledge could compensate
for the missing in the architecture evaluations. Despite of the
reduction of topology shrink space, the intrinsic reduction
on the overall search space is a leading factor to the lower
search cost. With the combination of the above two factors,
the search cost of AutoShrink is significantly reduced.
Shrink process. For a cell topology g, the shrink process
targets to optimize it within the topology shrink space based
on a resource-aware search metric:

S(g) = Perf(A(g);D)− λ · logRes(A(g)), (5)

whereA(g) denotes the neural architecture built with g, and
D is the proxy dataset used for evaluation. Perf() repre-
sents the best validation performance we can achieve on the
proxy dataset. For CNN architectures for image classifica-
tion tasks, accuracy can be taken as the performance met-
ric. For RNN architectures targeting on language tasks, the
performance metric can be perplexity. Res() denotes the re-
source consumption of a model, such as the number of pa-
rameters or MACs of A(g). λ is an adjustable parameter
which penalizes the resource consumption to form a light-
weight neural architecture.

To search for efficiency-aware neural architectures, Au-
toShrink incorporates the resource-aware metric as a con-
tinuous penalty function into the search metric. By evaluat-
ing the performance of candidate architectures in the topol-
ogy shrink space and picking the best one according to the

Algorithm 1 AutoShrink
Input:
N: Number of nodes in the initial complete DAG.
K: Number of candidates in topology shrink space to evalu-
ate in each shrink step.
begin

Generate a complete graph g(0) with N nodes and ran-
domly assign DNN operations.
t← 0
while E(t) �= {∅} do

Phase A: Construct the topology shrink space π(g(t))
Phase B: Adopt K-candidate selection strategy to select

K candidate cell structures g
(t)
1 , g

(t)
2 , ..., g

(t)
K .

Phase C: Construct the candidate DNNs using all can-

didate cell structures g
(t)
1 , g

(t)
2 , ..., g

(t)
K .

Train the candidate DNNs on proxy dataset and get the

feedback search metrics S(g
(t)
1), S(g

(t)
2), ..., S(g

(t)
K)..

Phase D: Use the best candidate cell structure to update
cell topology.

g(t+1) ← argmax
g′∈{g(t)

1 ,g
(t)
2 ,...,g

(t)
K } S(g

′).
end while
return g

end

search metric, the current cell structure can better utilize the
topological knowledge from similar structures and make im-
provement by adapting to the best candidate cell structure in
the topology shrink space. The pseudo code for the shrink
process is given in Algorithm 1.

Topology knowledge accumulation. The progressive im-
provement process accumulates the topological knowledge
in the cell structure as the edge shrinking steps forward. The
accumulation of topology knowledge is demonstrated in two
aspects. On the one hand, redundant edges are sequentially
moved out of the cell topology to facilitate the exploration of
efficient but representative cell topology. On the other hand,
due to the reduction of total number of edges in the cell
topology, the search space is becoming smaller for the cell
topology to make further improvement. For example, the ini-
tial search space is estimated to contain 6.8 × 1010 neural
architectures for a given complete DAG with 28 edges, 8
nodes and 2 possible choices for each node operation as the
cell topology. After one shrink step, at most 27 edges still
exist in the cell topology and the search space is reduced by
at least 4×, which contains at most 1.7× 1010 neural archi-
tectures. Smaller search space enables a faster exploration
of representative cell structure, which can be otherwise un-
explored within limited time budget.

More formally, at time t, the progressive improvement of
the current cell structure gt within the topology shrink space

π(g(t)) can be expressed as:

g(t+1) = argmax
g′∈π(g(t))

S(g′). (6)

3.5 Crafting DNN Architecture
Based on the performance metric S in Eq. (5), the cell struc-
ture with the best performance gopt will be taken as our rep-
resentative cell structure of optimal performance:

gopt = argmax
ĝ∈g

S(ĝ). (7)

This representative cell structure is used as the building
block to construct DNN architectures.
Modularization for CNN. As CNNs are well-known to
be a hierarchical design with different feature map size in
different stages, we divide a DNN architecture into mul-
tiple stages. Instead of strided convolution, MaxPooling
is used as the down-sampling module to connect two ad-
jacent stages. Table 1 gives an example of modularizing
AutoShrink cells to construct CNN architectures for the
CIFAR-10 task (Krizhevsky and others 2009). In each stage,
we stacked T representative cells found by AutoShrink (i.e.,
gopt). The width of these cells remains the same within a
stage, and doubles when passing the down-sample module.
Furthermore, a residual connection (He et al. 2016) is added
from the input node to the output node within our optimal
CNN cell structure, which is helpful to develop extra net-
work connectivity patterns. With the incorporation of resid-
ual connections, the performance grows with the depth of
DNN architecture like ResNets (He et al. 2016).
Modularization for RNN. To ensure the maximum flexi-
bility in RNN architecture construction. we do not assume
any repetitive patterns while constructing optimal RNN ar-
chitectures from optimal RNN cell structures. The final
RNN architecture for Penn Treebank consists of an embed-
ding layer, an optimal RNN cell explored by AutoShrink,
and a decoder to generate the final predictions. Following
DARTS (Liu, Simonyan, and Yang 2018), we use a fully
connected layer to construct the decoder so that the hidden
state can be used to predict.

4 Experiments and Discussion
We implement and evaluate AutoShrink for CNN and RNN
architecture search respectively on image classification and
language tasks. Considering there are 7 ∼ 12 nodes in SOTA
node-based NAS (Pham et al. 2018; Liu, Simonyan, and
Yang 2018), we set the initial cell structure to be a complete

Hierarchy Output Regime
resolution

Stem CONV 32×32 CONV 3×3 32 filters
MP + Stage 1 32×32 AutoShrink Cell, T , 16 filters
MP + Stage 2 16×16 AutoShrink Cell, T , 32 filters
MP + Stage 3 8×8 AutoShrink Cell, T , 64 filters

Classifier 1×1 AP, FC, Softmax

Table 1: The ShrinkCNN architecture configuration for
the CIFAR-10 task. CONV denotes the Convolution-
BatchNorm-ReLU triplet. MP and AP denotes MaxPool-
ing and Average Pooling respectively. On CIFAR-10 task,
ShrinkCNN has 3 stages with T AutoShrink cells stacked in
each stage.

DAG with N = 8 nodes for CNN search and N = 6 for
RNN search. Empirically, we set λ to 0.1 to favor efficiency-
aware architecture in both CNN and RNN search.

4.1 ShrinkCNN for Image Classification
Representative CNN cell structures from proxy dataset.
We construct the proxy dataset for image classification tasks
by randomly selecting 5,000 examples from the CIFAR-10
dataset (Krizhevsky and others 2009) with an equal distribu-
tion of classes. To obtain representative cell structures, we
first build candidate CNN architectures based on the candi-
date cell structures obtained from the AutoShrink process. A
candidate architecture follows the configuration in Table 1:
it has three stages; each stage contains one AutoShrink cell
(T = 1); and the numbers of convolutional filters in the three
stages are 16, 32, and 64, respectively.

These candidate neural architectures are trained on the
proxy dataset. MAC is taken as the focused optimization re-
source and integrated into the search metrics. In each shrink
step, we adopt a K-candidate selection strategy with K set to
10 to deliver a fast architecture search without sacrificing the
performance of cell topology. Each training takes about 20
epochs to reach convergence. We then evaluate the valida-
tion accuracy on the proxy dataset to get the feedback search
metrics. The largest candidate architecture derived from our
proxy dataset has a computational cost of 20M MACs and
takes about 40 GPU seconds to reach convergence.

Once the AutoShrink process is completed, the cell struc-
ture that provides the best result of search metric is selected
as the representative cell structure. As shown in Figure 4, the
representative CNN cell structure consists of 4 node opera-
tions and 3 filter concatenations. The left part of the struc-
ture develops a Siamese pair of convolutions with wired con-
catenations to produce similar feature maps for the follow-
ing different-sized convolutions. The right part utilizes the
previous input, and learns a combination of different-sized
filters to capture the spatial information.
ShrinkCNN on ImageNet-1K. The representative CNN
cell structure is adapted to ImageNet-1K dataset (Deng
et al. 2009) for crafting the optimal network architecture,
namely, ShrinkCNN. In this work, we craft two architec-
tures. ShrinkCNN-A is obtained by using ReLU activation,
which can provide a fair comparison of AutoShrink and the
ReLU-based CNN architectures (Sandler et al. 2018; Liu,
Simonyan, and Yang 2018; Xie et al. 2019). ShrinkCNN-

SepConv3x3

Concat Conv1x1

Node0

Node1

Node2

Node3

CNN Cell

+ Output

Input

SepConv3x3

Concat SepConv3x3

Concat
Node2

Figure 4: The representative CNN cell structure.

Architecture Top-1 Error # Param MACs
(M) (G)

ResNet-50 24.0% 26 4.1
MorphNet 24.8% 15.5 -

MobileNetV1 29.4% 4.2 0.569
MobileNetV2 25.3% 6.9 0.585
MnasNet-A 24.4% 4.8 0.340

EfficientNet-B0 23.7% 5.3 0.391
DARTS 26.7% 4.7 0.574

RandWire-WS 25.3% 5.6 0.583
ShrinkCNN-A 26.1% 3.6 0.385
ShrinkCNN-B 24.9% 3.6 0.385

Table 2: Performance comparison of various CNN architec-
tures on ImageNet-1K dataset. All the evaluations are based
on 50,000 images of ImageNet-1K validation dataset. The
input resolution is set to 224× 224.

Architecture Perplexity #Param Search Cost

valid test (M) (GPU hours)

LSTM 60.7 58.8 24 -
LSTM-SC 60.9 58.3 24 -

RHN 67.9 65.4 23 -
ENAS - 55.8 23 10

DARTS 58.1 55.7 23 24
ShrinkRNN 58.5 56.5 23 1.5

Table 3: Performance comparison of various neural architec-
tures on Penn Treebank dataset. We evaluate ShrinkRNN on
both the validation and test dataset for fair comparison.

B is crafted by using swish (Ramachandran, Zoph, and Le
2017) activation that helps increase the representation power
of models. We compare ShrinkCNN-B with the swish-based
CNN architectures (Tan and Le 2019; Tan et al. 2019).

We adopt similar pre-processing pipeline as Inception-
V3 (Szegedy et al. 2016) and use RMSprop optimizer (Hin-
ton, Srivastava, and Swersky 2012) with an initial learning
rate 0.1 to optimize the CNN architectures. The cosine learn-
ing decay suggested in SGDR (Loshchilov and Hutter 2016)
is employed to reduce the generalization error.

Performance evaluation. We compare ShrinkCNN-A and
ShrinkCNN-B with SOTA hand-crafted and automatically
searched models. Table 2 summarizes their key perfor-
mance metrics on the ImageNet-1K dataset. In general,
ShrinkCNN requires fewer parameters and MAC operations
while providing the similar accuracy. For example, com-
pared to the hand-crafted MobileNetV2 model with ReLU
activation, ShrinkCNN-A reduces 48% model parameters
and 34% MACs. Compared to MNasNet-A which is crafted
by conducting resource-aware neural architecture search,
ShrinkCNN-B can further cut off 25% parameters with neg-
ligible impact on the top-1 error rate. Our ShrinkCNN-B re-
quires slightly more MACs mainly because MnasNet-A ap-
plies architecture motifs (e.g., squeeze-and-excitation lay-
ers) to further increase the efficiency of MACs. Such ar-
chitecture motifs can also be combined with ShrinkCNN-

relu

tanh

sigmoid

identity

tanh
Input

Output

Node0

Node1

+ +

+

Node2 Node4

Node3

+

RNN Cell

Figure 5: The representative RNN cell structure.

B to further boost the performance. Here we only show the
performance results of AutoShrink without prior knowledge
to demonstrate its effectiveness. Compared to EfficientNet
(Tan and Le 2019) obtained by scaling up MobileNetV2
blocks using automated search, ShrinkCNN-B can save 32%
parameters with the similar top-1 error rate and MACs.

4.2 ShrinkRNN for Language Tasks
Representative RNN cell structures from proxy dataset.
In this work, the proxy dataset for language tasks is con-
structed by randomly selecting 4,000 sentences from the
Penn Treebank dataset. We adopt the similar approach for
CNN architectures in the search of representative RNN cell
structure. Specifically, for language tasks, we set the di-
mension of embedding and hidden units of candidate cell
structures to 200 (Liu, Simonyan, and Yang 2018; Pham
et al. 2018) and incorporate the number of parameters as
efficiency-aware resource consumption into the search met-
ric. In each shrink step, we adopt a K-candidate selection
strategy with K set to 5 to balance the search speed and
the performance of cell topology. The training of candi-
date neural architecture on the proxy dataset takes about 10
epochs to converge. The largest RNN architecture derived
from our candidate cell structures has 1.2 Million parame-
ters and takes about 80 GPU seconds to reach convergence.

Figure 5 depicts the found representative RNN cell struc-
ture. It has 5 node operations and 4 node additions. The
left node combines the hidden state from the previous step
and the input word embedding. Each node on the right side
learns a combination of others’ outputs to capture high-
level information. This RNN cell integrates various activa-
tion functions, which improves its representational power.
ShrinkRNN on Penn Treebank. We adapt our repre-
sentative RNN cell structure to the full Penn-Treebank
dataset (Marcus et al. 1994) for crafting ShrinkRNN. For
comparison purpose, we rescale ShrinkRNN to a fixed set-
ting of 23 Million parameters. NT-ASGD algorithm (Merity,
Keskar, and Socher 2018) is used to train the ShrinkRNN
architecture and the initial learning rate is set to 20. Addi-
tional regularization techniques include an �2 regularization
weighted by 8×10−7; variational dropout (Gal and Ghahra-
mani 2016) of 0.2 to word embeddings, 0.75 to cell input,
0.25 to hidden nodes and 0.75 to output layer.
Performance evaluation. We compare ShrinkRNN with
SOTA models including LSTM (Merity, Keskar, and Socher
2018), LSTM with skip connections (LSTM-SC) (Melis,
Dyer, and Blunsom 2018), recurrent highway network
(RHN) (Zilly et al. 2017), ENAS (Pham et al. 2018), and

DARTS (Liu, Simonyan, and Yang 2018). Table 3 summa-
rizes the validation and test results on the Penn-Treebank
dataset. ShrinkRNN provides a comparable performance
while its crafting time is significantly shorter (over 6.7×
shorter) than the existing node-based NAS methods.

4.3 Ablation Studies
Efficiency of CNN cell topology. We analyze the progres-
sive optimization procedure towards our representative CNN
cell structure to evaluate the efficiency of our cell topol-
ogy. Starting with a complete DAG with N = 8 nodes and
28 edges, AutoShrink progressively optimizes the CNN cell
topology to only 6 edges. The computational cost of our
representative cell structure reduces from 6.12M MACs to
2.60M MACs. To verify the effectiveness of our knowledge
accumulation mechanism, we compare the performance of
neural architectures constructed from complete-DAG-based
cell topology and strong topology priors with our repre-
sentative cell topology. The topology priors we use are
Watts-Strogatz (WS) graph, Erdös-Rényi (ER) graph, and
Barabási-Albert (BA) graph, which are popular in graph the-
ory.

We craft CNN architectures with the above topology re-
spectively, train them on the full CIFAR-10 dataset with the
same hyperparameter setting, and compare their test results
with ShrinkCNN in Table 4. Table 4 shows that ShrinkCNN
is able to achieve up to 1.66% higher accuracy than the
complete-DAG-based topology, and up to 3% higher than
the topology from random graphs, thanks to the topological
knowledge accumulation in the AutoShrink process.
Efficiency of RNN cell topology. We also analyze the pro-
gressive optimization procedure in RNN cell structure. Start-
ing with complete DAG with 6 nodes and 15 edges, Au-
toShrink progressively optimize the cell topology to only 8
edges, while the number of parameters within the cell topol-
ogy is reduced from 3.37M to 2.8M. We craft RNN archi-
tectures using complete-DAG-based topology and our rep-
resentative cell structures. Then, we train the RNN architec-
tures on full Penn Treebank dataset with the same hyperpa-
rameters. Table 5 indicates that our representative RNN cell
structure can achieve a significantly lower (6.6) perplexity
with 30% fewer parameters.
K-candidate selection in CNN. We further investigate the

Topology Nodes Accuracy MAC
(%) (M)

Complete-DAG 8 91.56 105.61
WS 15 90.5±0.41 16.04±2.71
ER 15 92.1±0.38 34.40±16.43
BA 15 90.0±0.34 32.61±5.96

ShrinkCNN 8 93.22 38.20

Table 4: Comparison with ShrinkCNN topology with prior
graph topology. We use N = 8 nodes when crafting CNN
architectures with complete-DAG-based topology, and N =
15 nodes when crafting CNN architectures with random
graph priors. Experiments on random graph priors are con-
ducted 10 times to reduce randomness as much as possible.

Cell Topology Edges Perplexity # Param (M)
Complete-DAG 15 63.1 33

ShrinkRNN 8 56.5 23

Table 5: Demonstration of efficient RNN cell structures
found by AutoShrink algorithm on full Penn Treebank
dataset. We used N = 6 nodes when crafting RNN archi-
tectures with complete-DAG-based topology.

impact of K value in the K-candidate selection strategy
and analyze its impact on both search cost and performance.
Specifically, we configure K to be 5, 10, 15 while running
AutoShrink on complete DAGs with 6, 8, 10 nodes. From
figure 6, we observe that different combinations of the num-
ber of nodes and K candidates may result in slightly differ-
ence in final accuracy, although increasing K can strengthen
the candidate selection process. However, the search cost
dramatically increases with K. For example, when N = 8,
changing K from 10 to 15 increases the searching time from
1.5 hours to 1.875 hours, while the validation accuracy has
subtle difference.

Figure 6: The impact of K on the performance of our repre-
sentative CNN structures with different number of nodes at
the beginning of AutoShrink process. Marginal performance
gain is spotted when increasing K to conduct more delicate
AutoShrink process with larger search cost.

5 Conclusion
In this work, we propose a topology-aware NAS method,
AutoShrink, for discovering efficient and representative cell
topology to formulate DNN architectures. To explore sig-
nificantly larger and more flexible space, AutoShrink accu-
mulates topology knowledge by combining intrinsic search
space reduction and K-candidate selection strategy to signif-
icantly reduce the search cost. The above contributions make
AutoShrink consistently outperform both hand-crafted mod-
els and automatically searched models on both image clas-
sification and language tasks without any prior knowledge.
Using representative cells found by AutoShrink, the crafted
ShrinkCNN achieves comparable accuracy on ImageNet-1K
dataset with up to 48% parameter reduction and up to 34%
MACs reduction compared to SOTA models. The crafted
ShrinkRNN has comparable performance results as SOTA
models while can be crafted 6.7× faster.

Acknowledgements. This project is in part supported by
the following grants: NSF-1937435, NSF CCF-1725456,
DOE SC0017030, Qualcomm Gift, NSF CCF-1756013, IIS-
1838024 (using resources provided by Amazon Web Ser-
vices as part of the NSF BIGDATA program). We also thank
USTC for the support of computing.

References
[Cai, Zhu, and Han 2018] Cai, H.; Zhu, L.; and Han, S.

2018. Proxylessnas: Direct neural architecture search on tar-
get task and hardware. arXiv preprint arXiv:1812.00332.

[Cheng et al. 2019] Cheng, H.-P.; Zhang, T.; Yang, Y.; Yan,
F.; Teague, H.; Chen, Y.; and Li, H. 2019. Msnet: Struc-
tural wired neural architecture search for internet of things.
International Conference on Computer Vision Workshop on
Neural Architects.

[Deng et al. 2009] Deng, J.; Dong, W.; Socher, R.; Li, L.-J.;
Li, K.; and Fei-Fei, L. 2009. ImageNet: A Large-Scale Hi-
erarchical Image Database. In CVPR09.

[Gal and Ghahramani 2016] Gal, Y., and Ghahramani, Z.
2016. A theoretically grounded application of dropout in
recurrent neural networks. In Lee, D. D.; Sugiyama, M.;
Luxburg, U. V.; Guyon, I.; and Garnett, R., eds., Advances
in Neural Information Processing Systems 29. Curran Asso-
ciates, Inc. 1019–1027.

[Gordon et al. 2018] Gordon, A.; Eban, E.; Nachum, O.;
Chen, B.; Wu, H.; Yang, T.-J.; and Choi, E. 2018. Mor-
phnet: Fast & simple resource-constrained structure learning
of deep networks. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 1586–1595.

[He et al. 2016] He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, 770–778.

[Hinton, Srivastava, and Swersky 2012] Hinton, G.; Srivas-
tava, N.; and Swersky, K. 2012. Neural networks for ma-
chine learning lecture 6a overview of mini-batch gradient
descent.

[Ioffe and Szegedy 2015] Ioffe, S., and Szegedy, C. 2015.
Batch normalization: Accelerating deep network train-
ing by reducing internal covariate shift. arXiv preprint
arXiv:1502.03167.

[Krizhevsky and others 2009] Krizhevsky, A., et al. 2009.
Learning multiple layers of features from tiny images. Tech-
nical report, Citeseer.

[Liu, Simonyan, and Yang 2018] Liu, H.; Simonyan, K.; and
Yang, Y. 2018. Darts: Differentiable architecture search.
arXiv preprint arXiv:1806.09055.

[Long et al. 2015] Long, M.; Cao, Y.; Wang, J.; and Jordan,
M. I. 2015. Learning transferable features with deep adap-
tation networks. arXiv preprint arXiv:1502.02791.

[Loshchilov and Hutter 2016] Loshchilov, I., and Hutter, F.
2016. Sgdr: Stochastic gradient descent with warm restarts.
arXiv preprint arXiv:1608.03983.

[Marcus et al. 1994] Marcus, M.; Kim, G.; Marcinkiewicz,
M. A.; MacIntyre, R.; Bies, A.; Ferguson, M.; Katz, K.; and

Schasberger, B. 1994. The penn treebank: annotating pred-
icate argument structure. In Proceedings of the workshop
on Human Language Technology, 114–119. Association for
Computational Linguistics.

[Melis, Dyer, and Blunsom 2018] Melis, G.; Dyer, C.; and
Blunsom, P. 2018. On the state of the art of evaluation
in neural language models. In International Conference on
Learning Representations.

[Merity, Keskar, and Socher 2018] Merity, S.; Keskar, N. S.;
and Socher, R. 2018. Regularizing and optimizing LSTM
language models. In International Conference on Learning
Representations.

[Pham et al. 2018] Pham, H.; Guan, M. Y.; Zoph, B.; Le,
Q. V.; and Dean, J. 2018. Efficient neural architecture search
via parameter sharing. arXiv preprint arXiv:1802.03268.

[Ramachandran, Zoph, and Le 2017] Ramachandran, P.;
Zoph, B.; and Le, Q. V. 2017. Searching for activation
functions. arXiv preprint arXiv:1710.05941.

[Sandler et al. 2018] Sandler, M.; Howard, A.; Zhu, M.; Zh-
moginov, A.; and Chen, L.-C. 2018. Mobilenetv2: Inverted
residuals and linear bottlenecks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
4510–4520.

[Szegedy et al. 2016] Szegedy, C.; Vanhoucke, V.; Ioffe, S.;
Shlens, J.; and Wojna, Z. 2016. Rethinking the incep-
tion architecture for computer vision. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, 2818–2826.

[Tan and Le 2019] Tan, M., and Le, Q. V. 2019. Efficientnet:
Rethinking model scaling for convolutional neural networks.
arXiv preprint arXiv:1905.11946.

[Tan et al. 2019] Tan, M.; Chen, B.; Pang, R.; Vasudevan, V.;
Sandler, M.; Howard, A.; and Le, Q. V. 2019. Mnasnet:
Platform-aware neural architecture search for mobile. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2820–2828.

[Wei et al. 2016] Wei, T.; Wang, C.; Rui, Y.; and Chen, C. W.
2016. Network morphism. In International Conference on
Machine Learning, 564–572.

[Wortsman, Farhadi, and Rastegari 2019] Wortsman, M.;
Farhadi, A.; and Rastegari, M. 2019. Discovering neural
wirings. arXiv preprint arXiv:1906.00586.

[Wu et al. 2019] Wu, B.; Dai, X.; Zhang, P.; Wang, Y.; Sun,
F.; Wu, Y.; Tian, Y.; Vajda, P.; Jia, Y.; and Keutzer, K. 2019.
Fbnet: Hardware-aware efficient convnet design via differ-
entiable neural architecture search. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, 10734–10742.

[Xie et al. 2019] Xie, S.; Kirillov, A.; Girshick, R.; and He,
K. 2019. Exploring randomly wired neural networks for
image recognition. arXiv preprint arXiv:1904.01569.

[Zilly et al. 2017] Zilly, J. G.; Srivastava, R. K.; Koutnı́k, J.;
and Schmidhuber, J. 2017. Recurrent highway networks.
In Proceedings of the 34th International Conference on Ma-
chine Learning-Volume 70, 4189–4198. JMLR. org.

