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ABSTRACT
During the past few years, all leading cloud providers introduced

burstable instances that can sprint their performance for a limited

period to address sudden workload variations. Despite the availabil-

ity of burstable instances, there is no clear understanding of how to

minimize the waste of resources by regulating their burst capacity to

the workload requirements. This is especially true when it comes to

non-CPU-intensive applications. In this paper, we investigate how

to limit network and I/O usage to optimize the efficiency of the

bursting process. We also study which resource shall be controlled

to benefit both cloud providers and end-users. We design MRburst

(Multi-Resource burstable performance scheduler) to automatically

limit multiple resources (i.e., network, I/O, and CPU) and make the

application comply with a user-defined service level objective (SLO)

while minimizing wasted resources. MRburst is evaluated on Ama-

zon EC2 using two multi-resource applications: an FTP server and a

Ceph system. Experimental results show that MRburst outperforms

state-of-the-art approaches by allowing instances to speed up their

performance for up to 2.4 times longer period while meeting SLO.
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1 INTRODUCTION
All major cloud providers have by now introduced burstable in-

stances to improve spare resource utilization. Burstable instances

come with initial credits for each type of resources. These credits

are used to temporally sprint the performance of instance beyond

the baseline point of reference. Cloud service providers typically

disclose some information about the resource credits. For example,

Amazon Web Services (AWS) explicitly mentions the CPU and I/O

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

Middleware Industry ’19, December 9–13, 2019, Davis, CA, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-7009-7/19/12. . . $15.00

initial number of credits and the generation/consumption rate, but

does not provide any information regarding the network credits. This

initial transient period in which an instance uses up its initial credits

and essentially operates above baseline performance is called Credit
Depletion Period. Any reduction in resource utilization during the

instance execution decreases the credit consumption rate and ex-

tends the credit depletion period. For example, one CPU credit of

an AWS t2.micro instance is consumed in 2 minutes if the CPU is

50% utilized or in 1 minute when the CPU utilization is 100%. After

consuming all initial credits, the instance operates at its baseline

performance. Periodically, it generates new credits with a rate that is

commensurate to its size, i.e., credit generation is capped. In general,

the credit generation rate is equal to the number of credits that the

instance requires for working with baseline performance. Hence,

the number of resource credits does not change when the instance

operates at baseline performance.

Our thesis is that depending on the user performance objectives,

it may be beneficial to stretch the instance credit depletion period,

by slowing down the consumption of its initial credits. This implies

that if users only require a certain performance level (i.e., meet SLO)

during the initial transient period, then the period when the instance

operates above baseline performance can be stretched significantly.

Even more, if users can predict when the credit is completely de-

pleted, the application can be migrated to a fresh instance with full

credits and enjoy a new extended period of higher-than-baseline

performance with significantly lower cost. It is worth to point out

that the above also benefits the cloud service providers in the long

run as the burstable mechanism is “regulated” using spare resources

that are otherwise wasted. Regulating the resource utilization can

provide a finer-grained spare resource control to further improve the

utilization of spare resources.

To slowdown credit consumption, a limit on resource usage must

be enforced. Initial characterization experiments on AWS confirm

that limiting the performance of an instance extends its credit de-

pletion period. While this idea of limiting resources by throttling

their consumption in a judicious way is appealing, its challenges are

multi-fold: i) there is nebulous information about credit generation

and consumption mechanisms of the instance; ii) expensive profiling

is required to analyze the ample search space of resource limitations;

iii) there may be unexpected interactions of different resources and

their performance effect on each other, e.g., limiting CPU utilization

leads to reducing network bandwidth and vice versa.

This paper presents Multi-Resource burstable performance sched-
uler (MRburst), a framework that improves the long term perfor-

mance of an instance by analyzing multiple resources (i.e., CPU, I/O,

and network) to perform throttling and bypasses the above challenges

in a black-box manner. MRburst extends the credit depletion period
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Figure 1: Advantages in throttling and monitoring other resources in addition to CPU when Ceph is deployed on AWS.

while complying with application SLOs (e.g., pre-defined percentile

latencies) and schedules migration before performance degrades.

Specifically, MRburst samples a few limited observations by profil-

ing the application 95th-percentile latency with different resource

limitations. The optimal resource throttling is selected to reduce

credit consumption and maintain the 95th-percentile latency (or any

predefined percentile) below the agreed SLO. MRburst adopts CPU,

I/O, and network credit depletion models to predict the performance

degradation of the instances due to credit exhaustion.

We prototype MRburst and evaluate it on Amazon EC2. We con-

sider two applications, an FTP server (to transfer files from servers

to clients) and a Ceph system (for object storage [15]). The for-

mer is a network-intensive application that may consume I/O and

network credits. The latter requires CPU, I/O, and network credits.

Experiments show that MRburst outperform available strategies by

extending the credit depletion period of an instance up to 2.4 times

and halving the number of required migrations (for the purpose of ex-

tending the burstable time period. To the best of our knowledge this

is the first attempt to optimize multi-resource applications exploiting

network and I/O bursting performance.

2 MOTIVATION
Previous work [1, 17] shows that it is possible to extend the CPU

credit depletion period by limiting CPU usage through cpulimit, but

such work focuses on CPU-intensive applications only. Real-world

applications can easily stress resources other than CPU, e.g., they

may be network- or I/O-intensive.

Similar to CPU, network and I/O performance are governed by a

credit mechanism, that allows resources to burst their performance

beyond the baseline. Resource throttling allows for decreasing credit

consumption rate and for extending the credit depletion period. Tools

exist for limiting I/O, network, and CPU performance, including

cgroups [7], Wonder Shaper [3], and cpulimit [8], respectively. When

the system runs out of credits, it can only operate with baseline per-

formance. Thus, it is crucial to keep track of the credit consumption

rate of all resources to make system performance comply with the

user-defined SLO. Figure 1(a) shows the effect of limiting CPU or

network on a Ceph cluster with 200 users. Ceph [15] is a storage

platform that implements distributed object storage while providing

performance and dependability. When no limitation is applied, Ceph

uses all available resources to process the incoming requests and

depletes its resource credits too fast: it starts violating the SLO after

only 300 seconds. Limiting either CPU (i.e., 40%) or network (i.e.,

200 Mbps) allows extending the credit depletion period up to 900

seconds. In this case, Ceph performance is slightly worse, but its la-

tency is still shorter than the user-defined SLO (see the green dashed

line). The credit depletion period can be further extended by using

stricter limitations (e.g., cpulimit = 30%), but now SLO is violated.

Although both limitations (i.e., CPU and network) in Figure 1(a)

allow Ceph to operate with the same latency (i.e., 1 second), network

limitation makes the credit depletion period (CDP) 120 seconds

longer. The different credit depletion periods when throttling differ-

ent resources depend on the system environment (e.g., application,

system configuration). Hence, it is nontrivial to determine which

limitation is more efficient apriori.

Figure 1(b) depicts CPU and network limit as a function of the

latency inflection point, i.e., the credit depletion period. It shows

that the credit depletion period is not enough to identify the best

limitation to apply since no performance measures are available.

One must analyze a considerable search space (i.e., limitation types,

limitation values, workload, and latency) to determine how to throttle

the system. Network and CPU limits considered in Figure 1(a) are

highlighted in Figure 1(b) for easier comparison.

Figures 1(c) and 1(d) depict the available network (left y-axis)

and CPU (right y-axis) credits for two cases plotted in Figure

1(a) (i.e., cpulimit = 40% and Wonder Shaper = 200 Mbps). Al-

though such limitations provide the same performance, resource

credit consumption rate, i.e., resource usage, vary based on the

applied limitation. For example, after 1200 seconds, there are 25

CPU credits if cpulimit = 40% is applied or 28 CPU credits when

Wonder Shaper = 200 Mbps is used. Similar considerations apply

to network credits. This means that there is a relationship among

resource usage, but it may be hard to determine its nature in advance.

Non-CPU-intensive applications generally consume network or

I/O credits faster than CPU-intensive ones. Hence, monitoring only

CPU credit consumption is inadequate to migrate an instance before

its performance deterioration. For example, Ceph starts operating

with baseline performance after consuming all network credits of the

instance (see Figures 1(c) and 1(d)). Independently of the adopted

limitation, the instance still has almost all its CPU credits when

network ones are exhausted. For this reason, to efficiently sched-

ule instance migration, it is necessary to monitor all resources to

determine which one is the first one to exhaust its credits.

To summarize: i) real-world applications need different resources

(i.e., CPU, I/O, and network) to work correctly; ii) it is hard to de-

termine in advance which limitation must be applied to optimize

resource usage; iii) it is necessary to profile an enormous search

space for determining the most efficient limitation; iv) interdepen-

dence among resources is not definable apriori; v) resources con-

sume their credits with different rates. Therefore, it is crucial to

have a framework to bypass all of the above challenges and provide

seamless answers to the following. i) Is it possible to control non-

CPU-intensive applications and extend the credit depletion period

of the hosting instance while complying with user-defined SLOs? ii)
Which limitation type is the most efficient to apply? iii) Which re-

source consumes up its credits first? To address the above challenges
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Table 1: Parameters of the optimization problem in Eq. (1) for
an AWS t2.micro instance. vs stands for volume size in GiB.

Ck
(
0
)

[cr] Cmax
k [cr] Rk

c Rk
e

k = CPU 30 144 1 cr/min 0.1 cr/min

k = I/O 5.4×106 5.4×106 1 cr/IO 3 · vs cr/sec

k = net 123,617 123,617 1 cr/Mbit 61 cr/sec

we propose MRburst, a black-box approach that optimizes resource

usage by identifying the most effective resource to throttle and the

most profitable throttling level. It also monitors all resources to mi-

grate the application before performance degradation is observed.

MRburst benefits also cloud providers by optimizing resource us-

age and decreasing the number of launched instances. In Figure

1(a), performance degrades after 300 seconds when no resource is

throttled. A new instance is required for migration every 5 minutes

to meet the SLO. Resource throttling (e.g., Wonder Shaper = 200

Mbps) extends the credit depletion period to 900 seconds and the

application can be hosted by a new VM every 15 minutes.

3 METHODOLOGY
Given a workload, MRburst finds the best limitation that maximizes

spare resources while complying with the advertised SLO. For this

purpose, MRburst uses empirical measurements (lightweight profil-

ing) and an analytical method (quantile regression). MRburst enables

control over CPU, network, and I/O by integrating cpulimit, Wonder
Shaper, and cgroups:

• cpulimit [8] is a tool that throttles the CPU utilization of a

process by pausing the process itself to keep its CPU usage

under a defined maximum value;

• Wonder Shaper [3] works with Linux Traffic Control [2] and

allows users to limit network bandwidth by specifying a max-

imum number of bits that can be transferred every second

over a specific network interface;

• cgroups [7] allows users to specify the maximum number of

input/output operations (IOPS) that can be executed every

second on an I/O device.

MRburst monitors credits availability of each resource to efficiently

schedule instance migration before credit depletion. Since MRburst

can throttle any resource, it provides users with the best resource to

be throttled based on the target SLO. MRburst is composed of four

main components: Lightweight Profiler, Prediction Model, Sched-
uler, and Migration Planner. They are described in the following.

3.1 Lightweight Profiler
Exhaustive profiling of system performance is the main way to max-

imize the efficiency of spare resources while meeting SLOs. Such a

strategy is costly and time-consuming due to the enormous amount

of data and measurements required. For example, assuming C dif-

ferent values of cpulimit and L different workloads, one must run

C ·L experiments for profiling. It is necessary to collect a large num-

ber of samples for each experiment to determine percentile latency

correctly, especially for high percentile values. If tC is the time re-

quired to reach statistical stability in profiling, exhaustive profiling

for cpulimit will require C ·L · tC time units to be completed. One

must execute the same profiling procedure also for other resource

limitations, i.e., network (Wonder Shaper) and I/O (cgroups).

MRburst adopts a lightweight profiling strategy. First, it conducts

some sparse sampling with experiments with different values for

cpulimit C, Wonder Shaper W , cgroups D, and workload L. Then, it

adopts an analytical model to determine the missing values. Assume

that the percentage of data collected for C, W , D, and L is σ , ω ,

δ , and λ , respectively. The lightweight strategy profiling time is

λ ·L · (σ ·C · tC +ω ·W · tW +δ ·D · tD
)
, i.e.,

λ · (σ ·C · tC +ω ·W · tW +δ ·D · tD
)

C · tC +W · tW +D · tD
times shorter than the exhaustive strategy.

3.2 Prediction Model
We propose a prediction methodology that uses profiling data, SLO,

and current workload to determine a value of Wonder Shaper, cpulimit,
or cgroups which allows the system to comply with the given SLO

and maximize the efficiency of spare resources.

3.2.1 Problem Formulation. Since available credits determine

spare resources, we define Credit Efficiency of a resource k as the

distance between its average credit depletion time, T k
d , and the in-

stance migration time, Tm, under a given SLO constraint. Hence, to

maximize credit efficiency, we define the following optimization

problem:

maximize T k
d −Tm, k ∈ {CPU, I/O, net}

subject to Pi ≤ SLO,
(1)

where Pi is the ith-percentile latency and it depends on CPU usage,

IOPS, and network bandwidth. Tm includes the time required to

migrate an instance and depends on the migration strategy. Given

a resource k (i.e., CPU, I/O, or network), T k
d is its credit depletion

time and it is computed by:

T k
d =

Ck
(
t
)

Rk
c ·Mk −Rk

e
, (2)

where Ck
(
t
)

is the number of credits available at time t, Rk
e is its

credit earning rate, Rk
c is its credit consumption rate, and Mk is the

performance index that determines its usage (i.e., utilization for CPU

and throughput for I/O and network). AWS provides Ck
(
0
)
, Rk

e, Rk
c,

and the model itself for CPU and I/O [10, 11], but it does not divulge

any network parameters and its credit depletion model.

We determine the missing input parameters of the optimization

problem by benchmarking the network performance. The initial

number of network credits, Cnet
(
0
)
, is derived from Eq. (2), where

Rnet
e is the network performance baseline (i.e., 61 credits per second

for a t2.micro), Xnet is the network bandwidth and it depends on the

limitation imposed through Wonder Shaper, and Rnet
c is observed to

be 1 credit per Mbit. T net
d is the time when system performance dete-

riorates. Table 1 shows the parameters of the optimization problem

for an AWS t2.micro instance. Note that each CPU credit enables the

instance to use the CPU with 100% utilization for one minute, an I/O

credit allows the application to execute one input/output operation

(i.e., read or write), and a network credit provides the VM with 1

Mbps network bandwidth. The output of the optimization problem

in Eq. (1) is the limitation value for cpulimit, cgroups, or Wonder
Shaper that maximizes the credit efficiency without violating SLOs.
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Table 2: Network credit depletion periods estimated through
Eq. (2) and compared to the measured results from AWS.

App. Limited Res. Limit T estim
d T real

d Error

FTP Network 250 Mbps 757 s 765 s 1.04%

FTP I/O 300 reads/s 497 s 521 s 4.40%

Ceph Network 400 Mbps 399 s 401 s 0.50%

Ceph CPU 30% 286 s 296 s 3.38%

3.2.2 Analytical Model. In order to determine the optimal lim-

itation value that maximizes credit efficiency and does not violate

SLO, we evaluate the ith-percentile latency, Pi, for different resource

limitations and workloads. We use quantile regression [5] to de-

rive an analytical model of the application. Quantile regression is

a statistical inference method that can estimate and extrapolate the

relationship between conditional quantile functions. The robustness

to non-normal errors and outliers – compared to linear regression

– and the absence of any assumption regarding the underlying dis-

tribution of the data [18] make quantile regression suitable for the

purpose of MRburst.

Quantile regression admits input data of one-dimensional samples.

Latency prediction takes into consideration resource limitations

and loads, which form three two-dimensional spaces (one for each

resource). Focusing on each limitation type (i.e., cpulimit, Wonder
Shaper, and cgroups), we adjust the quantile regression presented in

[5] by first training the model assuming a constant load and varying

the value of the limitation. Then, we fix the limitation value and vary

the load. Finally, we derive a global model for each limitation by

combining the models trained in the two steps.

3.3 Scheduler
The scheduler analyzes the current workload of the system, then

it sets cpulimit, cgroups, or Wonder Shaper to limit resource con-

sumption while complying with the SLO. Specifically, the scheduler

initially adopts the smallest limitation such that the ith-percentile

latency is less than the SLO. For dynamic workloads, the scheduler

must adjust the resource limitation every time the workload changes.

The scheduler continuously monitors the system in order to adjust

the throttling values to the changing workload.

3.4 Migration Planner
To correctly schedule an instance migration, MRburst monitors CPU,

I/O, and network credits to predict when the performance of the

instance is degrading. MRburst keeps tracking of resource usage

and it uses Eq. (2) to determine the credit depletion period of all

resources. Then, the migration planner compares the available credits

with thresholds that identify the minimum number of credits required

for smooth operation of the application. The application is migrated

when at least one resource has less credits than its threshold.

4 EXPERIMENTAL EVALUATION
In this section, we evaluate the performance of MRburst through

experiments on Amazon EC2. We study the accuracy of the network

prediction model presented in Section 3, determine the MRburst

prediction error, test its performance when it manages dynamic

workloads, and compare MRburst with exsiting strategies.

4.1 System overview
MRburst is evaluated with Amazon EC2 t2.micro instances, that

have 1 vCPU and 1 GB memory. All instances are created with

Ubuntu Server 18.04 LTS in the us-east-1 region and each instance

uses the same Amazon Virtual Private Cloud, i.e., the same subnet.

We consider two applications: FTP and Ceph. The FTP server is

placed on a t2.micro instance, while the client is on a m5.large since

that type of instance is not controlled by credits and its performance

is not affected by burstable resources. The client can vary the system

workload by adjusting the number of concurrent users downloading

a 10 MB file from the FTP server. A 40 GB gp2 volume (i.e., 120

IOPS/s baseline) is attached to the FTP server. Caches are disabled

and users need to access the I/O to download the file, so a request

consumes both I/O and network credits.

The Ceph cluster consists of a Monitor/Client and an Object Stor-

age Device (OSD) deployed on m5.large and t2.micro instances,

respectively. The cluster stores data in one pool and does not im-

plement object replication since it is composed by only one OSD.

The OSD mounts a 100 GB gp2 volume (i.e., 300 IOPS/s baseline).

Such a system consumes credits of all resources (i.e., CPU, I/O, and

network). Since I/O usage depends on the OSD’s file system and its

storage back-end (i.e., BlueStore [14]), it is nontrivial to throttle I/O

performance through cgroups. For this reason, we only analyze the

effect of CPU and network on system performance. The OSD size is

large enough to make the I/O credit depletion period the longest one.

4.2 Workload
We evaluate MRburst with static and dynamic loads. The number of

users concurrently reaching the server defines the system workload.

Static workload: The number of users in the system is fixed.

These basic experiments allow training the quantile regression model

and study its accuracy for a steady workload.

Dynamic workload: After training the regression model, we eval-

uate MRburst under a fluctuating workload. This allows analyzing

its ability to adjust the throttling parameters of the three resoruces

when the number of users varies over time for a given SLO.

4.3 Network Credit Depletion Period: Analytic
Model vs. Experimental Results

The network credit depletion model given in Eq. (2) accurately

estimates the network credit depletion period. To show that, we run

experiments for FTP and Ceph with different CPU, I/O, and network

limitations. The depletion time estimated by the model is compared

to the performance deterioration time observed in the experiments.

Table 2 shows the error of the model for different applications and

limitation types and values. It is computed by: |T estim
d −T real

d | / T real
d .

In general, the accuracy of the prediction model is high, especially

when Wonder Shaper is used, reaching errors of around 1%. We

point out that the CPU and I/O credit depletion models are provided

by AWS [10, 11].

4.4 MRburst with Static Workload
For each system configuration (i.e., type of application, workload,

and limitation), we analyze the prediction model derived by MRburst

and compute its mean absolute percentage error as: |Y (
l
)− yl | / yl ,
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Figure 2: 95th-percentile latency prediction for FTP (mean error < 5%) and Ceph (mean error < 10%) with static workload.
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Figure 3: 95th-percentile latency of FTP and Ceph with fluctu-
ating workload. Latencies are normalized over the SLO (simple
ratio). Concurrent requests represent the system workload.

where Y
(
l
)

and yl are the predicted and measured 95th-percentile

latencies for throttling parameters l, respectively.

The prediction model for FTP is trained limiting the network to

{61,100,200,500} Mbps and the I/O to {61,100,200,500} IOPS.

The number of users in the system is N = 50 and each experiment

lasts 300 seconds. The predicted latency follows the same trend

of the observed one (Figures 2(a) and 2(b)) independently of the

applied limitation (i.e., Wonder Shaper or cgroups, respectively)

and the mean absolute error is not larger than 5%. Similar results

are observed when latency is plotted against the workload and the

throttling value is fixed.

When applied to Ceph (Figures 2(c) and 2(d)) MRburst increases

the credit efficiency of the instances by throttling either CPU or net-

work. The prediction model is trained for cpulimit= {5,15,25,40}%

and Wonder Shaper = {61,100,200,500} Mbps, each experiment

lasts 200 seconds, and N = 1600 users. The model performs better if

MRburst limits the network to increase the credit efficiency, but its

error is smaller than 10% independent of the throttled resource.

These experiments show that MRburst’s prediction model is con-

sistently robust in predicting system latency. The prediction model

can handle different applications and it works with various loads and

resource limitations. Limiting network is as good as throttling I/O,

but it is generally more accurate than cpulimit.

4.5 MRburst with Dynamic Workload
We illustrate how to use the prediction model for selecting the op-

timal limitation value on the fly, i.e., when the number of users

connected to the system changes. MRburst minimize the amount of

wasted resources without sacrificing the target application latency.

The closer the response time is to the SLO, the more efficient the

framework. When the number of users into the system changes, the

framework identifies the new workload during the observation win-
dow which we set to 10 seconds. Results are presented for a fixed

SLO, but experiments can be generalized for varying objectives.

MRburst automatically adopts the limitation type that maximizes

the instance credit efficiency without violating the SLO. Hence, the

credit depletion period and the time to next migration are extended.

Before throttling the system performance with the chosen limitation,

MRburst evaluates how limiting each resource (i.e., CPU, I/O, and

network) affects the application. To highlight MRburst’s capability

in selecting the optimal throttling, we analyze the effect of MRburst

on system performance when it limits one resource at a time.

First, MRburst performance is evaluated with FTP when the work-

load changes dynamically. The number of concurrent requests varies

from 10 to 100 and the time duration of each load is between 180

and 350 seconds. Figure 3(a) shows the application 95th-percentile

latency when MRburst adopts Wonder Shaper (blue line) or cgroups
(yellow line), while the workload varies (black line). Latencies are

normalized over the SLO and are plotted against the left y-axis,

while the system workload is plotted against the right y-axis. The

system runs out of network credits sooner than of I/O ones and MR-

burst migrates the FTP server to a new VM in order to meet the SLO

requirement. MRburst complies with the given SLO independently

of the resource that is throttled, notice that the latencies are always

below the objective line. The area between the two latency lines

represents the resource capacity saved by each strategy. If the area is

blue, then network throttling provides a greater credit efficiency. Oth-

erwise, I/O throttling is preferable (yellow area). The FTP migration

time is shown by vertical dashed lines in Figure 4(a).

We also test MRburst using Ceph and vary the application load

from 913 to 1246 concurrent requests. The number of users con-

nected to the system varies every 70 seconds. Figure 3(b) depicts the

application latency when MRburst throttles either network or CPU.

With MRburst, Ceph always complies with the given SLO, but it

works better when limiting the network bandwidth. Ceph migration

time is shown in Figure 4(b).

Experiments with dynamic workloads show that MRburst can

efficiently adapt to load variations. They exhibit that limiting net-

work is generally equivalent to limiting I/O and more efficient than

limiting CPU. MRburst can select the limitation that better applies to

40



Middleware Industry ’19, December 9–13, 2019, Davis, CA, USA A. Ali et al.

 0.1

 1

 10

 0  10  20  30  40  50  60  70
 10
 26
 42
 58
 74

No
rm

al
ize

d 
La

te
nc

y

Requests

time [min]
Requests
Default AWS

SLO
MRburst

(a) FTP

 0.1

 1

 10

 0  5  10  15  20
 9

 10

 11

 12

 13

No
rm

al
ize

d 
La

te
nc

y Requests (10 2)

time [min]
Requests
Default AWS

SLO
CEDULE

   
MRburst

(b) Ceph

Figure 4: MRburst compared to state-of-the-art approaches.
Latencies are normalized over the SLO (simple ratio). Concur-
rent requests represent the system workload. Vertical dashed
lines point out MRburst migration times.

the current application and system workload, therefore maximizing

the system credit efficiency.

4.6 Improvements to other strategies
Figures 4(a) and 4(b) compare MRburst to CEDULE [1] and the

default AWS strategy to show MRburst’s ability to increase credit

efficiency by extending the credit depletion period. 95th-percentile

latencies (left y-axis) are normalized over the SLO and the workload

is plotted against the right y-axis. For both applications, the default

AWS strategy does not use extra resources efficiently and it violates

the SLO after a few minutes. Indeed, it greedily uses all the available

credits and does not autonomously migrate the application when the

SLO is not met. CEDULE can monitor and throttle only CPU and

it improves credit efficiency only when CPU is involved in request

processing (i.e., Ceph), otherwise it performs as the default strategy

(i.e., FTP). CEDULE does not monitor available network credits

and cannot migrate the application before performance deterioration.

MRburst always complies with the SLO by efficiently using the

spare resources and monitoring CPU, I/O, and network available

credits for migrating the application before SLO is violated (see

vertical dashed lines). In the considered cases, MRburst makes the

credit depletion period up to 240% and 95% longer for FTP and

Ceph, respectively, with respect to the default AWS mechanism.

Increased credit efficiency benefits cloud providers by reducing

wasted resources and diminishing the number of new instances

required to meet the SLO. MRburst requires starting a new instance

1.5 times less frequently than the default AWS mechanism for FTP.

Similarly, required new instances for Ceph are halved when using

MRburst instead of the default mechanism.

5 RELATED WORK
Amazon Web Services started offering burstable instances in 2010

with t1.micro instances. Since 2014, all leading cloud providers offer

the same type of low-cost instances for applications with low traffic

and throughput. Prior work investigates this type of VMs to identify

the best practices to get advantages from burstable features, mainly

focusing only on CPU performance. Wen et al. [16] statistically

analyze T1 instances (i.e., the first generation of AWS burstable

instances) and propose to inject delays to optimize performance and

cost of t1.micro VMs. Jiang et al. [4] investigate T2 instances (i.e.,

the AWS second generation burstable instances) and propose an

analytical performance model to study burstable instances given the

type and configuration of a VM. For this purpose, they consider only

CPU performance and the available CPU credits. Their model can be

used to find which instance type a tenant should select to get the best

trade-off between cost and performance. Several authors focus on

managing credits in T2 instances to improve VM performance. For

example, Leitner and Scheuner [6] propose a basic model to analyze

T2 instances and investigate boosting performance by restarting

instances when all credits are depleted. Unfortunately, such a practice

is no more functional since AWS has introduced constraints on

rebooting T2 instances [9]. The lifetime of CPU credits is extended

in [17] by using cpulimit. That allows surpassing the performance

of the delay strategy proposed in [16]. cpulimit is used by CEDULE

[1] to automatically throttle CPU and extend its credit depletion

period while meeting user-determined SLOs for applications with

multi-instance dependency (e.g., TPC-W [12]). Wang et al. [13]

point out that the mechanism regulating the credits consumption

of network and I/O follows a token-bucket like model but they do

not provide any strategy to optimize the credit consumption rate of

network and I/O, they provide just some observations. To the best

of our knowledge, MRburst is the first framework that operates on

CPU, network, and I/O in a unified manner to optimize both the

performance and cost of burstable instances in a cloud environment.

6 CONCLUDING REMARKS
This paper presents MRburst, a scheduling framework for multi-

resource burstable instances, that increases the efficiency of re-

sources. MRburst uses lightweight profiling and quantile regression

to automatically sets the best limitation that reduces the number of

credits consumed without violating the given SLO.

The efficiency of MRburst is tested on AWS with non-CPU-

intensive applications (i.e., FTP and Ceph). The prediction model

is consistently accurate and its distance from the observed latency

is always smaller than 10%. MRburst extends the credit depletion

period up to 2.4 times with respect to other strategies and benefits

cloud providers by increasing resource usage.

In the future, we aim to extend MRburst with instance type rec-

ommendation. This way, it can also select the best T2 instance to

host the application, based on its workload and SLO. In order to

minimize the system cost, instance recommendation will account

for the cost of each instance and the number of migrations expected

to complete a job.

Acknowledgements: This work is supported by NSF grants CCF-

1218758, CCF-1649087, CCF-1756013, and IIS-1838024.

41



It’s not a Sprint, it’s a Marathon: Stretching Multi-resource Burstable Performance in Public Clouds Middleware Industry ’19, December 9–13, 2019, Davis, CA, USA

REFERENCES
[1] Ahsan Ali, Riccardo Pinciroli, Feng Yan, and Evgenia Smirni. 2018. CEDULE:

A Scheduling Framework for Burstable Performance in Cloud Computing. In
2018 IEEE International Conference on Autonomic Computing (ICAC). IEEE,
141–150.

[2] Bert Hubert. 2006. tc - show / manipulate traffic control settings. (2006). https:
//linux.die.net/man/8/tc [Online; accessed 23-May-2019].

[3] Bert Hubert, Jacco Geul, and Simon Sehier. 2017. The Wonder Shaper 1.4. (2017).
https://github.com/magnific0/wondershaper [Online; accessed 24-May-2019].

[4] Yuxuan Jiang, Mohammad Shahrad, David Wentzlaff, Danny HK Tsang, and
Carlee Joe-Wong. 2019. Burstable instances for clouds: Performance modeling,
equilibrium analysis, and revenue maximization. In Proceedings-IEEE INFO-
COM.

[5] Roger Koenker and Kevin F Hallock. 2001. Quantile regression. Journal of
economic perspectives 15, 4 (2001), 143–156.

[6] Philipp Leitner and Joel Scheuner. 2015. Bursting with Possibilities–An Empirical
Study of Credit-Based Bursting Cloud Instance Types. In Utility and Cloud Com-
puting (UCC), 2015 IEEE/ACM 8th International Conference on. IEEE, 227–236.

[7] David MacKenzie and James Youngman. 2010. cgroups – Linux control groups.
(2010). https://linux.die.net/man/1%2Fgroups [Online; accessed 19-May-2019].

[8] Angelo Marletta. 2012. CPU usage limiter for Linux. (2012). https://github.com/
opsengine/cpulimit [Online; accessed 24-May-2019].

[9] Rohit K Mehta and John Chandy. 2015. Leveraging checkpoint/restore to optimize
utilization of cloud compute resources. In Local Computer Networks Conference
Workshops (LCN Workshops), 2015 IEEE 40th. IEEE, 714–721.

[10] Amazon Web Services. 2016. Amazon EBS Volume Types. (2016). https://docs.
aws.amazon.com/AWSEC2/latest/UserGuide/EBSVolumeTypes.html [Online;

accessed 19-May-2019].
[11] Amazon Web Services. 2017. CPU Credits and Baseline Performance for

Burstable Performance Instances. (2017). https://docs.aws.amazon.com/AWSEC2/
latest/UserGuide/burstable-credits-baseline-concepts.html [Online; accessed 22-
May-2019].

[12] Wayne D Smith. 2000. TPC-W: Benchmarking an ecommerce solution. (2000).
[13] Cheng Wang, Bhuvan Urgaonkar, Neda Nasiriani, and George Kesidis. 2017.

Using Burstable Instances in the Public Cloud: Why, When and How? Proceedings
of the ACM on Measurement and Analysis of Computing Systems 1, 1 (2017), 11.

[14] Sage Weil. 2017. New in Luminous: BlueStore. (2017). https://ceph.com/
community/new-luminous-bluestore/ [Online; accessed 25-April-2019].

[15] Sage A Weil, Scott A Brandt, Ethan L Miller, Darrell DE Long, and Carlos
Maltzahn. 2006. Ceph: A scalable, high-performance distributed file system. In
Proceedings of the 7th symposium on Operating systems design and implementa-
tion. USENIX Association, 307–320.

[16] Jiawei Wen, Lei Lu, Giuliano Casale, and Evgenia Smirni. 2015. Less can be
more: Micro-managing vms in amazon ec2. In Cloud Computing (CLOUD), 2015
IEEE 8th International Conference on. IEEE, 317–324.

[17] Feng Yan, Lihua Ren, Daniel J Dubois, Giuliano Casale, Jiawei Wen, and Evgenia
Smirni. 2017. How to Supercharge the Amazon T2: Observations and Suggestions.
In Cloud Computing (CLOUD), 2017 IEEE 10th International Conference on.
IEEE, 278–285.

[18] Yunqi Zhang, David Meisner, Jason Mars, and Lingjia Tang. 2016. Treadmill:
Attributing the source of tail latency through precise load testing and statisti-
cal inference. In Computer Architecture (ISCA), 2016 ACM/IEEE 43rd Annual
International Symposium on. IEEE, 456–468.

42


