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Abstract. This paper studies how to improve the accuracy of

hydrologic models using machine-learning models as post-

processors and presents possibilities to reduce the workload

to create an accurate hydrologic model by removing the cal-

ibration step. It is often challenging to develop an accurate

hydrologic model due to the time-consuming model calibra-

tion procedure and the nonstationarity of hydrologic data.

Our findings show that the errors of hydrologic models are

correlated with model inputs. Thus motivated, we propose a

modeling-error-learning-based post-processor framework by

leveraging this correlation to improve the accuracy of a hy-

drologic model. The key idea is to predict the differences

(errors) between the observed values and the hydrologic

model predictions by using machine-learning techniques. To

tackle the nonstationarity issue of hydrologic data, a moving-

window-based machine-learning approach is proposed to en-

hance the machine-learning error predictions by identifying

the local stationarity of the data using a stationarity measure

developed based on the Hilbert–Huang transform. Two hy-

drologic models, the Precipitation–Runoff Modeling System

(PRMS) and the Hydrologic Modeling System (HEC-HMS),

are used to evaluate the proposed framework. Two case stud-

ies are provided to exhibit the improved performance over

the original model using multiple statistical metrics.

1 Introduction

1.1 Motivation

Hydrologic models are commonly used to simulate environ-

mental systems, which help us to understand water systems

and their responses to external stresses. They are also widely

used in scientific research for physical process studies and

environmental management for decision support and policy-

making (Environmental Protection Agency, 2017). One of

the most important criteria for model performance evalua-

tions is prediction accuracy. A reliable model is able to cap-

ture the hydrologic features with robust and stable predic-

tions. However, it is challenging to develop a reliable hy-

drologic model with low biases and variances. In this pa-

per, we aim to develop a post-processor framework, named

MELPF, which is short for Modeling Error Learning based

Post-Processor Framework, to improve the reliability of hy-

drologic models.

Hydrologic models are typical environmental models for

hydrologic process studies and water resource evaluations.

Among all types of hydrologic models, physically based

parameter-distributed hydrologic models have become in-

creasingly prevalent as they are able to capture detailed

features within hydrologic systems. However, in regions

with high hydrologic heterogeneities, a large number of pa-

rameters are required to represent both temporal and spa-

tial variation. This requires a large amount of computa-

tional resources, which substantially increases difficulties in

model development, data assimilation, and model calibra-
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tion (Ye et al., 2014). The resulting high cost of computation

makes it challenging to implement data assimilation tech-

niques such as ensemble Kalman filters (Slater and Clark,

2006; Liu et al., 2016) or use an optimization method such

as shuffled complex evolution (Duan et al., 1992, 1994). On

the other hand, the post-processing methodologies dealing

with model results can potentially mitigate such computa-

tion requirements and improve the performance (Ye et al.,

2014). Therefore, the post-processor approach is studied and

used in this paper. By studying many hydrologic scenarios,

we observe that hydrologic model errors often follow some

patterns that are highly correlated with model inputs (see

Fig. 3). Such patterns can be learned via machine learning

(see Sect. 2) and applied in predictions. Thus motivated, we

propose that MELPF can learn the modeling error to enhance

the prediction accuracy.

Despite the potential improvement brought by machine-

learning techniques, it is worth noting that pure machine-

learning techniques cannot completely replace hydrologic

models. When we compare the performance of the environ-

mental model and machine-learning methods, it turns out

that the accuracy of the Precipitation–Runoff Modeling Sys-

tem (PRMS) (Leavesley et al., 1983; Markstrom et al., 2005,

2015) is much higher than that of commonly used machine-

learning techniques (e.g., random forest tree, Breiman, 2001;

gradient-boosted tree, Hastie et al., 2009). Compared to hy-

drologic models developed using domain knowledge, pure

machine-learning models with limited training data cannot

accurately characterize all the features of the underlying

physical process. Nevertheless, based on hydrologic simu-

lation, machine-learning approaches are able to further en-

hance hydrologic model results by predicting the original

modeling errors via learning the relationships between model

inputs and output simulation results. In the hydrologic mod-

eling results, the term “simulations” is widely used for both

concepts of historical record replication and future predic-

tion.

1.2 Major contributions

In this paper, we develop a modeling-error-learning-based

post-processor framework to enhance the prediction accu-

racy of hydrologic models. Based on the results in Sect. 3,

the proposed MELPF can ease the parameter tuning pro-

cesses and achieve accurate predictions. The key idea is to

leverage the correlation between the hydrologic model in-

puts and model output errors. There are two main challenges

of building the proposed framework: (1) how to improve the

efficiency and accuracy in a hydrologic model in terms of

model simulation and development and (2) how to deal with

the nonstationary hydrologic data. To solve the first chal-

lenge, we propose a machine-learning-based post-processor,

which can capture and characterize model errors to improve

hydrologic model predictions. This can help to avoid the

misleading effects of irrelevant model inputs. Also, we pro-

pose cleaning and normalizing the data, which enables a

better characterization of the correlation. To solve the sec-

ond challenge, we propose a window size selection method,

which identifies local stationary regions of the data by us-

ing a stationarity measure based on the Hilbert–Huang trans-

form (HHT; Huang et al., 1998). The key idea is to first find

all possible window sizes by using data autocorrelation and

then select the best window size, which contains the most

stationary data. The stationarity measure is proposed to cal-

culate the data stationarity within a window. The two major

contributions of this paper are summarized as follows.

– MELPF is developed to improve the prediction accu-

racy and flexibility of hydrologic models. One common

issue of existing hydrologic simulation studies is that

the development of hydrologic models, in terms of cali-

bration processes, often requires long research time cy-

cles but ends up with barely satisfied model accuracy.

To tackle these challenges, the proposed MELPF can

significantly simplify the parameter tuning processes

by learning and calibrating the modeling error using

machine-learning techniques. Moreover, the proposed

MELPF can use different machine-learning methods for

different scenarios to obtain the best results, and the

model parameters can be dynamically updated using the

latest data. Our experiment results in Sect. 3 show that

our method can significantly improve prediction accu-

racy compared with the simulation results of existing

hydrologic models.

– A moving-window-based machine-learning approach is

proposed, which can enhance the performance of the

machine-learning technique when dealing with nonsta-

tionary hydrologic data. We observe that the distribu-

tion of hydrologic data changes over time and the data

exhibit seasonality (see Fig. 2). The proposed moving-

window-based machine-learning approach can charac-

terize the time-varying relationship between the model

inputs and model output errors. The key step is to

choose a suitable window size within which the data

are stationary, as most machine-learning techniques are

designed for stationary data. By leveraging recent ad-

vances in the field of nonlinear and nonstationary time

series analysis, particularly HHT, we propose the degree

of stationarity to measure the local stationarity of the

data. Based on the degree of stationarity and the auto-

correlation, we propose a window size selection method

to optimize the performance of the machine-learning

techniques.

The proposed MELPF has been evaluated on the basis of

different hydrologic models. MELPF can improve the accu-

racy of the original hydrologic models, and the window se-

lection method can find the data pattern and select a suitable

window size. Moreover, we find that the accuracy of an un-

calibrated hydrologic model is as good as the calibrated one
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by using the proposed framework, which indicates that the

proposed framework can replace the complicated “calibra-

tion” step in the traditional hydrologic model development

workflow. Section 3 introduces more details of the case stud-

ies.

1.3 Related work

An appropriate window size is very important for training a

machine-learning model to deal with nonstationary time se-

ries data. Most of the existing work on window size selection

is based on concept drifts and distribution changes. There

are some methods that perform well but can only be applied

to a certain machine-learning method, such as Klinkenberg

and Joachims (2000) and Bifet Figuerol and Gavaldà Mestre

(2009). Bifet Figuerol and Gavaldà Mestre (2009) proposed

a concept-drift-based method to dynamically adapt the win-

dow size for a Hoeffding tree (Domingos and Hulten, 2000).

To solve the limitation, some methods are proposed that

can be applied to different machine-learning techniques by

using statistical techniques to monitor the concept drifts.

In Klinkenberg and Renz (1998), Lanquillon (2001), and

Bouchachia (2011), statistical process control (SPC; Oak-

land, 2007) is leveraged to monitor the data change rate by

using the error rate. If the error rate change is larger than

a threshold, it means the data are not stable, and then the

window size should be changed. These methods need to as-

sume that the error rate follows a certain distribution, and

then calculate the threshold by using the error confidence in-

terval. Similarly, in Gama et al. (2004) and Bifet and Gavalda

(2007), window selection methods are proposed based on the

concept of context with the stationary distribution. The pro-

posed methods require the dataset inside a window to follow

a certain distribution, and then calculate the confidence in-

terval by using an approximate measurement (Gama et al.,

2004; Bifet and Gavalda, 2007). However, this requirement

may not be satisfied for some hydrologic data because the

data distributions may be not known or follow a certain dis-

tribution. Different from these works, we choose the window

size based on the degree of stationarity of the data according

to the proposed stationarity measure (see Sect. 2.2.2), which

does not that assume the data follow any predetermined dis-

tribution and is applicable to different machine-learning tech-

niques.

There are many methods to improve the performance of

hydrologic model simulations by reducing uncertainties from

various sources: model input preprocessing, data assimila-

tion, model calibration, and model result post-processing (Ye

et al., 2014). Model input preprocessing deals with uncer-

tainties from model input variables such as establishing pre-

cipitation measurement networks or post-processing meteo-

rological predictions (Glahn et al., 2009). Data assimilation

treats the uncertainties from model initial and boundary con-

ditions. For instance, the assimilation of snow water equiva-

lence data can improve initial conditions in a snow or hydro-

logic model (Andreadis and Lettenmaier, 2006; Slater and

Clark, 2006). Model calibration techniques reduce the un-

certainty from model parameterization (Duan et al., 1992,

2006), such as using a transformation of model residuals

to improve the model parameter estimations (Safari and

De Smedt, 2015) or using optimization algorithms to find the

best parameters that fit the observations (Hay and Umem-

oto, 2007a; Skahill et al., 2009). Post-processing quantifies

and reduces the uncertainties related to model results. Sta-

tistical models are usually used for post-processing, which

calculates the conditional probability of the observed flow

given forecast flow (Ye et al., 2014; Seo et al., 2006). Exam-

ples include variants of Bayesian frameworks built on model

output (Krzysztofowicz and Maranzano, 2004), the meta-

Gaussian approach (Montanari and Brath, 2004), the quan-

tile regression approach (Seo et al., 2006), and the wavelet

transformation approach (Srivastava et al., 2009). Because

the post-processing methodology only deals with model re-

sults it requires fewer computations for most cases. There-

fore, we propose using the post-processing method in this

framework.

There are many different post-processing approaches be-

ing used for hydrologic modeling. According to Brown and

Seo (2013), the existing algorithms generally vary in terms

of the following: (1) the source of bias and uncertainties;

(2) the method of predictor development using prior avail-

able data; (3) the assumptive relationship between predic-

tors and model simulations; (4) the uncertainty propagation

techniques; (5) the model method used in spatial, tempo-

ral, and cross-dependency simulation; and (6) the param-

eterization means. Specifically, Zhao et al. (2011) intro-

duced a general linear model, which leveraged and removed

the mean bias from the original model outputs, to improve

the original model predictions. The quantile mapping (MQ)

method was used as an effective method, which uses cumu-

lative density functions (CDFs) of observations and simu-

lations to remove corresponding differences on a quantile

basis (Woo and Lettenmaier, 2006; Hashino et al., 2006).

Based on this, Madadgar et al. (2014) proposed equations

of univariate marginal-distribution joint CDFs that further

improved the representation of the inherent correlations be-

tween observations and simulations, as well as the separa-

tion of the marginal distribution of random variables. Brown

and Seo (2010) designed an advanced data transformation

method for nonparametric data using the conditional cumu-

lative density function (CCDF) (Schweppe, 1973), which

has been successfully applied to nine eastern American river

basins (Brown and Seo, 2010). Krzysztofowicz and Maran-

zano (2004) proposed a Bayesian-based methodology using

normal quantile transform in a meta-Gaussian distribution as

a way to remove model biases. However, these methods that

rely on the original model calibration are limited to the ap-

plied basins (Zhao et al., 2011), variable uncertainties, the

static dataset in use, and instabilities from data outliers and

the “ancient” dataset (Brown and Seo, 2013), which can sub-
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Figure 1. A traditional calibrated PRMS model streamflow predic-

tion error histogram (example of Lehman Creek).

stantially reduce the performance and reliability of the post-

processing algorithms.

The rest of this paper is organized as follows. In Sect. 2,

the modeling-error-learning-based post-processor is pro-

posed. In Sect. 3, two case studies are presented and the re-

sults are analyzed. In Sect. 4, the discussion of our study is

provided. The paper is concluded in Sect. 5.

2 Modeling-error-learning-based post-processor
framework

Hydrologic models are based on the simulation of water bal-

ance among the principal hydrologic components. With dif-

ferent study purposes, the selected hydrologic model varies

and so do the parameters used in the simulation algorithm.

It is challenging to develop an accurate hydrologic model,

and traditional hydrologic models can often have high biases

and variances in the outputs. By studying many hydrologic

scenarios, we observed that hydrologic model errors often

follow some patterns that highly correlate with the model in-

puts, and such patterns can be learned via machine learning.

Thus motivated, we propose that MELPF can learn the mod-

eling error to enhance the prediction accuracy. The details of

the proposed MELPF are provided in the following section.

2.1 Observations and motivations

We study the prediction errors of a PRMS model (Leavesley

et al., 1983; Markstrom et al., 2005, 2015) using 10-year his-

torical watershed data collected from USGS (USGS, 2017).

The study area is the Lehman Creek watershed in eastern

Nevada, and the data are collected every 24 h. Figure 1 illus-

trates the error distribution of streamflow prediction from the

PRMS model. The distribution is very close to a normal dis-

tribution with a close-to-zero mean value and a low variance.

However, when taking a closer look at the prediction errors

across time (see Fig. 2), we observe a large discrepancy be-

tween the model outputs and the ground truths in the middle

Figure 2. Comparisons between streamflow observations and pre-

diction errors from a traditional calibrated PRMS model (example

of Lehman Creek). The y axis value unit is cubic feet per second.

of each year. It implies that the current PRMS model can-

not accurately characterize the streamflow in the middle of a

year. Therefore, there is a need to better capture the dynamics

of the streamflow in this time period.

Intuitively, prediction errors contain important informa-

tion, which can be leveraged to reduce the hydrologic model

errors so as to improve the prediction accuracy. Therefore,

we explore the information contained in the prediction errors

and find that the prediction errors are actually highly cor-

related with the model inputs. As shown in Fig. 3, during

May, June, July, and August of the year 2011, the streamflow

prediction errors are highly correlated with the temperatures

and time (month and day). The larger correlation values and

stars in Fig. 3 indicate closer relations between two variables.

By leveraging the correlations, we aim to predict the original

model errors and thereby improve the prediction accuracy.

Along this line, we propose using machine-learning tech-

niques to learn the modeling errors by leveraging the strong

correlations between the prediction errors and the model in-

puts in order to improve the accuracy of streamflow predic-

tions. The proposed MELPF is illustrated in Fig. 4. It mainly

consists of three steps.

– Step 1: develop a hydrologic model, such as PRMS. The

model can generate predictions (e.g., streamflow predic-

tion) based on the inputs (e.g., temperature, time, and

precipitation).

– Step 2: obtain the hydrologic model errors. By compar-

ing the ground truths with the hydrologic model predic-

tions, MELPF can collect historical hydrologic model

errors.

– Step 3: preprocess history errors and build a machine-

learning model. The hidden correlations between the

model errors and the model inputs can be enhanced after

preprocessing and can be characterized by a machine-

learning model.

Geosci. Model Dev., 12, 4115–4131, 2019 www.geosci-model-dev.net/12/4115/2019/
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Figure 3. Correlations between PRMS inputs (i.e., precip, tmax (maximum temperature), and tmin (minimum temperature)) and streamflow

prediction errors during May, June, July, and August (2011): the diagonal graphs show the variable distributions, the lower graphs show the

scatter plots between the corresponding row and column variables, and the upper values are the correlation values between the corresponding

row and column variables (precip: precipitation; tmax: maximum temperature; tmin: minimum temperature); errors: streamflow prediction

errors.

After these three steps, the trained machine-learning

model is integrated with the original hydrologic model to en-

hance the prediction accuracy. It produces improved results

by adding the predicted errors with hydrologic model pre-

dictions. Different methods in each preprocessor, machine-

learning model, and hydrologic model error component can

be selected based on the application needs. The details of

each component as shown in Fig. 4 are described in the fol-

lowing sections.

Remarks. In practice, the development of a hydrologic

model needs to be calibrated based on hydrogeologic con-

ditions and meteo-hydrologic characteristics. The calibration

procedure is a process that finalizes parameters used in the

model numerical equations that determine the hydrologic

process simulation. With temporal and spatial heterogene-

ity, these parameters could either be characterized by both

these features, such as in the physically based parameter-

distributed hydrologic model PRMS, or be averaged to rep-

resent a mean level while still maintaining the capability of

capturing the streamflow variation, such as in the Hydrologic

Modeling System (HEC-HMS). In this study, the default val-

ues of each parameter are used in the uncalibrated cases

to compare with the calibrated cases from traditional hy-

drologic calibration and post-processor methods. As demon-

strated in Sect. 3, the proposed MELPF provides a better pre-

diction accuracy when compared with the traditional hydro-

logic calibration method.

2.2 Modeling-error-learning-enhanced hydrologic
model

The detailed workflow of the designed modeling-error-

learning-enhanced hydrologic model is illustrated in Fig. 5.

The basic idea is to use predicted error to calibrate the origi-

nal hydrologic model’s predictions, as shown in Eq. (1):

p̂t = f (xt ) + g(xt ), (1)

where p̂t denotes the improved prediction at time t ; xt de-

notes the model inputs (i.e., temperature, time, and precipi-

tation) at time t ; f (·) denotes the hydrologic model, which

generates predictions based on xt ; and g(·) denotes the er-

ror prediction model learned in the machine-learning model

component, which generates hydrologic model prediction er-

ror based on xt .

As illustrated in Fig. 5, there are basically three steps to

building an enhanced hydrologic model.

– Step 1: calculate the hydrologic model errors. We calcu-

late errors using differences between the observations

and model predictions in the hydrologic model error

component.
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4120 R. Wu et al.: MELPF version 1: Modeling Error Learning based Post-Processor Framework

Figure 4. The diagram of the Modeling Error Learning based Post-Processor Framework.

– Step 2: enhance the correlation between hydrologic

model errors and inputs. This step contains two sub-

steps: scale model error and data transformation. Scale

model error is used to scale error into a certain scope

(e.g., between 0 and 1), and data transformation is used

to normalize hydrologic model errors and stabilize the

variances of hydrologic model errors.

– Step 3: build a machine-learning model. The scaled

and transformed original hydrologic model errors and

model inputs are used to train a machine-learning model

to predict the hydrologic model errors. The predicted

errors need to be back-transformed and back-scaled be-

fore being used to compensate for the hydrologic model

results.

More details of the framework components (rectangles in

Fig. 5) and steps (arrows in Fig. 5) are introduced in the fol-

low sections.

2.2.1 Preprocessor component

The preprocessor component preprocesses the hydrologic

model errors, and the outputs of this component are used

to train a machine-learning model in the machine-learning

model component. The objective of the preprocessor com-

ponent is to normalize errors and reduce error variances. In

other words, this component is used to make it easier for

the machine-learning model component to characterize cor-

relations between the hydrologic model inputs and errors.

Specifically, this component scales and transforms the hy-

drologic model prediction errors using Eq. (2):

et = tr(αe), (2)

where et denotes preprocessed error; tr(·) denotes transfor-

mation function; α denotes the scaling factor; and e denotes

the original hydrologic error. Based on the case studies in

Sect. 3, a good scaling factor is often between zero and one.

Note that in MELPF different functions can be selected

based on the dataset characteristics. For example, if the

dataset is positively skewed, log-sinh transformation (Wang

et al., 2012) could be helpful. If the dataset has a large vari-

ance, boxcox transformation (Wang et al., 1964) may be ap-

plied. In Sect. 3, Case Study 1 uses the log-sinh transforma-

tion (see Eq. 13) and Case Study 2 uses the boxcox trans-

formation (see Eq. 15). These transformation functions can

improve the hydrologic model outputs, as shown in Sect. 3.

Geosci. Model Dev., 12, 4115–4131, 2019 www.geosci-model-dev.net/12/4115/2019/
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Figure 5. Modeling-error-learning-enhanced hydrologic model.

Remarks. The preprocessor component should be repeated

multiple times to find the best-performing scaling factor and

data transformation parameters. For example, percent–time

cross-validation can be used to test all possible parameter

combination performances (Kohavi, 1995). The performance

can be measured by using the root mean square error (RMSE)

(Eq. 8), percent bias (PBIAS) (Eq. 9), Nash–Sutcliffe effi-

ciency (NSE) (Eq. 10), or coefficient of determination (CD)

(Eq. 11). After a good parameter combination is chosen, it

will be used in both the preprocessor component and the

back-transform and back-scale step.

2.2.2 Machine-learning model component

The machine-learning model component aims to predict the

transformed hydrologic model error ĝ(xt ) using the hydro-

logic model input xt . To obtain the original model prediction

error g(xt ), ĝ(xt ) needs to be transformed back using the in-

verse of the transformation function, which is discussed in

Sect. 2.2.4. In what follows, we discuss how to find ĝ(·) us-

ing machine-learning techniques.

There are many machine-learning techniques that can be

applied in this component, such as support vector regression

(SVR) (Basak et al., 2007) and gradient-boosted tree (Hastie

et al., 2009). Most of them are designed for stationary en-

vironments in the sense that the underlying process fol-

lows some stationary probability distribution. However, hy-

drologic processes are often nonstationary. As illustrated in

Fig. 2, the streamflow shows seasonality in the sense that the

patterns of streamflow in each year are similar but change

over time. To address this challenge, we propose using a

moving time window to adapt to the changes due to hydro-

logic data variations.

The basic idea is to set up a time window and train the

machine-learning model using the data within the window,

which moves over time. By using the time window, we are

able to track the changing dynamics of hydrologic data.

However, it is challenging to find an appropriate window

size. If the window size is too large, it increases model train-

ing complexity and the model is not able to quickly adapt

to the changes in the hydrologic data. Even though a model

with a large window size may generate accurate results dur-

ing the training phase, it is possible that the accuracy of the

model using the test dataset could be very poor, which is due

to overfitting issues (Domingos, 2012). If the window size is

too small, the model may not be able to capture the pattern

of the hydrologic model errors.

In this paper, the window size selection is based on the

pattern and the degree of stationarity of the data, which can

not only capture the data pattern, but also ensure the data

stationarity within the window.

www.geosci-model-dev.net/12/4115/2019/ Geosci. Model Dev., 12, 4115–4131, 2019
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Figure 6. Case Study 1, training data autocorrelation values vs. lag

days: the data pattern lengths can be 1 year or 2 years because these

are the distances between the start point and peaks in the training

data.

To find the data pattern, we leverage the autocorrelation of

the data. Due to the seasonality, the autocorrelation shows a

peak every year (see Fig. 6) and the distance between two

peaks indicates that the pattern repeats during this period.

However, as illustrated in Fig. 6, there are several peaks, and

it remains challenging to determine the window size, i.e.,

how many peaks should be chosen?

To address this challenge, we further calculate the degree

of stationarity of the data in a given window size and use this

to determine the window size. Specifically, the degree of sta-

tionarity (DS) is defined by leveraging recent advances in the

field of nonlinear and nonstationary time series analysis, par-

ticularly the Hilbert–Huang transform (HHT) (Huang et al.,

1998). DS is defined as

DS(T ) =
∑

ωD̂S(ω)n(ω)

nsum
, (3)

D̂S(ω) = 1

T

T∑
t=0

(1 − H(ω,t)

n(ω)
)2dt, (4)

n(ω) = 1

T

T∑
t=0

H(ω,t), (5)

where DS(T ) denotes the data stationarity value of window

size T (Eq. 3), D̂S can characterize the variation of the data

in a certain frequency (ω) bin over time (Eq. 4), and n(ω) is

the average amplitude of the frequency (Eq. 5).

In Eq. (3), nsum = ∑
ωn(ω). DS(T ) sums the D̂S value of

each frequency and weights each of them by using n(ω).

This ensures that small, relatively insignificant oscillations

do not dominate the metric. nsum in the denominator normal-

izes DS(T ) and allows different DSs to be comparable. Note

that the larger DS, the more nonstationary the data, and we

prefer a small DS in a given time window.

In Eq. (4), H(ω,t) denotes the Hilbert spectrum, which is

a frequency–time distribution of the amplitude of the data. A

large D̂S indicates large variations in the bin, which means

Figure 7. Case Study 1, training data DS vs. window size: 1-year

DS is less than 2-year DS. This means the 1-year window contains

more stable data and should be chosen.

nonstationary behavior. A close-to-zero D̂S indicates small

variations in the bin, which means stationary behavior.

The D̂S concept is first introduced in Huang et al. (1998),

but it only considers the data stationarity of a certain fre-

quency bin and does not characterize the entire time series

data stationarity. To improve the D̂S concept, we propose a

DS that calculates the whole dataset stationarity.

After the possible data patterns are chosen based on auto-

correlation, the data pattern that has the minimum DS (the

most stable) is chosen to be the final window size.

Figure 7 illustrates the values of DS under different win-

dow sizes for Case Study 1 in Sect. 3.2. The DS value in-

creases as the window size grows, which means the data be-

come more nonstationary when the window size grows. As

the 1-year DS is smaller than 2-year DS, the 1-year window

size is chosen for Case Study 1 because it is one of the data

patterns and this window size has the minimum DS value.

Figure 8 compares the prediction performance using differ-

ent window sizes for Case Study 1. It shows the 1-year win-

dow size has the best performance. In contrast, the 4.5-year

window size is more accurate than the 1-year window size

with the training dataset, but the performance is worse with

the testing dataset, which means a larger window size can

cause overfitting issues.

2.2.3 Back-transform and back-scale

The predicted errors generated from the machine-learning

model cannot be used directly because the machine-learning

model is trained with the preprocessed errors. The predicted

errors need to be back-preprocessed using the corresponding

preprocessor methods to obtain the real predicted hydrologic

model errors.

Let tr−1 denote the inverse of the transformation function;

g(xt ) can be computed as

g(xt ) = tr−1(ĝ(xt ))/α, (6)

and the prediction p̂t can be given as

p̂t = f (xt ) + tr−1(ĝ(xt ))/α. (7)
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Figure 8. Case Study 1, testing data RMSE vs. window size: the

1-year window size is better than the other window size based on

the RMSE value.

2.3 Discussion of proposed methods

Modeling error learning is the key component of MELPF. If

it is able to predict the hydrologic model errors, MELPF can

improve model results. If not, then MELPF cannot improve

a hydrologic model performance. Therefore, if MELPF does

not work it is because the modeling error learning compo-

nent cannot predict errors accurately. Because this compo-

nent leverages the relations between the model inputs and

model errors, the component can work when the model in-

puts are correlated with the model errors. Therefore, a mod-

eler can calculate the correlation values between each model

input and the preprocessed model errors of the historical data

to test if the proposed MELPF can work. If some model

inputs are correlated with the preprocessed model errors,

then the proposed MELPF is able to improve the hydrologic

model accuracy and vice versa.

How MELPF can perform better is another important

question. It depends on the chosen machine-learning tech-

niques used in the modeling error learning component. The

errors contain biases and variances. Based on bias–variance

trade-off theory (Friedman, 1997), when bias decreases,

variances will increase and vice versa. Different machine-

learning techniques have different characteristics. For exam-

ple, a boosted tree has a high bias, low variance, and per-

forms well when dimensionality is low; a random forest has

a low bias, high variance, and performs well when dimen-

sionality is high (Caruana and Niculescu-Mizil, 2005). Thus,

the selection of the machine-learning method should be de-

termined by the study needs and data characteristics.

However, it is hard to determine which machine-learning

technique works better for a certain problem before perform-

ing tests. We suggest a pretest to examine which machine-

learning technique could work and perform better. The

pretest data should be historical data and the size is decided

by the data cycle, such as a week, month, and year. For ex-

ample, the temperature is high in summer and low in win-

ter. Therefore, a “year” can be a cycle. The first 2-year tem-

peratures of the historical data are chosen to be the pretest

data. The first-year temperature values are used in the train-

ing phase, and the second-year temperature values are used

in the testing phase.

Hydrologic data can vary dramatically in a short time pe-

riod, which is hard to capture in a hydrologic model. It is

also difficult for the machine-learning model component to

accurately predict the hydrologic model errors. To address

this issue, we propose a smooth prediction method to regu-

late the hydrologic model errors so that they are less irreg-

ular and therefore enhance the performance of the machine-

learning model component. Figure 2 is an example of dra-

matically changed streamflow. The streamflow observations

grow rapidly in the middle of each year and the vibra-

tions generate small spikes along the uphills and downhills.

The original PRMS model cannot characterize the spikes

and generates irregular errors. Because the machine-learning

model component is built based on these errors, MELPF can-

not perform very well in the middle of every year and gen-

erates unnecessary peaks. We propose a method to smooth

the hydrologic model predictions to avoid the spikes, which

contains three steps.

1. Choose a threshold T , which should be between the

maximum and minimum value.

2. Smooth the hydrologic model predictions by using T . If

the difference between the previous prediction and cur-

rent prediction is higher than T , then we use the previ-

ous prediction to replace the current prediction.

3. Check if the current T avoids peaks. If the current T

cannot avoid any peaks, then choose a smaller T and

go to Step 1. If there is a “plateau” (flat peak) as Fig. 9

displays, then choose a larger T .

When a fitting T is finalized, it is used in both the training

phase and in the test phase for the hydrologic model predic-

tions. In the training phase, it can help to identify more ap-

propriate scale factors, transformation parameters, and win-

dow sizes. In the test phase, it can avoid the severe vibration

predictions in the original hydrologic model.

3 Results and analysis

3.1 Experiment design

Each dataset is separated into a training dataset (50 %) and

testing dataset (50 %). We use the quantitative statistics to

perform the statistical evaluation of modeling accuracy in the

testing step: RMSE, PBIAS, NSE, and CD. The statistical
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Figure 9. Use 10 as a threshold: there is a plateau around 2005 June

generated. CFS is short for cubic feet per second.

parameters are defined by the following equations.

RMSE =
√√√√ 1

N

N∑
i=1

(Pi − Ai)
2 (8)

PBIAS =

N∑
i=1

(Ai − Pi)100

N∑
i=1

Ai

(9)

NSE = 1 −

N∑
i=1

(Ai − Pi)
2

N∑
i=1

(Ai − A)2

(10)

CD =
{ N∑

i=1

(Ai − Pi)(Pi − P)

( N∑
i=1

(Ai − A)2
) 1

2
( N∑

i=1

(Pi − P)2
) 1

2

}2

(11)

Pi and Ai represent the simulated and observed values, re-

spectively; A is the mean of the observed values and P is the

mean of simulated values for the entire evaluation period.

RMSE measures how close the observed data are to the

predicted values while retaining the original units of the

model’s output and observed data. Lower values of RMSE

indicate a better fit of the model. RMSE is one of the impor-

tant standards that defines how accurately the model predicts

the response, and it is commonly used in many fields.

PBIAS is a measure to evaluate the model simulations.

It determines whether the predictions are underestimated or

overestimated compared to the actual observations. If the

PBIAS values are positive, the model overestimates the re-

sults; otherwise, the model underestimates the results by the

given percentage. Therefore, values closer to zero are pre-

ferred for PBIAS.

The Nash–Sutcliffe efficiency (NSE) is a normalized

statistic assessing the model’s ability to make predictions that

fit the 1 : 1 line with the observed values. The values for NSE

range between −∞ and 1. For acceptable levels of perfor-

mance, the values of NSE should lie close to one, and higher

NSE indicates better results.

CD stands for coefficient of determination, calculated as

the square of the correlation between the observed values

and the simulated values. The values for CD range between

0.0 and 1.0 and correspond to the amount of variation in the

simulated values (around its mean) that is explained by the

observed data. Values closer to one indicate a tighter fit of

the regression line with the simulated data. Similar to NSE,

higher CD values indicate better results.

In the following case studies, we also provide the predic-

tion interval (PI), which offers the possible prediction range.

The PI is calculated using Eq. (12), where X is the sample

mean, n is the number of samples, and Ta is a Student’s t-

distribution percentile with n − 1 degrees of freedom. PI is

described with an upper bound and lower bound.

PI = Xn ± Tasn
√

1 + (1/n) (12)

3.2 Case Study 1

3.2.1 The PRMS hydrologic model

The Precipitation–Runoff Modeling System (PRMS) was de-

veloped by the US Geological Survey in the 1980s, which is

a physically based parameter-distributed hydrologic model-

ing system (Leavesley et al., 1983; Markstrom et al., 2005,

2015). The PRMS model used in this study was developed

by Chen et al. (2015a) in the study area of Lehman Creek

watershed, eastern Nevada. The watershed is located in the

Great Basin National Park, occupying an area of 5839 ac of

the southern Snake Valley (Prudic et al., 2015; Volk, 2014).

More than 78 % of the land cover was evergreen forest, de-

ciduous forest, and mixed forest; 2 % was shrubs, 2 % was

perennial snow and ice, and 17 % was barren land (Chen

et al., 2016; Chen et al., 2015a). The streamflow is mainly

composed of snowmelt, which is sourced from the high el-

evated area in the west, flowing over the large mountain

quartzite and recharging the groundwater system through al-

luvial deposits and karst–limestone in the east (Chen et al.,

2017). These high hydro-geography variations made it ap-

propriate to use the PRMS model to describe the spatial het-

erogeneity of hydrologic processes. Figure 10 displays the

study area.

In a grid-based simulation, the Lehman Creek watershed

was delineated by 96 columns and 49 rows using 100×100 m

cells per grid. A total of 4074 grids were formed, based on

which the combined effects of canopy interception, evap-

otranspiration, infiltration, overland runoff, and subsurface

flow were simulated. The parameter estimation is one of the

most critical and challenging parts of the PRMS model devel-

opment. They were estimated for model algorithms and de-

termining the model performance using land cover, land use,

and soil information or through the literature for each hydro-
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Figure 10. PRMS hydrologic model study area, which was derived

from the vegetation map obtained from the National Land Cover

Database (NLCD, 2011) with 30 m resolution. The map is drawn

based on data from Yang et al. (2018).

logic component on each of 4704 units (Chen et al., 2015a).

Among all the parameters required for model runs, some pa-

rameters are specifically sensitive and have a great influence

on the model simulation results. Such parameters determine

the temporal and/or spatial distribution of precipitation and

require specification on every one of 12 months and/or ev-

ery one of 4704 cells (e.g., tmax_allsnow, monthly maxi-

mum air temperature when precipitation is assumed to be

snow; snow_adj/rain_adj, monthly factor to adjust measured

precipitation on each hydrologic response unit (HRU) to ac-

count for differences in elevation, and so forth; tmin_lapse,

monthly values representing the change in minimum air tem-

perature per 1000 elev_units of elevation change).

One station’s meteorologic data were used as the driving

forces to the developed model in the study area of Lehman

Creek watershed. Daily precipitation, maximum tempera-

ture, and minimum temperature from 1 October 2003 to

30 September 2012 were collected from the meteorologic

station (no. 263340, Great Basin NP). Daily streamflows at

the Lehman Creek Baker gauging station (no. 10243260)

were collected for model calibration and validation (Chen

et al., 2015a).

3.2.2 Results

The goal is to improve the PRMS model streamflow pre-

dictions. First, the training dataset is transformed by using

log-sinh transformation, which is introduced in Wang et al.

(2012). Equation (13) is the transformation equation and

Figure 11. Case Study 1, final PRMS model streamflow prediction

improvements. The improved predictions are closer to the ground

truth than the original predictions.

Eq. (14) is the back-transformation equation.

ŷ = log(sinh[a + by])
b

(13)

y = sinh−1(10ŷb) − a

b
(14)

Here, a and b are transformation parameters. By using log-

sinh transformation, the original randomly distributed errors

are normalized for the convenience of correlation characteri-

zation.

During the training process, as evaluated by using cross-

validation, we found the best scale factor α is 0.5, the best

transformation parameter a is 0.0305, and b is 0.0605, where

α is used in Eq. (2); a and b are used in Eq. (13). Gradient-

boosted trees (Hastie et al., 2009) are used in the machine-

learning model component and the initial window size is

1 year.

Note that we find that the improved PRMS model predic-

tions do not closely follow the observations during the water

recession period after the peak flow. This is caused by unsta-

ble historical data. By using the smooth method introduced

in Sect. 2.3, the RMSE is further improved to 2.032 with

T = 10. Comparisons between parts of the data are shown in

Fig. 11. It is clear that the improved predictions are closer

to the ground truths than the original PRMS predictions. All

the statistical measurement results summarized are shown in

Table 1. As the results show, the improved predictions have a

lower RMSE, indicating that they are closer to the observed

data. The PBIAS value is larger than the original PRMS

model, suggesting an overestimation compared with the ob-

servations. The NSE value is closer to one, which means the

improved model has a more acceptable level of performance.

The CD value is closer to one, which means the improved

model fits more to the observations. As suggested by the

comparison results of model performance evaluation indica-

tors, the proposed MELPF can improve the original PRMS

model results.
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Table 1. Calibrated PRMS model result comparisons. Bold italic

font indicates a better result.

Indicators

Model RMSE PBIAS CD NSE

Original PRMS 4.585 7.205 0.769 0.768

Improved PRMS 2.032 10.808 0.936 0.926

Table 2. Uncalibrated PRMS model result comparisons. Bold italic

font indicates a better result.

Indicators

Model RMSE PBIAS CD NSE

Original PRMS 8.439 −82.658 0.001 −0.292

Improved PRMS 3.092 3.054 0.837 0.826

As suggested by the statistical measurement comparisons

in Table 2, our proposed MELPF can also improve un-

calibrated PRMS model predictions. With the same PRMS

model and input data, the RMSE is improved from 8.439 to

3.092 by using 1.0, 0.0905, 0.0805, and 10 for α, a, b, and

the smooth threshold, respectively. The RMSE is very close

to the improved calibrated model RMSE (2.032), which indi-

cates that the proposed MELPF can possibly be an effective

replacement for the traditional complex time-consuming cal-

ibration procedure, providing a competitive level of model

performance.

3.3 Case Study 2

3.3.1 Hydrologic Modeling System

The Hydrologic Modeling System (HEC-HMS), released by

the US Army Corps of Engineers in 1998, is designed to sim-

ulate the hydrologic processes of a dendritic watershed sys-

tem (Bennett, 1998; Scharffenberg and Fleming, 2006). Dif-

ferent from the PRMS model that focuses on the hydrologic

components based on a user-defined unit, the HEC-HMS

uses a dendritic-based precipitation–runoff model with inte-

grations in water resource utilization, operation, and manage-

ment (Scharffenberg and Fleming, 2006). The case study of

HEC-HMS was the Little River Watershed, which is an ex-

ample application model in the HEC-HMS program for the

demonstration of continuous simulation with the soil mois-

ture accounting method (Bennett and Peters, 2004). As intro-

duced by Bennett and Peters (2004), the Little River Water-

shed is a 12 333 acre (19.27 m2) basin near Tifton, Georgia.

More than 50 % of the land is covered by forest, with the re-

maining land used for agricultural purposes (USDA, 1997).

The annual precipitation is 48 in (122 cm) (Southen Regional

Climate Center, 1998).

Figure 12. Case Study 2, HEC-HMS PRMS model improvements.

The improved predictions are closer to the ground truth than the

original predictions.

Single-station data of precipitation observations were

used, which were from the Agricultural Research Service

(ARS) rain gauge (no. 000038) (Georgia Watersheds, 2007).

The precipitation records were on a 15 min basis for the

same model running period of 1 January 1970–30 June 1970.

The streamflow observations were from ARS gauge no.

74006 (Georgia Watersheds, 2007) on an hourly basis, which

were used for the calibration and validation of this hydrologic

model performance.

3.3.2 Results

In Case Study 2, the goal is to improve the HEC-

HMS streamflow predictions. We use boxcox transforma-

tion (Wang et al., 1964) to transform the dataset and choose

a decision tree in the machine-learning model component to

improve the hydrologic model accuracy. Boxcox transfor-

mation is a simple but efficient method that is able to re-

duce dataset variances. A decision tree consumes much less

time than most machine-learning methods (such as gradient-

boosted trees) with the same inputs in the training phase.

Eq. (15) is the boxcox transformation equation and Eq. (16)

is the back-boxcox equation function:

ŷ = yλ − 1

λ
, (15)

y = λ
√

ŷλ − 1, (16)

where λ is the transformation parameter. During the train-

ing process, as indicated by using cross-validation, the best

α is 0.3 and the best λ is 9.0 for this case study. The window

size of 1 week is selected. By using our proposed method,

the RMSE is 39.844 compared to 44.9833 resulting from the

original HEC-HMS PRMS model. Figure 12 shows the pre-

diction comparisons of parts of the data between the lower

bound, upper bound, improved prediction, ground truth, and

original prediction. Clearly, the improved prediction is more

accurate than the original hydrologic model predictions.
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Table 3. Calibrated HEC-HMS model result comparisons. Bold

italic font indicates a better result.

Indicators

Model RMSE PBIAS CD NSE

HEC-HMS 44.983 4.657 0.842 0.808

Improved HEC-HMS 39.844 8.590 0.884 0.850

Table 4. Uncalibrated HEC-HMS model result comparisons. Bold

italic font indicates a better result.

Indicators

Model RMSE PBIAS CD NSE

HEC-HMS 134.610 45.943 0.768 −0.716

Improved HEC-HMS 89.882 29.876 0.823 0.235

As summarized in Table 3, the RMSE of the improved

model is 39.844 and it is lower than the original HEC-HMS

RMSE (44.983), which means the outputs are closer to the

observed data. The PBIAS (4.657) of the original model is

closer to zero than the improved HEC-HMS PBIAS (8.590),

which means the improved method overestimates the obser-

vations. The NSE and CD values (0.850 and 0.884) of the im-

proved HEC-HMS are closer to one than the original HEC-

HMS values (0.808 and 0.842), which means the improved

model has a more acceptable level of performance and fits

more to the observations. The smooth method, which is intro-

duced in Sect. 2.3, cannot improve the results. This because

there are not many spikes along the uphills and downhills.

As suggested by the statistical measurement comparisons

in Table 4, the proposed method can also improve the uncal-

ibrated HEC-HMS model. By inputting the same data, the

RMSE is reduced from 134.610 to 89.882 by using 0.8 and

11 for α and λ, respectively. The time window is 1 week.

4 Discussion

As model driving forces, data input is heavily relied upon

in physically based hydrologic models. On a physical ba-

sis, the meteorologic input is modeled with water flow stor-

age and paths within the earth system. The streamflow, as

demonstrated in this research, is one example. During this

process, all numerical models simplify physical processes to

some degree, either spatial-wise, such as a hydrologic re-

sponse unit, or temporal-wise, such as summer leaf index.

Such conceptualization and simplification compose a static

numerical modeling environment that cannot capture all en-

vironmental stressors, such as in the meteorological inputs.

These are long-term stressor issues in hydrologic science.

To capture environmental stressors, such as meteorolog-

ical changing trends, land cover variation, and vegetation

growth, we can use different hydrologic models or add ad-

ditional physically based algorithms to capture the specific

processes and correct for bias from missing representations.

However, with a mix of stressors, it is hard to distinguish

the causes of biases and remove or mitigate these biases

from data input, parameters, or model structures. Machine-

learning techniques fill this gap.

Instead of switching to another model better capturing

data input, according to our experiment results, the pro-

posed machine-learning techniques help update a hydrologic

model to characterize input data bias as a plug-in in our pro-

posed framework. It can sense data trends and compensate

for hydrologic model predictions with the window selection

method. The effect is similar to having multiple hydrologic

models for different input data biases.

Machine learning in this application attempts to use rele-

vant input data to reproduce hydrologic behavior, i.e., a flow

hydrograph as close to observed as possible. The overall dif-

ference in the observed and modeled hydrograph is catego-

rized as an error. In hydrologic the literature, it has been rec-

ognized that this difference can be due to uncertainty in input

and output data, bias in model parameterization, and issues

with model structure. With the current machine-learning ap-

proaches, it is not possible to disentangle and attribute to-

tal error to multiple sources such as input data, model pa-

rameters, and model structure. Moreover, machine-learning

approaches cannot provide physical reasoning for this error.

This is a recognized issue in hydrology and an active area of

research. Since no prior model structure is provided for the

machine-learning approach – it learns model structure and

parameters from input data and observed output – it can be

stated that the contribution of model structure and parameters

towards total error is relatively small compared to bias or un-

certainty in model input. The separation of data into training

and testing samples provides a safeguard against overfitting

the model. However, issue of disentangling error and attribut-

ing it to multiple sources remains unresolved in this work.

Future research should focus on this issue.

In this paper, model limitations mean peak values. For ex-

ample, if a hydrologic parameter changes massively within a

short period, i.e., peak values, a physical hydrologic model

may not be able to characterize the trend. Figure 2 is an ex-

ample showing that a physical hydrologic model has a higher

error rate when there is a peak. Our proposed method identi-

fies the limitations of a physical hydrologic model based on

errors and their correlation with model inputs. If there is such

a connection between model errors and inputs, it means the

hydrologic model does not characterize the relation between

inputs and outputs well enough. To fix the issue, we leverage

machine-learning techniques and propose a novel method to

find data patterns in this paper. The proposed method is not

specifically designed for physically based models. We tested

the proposed methods with physical hydrologic models and

would like to examine them with other types of models in the

future. In our opinion, the proposed method works because

it can find hydrologic model limitations, such as improved
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modeling of peak values, based on the patterns of model er-

rors.

The current study used two typical hydrologic models,

PRMS (3.0.5) and HEC-HMS (4.2), and demonstrated the

performance of MELPF. To have a comprehensive evalua-

tion, these two models are selected as representative of hy-

drologic model categories that differentiate in terms of sim-

ulation scopes, structures, and applications. As a represen-

tative of physically based parameter-distributed hydrologic

models, PRMS is widely used for research purposes, which

requires large sets of parameters to simulate the physical

processes; comparatively, as a representative of empirically

based lumped-parameter hydrologic models, HEC-HMS is

widely used for industrial engineering purposes, which con-

ceptualize physical bases towards result-oriented simula-

tions.

While implementing the pre-developed hydrologic simula-

tion, the calibrated hydrologic models were “restored” to the

original uncalibrated status for comparison purposes. Dur-

ing the “restoration”, the calibrated parameters were adjusted

to default values either from program manuals or authors’

personal suggestions. This may lead to a varying restoration

status of uncalibrated model performance depending on the

parameters suggested. However, in this study, the main goal

for the development of uncalibrated hydrologic models is to

compare model simulation and post-processing performance

in a qualitative sense. Thus, the details of uncalibrated model

development are not the main focus in the study.

There may be various types of default parameters used

in a physical hydrologic model for development efficiency.

Parameters can be classified as sensitive and insensitive or

model execution related and process algorithm related. Apart

from the model-execution-related parameters and other in-

sensitive parameters, the process-algorithm-related sensi-

tive parameters are typically critical to model development,

which greatly affect the model’s performance. Default values

can follow physical laws and be contained in the correspond-

ing computation algorithms but not necessarily capture the

regional hydrologic characteristics at a study site. Capturing

such site-specific features is the process of calibration. As

such, the differences between uncalibrated–default-set mod-

els and calibrated models are determined by the significance

of sensitive parameters affecting the modeling performance.

A physical hydrologic model usually cannot generate good

results with default values and requires calibration (Chen

et al., 2015b; Hay et al., 2006; Hay and Umemoto, 2007b). In

the paper, we have two examples showing that default values

produce inaccurate results. With the same model and study

area, the Table 1 calibrated original PRMS results are much

more accurate than the Table 2 uncalibrated original PRMS

based on performance evaluation indices. Similarly, the Ta-

ble 3 calibrated original HEC-HMS results are much better

than the Table 4 uncalibrated original HEC-HMS. Numeri-

cal experiments have corroborated the superior performance

of the proposed method compared with traditional methods

with different default values.

There is one thing to be aware of in the PRMS simulation

of the Lehman Creek watershed. According to Prudic et al.

(2015), during summer 2011, the peak flow observation was

under-recorded due to the large overland flow bypassing the

gauge station. The actual peak flow rate should be as great as

the peak flow rate in 2005, since the precipitation in these two

years is comparable. However, the current calibrated PRMS

model was not able to capture the actual high peak flow but

only the observed peak flow. Nevertheless, this results in a

better fit with observations instead of overestimation, making

the fitness evaluation in the PRMS model and post-processor

more comparable.

5 Conclusion

In this paper, a post-processor framework is proposed to im-

prove the accuracy of hydrologic models with a window size

selection method embedded to solve the nonstationary con-

cern in hydrologic data. The proposed post-processor frame-

work leverages machine-learning approaches to character-

ize the role that the model inputs play in the model predic-

tion errors so as to improve hydrologic model prediction re-

sults. The proposed window size selection method enhances

the performance of the proposed framework when dealing

with nonstationary data. The results of two different hydro-

logic models show that the accuracy of calibrated hydrologic

models can be further improved; without calibration efforts,

the results of uncalibrated hydrologic models using the pro-

posed framework can be as accurate as the calibrated ones

by leveraging the proposed framework, which means that our

proposed methods are possibly able to ease the traditionally

complex and time-consuming model calibration step.

Two case studies are introduced in this paper and we will

examine the framework with other models and study fields.

Also, it is interesting to study the peak values and better pre-

diction algorithm for peak values in the future.

Code and data availability. Two typical hydrologic models, PRMS

(3.0.5) and HEC-HMS (4.2), are studied in this paper. Both pro-

grams can be publicly downloaded from the USGS (https://wwwbrr.

cr.usgs.gov/projects/SW_MoWS/PRMS.html, USGS, 2019) and

the Hydrologic Engineering Center (http://www.hec.usace.army.

mil/software/hec-hms/downloads.aspx, US Army Corps of Engi-

neers, 2019). The machine-learning code and data introduced in this

paper are available in Wu (2018). The prototype program is mainly

written in Python and Apace Spark ML. More instructions can be

found in the repository readme file. The data files are stored in the

“data” folder and generated by the hydrologic models introduced in

Sect. 3.2.1 and 3.3.1.
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