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Learning-Based Demand Response
for Privacy-Preserving Users

Amir Ghasemkhani

Abstract—Demand response (DR), as a vital component
of smart grid, plays an important role in shaping the load
profiles in order to improve system reliability and efficiency.
Incentive-based DR has been used in many DR programs by
incentivizing customers to adapt their loads to supply avail-
ability. Note that users’ behavior patterns can be easily iden-
tified from fine-grained power consumption when interact-
ing with the load serving entity (LSE), giving rise to serious
privacy concerns. One common approach to address the
privacy threats is to incorporate perturbations in users’ load
measurements. Although it can protect the users’ privacy,
yet the usage data modification would degrade the LSE’s
performance in achieving an optimal incentive strategy due
to unknown characteristics of the augmented perturbations.
In this paper, we cast the incentive-based DR problem as a
stochastic Stackelberg game. To tackle the challenge in-
duced by users’ privacy protection behaviors, we propose
a two-timescale reinforcement learning algorithm to learn
the optimal incentive strategy under users’ perturbed re-
sponses. The proposed algorithm computes the expected
utility cost to mitigate the impacts of the random charac-
teristics of the augmented perturbations and then updates
the incentive strategy based on the perceived expected util-
ity costs. We derive the conditions under which the pro-
posed incentive scheme converges almost surely to an e-
optimal strategy. The efficacy of the proposed algorithm is
demonstrated using extensive numerical simulation using
real data.

Index Terms—Differential privacy, incentive-based de-
mand response (DR) program, privacy-preserving demand
response, two-timescale reinforcement learning algorithm.

[. INTRODUCTION

HE share of advanced control and communication tech-
nologies are steadily growing as the traditional power
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grids are being transformed into smart grids with a resulting
surge in integration of renewable energy resources [1]. Demand
response (DR), as a vital component of smart grid, plays a key
role in reducing the peak load and incorporating renewables
into the grid by providing incentives for users to adapt their
electricity demand to supply availability. Existing DR programs
can be generally categorized into price-based DR [2]-[5] and
incentive-based DR programs [6]-[10]. Under the price-based
scheme, users are encouraged to individually and voluntarily
manage their loads by receiving dynamic prices from the load
serving entity (LSE), whereas the incentive-based scheme in-
duces DR on mandatory [9] or voluntary [7] basis by offering
incentives to the users.

However, many DR programs are designed on the basis of
the assumption that users’ response functions are available or
predictable at the LSE side [5]-[8]. Users’ privacy protection
behaviors are ignored when designing the DR programs. Since
users’ specific activities or behavior patterns can be easily iden-
tified from the highly accurate profiles of energy usage [11]-
[13], privacy has become a major concern of users, and various
privacy-preserving approaches have been developed [12], [14]—
[18]. Therefore, the response of privacy-aware users would be
deviated from the designed target, which calls for a new design
of DR scheme accounting for these privacy-preserving users.

In this paper, we study LSE’s incentive strategy by proposing
a voluntary incentive-based framework for privacy-preserving
users. Currently, to protect privacy, each user often leverages
energy storage devices (e.g., rechargeable battery) and uses the
charging and discharging mechanisms to perturb the real energy
consumption level [16]. Consequently, the LSE cannot infer
users’ real consumption. Besides, any mischaracterization of
the users’ responses by assuming predefined response functions
in the DR problem could lead to higher system costs due to
divergent behaviors of the users. To tackle these challenges, a
learning algorithm is developed to jointly learn the divergent
habituates of users and update the LSE’s incentive strategy,
while taking into account users’ privacy protection behaviors in
the incentive scheme.

A. Summary of Major Contributions

Our main contributions are summarized as follows:

1) We formulate the incentive-based DR problem as a
stochastic Stackelberg game. A key challenge is how to
determine the incentive rates to incentivize users to adapt
their loads to supply availability, as users would perturb
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their power usage to protect their privacy. In particular,
users’ responses are stochastic and time varying; even if
the same incentive signal is received, different responses
will be observed by the LSE. This is because of the fact
that the users have idiosyncratic behaviors and, at the
same time, perturb their actual responses using random-
ized algorithms to protect their privacy. Therefore, the
LSE needs to learn from users’ responses to adjust its
incentive strategy adaptively. Along this line, we cast the
incentive-based DR problem for the privacy-preserving
users as a learning problem, such that the best incentive
strategy can be obtained by learning the users’ random-
ized behaviors.

2) Under the stochastic Stackelberg game, the LSE and users
are playing their best responses so that no one can im-
prove its payoff by switching their own strategy. How-
ever, the proposed stochastic game would not converge
to a stable mixed strategy equilibrium using the clas-
sic best response dynamics, since the LSE learns over
the users’ perturbed behaviors [19], [20]. To tackle this
challenge, we adopt the notation of the smooth best re-
sponse as a tool to overcome difficulties in converging to
the optimal incentive strategy for the perturbed observa-
tions. Moreover, a two-timescale reinforcement learning
algorithm, consisting of a fast and a slow timescale learn-
ing processes, is proposed to deal with users’ perturbed
measurements. The proposed learning algorithm enables
the LSE to neutralize the effect of the perturbations by
calculating the expected utility cost and learning the ag-
gregated behaviors of the users in order to find the optimal
incentive strategy.

3) We show that the proposed learning algorithm converges
almost surely to an e-optimal strategy, while a moderate
parameter (3 is chosen to strike a balance between explo-
ration and exploitation of the learning algorithm. Besides,
we evaluate the performance of the proposed algorithm
in comparison with a naive reinforcement learning
algorithm. Using real data, we corroborate the superior
performance of the proposed algorithm via numerical
simulations. Moreover, we quantify the effect of the
users’ privacy level on the performance of the proposed
algorithm.

B. Related Works

DR commonly refers to the process of managing the con-
sumption of energy to optimize available and planned generation
resources [21]. According to the U.S. Department of Energy, DR
is defined as “actions taken on the customer’s side of the meter
to change the amount or timing of energy consumption.” Effec-
tive DR depends on fine granularity power consumption data
to predict load, provide future pricing information, and show
the consumer the cost of his or her consumption. With these
highly accurate profiles of energy usage, however, it is possible
to identify consumers’ specific activities or behavior patterns,
thereby giving rise to serious privacy concerns [11]-[13]. To
resolve the security and privacy concerns, cryptography-based
approaches are proposed. Li ef al. [22] presented a distributed

incremental data aggregation approach to protect user’s privacy,
using homomorphic encryption. Seo ef al. [23] proposed a se-
cure and efficient power management mechanism to securely
gather the power demands of users, by leveraging a homomor-
phic data aggregation and capability-based power distribution.
Lietal. [24] employed the homomorphic encryption mechanism
to achieve a privacy-preserving DR scheme. Lu et al. [25] pro-
posed a privacy-preserving aggregation scheme for secure and
efficient smart grid communications in order to realize multidi-
mensional data aggregation approach. Although cryptography-
based approaches can prevent adversaries from eavesdropping
the communication between consumers and the LSE and iden-
tifying the consumers’ electricity demand, yet the consumers’
personal identities still can be exploited and shared with third
parties by the LSE.

To preserve users’ privacy, various privacy-preserving ap-
proaches have been developed [12], [14]-[18]. The main idea
of these approaches is to perturb users’ responses to the pricing
signals such that users’ specific activities or behavior patterns
cannot be identified. However, this renders a challenge for the
design of DR programs, as privacy-aware users would not ac-
tively respond to incentive or price signals and thereby make it
challenging to effectively adapt the electricity demand to supply
availability. Recently, Maharjan et al. [26] proposed a game-
theoretical framework to model the interactions among multiple
LSEs and multiple users. They have considered a mathematical
model for the users’ cost functions to obtain an optimal amount
of power to demand from the LSEs. However, mathematical
models may be error prone and cannot accurately characterize
the divergent behaviors of users.

The problem of using reinforcement learning for DR pro-
gram has been studied in [27]-[30]. The authors in [27] and
[28] proposed an energy management system approach that
uses a reinforcement learning algorithm to learn the users’ be-
haviors in order to dynamically adapt energy scheduling to fu-
ture uncertain energy prices. Note that these two works con-
sider the DR problem from users’ point of view. However,
Lu et al. [29] has incorporated reinforcement learning into
a dynamic price-based DR framework in order to adaptively
determine the retail price of energy from the LSE’s point of
view. A reinforcement-learning-based DR program was pro-
posed in [30] considering the LSE objectives without assuming
any specific forms of users’ response functions. However, none
of these studies have considered the privacy-preserving behav-
iors of the users in the DR problem. Besides, the incentive-based
DR framework in the presence of the privacy-preserving users
remains an uncharted territory. In this paper, we aim to tackle
these challenges by developing a model-free incentive-based DR
program that accounts for the privacy protection behaviors of
users.

The rest of this paper is organized as follows. Section II
presents the system model and the problem formulation. In
Section III, we establish a learning-based approach to solve the
problem of incentive-based DR program for privacy-preserving
users and characterize its e-optimal performance. Section IV
presents numerical simulation results. The paper is concluded
in Section V.
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Learn the optimal incentive
strategy based on users’ responses
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Fig. 1. Incentive scheme for privacy-preserving DR.

TABLE |
DEFINITION OF VARIABLES AND PARAMETERS

Variables and parameters Definitions

Pine(t) Incentive rates in the retail market in §/kWh

c(t
pm(r) Retail rate of energy in the retail market in §/kWh
Psup(t) Supply price in the wholesale market in $/kWh
5»(!) User n’s demand reduction after incentives in kW h
en(t) Energy usage state of user n before incentives
an(t) Random unknown parameters for user n
ra(.) User n’s response function in kWh
qn(.) Noise generated by user n in kWh
d(t) Desired load reduction in kWh
h(.) Penalty function for the aggregated load reduction
U() LSE’s cost function in §
o Load variation economic weight
N Set of users
P Set of all available incentives
S Set of all possible states of the system at time ¢
S(t) State of the system at time ¢
AP Set of all strategies
¥p Probability that incentive p is chosen by the LSE
TS Incentive strategy at state S
Cs(ms) Total expected utility cost at state S and under the strategy mg
Us(p) Expected utllny cost at state S when the incentive p is selected
] learning parameter
~F Learning rate of the fast time scale reinforcement learning algorithm
AT Learning rate of the slow time scale reinforcement learning algorithm
QL(p) Perception value of the expected utility cost at state S when the incentive p is selected
b%(p) Smooth best response of the LSE at time ¢ at state S when p is the incentive chosen
€ Differential privacy parameter
f Query funcuon
A Query
M Data set
V(f) Global sensitivity of function f
L() Independent random variable generated by Laplace distribution

Il. DR FOR PRIVACY-PRESERVING USERS
A. System Model

As illustrated in Fig. 1, we consider a discrete-time system,
where the LSE (e.g., the load aggregator) aims to procure a total
load reduction, L, by incentivizing the end users to adapt their
consumption. Specifically, at time slot ¢, the LSE announces the
incentive piy, (t) and pays user n the amount p;y, () s, when user
n reduce its consumption by s,, > 0. The market design task is
to design piy(t) such that the LSE achieves the desired amount
of load reduction. All the variables and parameters definitions
are shown in Table I.

1) User-Side Model: The reduction s,, consists of two parts:
1) user n’s response function to the announced incentive,
7n (Pinc (1), €, (t), ,, (t)), which depends on the announced in-
centive pi,.(t), energy usage state e, (t) of user n before in-
centives, and other unknown parameters z, (¢), e.g., weather
conditions, which is assumed to be independent and identically
distributed, and 2) user n’s privacy protection mechanism, which
perturbs its demand to preserve the privacy [16], [17], [31]. Let
Gn (€n (1), 70 (Pinc (t), €, (t), x, (1)) denotes the “noise” gener-
ated by user n to protect its own privacy, which depends on the
energy usage state e, (t) of user n, user n’s response function
rn(+), and other unknown parameters x,, (). Practically, these

variables represent the specific behaviors of the users and may
not be available at the LSE side. The privacy protection func-
tion g, (-) depends on the specific privacy protection strategy
of user n to ensure privacy. For example, differential privacy
based privacy protection strategies have been designed by per-
turbing users’ load with a random noise following the Laplace
distribution [31], [32]. Clearly, the users need to strike a trade-
off between their privacy and the cost of electricity, and more
privacy protection would result in a higher electricity cost [16].

2) LSE-Side Model: Due to users’ privacy protection be-
haviors, users’ responses are uncertain, and the total load re-
duction that the LSE achieves with p;,(¢) is a random quantity
L =3, 8n(Pinc(t), en(t), z,(t)). Therefore, this curtailment
may not exactly match the desired load reduction d(¢), which
reflects the supply availability. Note that ) e, (t) is the aggre-
gated consumption level before incentives, which is required in
order to obtain the demand reduction in the incentive-based DR
programs [33]. Let h(-) denote the penalty function to capture
the penalty for deviation from d(¢). In particular, the penalty
ish(d(t) — >, sn(Pinc(t), €n(t), z, (t))), which is assumed to
be a quadratic function [8], [34]. Besides, there is a revenue
function for the LSE due to the users’ participation in the DR
program [5], [7], [8]. More specifically, the LSE’s revenue func-
tion can be constructed as follows:

LSER = pr (t) { Y en(t) = D sn(Dinc(t), € (), 2, (£))

n n

) Z en Z Sn plnc
n
Z Sn (pinc (t)a
n

where prr (t) is the retail price of energy, and psy,, (¢) is the sup-
ply price of energy from the wholesale market. Note that the rev-
enue function for the LSE can be reduced to the form (pi, (t) +
Psup (t) — PRR (t)) Zn Sn (pinc (t)7 €n (t)v Ty (t)) since PRR (t)
and peup (t) are available. Therefore, the LSE’s overall utility
cost U (pine (1), d(t), e(t), x(t)) at time slot ¢ is equal to the sum
of the penalty of deviation from the desired load reduction target
d(t) and the LSE’s revenue loss due to incentive payments, i.e.,

U(pinc (t)7 d(t)’ e(t)v X(t))
Z Sn plnc
+ (pinc (t) + psup (t)

Z Sn (pinc (t)a

where e(t) = {e, (t)} denotes the set of energy usage states
before incentives observed by the LSE in which the energy
usage state e, (t) of each user n can be measured by smart
meter, and x(¢) = {x,, (t)} are the set of random variables to
the LSE.

From (2), the LSE’s cost function depends on the incen-
tive rate piy.(t), the desired load reduction target d(t), and the
aggregated load reduction ) s, (Pinc (), €, (t), z, (). Given

)sen(t), s (t))

— Psup (t

— Pine () en(t), zn (1)) (1)

en(t), zn (1))

—prr(t))
€n (t), Tn (t)) ()
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users’ strategies [i.e., 7, (-) and g, ()], the real energy usage
state in the next time slot will depend on incentive p;,.(t). As
both 7, (+) and g, () may not be available at the LSE side, the
real consumption level may be unknown to the LSE, which is a
key challenge of deriving the optimal incentive strategy for the
LSE. In other words, a random perturbation is augmented to the
actual load profile of each user according to their privacy pro-
tection strategies. Moreover, note that although users’ response
functions 7, (-) are not available to the LSE, it can be predicted
from historical consumption data, especially when 7, (-) is a
linear function, which is often considered in the literature, e.g.,
[26], [34], and [35]. We should caution that such predictions are
error prone, and the prediction errors can be large when users’
response functions are complicated.

B. Problem Formulation

We employ a game-theoretical framework to characterize the
interaction between the users and the LSE. At each time slot, the
users and the LSE are playing their best response against each
other sequentially. Specifically, the LSE acts first by announc-
ing the incentive rate, and then the users make their decisions
based on the announced incentive. This interaction is formu-
lated as a Stackelberg game, in which the LSE is the leader
and the users are the followers. Let A" = {1,2,...,n} be a set
of users and P be the action space of the LSE, which corre-
sponds to the set of available incentives. The LSE’s objective is
to minimize the total expected system cost, as the LSE receives
noisy observations from the users. Solving the proposed prob-
lem requires to find an incentive strategy 7¢ that maps each state
S(t) = {e(t),d(t)} € S to an incentive pi,(t), where the in-
centive strategy mg = {1, } € AP is a probability distribution
over P, and AP denotes the strategy space. 1, p € P, denotes
the probability that incentive p is chosen by the LSE. Thus, the
expected utility cost Cg (mg) of the LSE at state S(¢) = S and
under strategy mg can be written as follows:

Cs(ms) = Y E[U(pinc(t), S#), ()] ¢ = Y Ts(p)ty

peEP peP
(3

where Ug (p) is the expected utility cost at state S when incentive
Dine () = p is selected.

Summarizing, the problem can be cast as a stochastic Stackel-
berg game, denoted by a 3-tuple I' = (N, AP, C), in which the
LSE needs to find the optimal incentive strategy to minimize its
own cost (3) by observing the users’ perturbed responses. Note
that we consider the one-step incentive strategy (i.e., greedy pol-
icy), such that in each time slot, we compute the best incentive
policy for the current game state only. For the problem under
consideration, the one-step optimal solution can be an efficient
approximation for the stochastic game approach from the LSE
point of view, since the LSE has limited knowledge of the future
events.

Ill. LEARNING-BASED DR SCHEME

The LSE (i.e., leader) aims to minimize its expected utility
cost at each time slot by announcing the best incentive rate
with no knowledge of users’ (i.e., followers’) cost functions.

Specifically, users take the incentive rate in each slot and apply
it to their cost functions to obtain their energy consumption
strategies. However, because of divergent behaviors of the users
and privacy protection mechanisms, users’ response functions
cannot be easily predicted by the LSE. To this end, we devise a
learning-based incentive mechanism to learn the users’ response
functions. In particular, we leverage a smooth best response
rule, based on which the LSE updates its own incentive strategy,
and, correspondingly, determines the e-optimal strategy of the
game [20]. In order to deal with noise-corrupted observations, a
two-timescale reinforcement learning algorithm is proposed to
achieve e-optimality.

A. Smooth Best Response

The LSE has no perfect knowledge about the users’ actual be-
haviors (i.e., the LSE can observe only the perturbed responses)
due to their privacy protection strategies and divergent con-
sumption behaviors; this renders difficulties in designing the
learning algorithm using the classic best response. That is, the
classic best response would result in an unstable mixed strategy
equilibrium for the stochastic learning game [19]. To tackle this
challenge, we adopt the notation of the smooth best response as
a tool to overcome the difficulties [20], [36]. The smooth best
response is defined as follows.

Definition 1 (Smooth best response): For the LSE with the
expected utility cost function Cs (), given the users’ perturbed
aggregated reduction £, the smooth best response bg € AP at
state S is a strategy defined as follows:

bg = arg ﬂI.IeliAIrlP [C’S (m) — ;V(’ﬂ')] 4)
where 3 > 0 is a temperature parameter, and the smooth func-
tion v(7) : AP — R is strictly differentiable and concave such
that as m approaches the boundary of AP, the slope of v be-
comes infinite (e.g., an entropy function).

Note that when 5 — 0, bg becomes the uniform probability
distribution over the strategy space AP, whereas when § — oo,
it boils down to bg = arg min;cap Cs (), which turns out to
be classical best response.

In this paper, we choose the following entropy function as
smooth function:

P

v(m) ==Y i ln(dy). 5)

i=1

As an outcome of incorporating the term »(7), the solution
obtained by bg will have a gap from the optimal strategy due to
the tradeoff between exploration and exploitation of the smooth
best response. Accordingly, we define such a shifted strategy as
e-optimal strategy.

Definition 2 (e-optimal strategy): A mixed strategy 7% =
{1p} € AP is an e-optimal strategy of the Stackelberg game if
the following hold:

WI?iAI%D Cs(m) —Cs(m")| < e (6)

where min,cap Cg (7) is the optimal cost.
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Algorithm 1: Learning-Based DR for Privacy-Preserving
Users.
Initialization: Given the set of states, S, and the incentive
plan P, randomly choose p € P and set the initial
perception values for Q% (p) and ¢0, Vp € P. Set
parameter 3 and specify the timescale parameters ~* and A’
for both processes.
end initialization
loop for each episode
“Expected utility cost learning
1) Compute the perceived system cost U} (p) according
to (2) using users’ perturbed aggregated responses L.
2) Update the estimation of the utility cost Q% (p)
according to (7) specified by +' as learning rate.
“Stackelberg game incentive strategy learning”:
if t = kT+1 then
3) Compute the smooth best response according to (8)
using the estimation Q% (p).
4) Update the incentive strategy mg according to (9)
for each episode specified by A! as learning rate.
end if
end loop

We can see from (6) that any deviation of optimal cost
mingeap Cs(m) from the e-optimal strategy cost Cyg(7*) is
bounded by e. It should be stated that the value of € depends on
[ due to smooth best response properties.

B. Two-Timescale Reinforcement Learning Algorithm

In this section, we propose a reinforcement learning algo-
rithm, as outlined in Algorithm 1, to determine the optimal
incentive strategy for the LSE. Note that the dynamics of the
proposed Stackelberg game can be modeled as a stochastic fic-
titious play (SFP) [19]. However, since the LSE cannot observe
users’ actual responses, we consider a variant of SFP, where
the LSE indirectly builds its own belief based on the expected
utility cost (3), which depends on users’ actions. Furthermore,
since the users perturb their responses, the LSE’s observation
of users’ responses is noisy. To tackle this challenge, we pro-
pose a two-timescale reinforcement learning algorithm consist-
ing of a fast and a slow timescale learning processes. In the fast
timescale, the LSE estimates the expected utility cost. Specifi-
cally, the LSE with action p € P iteratively learns the expected
utility from the perturbed observations of U (p). When the fast
timescale process is completed, the perturbed estimation QY% (p)
of the expected utility is calibrated at the slow timescale, in
which the LSE updates its incentive strategy using the smooth
best response. Specifically, the learning process is divided into
“episodes,” as illustrated in Fig. 2. Let T" be the duration of
each episode. During each episode, the fast timescale learns
the expected utility with a learning rate of 4’ at each step t.
When the episode ends, the slow timescale updates the incen-
tive strategy with the learning rate of A! at step ¢t = kT + 1
where k =0,1,...

New incentive p(?)
is announced

Incentive p(t)
is announced

ﬂ T : Episode duration ﬂ

v

H Time slot H

Start of episode k
at time = (kT+ 1)

time

Episode k ends at
time t=(k+1)T+ 1

Fig. 2. Episode specified by fast and slow timescales.

1) Expected Utility Cost Learning: In the fast timescale, the
LSE estimates the expected utility cost using the received
users’ responses. Specifically, the expected utility cost under
each announced incentive p € P and state S is estimated as
follows:

Qs () = Q5 () + V' I (t)=py (UL (D) — Q5 (p)) (D)

where QY (p) is the perception value of the expected utility cost
at state S when p is the incentive chosen by the LSE at iteration
t,and Iy, (+)=p) 18 the indicator function with I;xy = 1 if the
event X is true and I(x} = 0 otherwise.

It is worth noting that at each iteration ¢, the LSE updates its
instantaneous utility cost using (7). The term U} (p) is computed
according to (2). Furthermore, it is shown in Theorem 1 that
Algorithm 1 converges almost surely to an e-optimal strategy.

2) Incentive Strategy Learning: In the slow timescale, the
LSE updates the incentive strategy based on the estimated ex-
pected utility, which is learned in the fast timescale. Specifically,
the LSE runs an SFP where its own strategy is updated based on
smooth best response (4). The smooth best response of the LSE
can be updated at time ¢ according to Boltzmann distribution as
follows:

. 8
> e B Q@) LT ®

Updating the incentive strategy assigns positive probabili-
ties to all available incentives, which enables an exploration—
exploitation tradeoff when searching for the best incentive strat-
egy. Specifically, the incentive with a lower expected utility cost
will be allocated with a larger probability, which represents the
exploitation aspect of the tradeoff. Note that parameter 3 is used
to control the tradeoff by tuning the probability assigned to each
incentive. Intuitively, with a small 3, the learning algorithm
tends to explore the strategy space more to find the globally
optimal solution. Then, the LSE updates its incentive strategy
75 = {4, },p € P, according to the computed smooth best re-
sponse (8) at the end of each episode. For each p € P, we have
the following:

{w; =i A (b (p) — L),

ift=k-T+1
otherwise

o ©)
P P
where A! denotes the learning rate of the slow timescale. It is
noteworthy that v* and A’ should be calibrated correspondingly
to ensure the convergence of Algorithm 1. To this end, we choose
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~' and A! such that the following hold:

)\‘L‘
lim — = 0.
t—o0 ’yt

(10)

Based on (10), the first learning process would be processed
faster than the second learning process. Thus, the current value
of the slow timescale always can be adjusted with the outcome
of the fast timescale.

C. Performance Analysis

In this section, we analyze the convergence of the proposed
two-timescale reinforcement learning algorithm. As mentioned
in Section III-B, the algorithm learns the expected utility of the
LSE in the fast timescale and then updates its incentive strategy
by the smooth best response in the slow timescale. Note that an
e-optimal strategy will be achieved asymptotically if both learn-
ing processes converge. Furthermore, the performance gap €(3)
between the expected utility cost at the e-optimal point [i.e.,
Cs(7*)] and the optimal expected utility [i.e., min, Cg(7)] is
a function of parameter (3. On the one hand, it is demonstrated
in Theorem 2 that by choosing 3 as large enough, the perfor-
mance gap will be reduced arbitrarily. On the other hand, for
the proposed reinforcement learning algorithm, a small 3 is re-
quired to explore the strategy space to ensure the convergence
of the algorithm to a globally optimal solution. The results for
the performance behavior of Algorithm 1 are expressed in the
following theorems. All proofs are relegated to the Appendix.
First, it is of paramount importance to show the general
convergence property of the reinforcement learning algorithm
where its strategy selection process is updated by Boltzmann
distribution. When action p is selected during episode k, the
LSE updates only the corresponding perception based on the
perceived system cost in the current state S(t) = S according
to (7). Note that the LSE updates only the perception value in the
current state under p and keeps the perceptions in other states un-
changed. After learning the expected utility, the incentive in the
next time slot is chosen based on the strategy 7§ = {1}, (S)},cp,
where ¢/ (S) denotes the probability of choosing p at state S,
and is updated based on (9). The smooth best response strat-
egy in (9) is updated according to the Boltzmann distribution in
(8). Note that the perception values would be different in dif-
ferent states, which, in turn, would result in different incentive
strategies. However, they would converge to the expected utility
value in all cases. We now characterize the optimality behavior
of the proposed algorithm, which is presented in the following
theorems.
Theorem 1: Algorithm 1 converges almost surely to an e-
optimal strategy in the game I if the following conditions hold:
Cl: limy oo Y yop ' = 00, limy oo Y yo0(7F)* < 0
C2: limy oo Y yop M = 00, limy oo Do (A1) < 00
C3: limy_ne 22 =0

Specifically, we have the following:

Jim Q5 (p) = Us (p)

where Ug (p) is the expected utility cost of the LSE at state S
and under its action p.

an

We use the convergence property of the martingale differ-
ences from stochastic approximation theory to show the con-
vergence of the proposed two-timescale reinforcement learning
algorithm. Moreover, a convex optimization problem is solved
to show the optimality of the e-optimal strategy in Theorem 2.

Theorem 2: For Algorithm 1, the incentive strategy of the
LSE at the e-optimal point minimizes the expected utility cost
approximately, i.e.,

Cs(m*) < min Cg(7) + €(B) (12)

TEAP
where the approximation gap, €((), between the e-optimal
equilibrium and the minimum expected utility cost is at most
ﬂi In|P].

Theorem 2 indicates that a large [ is required to reduce
the performance gap. However, increasing § would under-
rate the exploration aspect of the learning process, which may
cause convergence to a suboptimal solution. In other words, a
large (3 affects the system performance negatively by prevent-
ing the algorithm from finding the best incentive strategy due
to overexploitation. Hence, a moderate (3 is required to strike a
balance between optimality and convergence (i.e., exploration
and exploitation) in order to achieve the best performance. It is
noteworthy that the case € = 0 (i.e., no approximation gap) cor-
responds to the greedy mapping from perception to the policy
space.

IV. NUMERICAL RESULTS
A. Data and Simulation Setting

In this section, the performance of the proposed algorithm
is evaluated using 3000 independent load profiles generated by
a domestic electricity demand model [37] in 1-min resolution.
Note that each generated load profile is identical to different
number of occupants, idiosyncratic behavior patterns, and run-
ning appliances on a weekday in April. A composite DR func-
tion [38] of linear, exponential, and logarithmic functions is
considered to simulate the DR for each user, s, (t). Further-
more, the approximate range for the incentive rates is assumed
to be P = {0:0.02 : 0.2}($/kWh) with the flat retail rate of
0.15 (3/kWh), and the wholesale price rates as shown in Fig. 4.
Note that the LSE can estimate the supply price using historical
and/or estimated demand and supply data [7]. Besides, the LSE
can change the incentive ranges based on its requirements. The
incentive rates are considered as discounts on the electricity re-
tail rate for the participated users in the DR program. Since a flat
load profile is a desirable output for the LSE considering techni-
cal requirements of the grid, the DR target [i.e., the desired load
reduction d(t) plus the actual aggregated load before incentives
at each time step] is assumed to be 20% reduction during peak
hours. The LSE can change the DR target based on its own tech-
nical requirements (e.g., operating reserve). It should be stated
that at each episode, step size is 1 min, the number of steps is
60, and episode duration is 1 h. The learning rates, A and ;, in
Algorithm 1 are assumed to be (£ 4+ 1)7%¢ and ¢!, respectively
so that conditions C/—C3 are met. The LSE learns the expected
utility cost during each episode using minute data and then up-
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dates the incentive strategy at the end of the episode. Finally,
it is noteworthy that the LSE has no knowledge of users’ con-
sumption behaviors and noise level. The users adjust the noise
levels based on their own DR and privacy protection programs
that are unavailable to the LSE.

We consider the use of differential privacy as a powerful tool
to mask users’ load profiles by adding noise into the real mea-
surements [32]. In this paper, the adversary model follows a
dishonest-but-nonintrusive model. The adversary aims to infer
the detailed information about the occupants’ activities (e.g.,
number of occupants and their consumption behaviors). In this
sense, it needs to obtain the power consumption level of ap-
pliances, their periodicity, and the duration to extract complex
usage patterns of households [31]. In what follows, we first
provide a quick background of differential privacy and then in-
vestigate the proposed case studies under the assumption that
differential privacy is the privacy protection mechanism adopted
by the users.

Definition 3 (e-differential privacy): Given datasets M,
M, € M, a query A is e-differential private if M; and M,
differ in at most one element, and all subsets of possible an-
swers follow R C Range(A). We have the following:

P(A(M,) € R) < & - P(A(M>) € R) (13)

where P(-) denotes the probability density for discrete random
variables, and ¢ is a small value following In(1 4 ¢) =~ ¢.

This definition indicates that the results for any query over
these two datasets differ up to a multiplicative factor e®. The
parameter ¢ specifies the level of privacy. The lower value of €
represents stronger privacy. To implement the differential pri-
vacy on a dataset, we need to define the global sensitivity of a
function. Global sensitivity is the maximum attainable change
in the value of function f when its input differ only in one
element.

Definition 4 (Global sensitivity): The global sensitivity of
a function f: M — R! is V(f) = max | f(M;) — f(M2)]]1,
where all pairs M, M, € M differ in at most one element,
I - || is the L; norm, and ! denotes the number of independent
Laplace variables.

It has been shown in [32] that to achieve differentially private
output of function f, a random noise can be added to the value
of f by calibrating the noise distribution to the global sensitivity
of f.In our context, f is the set of the measurements from user
n, and the sensitivity for the user is assumed to be its maximum
consumption level. Note that the sensitivity can be defined with
respect to any metric on the output space [32]. Simply put, user
n can achieve e-differential privacy by adding a random noise
followed by Laplace distribution with scale parameter V'(f)/z,
where V' (f) denotes the global sensitivity of f.

B. Case Studies

1) Load Profile Shaping: Fig. 3 shows the aggregated load
profile before and after DR. The LSE learns the expected utility
using high-resolution minute-by-minute data for each hour and
then updates the incentive rate based on the perceived system
cost for the next hour. In other words, learning the expected
utility cost allows the LSE to remove the effects of the aug-
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Fig. 3. Aggregated load profile before and after incentives.
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Fig. 4. Announced incentive rates in different time slots.

mented noise generated by privacy-preserving mechanisms and
announce the new incentive rates for the perturbed measure-
ments. In this regard, considering the DR target, the LSE adjusts
its incentive mechanism to achieve the desirable load profile.
As illustrated in Fig. 4, if a higher reduction is required (e.g.,
t = 19), the LSE would announce a higher incentive to induce
the customers’ voluntary motives to curtail or shift their con-
sumption level. Because of the penalty function in the LSE’s
cost function, LSE’s incentive payments exceed electricity
retail price in peak hours (e.g., t = 19) since it requires sig-
nificant load reduction to flatten the aggregated load profile.
However, lower incentive rates would be announced when a
slight load reduction is required (e.g., t = 9 to 16). Hence, the
LSE could use the incentive mechanism to smooth down the
system’s load profile, particularly in peak hours, which might
cause technical issues (e.g., violating ramping constraints) at
the supply side. Note that there are no incentives announced
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algorithm and the naive reinforcement learning algorithm.

during off-peak hours (e.g., t =1 to 9) since no load reduc-
tion is favorable during these times. However, it can be implied
that depending on the type of reduced loads (e.g., curtail-able
or shift-able) during peak hours, it is possible that some of the
shift-able loads can be shifted from peak hours (yellow shaded
areain Fig. 3) to the off-peak hours (green shaded area in Fig. 3).

2) Cost Analysis: The performance of the proposed two-
timescale reinforcement learning algorithm is evaluated by com-
paring the results with the naive reinforcement learning algo-
rithm as proposed in [30]. The main difference between the
two-timescale and naive reinforcement learning algorithms is
that there is no expected utility cost learning step in the naive
reinforcement learning algorithm. Simply put, the naive rein-
forcement learning algorithm is a one-timescale learning algo-
rithm, which computes the system’s perceived cost and then
updates the incentive strategy using Boltzmann distribution at
each time step. The main drawback for the naive algorithm is
that if the load dynamics changes rapidly, it would be arduous
for the naive algorithm to track down these variations and will
result in a suboptimal incentive strategy.

The system costs using the two-timescale and the naive re-
inforcement learning algorithms are illustrated in Fig. 5 for
different values of 3. The results indicate that the obtained cost
is decreased substantially by using the proposed two-timescale
algorithm. It also implies that by calculating the expected utility
cost, the proposed algorithm can track down the load variations
efficiently and eliminate the effects of the aggregated noises to
adjust the incentive strategy accordingly.

We also compare the results of different mathematical re-
sponse functions as presented in [38]. The utility cost [i.e., (2)]
using different response functions, i.e., our approach (compos-
ite function with random parameters), linear, logarithmic, and
exponential, is illustrated in Fig. 6. The results show that the
utility cost for composite function is less than the cost for other
specified mathematical response functions. This implies that us-
ing specific mathematical response functions would result in a
suboptimal solution and higher system cost due to mischaracter-
izing users’ responses. Hence, it would be favorable to use the

x10

10
“ -
2
S 4
=]
4k
2
0
Our approach Logarithmic Exponential Linear
Fig. 6.  Ultility cost for different models of users responses.

proposed reinforcement learning to learn the users’ behaviors
in order to reduce the system cost.

3) Impact of 3: The performance of the two-timescale al-
gorithm and the naive reinforcement learning algorithm using
different ( are illustrated in Fig. 5. The results indicate a trade-
off between the exploration (i.e., optimality) and exploitation
(i.e., convergence) of the algorithms. In other words, on the one
hand, more incentives are explored with a small 3. which results
in a large approximation gap according to Theorem 2. On the
other hand, a large 5 may boil down the learning algorithm to
a greedy paradigm, which can result in a suboptimal solution
due to overexploitation. Simply put, the learning algorithm may
fail to find the globally optimal solution because of the lack of
exploration of the policy space. These intuitions stem from the
mapping structure of the perception values to the policy space
using Boltzmann distribution. Hence, a moderate /3 is required to
achieve the best tradeoff between exploration and exploitation.
As it is shown in Fig. 5, both algorithms achieve higher utility
costs for small and large values of 3. However, the utility cost
improves as a moderate value of (3 is chosen. In this example,
3 =1le—4 and B = 5e — 5 are chosen for the two-timescale
and the naive reinforcement learning algorithms, respectively,
which strike a balance between the exploration and exploitation
and yield the best performance. Note that the value of 3 can be
calculated offline using historical data.

4) Impact of £: It is of paramount importance to show the
effect of parameter € on the utility cost. Parameter ¢ allows
the customers to control their privacy level. The smaller the
value of ¢, the more private the measurements are. However,
a low € may impose serious technical issues due to limitations
in energy storage devices’ capacity. In other words, if a low
€ is chosen, the Laplace distribution’s scale parameter would
increase significantly. The noise augmentation in the case of a
high scale parameter would be impractical because of storage
capacity constraints [16]. Besides, it would be difficult for the
LSE to learn the effect of the augmented noise due to higher
variations. As it is shown in Fig. 7, the lower ¢ (i.e., the more
private measurements) imposes slightly higher cost to the LSE.



IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 15, NO. 9, SEPTEMBER 2019

4996
55 X 108 Cost analysis for different paramenters of ¢
T T T T T T : T
3r 4
25 b
e
z 2r 1
o}
L5 1
s 1
05 ‘ g ‘ ‘ © ‘ ‘ ‘ ‘ P
0 10 20 30 40 50 60 70 80 90 100
Parameter ¢
Fig. 7. System cost for different choices of = using two-timescale rein-

forcement learning algorithm.

0.45

0.4

0.35

I3
w

Probabilities
I
W

S
1)

0.15

0.1

0.05

0 10 20 30 40 50 60 70 80 90 100
Iteration

Fig. 8. Probabilities of incentives corresponding to the two-timescale
reinforcement learning algorithm.

However, as the level of the privacy decreases, the utility cost
degenerates to the nonprivacy preserved cost.

5) Convergence Speed: Historical data are used to obtain
an e-optimal strategy. Then, the available incentives in P are
announced over time for each episode and then update the ex-
pected utility cost (7) and the corresponding incentive strategy
(8). The incentive with a lower expected utility cost will gain a
higher probability over time. The convergence speed of the pro-
posed reinforcement learning algorithm is illustrated in Fig. 8.
The probabilities of different incentives in the incentive set P
are depicted for 3 = le — 4 and € = 20. It is shown that the
probabilities are converged to an e-optimal strategy in less than
20 iterations. The small variations in the probabilities after con-
vergence are because of added perturbations. The perturbations
change the value of the expected utility, which, in turn, result
in modifications in the probabilities of incentives due to char-
acteristics of the Boltzmann distribution, which tries to balance
a tradeoff between exploration and exploitation. Furthermore,
it is noteworthy that the converged probabilities are associated
to a state. This means that the incentive probabilities would
converge to different values in different states.

V. CONCLUSION

We have motivated and presented an optimal incentive
scheme for privacy-preserved DR program from the LSE point
of view. Specifically, we leveraged a two-timescale reinforce-
ment learning algorithm to learn the perturbed behavior of
customers to solve the optimal incentive strategy. The learn-
ing algorithm enables us to learn the users’ privacy-preserving
responses instead of using predefined response functions for
all users. Besides, convergence and optimality analyses for the
learning algorithm show that by choosing a moderate /3, we
can achieve the best performance from the perspective of cost.
The efficacy of the proposed scheme is further evaluated using
numerical case studies. The results showed that based on the
defined objectives for the incentive scheme (i.e., desired load
profile and minimum revenue loss for the LSE), the learning
algorithm yields an e-optimal incentive strategy in the presence
of the perturbed measurements. The superior performance of
the proposed algorithm was verified by comparing the results
with those of other algorithms.

APPENDIX

Proof of Theorem 1: The proposed two-timescale reinforce-
ment learning in Algorithm 1 can be expressed as a coupled
stochastic approximation process with corresponding Lipshitz
continuous functions F' and martingale differences M as follows
[39], [40]:

{Qts (p) = Q5™ () + v {Fo Q5 (p), ;7' (5)) + My}

¥y (S) = 1,71 () + M{F (Qs™ (p). 41 (9)) + My}
(14)

where Mé and sz) are the martingale differences, and ) and
F, are Lipshitz functions defined as below:

t t—1
Fo(Q (), 01 (S)) = E [chmt]

wz‘, o wtfl
Al

. (15)

FulQ 04, (9) = | ]

We know from stochastic approximation theory that given the
martingale differences, Mé and M/, and conditions, C1 and
C2, the sequences {Zfzo'thé }e and {)_, v M} con-
verge almost surely. Then, the discrete stochastic processes in
(14) can be written as noisy discretization of the continuous
ordinary differential equations (ODEs) according to stochastic
approximation theory [39], [41] as follows:

3t 1. t—1 t—1
{QS@FQ(Q 1) 06

¥ (S) = Fyp (@9 ")
We first evaluate the fast learning process in (14). Assume that

for each fixed strategy 75 = (1, ...,9p|) € AP, thereexistsa
limiting expected utility cost, Qs (p), which is a unique globally
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asymptotically stable point for the first ODE in (16). Then, exploration. Thus, we consider the following problem:
according to (7), the first ODE can be written as follows: |
_ min |Cg(m) — =y () (23)
) QL — Q%! TEAP
R A
7' The first term in (23) indicates the performance of the incentive
=E,, [I (pine (=p) (Us( ) — g:l(p))] strategy (i.e., e>.<ploitation) while the second term re;presepts
. i the entropy, which measures the randomness of the incentive
=Enr [ {Pinc(t ] (Em [Us ()] — Qs (p)) strategy (i.e., exploration). In other words, the minimization

%(S) ( s() - Qk(n) a7

wheret’ € (0, c0) denotes a continuous time index. The solution
of the derived ODE is as follows:

Q5(p) = Us(p) — (Us(p) — Q%(p)) - exp(—1, () - 1').
(18)
Then, it follows that
Jlim |Q§(p) — Us(p)| = 0. (19)

The presented analysis indicates that the fast learning process
(i.e., expected utility perception), Q% (p), will converge to a lim-
iting expected cost Us (p) at state S when incentive p is selected.
In other words, the expected utility cost in (3) will be bounded
to a limiting value of C's (7g ) with a fixed strategy mg. Thereby,
under condition C3, the convergence analysis of Algorithm 1
reduces to the convergence analysis of the second learning pro-
cess (i.e., incentive strategy), which is a stochastic Stackelberg
game between the LSE (i.e., leader) and the costumers (i.e.,
followers) by smooth best response.

The same analysis is performed for the slow learning process.
The limiting behavior of the discrete stochastic process {¢' (S)}
in (14) turns out to be the same as the asymptotic behavior of the
trajectories of the second ODE in (16), which describes the close
form of the smooth best response dynamics [20] as follows:

%(S) =bs(p) — 1, (S5). (20)

The dynamic behavior of the smooth best response in the
potential games has been studied in [36]. To show that the tra-
jectories given by (20) converge to an approximate equilibrium
in a potential game, we need to show the existence of a Lya-
punov function for the cost function (2). Because of the fact that
the considered action in the learning process is incentive, we
can find a Lyapunov function for (2) by assuming integrability
for h(p) and 7, (p), which indicates that the proposed game T’
is an exact potential game in long term, thereby establishing the
convergence of Algorithm 1. Hence, the corresponding ODE for
the smooth best response can be written as follows:

U (S) = bs(p) — ¥, (S) Q1)

which converges to the associated zero point of the ODE. Then,
it follows that

¥p(S) = bs(p) (22)

which proves that the convergence point is an e-optimal strategy
of game I'.

Proof of Theorem 2: First, we need to form an optimization
problem based on the properties of the smooth best response
(4) that balances between incentive strategy exploitation and

problem (23) tries to find the best tradeoff between the incentive
exploitation and exploration.
Given the smooth best response as follows:

vu(m) ==, In(¢,) (24)
peP
we have the following:
LY tyinti) <
peP
since In(1),) <0 Vp € P. Then, we have the following:
> mi
iy Os(r) > iy | Co(m) + 53wt | @9

p€73

Since the uniform distribution results in the maximum en-
tropy, the following can be shown:

1
> ) — =1 2
min Cg(m) 2 Cs(m7) 3 n|P| (26)
which directly leads to (12) with e¢(3) = %ln |P|. Then, the
theorem follows. |
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