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Abstract

Researchers have proposed hardware, software, and algo-
rithmic optimizations to improve the computational perfor-
mance of deep learning. While some of these optimizations
perform the same operations faster (e.g., increasing GPU
clock speed), many others modify the semantics of the training
procedure (e.g., reduced precision), and can impact the final
model’s accuracy on unseen data. Due to a lack of standard
evaluation criteria that considers these trade-offs, it is difficult
to directly compare these optimizations. To address this prob-
lem, we recently introduced DAWNBENCH, a benchmark
competition focused on end-to-end training time to achieve
near-state-of-the-art accuracy on an unseen dataset—a com-
bined metric called time-to-accuracy (TTA). In this work,
we analyze the entries from DAWNBENCH, which received
optimized submissions from multiple industrial groups, to
investigate the behavior of TTA as a metric as well as trends
in the best-performing entries. We show that TTA has a low
coefficient of variation and that models optimized for TTA
generalize nearly as well as those trained using standard meth-
ods. Additionally, even though DAWNBENCH entries were
able to train ImageNet models in under 3 minutes, we find
they still underutilize hardware capabilities such as Tensor
Cores. Furthermore, we find that distributed entries can spend
more than half of their time on communication. We show
similar findings with entries to the MLPERF v0.5 benchmark.

1 Introduction

Machine learning (ML) training has become an increasingly
expensive computational workload. In particular, deep learn-
ing (DL) enables users to train high-capacity models with
billions of parameters [10, 17, 39] from massive datasets
that improve in accuracy as the dataset grows [8, 61]. Be-
cause modern DL methods are computationally expensive,
researchers have proposed many hardware, software, and al-
gorithmic optimizations for DL, ranging from new hardware
platforms [15,38,53] and software systems [5, 19, 20,25,36]
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to novel distributed optimization algorithms [23,28,31-33,
41,51,60,62,66].

Unfortunately, performance evaluation for ML training sys-
tems is significantly more challenging than performance eval-
uation for traditional software. The main goal of ML training
is to build a statistical model that generalizes well to new data,
i.e., makes accurate predictions on it, but many techniques
that increase throughput can adversely affect generalization.
On the hardware side, large minibatch training [31,38] and
reduced precision [20,23,48] can help run iterations of the
optimization algorithm faster and speed up “proxy” metrics
such as time to process an epoch (“time-per-epoch”), but can
prevent models from reaching the same accuracy on unseen
data [24,46,47]. On the algorithmic side, techniques such
as the Adam optimizer [41] were shown to accelerate the
minimization of training loss (“time-to-training-loss”) but
sometimes lead to models with lower accuracy on unseen
data [64]. These proxy metrics do not consider runtime and
final model accuracy jointly, making it hard to evaluate pro-
posed computational optimizations.

To address this lack of standard evaluation criteria, we
ran the DAWNBENCH [22] competition in 2018 to measure
the end-to-end performance of ML systems using a time-fo-
accuracy (TTA) metric. TTA measures time for a system to
train to a target, near-state-of-the-art accuracy level on a held-
out dataset. Unlike prior work that focused solely on through-
put metrics such as time-per-epoch [6,11,12,21,30,58], TTA
combines both generalization and speed. While several pa-
pers had previously used TTA for evaluation [7,31,42,59],
DAWNBENCH was the first multi-entrant benchmark compe-
tition to use the TTA metric. During the initial competition
that ran in April 2018, Google, Intel, fast.ai, and others submit-
ted optimized entries that could train to 93% top-5 accuracy
on ImageNet in less than 30 minutes, which subsequently
dropped to under 3 minutes with rolling submissions. Later
that year, the MLPERF [3] benchmark launched using TTA
as its primary metric as well.

Despite the impressive speedups achieved by DAWN-
BENCH and MLPERF entries, many questions remain about



the performance of ML training systems and TTA as a metric.
For example, is the TTA metric stable or do the entries to
these metrics only represent the best result out of many trials?
Do models optimized for TTA still generalize well or are they
implicitly adapting to the held-out dataset used in the bench-
mark through extensive hyperparameter tuning? Finally, how
close are these entries from fully utilizing hardware platforms
and what are the computational bottlenecks?

In this paper, we evaluate entries from DAWNBENCH and
from MLPERF v0.5 to understand the behavior of TTA as an
ML performance metric and identify bottlenecks in the best
performing entries. Both benchmarks received professionally
optimized entries from leading industry groups, such as the
Google TPU team, Intel, and NVIDIA, creating one of the
first opportunities to study ML systems optimized heavily for
training performance, as opposed to traditional ML competi-
tions that only evaluate accuracy [26]. Fortunately, most of
the top entries were open source. Using these top-performing,
open-source benchmark entries, we find that:

1. Despite the stochasticity of ML training procedures, TTA
is a relatively stable metric that can reliably distinguish
between systems on tasks that include image classification,
object detection, and machine translation (§4.1).

2. Even though accuracy in TTA is measured on a fixed, held-
out evaluation set, models optimized for TTA generalize to
unseen data nearly as well as off-the-shelf models (§4.2).

3. Distributed training often bottlenecks on communication
(often > 50% of total time spent on communication), both
on publicly available cloud infrastructure and optimized
on-premise deployments with fast networks (§5.1).

4. Some of the top-performing benchmark entries severely
underutilize hardware capabilities such as Tensor Cores
by up to 10x.

5. Training is bottlenecked by operators previously thought to
be inexpensive, such as rectified linear units (ReLUs) [50]

(85.2).
2 Background: ML Training

In this section, we describe the ML training workload and
how it differs in performance goals from other applications.

The Goal of ML Training: Generalization. The main goal
of ML is to train a model that makes high quality predictions
on unseen data, which is referred to as generalization [29].
An optimization algorithm minimizes a problem-specific loss
function to find a model that not only performs well on the
training data, but is also likely to generalize to unseen data
from a similar distribution. This goal is different from pure
mathematical optimization, as shown in Figure 1: for example,
when the ML algorithm can propose a large range of functions
as models, it is possible to overfit the training data and return a
model that generalizes less well to unseen data than a simpler
model. Deep learning models in particular have the capacity
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Figure 1: Examples of underfitting, appropriate fitting, and overfit-
ting for ML models. The overfit model classifies the training data
perfectly, but will perform worse on unseen data than the middle
model. Figure adapted from [13].

to represent a very wide range of functions, so much of DL
research focuses on finding methods that generalize well [29].

To quantify how well a model generalizes, a separate
dataset is held out from training and used for periodic evalua-
tion. This dataset is referred to the validation dataset. To avoid
overfitting, most systems stop training when performance on
the validation set has plateaued.’

However, even with a held-out validation set, repeated ex-
periments could lead to overfitting, even though the model
was never explicitly trained on the held-out data [55]. While
tuning hyperparameters to optimize for TTA, entries could
implicitly be learning about and adapting to the validation
set rather than achieving the principal goal of generalization.
Fortunately, this form of overfitting does not seem to occur in
the existing DAWNBENCH and MLPERF entries (§ 4.2).

Typical Training Processes. Most deep learning models
are trained using Stochastic Gradient Descent [56] or one of
its accelerated variants, such as Adam [41]. These methods
iterate over the training data in minibatches, which are small
batches of records (e.g., 32 records) drawn at random. The
training algorithm updates the weights of the model after
processing each batch. In total, the optimization method may
make multiple passes over the entire dataset during training,
where each complete pass is called an epoch.

Tradeoffs in Speed and Generalization. Unlike more tradi-
tional workloads, many optimizations that improve how fast
the ML system processes data affect the quality of the solu-
tion, either changing how many updates it takes for the model
to converge or preventing the model from converging to the
same quality. For example:

1. Increasing the number of records used for each update can
increase hardware efficiency, but prevent or slow down
convergence [47] (§ 4.3).

2. Naively reducing floating point precision to 16 bits pre-
vents convergence, but using “loss scaling” allows for con-
vergence [48]. Further reducing to 8 bits generally prevents
convergence with current methods [24].

1 Some texts also use the term “validation set” to refer to data held out
for hyperparameter tuning, and use “test set” for evaluation data.



Hardware  # of entries Framework  # of entries
GPU 8 TensorFlow 11
TPU 8 PyTorch 4
CPU 3 Caffe 3

MXNet 1

(a) Overview of hardware platforms and software frameworks for
DAWNBENCH ImageNet submissions.

Hardware # of entries Framework  # of entries
GPU 28 PyTorch 22
TPU 7 TensorFlow 10
CPU 6 Caffe 3

MXNet 5
Big DL 1

(b) Overview of the hardware platforms and software frameworks
for MLPERF entries. We excluded “research” submissions, which
include frameworks and hardware not publicly available.

Table 1: Summary of infrastructure used for DAWNBENCH and MLPERF entries.

Model Area Problem Dataset Dataset size Quality target

ResNet Vision Image classification ImageNet 1.2M images  74.9%

SSD, ResNet-34 backbone  Vision Object detection MS-COCO 127K images  21.1 mAP

Mask R-CNN, Vision Object detection and MS-COCO 127K images ~ 37.7 box mAP,
ResNet-50 backbone instance segmentation 33.9 mask mAP

GNMT Language  Translation (recurrent) WMT English-German  3.5M sent. 21.8 BLEU

Transformer Language  Translation (non-recurrent) ~WMT English-German  4.6M sent. 25.0 BLEU

NCF Commerce Recommendation MovieLens-20M 20M ratings 0.635 HR@10

Minigo RL Go Go Self-play 40.00% accuracy

Table 2: Overview of tasks, models, and problem areas for the MLPERF v0.5 training benchmark.

3. In the multi-accelerator case, SGD can be performed syn-
chronously or asynchronously [51]. Synchronicity ensures
that each update uses the most up-to-date weights of the
model to accurately assess performance, but requires more
overhead to copy the model’s weights between accelera-
tors after each update. Asynchronous SGD can remove
this synchronization at the cost of data efficiency [42,49].

Stochasticity in Training. Training via SGD is inherently
stochastic. Stochasticity enters in several ways, including
randomness in model initialization and data traversal. Further-
more, many DL systems introduce stochasticity for improved
hardware efficiency, e.g., by reordering floating point opera-
tions. Thus, multiple trials of the same optimization procedure
can reach the same target validation accuracy in a different
number of epochs.

3 Overview of Benchmarks

This section overviews the rules, training procedures, and
models from DAWNBENCH and MLPERF. We also detail
the entries we leverage in our subsequent analysis.

3.1 DAWNBENCH Overview

DAWNBENCH was introduced in November 2017 and con-
cluded in April 2018. DAWNBENCH evaluates the time and
cost (in USD) of popular deep learning training and infer-
ence workloads. The initial release included two tasks: im-
age classification on ImageNet and CIFAR10, and question
answering on SQuAD, and four metrics: training time to a
specified validation accuracy, cost of training to that accuracy
for submissions that use hardware in the public cloud, average
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latency of performing inference on a single item (image or
question), and average inference cost.

Entries were required to submit a description of their sub-
mission and the validation accuracy after every epoch. While
source code was optional, every submission for image classi-
fication included a link to all code needed to reproduce runs,
assuming access to the appropriate hardware. For question an-
swering on SQuAD, some submissions did not include code
until well after the DAWNBENCH deadline; because of this
and the general lack of submissions, we focus exclusively on
image classification training submissions in this paper. While
our analysis applies to both ImageNet and CIFAR10, we do
not include results for CIFAR10 in this paper since CIFAR10
does not reflect the scale of production workloads. As a result
our analysis of DAWNBENCH focuses solely on ImageNet,
where DAWNBENCH used a top-5 accuracy target of 93%.

3.2 MLPERF Overview

MLPERF v0.5 is a more recent benchmark that concluded
in December 2018. MLPERF evaluates TTA on a broader
range of tasks, including image classification, object detec-
tion, translation, and recommendation, as shown in Table 2.
Unlike DAWNBENCH, MLPERF used a fixed model and op-
timization algorithm. There was some flexibility for choosing
SGD hyperparameters to allow submissions of different com-
putational scales. Submissions were also allowed to submit
results for a subset of tasks, so the majority of hardware tar-
gets did not include entries for every task. For example, the
reinforcement learning task had no entries with accelerators,
as game simulation was the bottleneck. As such, we do not
analyze the reinforcement learning entries. Similarly, we do



not analyze the results on the recommendation task because
it does not reflect production usage and will be replaced [14].

3.3 Summary of Entries

Entries to DAWNBENCH and MLPERF v0.5 came from
many organizations, including Google, NVIDIA, and Intel,
which had teams of engineers optimize their submissions. The
entries spanned GPUs, TPUs, and CPUs on the hardware side
and TensorFlow [5], PyTorch [52], Caffe [36], MXNet [18],
and Big DL [34] on the software side. The number of compute
units (which we refer to as compute scale) ranged from 2 to
640 processors, and speedups over reference implementations
ranged from 1.6x to over 1,400x. In MLPERF v0.5, every
entry with an accelerator used mixed precision training [48],
and large batch sizes [31]. DAWNBENCH submissions were
allowed to use a wider range of optimizations, including pro-
gressive resizing of images [40,43] and novel model architec-
tures [54], in addition to mixed-precision training and large
minibatch training. In our analysis, we used all pre-February
2019 submissions that were reproducible with public cloud
infrastructure or included sufficient information for analysis
(e.g., training logs).

4 Analysis of Time-to-Accuracy

In this section, we evaluate the TTA metric along three axes,
using publicly available code and results from DAWNBENCH
and MLPERF submissions. First, we demonstrate that TTA
has a low coefficient of variation (< 14%) over several runs
with fixed hyperparameters, even with some statistical opti-
mizations (e.g., cyclic learning rates, progressive resizing)
that result in higher variance. Second, we provide evidence
that models optimized for TTA generalize nearly as well as
regular, unoptimized models. Third, we compare TTA against
other metrics and show that the alternative metrics do not
capture the complexity of DL training.

4.1 Variability of Time-to-Accuracy

To understand the stability of TTA, we computed the coeffi-
cient of variation (the ratio of the variance to the mean) for
the top DAWNBENCH entries available on public cloud (by
rerunning them several times) and official MLPERF entries
(which contained multiple trials). We chose this metric as
the mean is a natural scale for comparing systems. For exam-
ple, a coefficient of variation of 14% means that systems that
achieve a TTA within 14% of each other are not easily distin-
guished, but a system that is two times faster than another is
easy to distinguish.

As shown in Table 3a, the coefficient of variation of TTA
for the reproduced DAWNBENCH entries is at most 4.5%
for entries that do not use novel statistical optimizations, but
12.2% for all entries. This indicates that TTA is largely stable
despite the randomness in DL training.

We also found that several entries failed to consistently
achieve the given accuracy threshold. In particular, progres-
sive resizing used by several of the DAWNBENCH ImageNet
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entries appear to make validation convergence less robust as
seen in Table 3a.

The coefficient of variation was similarly low for the of-
ficial MLPERF results. Table 3b shows the coefficient of
variation for the official MLPERF results. We find that TTA is
largely stable; the coefficient of variation is always less than
14% and generally less than 7%. We additionally reproduced
the majority of available MLPERF entries on stable public
cloud hardware. We found that these reproduced MLPERF
entries were in line with the official entries.

Source of Variation. To understand the source of variation
in TTA, we analyzed the validation accuracy curves per epoch
for MLPERF entries. Figure 2 shows the variance in qual-
ity metric per epoch across several tasks and machine scales.
Validation accuracy is less stable at the beginning of training
but becomes more stable as training continues. This variance
early in training grows with the system scale because larger
entries start training with large learning rates. Additionally,
the variation in the number of epochs is high due to the differ-
ent machine scales. For selected large scale entries, Table 4
shows low variation in time-per-epoch, with a coefficient of
variation less than 3%. The variation in the number of epochs
to reach the target quality metric is up to 45 higher than the
variation in time-per- epoch. Thus, most of the variation in
TTA comes from variation in the number of epochs.

4.2 Generalization of Optimized Models

To measure the generalization performance of models opti-
mized for TTA in image classification and translation, we
collect unseen data, i.e., data that is not in the validation and
training sets, and test the accuracy on this unseen data. We
used reproduced DAWNBENCH and MLPERF entries since
neither benchmark provided checkpoints.

Evaluation on New Data for Image Classification. To test
image classification, we scraped and labeled a set of 2,864
images from Flickr. The images were scraped based on the
WordNet keywords associated with each class in the ImageNet
dataset. The top five images based on relevance were shown
to a human labeler and labeled correct or incorrect. To ensure
no overlap with ImageNet, only images posted after January
1st, 2014 were used. The images spanned 886 (out of 1000)
classes. While these images are not entirely representative of
ImageNet, we believe they reflect a reasonable distribution.

We computed the relevant accuracy metric (top-1 or top-5
accuracy) for DAWNBENCH entries, an optimized MLPERF
entry, and pre-trained ResNet-50 weights provided by Py-
Torch on the images from Flickr. The results are summa-
rized in Table 5. As shown, the models optimized for TTA
achieve nearly the same accuracy or higher than the pre-
trained ResNet-50, indicating that optimizing for TTA does
not sacrifice generalization performance.

Evaluation on Unseen Data for Translation Tasks. For the
MLPERF GNMT and Transformer models, we additionally



Entry name Coeff. of variation  Frac. of runs
ResNet-50, p3.16xlarge 5.3% 80%
ResNet-50, 4xp3.16xlarge 11.2% 60%
ResNet-50, 8xp3.16xlarge 9.2% 100%
ResNet-50, 16xp3.16xlarge 12.2% 100%
ResNet-50, 1xXTPU 4.5% 100%
AmoebaNet-D, 1xTPU 2.3% 100%
ResNet-50, 1/2 TPU Pod 2.5% 100%

(a) Coefficient of variation and fraction of runs that reached the
desired target accuracy of the top DAWNBENCH entries for image
classification on ImageNet (5 runs). p3.16x1large entries were from
fast.ai and used progressive resizing. We also include the coefficient
over 4 runs of 1/2 a TPU Pod for ResNet-50.

Entry Coeff. of variation
ResNet, NVIDIA, 1xDGX-1 6.7%
SSD, NVIDIA, 1xDGX-1 0.5%
SSD, NVIDIA, 8xDGX-1 6.7%
Mask, NVIDIA, 1xDGX-1 3.9%
Mask, NVIDIA, 8xDGX-1 0.8%
GNMT, NVIDIA, 1xDGX-1 0.2%
Transformer, NVIDIA, 1xDGX-1 13.8%

(b) Coefficient of variation for selected official MLPERF entries. All
of the displayed runs achieved the target accuracy 100% of the time.
We exclude recommendation as the model and dataset are being
replaced for the next version of MLPERF.

Table 3: Coefficient of variation and fraction of runs that achieved the target accuracy for MLPERF and DAWNBENCH entries. As shown,
the coefficient of variation is less than 14% for all runs, with the exception of multi-accelerator Transformer entries (not shown). However,

MLPERF plans to expand the dataset size for Transformer, which we

believe will improve stability.
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Figure 2: Variation in validation quality metric per epoch for official MLPERF entries. As shown, the variation decreases closer to the final
target score. The variation within an epoch is typically smaller than the variation between epochs close to the target score. Best seen in color.

Time per Ratio of
Entry Epochs epoch (s) std. devs
ResNet, 80xDGX-1 82+0 4.6+0.01 0x
SSD, 8xDGX-2 53.6+42 63+0.03 14.8x
Mask, 4xDGX-2H 14.4+0.8 310.0+2.9 5.9%
GNMT, 16xDGX-2H 4.2+04 39.2+1.0 3.9x%
Transf., 24xDGX-1 7.2+2.1 56.2+0.4 44.9x

Table 4: The deviation in number of epochs, time per epoch, and the
ratio of the standard deviations for selected official MLPERF entries.
We selected the largest scale entries. The variation largely comes
from the variation in the number of epochs, not the time per epoch.

used new data to test generalization performance. We used
the WMT’17 English-German newstest2017 test set [1],
which is not in the training or validation sets for GNMT or
Transformer. Table 6 shows the optimized implementations
generalize as well as the reference implementations, despite
being over 50x faster. This indicates that optimizing for TTA

does not sacrifice generalization performance.

4.3 Comparison to Alternative Metrics

Comparison to Throughput. To demonstrate that through-
put (and equivalently time-per-epoch and achieved FLOPS
for a fixed model and dataset) is not sufficient for measuring
DL system performance, we show the batch size, number of
epochs, throughput speedup, and TTA speedup in Table 7. As
shown, TTA speedups and throughput speeds can differ by
up to 3%, as increasing the batch size to improve throughput
can increase the number of epochs required for convergence.
Thus, throughput is insufficient to characterize DL system
performance even though it has been used extensively in prior
benchmarks [12,21, 30, 58].

Comparison to Peak Device FLOPS. As shown in Ta-
ble 7, system scale does not correlate with throughput or TTA
speedup. We further show in § 5.2 that existing accelerators
are severely underutilized in many cases. Additionally, other
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Model Accuracy (top-5, unseen data)
ResNet-18 (pretrained) 89.5%
ResNet-50 (pretrained) 92.2%
ResNet-152 (pretrained) 93.2%
ResNet-50, 1xTPU 92.6%
ResNet-50, p3.16xlarge 91.9%
ResNet-50, 4xp3.16xlarge 91.3%
ResNet-50, 8xp3.16xlarge 91.5%
ResNet-50, 16xp3.16xlarge 91.3%
AmoebaNet-D, 1xTPU 91.3%

(a) DAWNBENCH submissions, top-5 accuracy. ResNet-50 on
p3.1l6xlarge instances used non-standard optimizations such as
progressive resizing.

Model Accuracy (top-1, unseen data)

ResNet-18 (pretrained) 71.7%
ResNet-50 (pretrained) 77.4%
ResNet-152 (pretrained) 79.4%
ResNet-50, DGX-1 77.6%

(b) MLPERF submission, top-1 accuracy.

Table 5: Performance of pre-trained models and models optimized
for TTA on unseen data for DAWNBENCH and MLPERF ImageNet
entries. The models optimized for TTA perform nearly as well as
or better than the PyTorch pre-trained model. We expect the pre-
trained ResNet-18 and ResNet-152 to be lower and upper bounds
respectively on generalization performance.

Model BLEU score
GNMT, reference 23.4440.08
GNMT, DGX-1 23.63+0.20
Transformer, reference  26.60+0.44
Transformer, DGX-1 26.78 +0.45

Table 6: BLEU scores on unseen data for the reference and opti-
mized GNMT and Transformer models. As shown, models optimized
for TTA generalize as well as the reference models. We show the
average of three runs and the standard deviation.

Model System BSes Epochs Thpt TTA
scale speedup  speedup
Trans. 1,24 10k, 492k 2,6 10.9x 3.6x
GNMT 1,32 1k, 8.2k 3,5 10.9x 6.5x%
ResNet 1,80 4k, 16k 63, 82 28.2x 21.6%
SSD 1,8 1.2k, 2k 49, 55 4.6% 4.1x
Mask
R-CNN 1,8 32,128 13,14 4.2x 39x

Table 7: Model, system scale (in number of DGX-1s), batch size
(BS), number of epochs for convergence, throughput speedup, and
TTA speedup. Numbers are given for two system scales per model us-
ing official MLPERF entries. As shown, throughput does not directly
correlate with TTA and speedups can differ by up to 3x (10.9x vs
3.6x for transformer).

costs (e.g., communication overhead) can dominate runtimes
and can add a > 2x overhead. Thus, peak device FLOPS is a
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poor proxy for observed DL system performance.

5 Hardware Utilization and Scaling

In this section, we evaluate how well highly optimized
DAWNBENCH and MLPERF entries utilize available hard-
ware. First, we demonstrate that distributed entries can spend
more than half of their time on communication overhead.
Second, we study the utilization of these entries on a single
worker. Through a roofline analysis [63], we provide evidence
that despite near state-of-the-art training performance across
a range of tasks, many submissions still severely underutilize
the available hardware resources. We also show that memory-
bound kernels take a significant percentage of total runtime,
leading to lower observed FLOPS.

5.1 Scaling of Distributed Training

With an increase in model size and complexity, distributed
training has become imperative to train models in reason-
able timeframes. However, distributed training requires expen-
sive cross-accelerator communication [37]. To better quantify
these communication overheads, we trained the same mod-
els with different accelerator counts, and studied the scaling
behavior of end-to-end training.

Scaling of Time-to-Accuracy. To scale up to hundreds of
accelerators, every large-scale DAWNBENCH and MLPERF
entry used large minibatches to saturate the available hard-
ware. This includes the machine translation and object detec-
tion tasks, even though the original large minibatch training
technique was only tested on the ResNet-50 image classifica-
tion model [31]. Table 7 shows batch sizes and throughputs
of various MLPERF official entries. As shown, the batch size
can be scaled from 4 to nearly 50 x the base batch size.

We find that both time-per-epoch and TTA scale almost
linearly with the number of workers within a server, across a
range of models for image classification, object detection, and
language translation in both the DAWNBENCH and MLPERF
benchmarks (Figures 3b and 4c).

However, we found that both time-per-epoch and TTA do
not scale as well for training that spans multiple servers.
In Figure 3a, we show the speedup relative to one worker
of per-epoch time for an AmoebaNet model trained in a
TPU Pod with 64 TPUs on the ImageNet dataset. Figure 3¢
shows the speedups when scaling ResNet-50 training up to
16 p3.16xlarge instances (each server has 8 NVIDIA V100
GPUs) on Amazon Web Services (AWS). Time-per-epoch
shows as much as a 38.9% gap from linear scaling. Time-to-
accuracy scales even worse, since a greater number of epochs
are needed to converge to the same accuracy target for the
larger minibatch size. We see similar results for the SSD and
Mask R-CNN models using both p3.16xlarge instances on
AWS, and DGX-1 servers (NVIDIA’s optimized server with
8 V100 GPUys) in a private cloud deployment with Infiniband
network communication in Figures 4a and 4b .
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Figure 3: Speedup with respect to a single worker vs. number of workers for three ImageNet models, one on a TPU pod, another on a single
p3.16xlarge instance with 8 NVIDIA V100 GPUs, and a third on multiple p3.16xlarge instances for selected official DAWNBENCH
entries. As the number of workers increases, the scaling performance drops off (over 2 x gap from ideal scaling).
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Figure 4: Speedup of TTA with respect to a single worker vs. number of workers for an SSD model on multiple 8-V100 servers (p3.16xlarge
and p3dn.24xlarge instances on AWS, and a NVIDIA DGX-1 server in an on-premise deployment), a Mask R-CNN model on multiple
8-V100 servers, and a Mask R-CNN model within a p3.16xlarge instance.

Model Machine Config. Comm. Overhead (%)
ResNet-50 80xDGX-1 64.947%
ResNet-50 16xDGX-2H 25.859%
SSD 8xDGX-1 42.043%
SSD 8xDGX-2H 68.231%
Mask R-CNN 8xDGX-1 47.674%
Mask R-CNN 4xDGX-2H 42.131%
GNMT 32xDGX-1 71.146%
GNMT 16xDGX-2H 67.436%
Transformer 24xDGX-1 35.127%

Table 8: Percentage of time in an epoch spent communicating for
official optimized distributed MLPERF entries.

Communication Overhead. To further understand the im-
pact of networking on distributed training, we computed the
communication overheads of both official DAWNBENCH
and MLPERF entries. These results are shown in Figures 5
and 6, and Tables 8 and 9. For the MLPERF entries, we show
communication overheads for both the official entries run on
private on-premise deployments, and reproduced entries run
on public cloud deployments to quantify the impact of opti-
mized network interconnects like Infiniband and RDMA on
end-to-end training time. For the DAWNBENCH entries, we
show communication overhead numbers on the public cloud.

As shown, communication remains a significant overhead.
Even on on-premise deployments with 100Gb/s InfiniBand
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Model Machine Config. Comm. Overhead (%)
ResNet-50 4xV100 (AWS) 4.528%
ResNet-50 8xV100 (AWS) 13.400%
SSD 4xV100 (AWS) 5.364%
SSD 8xV100 (AWS) 14.999%
Mask R-CNN  4xV100 (AWS) 17.167%
Mask R-CNN  8xV100 (AWS) 26.163%
GNMT 4xV100 (AWS) 9.921%
GNMT 8xV100 (AWS) 15.832%
Transformer 4xV100 (AWS) 26.692%
Transformer 8xV100 (AWS) 15.546%

Table 9: Percentage of time in an epoch spent communicating for
reproduced single-server MLPERF entries.

EDR interconnect can have communication overheads as high
as 71.15%, for the GNMT model using 32 DGX-1 servers.
This overhead can rise to 77.46% when using Amazon’s
p3.1l6xlarge instances with a 25 Gigabits/second intercon-
nect for Mask R-CNN.

Figure 5 shows the communication overhead as the num-
ber of workers increase for DAWNBENCH entries; we see
that within a DGX-1, communication overhead is much
lower (17.82%) compared to across servers (53%), since
NVIDIA’s nv1ink interconnect has far higher bandwidth than
the 25Gbps provided by Amazon EC2 across p3.16xlarge
instances. As DAWNBENCH did not have entries for Amoe-
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Figure 5: Percentage of time in an epoch spent communicating vs. number of workers for three ImageNet models, one on a TPU pod, another
on a single p3.16x1large instance, and a third on multiple p3.16x1large instances. Within a 8-V100 server, communication overhead is low

(17.82%), but cross-machine communication is more expensive (53%).
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Figure 6: Percentage of time per epoch spent communicating vs. number of workers for various MLPERF entries in both on-premise and
public cloud deployments. Communication overheads are as high as 47.67% in on-premise deployments and up to 77.46% in the public cloud.

baNet on GPUs, we were unable to make a completely fair
apples-to-apples comparison of the scaling properties between
AmoebaNet and ResNet-50.

Discussion. These results suggest that despite the work in
scaling ML training to many multi-GPU servers [31,59], com-
munication remains a bottleneck, for large machine counts
and for certain models in public cloud deployments. The work
by Goyal et al. [31] shows far better scaling than we have
observed in the DAWNBENCH entries; we believe this is due
to the fact that the results presented in this paper used faster
V100 GPUs (compared to P100 GPUs), and had slower net-
work interfaces (up to 25 Gigabits/second on AWS compared
to 50 Gigabits/second in a private Facebook cluster).

To address this, highly optimized communication libraries
like Horovod [57] have been developed. Other work [44] has
explored techniques to reduce the amount of data sent over the
network. However, these techniques need to be evaluated on
more models and in more hardware settings for widespread
adoption. Integration into widely-used deep learning frame-
works like PyTorch and TensorFlow would also help with us-
ability. Additionally, exploring parallelization schemes other
than data parallelism that do not require all-to-all communi-
cation among all workers could be helpful.

5.2 Single-worker Utilization

To study the utilization of the compute units of the accel-
erators themselves, we analyzed the performance of some
DAWNBENCH and MLPERF submissions on a single accel-
erator, without network overhead.
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Figure 7: Roofline models for the various DAWNBENCH entries.
All of the entries under-utilize the hardware resources, by up to 10x.
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Figure 8: Roofline models for the various MLPERF entries. All of
the entries under-utilize the hardware resources, by up to 10x.

Roofline Analysis. To understand the hardware performance
of single-worker training, we used the roofline model [63],
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Figure 9: CDF of tensor core utilization for the fast.ai ResNet50
model trained with fp16 precision submitted to the DAWNBENCH
competition. About 85% of time is spent on kernels that don’t uti-
lize the NVIDIA Tensor Cores at all, and no kernel achieves full
utilization of the Tensor Core units.
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Figure 10: CDF of tensor core utilization for different MLPERF
models trained with fpl6 precision.

which can highlight causes of performance bottlenecks. The
roofline model plots computational throughput (in floating
point operations per second) against the operational inten-
sity of the application (number of floating-point operations
performed per DRAM byte accessed). Applications with
high operational intensity are “compute-bound” (the flat line
in Figure 7) and bottlenecked on the device’s computation
units, while applications with low operational intensity are
“memory-bound” (the slanting line in Figure 7) and bottle-
necked on memory accesses.

We show results in Figures 7 and 8. Each point in these
figures represents a DAWNBENCH or MLPERF entry. For
entries which used progressive image resizing [40,43], where
different image sizes are used through training, we show each
image size used. Operational intensities and throughputs are
approximated by instrumenting training code and using pro-
filing tools like nvprof.

As shown, all entries analyzed severely underutilize the
available compute resources — each plotted point achieves a
throughput significantly lower than peak device throughput.

Bottlenecks in Training. To investigate the source of under-
utilization on the V100 GPU, we measured the fp32 through-
put and Tensor Core utilization of each GPU kernel in Py-
Torch’s implementation of ResNet-50. The V100s have peak
throughputs of 15.7 Teraflops of fp32 arithmetic and 125
Teraflops of half-precision arithmetic via Tensor Cores [45].

Figures 9 and 10 show that the GPU kernels taking the
majority of time when using fp16 precision utilize the Tensor
Cores poorly, with a time-averaged Tensor Core utilization of
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Figure 11: CDF of per-kernel throughput for ResNet50 models
trained with £p32 precision. The CDF is computed by percentage of
time spent executing each GPU kernel. A standard ResNet-50 model
spends about 40% time in low-throughput kernels (< 6 Teraflops).
Removing the BatchNorm layer from the ResNet50 model decreases
the percentage of time in low-throughput kernels to about 30%;
removing the ReLU layers decreases this further.

0.71 (on a scale of 1-10 as reported by nvprof).

Training the same model even with standard fp32 precision
only achieves a throughput of 7.6 Teraflops, compared to peak
device throughput of 15.7 Teraflops. This is largely due to
memory-bound kernels like BatchNorm [35] and ReL.U [50],
that take a significant percentage of total runtime. This is illus-
trated in Figure 11, which show that a non-trivial portion of
kernels underutilize the GPU, and that removing BatchNorm
and ReLU layers improves £p32 throughput by about 20%.

Discussion. Compilers for deep learning like TVM [4] and
XLA [2] try to automatically generate code given a higher-
level description of the deep learning computation being per-
formed. Optimizations like loop and kernel fusion can help
reduce the impact of memory-bound kernels by reducing the
number of DRAM reads and writes made. For example, con-
sider code that performs the forward pass of a BatchNorm
followed by the forward pass of a ReLU. Naively, this code
would be executed by code that resembles the following,

// BatchNorm.

1

2 for (int i = 0; 1 < n; i++) |

3 y[i] = gamma * ((x[i] - mu) / sigma) + beta;
4 )

5 // RelLU.

6 for (int i = 0; i < n; i++) {

7 z[1] = max(y[i], 0);

8 1}

In the above listing, a DRAM write is performed for y[i]
and z(i], and a DRAM read is performed to compute z[i].

However, for training, we could optimize the above code
by fusing the two loops, saving on DRAM reads of y[i] since
the intermediate result is written to a local variable instead.

In addition, we believe that co-design of model architec-
tures with modern hardware could be useful as well. For exam-
ple, as we have shown, the BatchNorm and ReLU operations
are memory bound. It may be possible to develop alternatives
to these operations that are less memory-bound, but provide
similar statistical effects, resulting in faster training.



6 Related Work

Benchmarking DL Training. Many prior ML benchmarks
use throughput (either per-kernel or per-iteration) as a met-
ric [6,11,12,21,30,58]. While throughput can inform the de-
velopment of ML algorithms and systems, we show through-
put alone cannot fully characterize ML systems.

Several ML benchmarks have done static workload char-
acterizations on systems that do not contain state-of-the-art
hardware with FP16 support [6, 67]. Furthermore, several
benchmarks, including Fathom, do not benchmark distributed
DL training [6,12,21]. TBD [67] benchmarks distributed train-
ing on older accelerators that do not contain FP16 support,
which significantly changes the proportion of total runtime
spent on computation and communication. In contrast to prior
work, we analyze code that has been optimized by teams of
engineers on state-of-the-art hardware. We additionally ana-
lyze distributed DL systems that uses this hardware. We show
that Tensor Cores can be severely underutilized and that com-
munication overheads are as high as 71%, even in optimized
on-premise deployments.

Benchmarking High Performance Computing Systems.
Researchers have developed many methods for benchmarking
computer systems and HPC systems [9, 16,27]. The major-
ity of these systems measure deterministic workloads (e.g.,
DRAM, key-value stores), but measuring DL systems requires
a more nuanced analysis to reason about both runtime and
the generalizability of the final model. While these systems
could be used to improve individual components of DL train-
ing systems (e.g., faster convolution algorithms), they are not
sufficient to measure end-to-end DL training.

High Performance DL. Researchers have developed many
optimizations for high performance DL training [7,31,42,65].
Unfortunately, many such optimizations are closed-source. To
the best of our knowledge, DAWNBENCH and MLPERF are
the first open-entrant benchmarks with open-source entries for
optimizing TTA on a range of tasks. We take advantage of the
open-source code to study TTA and analyze these workloads.

Some work on high performance DL [7,31,65] used TTA.
However, these systems largely used TTA as a metric to opti-
mize, but do not study the metric in detail. In this work, we
analyze TTA as a metric and show that it is largely stable and
models optimized for TTA generalize well.

7 Conclusion

In this paper, we perform the first in-depth analysis of DAWN-
BENCH entries to investigate the behavior of TTA as a metric
and trends in the best-performing entries. We corroborate our
results by analyzing entries from MLPERF v0.5, which also
adopted TTA. Both benchmarks received professionally opti-
mized entries from leading industry groups, creating one of
the first opportunities to study ML systems optimized heavily
for training performance. We find that TTA is usually sta-
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ble to the randomness in ML training with a low coefficient
of variation (< 14%) across image classification, machine
translation, and object detection. We also find that models
optimized for TTA generalize nearly as well as unoptimized
models. Finally, we find that entries highly optimized for TTA
still underutilize available hardware, leaving significant room
for further improvement.
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