MSNet: Structural Wired Neural Architecture Search for Internet of Things

Hsin-Pai Cheng', Tunhou Zhang', Yukun Yang', Feng Yan?, Harris Teague®, Yiran Chen!, and Hai Li'

'ECE Department, Duke University, Durham, NC 27708
’CSE Department, University of Nevada, Reno, NV 89557
3Qualcomm AI Research, 5775 Morehouse Drive, San Diego, CA 92121

Abstract

The prosperity of Internet of Things (loT) calls for
efficient ways of designing extremely compact yet accu-
rate DNN models. Both the cell-based neural architec-
ture search methods and the recently proposed graph based
methods fall short in finding high quality IoT models due
to the search flexibility, accuracy density, and node depen-
dency limitations. In this paper, we propose a new graph-
based neural architecture search methodology MSNAS for
crafting highly compact yet accurate models for IoT de-
vices. MSNAS supports flexible search space and can ac-
cumulate learned knowledge in a meta-graph to increase
accuracy density. By adopting structural wiring architec-
ture, MSNAS reduces the dependency between nodes, which
allows more compact models without sacrificing accuracy.
The preliminary experimental results on IoT applications
demonstrate that the MSNet crafted by MSNAS outperforms
MobileNetV2 and MnasNet by 3.0% in accuracy, with 20%
less peak memory consumption and similar Multi-Adds.

1. Introduction

With the rising of the Internet of Things (IoT), efficiently
performing Deep Neural Network (DNN) tasks in embed-
ded systems such as microcontrollers has become ever im-
portant. However, directly deploying DNN models or even
its mobile version onto IoT devices is not feasible [1] due
to the extremely limited computation power, on-chip mem-
ory (100-320KB SRAM) and flash (256KB-1MB). A recent
study shows that the computational cost of a neural net-
work to be deployed in IoT devices should be less than 60M
multiple-adds (MACs), which is challenging to be achieved
by existing DNN models [!].

Neural Architecture Search (NAS) has been proved as a
promising way for designing DNN model architecture, es-
pecially in crafting compact models [2].In general, there

MSNet
L1 LTI ELLLAL LA BLLLACL LT PLL DAL DAY PLLLAET PR AL DAL DT PN

MnasNet
gy I AR g R T B g DR AR gy AR

MobilenetV2

Figure 1. The structure comparison between MSNet generated by
our MSNAS algorithm, MobileNetV2, and MnasNet. Our struc-
tural wiring provide better feature extraction and more adaptable
to edge devices. Under the same hardware constraint, MSNet
achieved 93.5% accuracy on visual wake words dataset while
MnasNet and MobileNetV2 are 90% and 90.1%.

are two different NAS approaches to craft DNN models —
cell-based approaches that stacking found cells to automate
the depth discovery of neural architectures, and graph-based
approaches that formulate the overall architecture as a graph
and optimize the flow of information to generate better neu-
ral architectures.

Mobile-size models found by cell-based NAS like Mnas-
Net [2] achieves high accuracy, low computation cost, and
low latency. However, when searching even smaller models
or transforming large/mobile models (e.g., using width mul-
tiplier) on IoT devices [!], such approach usually achieves
poor accuracy due to the redundancy of stacked cells that re-
sults in low accuracy density [3] and pre-defined cell struc-
ture that makes the search space less flexible [4]. For graph-
based architecture, e.g., random wiring [4] relaxes the con-
straints of repetitive cells by exploring more diverse connec-
tivity patterns. By allowing more flexible interconnection
between nodes, random wiring achieves competitive per-
formance for large models [4]. However, these models are
difficult to be transformed to fit microcontrollers or mobile
devices due to the strong dependency of each node (i.e., dif-
ficult to perform width multiplier nor pruning). In addition,
models found by random wiring may induce large activation
memory on SRAM [1, 4].

To overcome the above limitations of existing NAS ap-

S(Sparsity)
ones

1 2 3 4 5 6

— 1| DAG’s adjacency
#pos“s.iTIlJienconnections ZT matrix
4x4 3[1]o0 4
3x3 dolalz] 1°7 6
2x2 s slofaf1]o]
S=aglof1[1]o]ol

Figure 2. Visualization of constraints on both local connectivity
and global connectivity. Smaller kernels represent local connec-
tivity constraints; larger kernels represent global constraints.

proaches, we propose a new graph-based NAS method-
ology called MSNAS (Meta-knowledge based Structural
wiring Neural Architecture Search). MSNAS introduces
two key improvements over existing graph-based NAS,
which makes it very capable in crafting models for IoT
devices. First, by introducing meta-graph, which accumu-
lates learned knowledge, MSNAS can explore a much more
flexible search space while achieving high accuracy density
search and good hardware adaptability. Second, MSNAS
adopts structural wiring architecture, which reduces the de-
pendency between nodes so that it can preserve high ac-
curacy when transforming to small models, a significant
improvement over the existing cell-based approaches and
random wiring method. In addition, MSNAS also sup-
ports multi-objective neural architecture search and facili-
tates adding and changing objectives through changing the
update rules in meta-graph.

Our preliminary experimental evaluation demonstrates
that the model, MSNet, found by MSNAS outperforms
state-of-the-art hardware-aware NAS works. Under the
same IoT device constrained, MSNet achieved 93.5% ac-
curacy, surpassing MobileNet-V2’s 90.1%, and MNasNet’s
90.0%. Compared to MobileNetV1 (400K parameters),
MSNet achieved up to 4.8% performance gain with only
231K parameters. MSNet has only 200KB peak mem-
ory consumption, 20% (50KB) less than MobileNetV2 and
MnasNet.

2. Meta-knowledge based Structural Wiring

We propose MSNAS (Meta-knowledge based Structural
wiring Neural Architecture Search), a new structural wired
neural architecture search method that enables quickly dis-
covering IoT friendly models. MSNAS abstracts the ar-
chitecture of DNNs into several directed acyclic graphs
(DAGs) connected by downsampling modules. All of the
DAGs are independent and each DAG is a sampled sub-
graph from a complete DAG. The target DNN architecture
is divided into several stages represented by their respective
DAGs. A down-sampling module is employed to connect
DAGs in adjacent stages.

Each node of a DAG represents a node operation o and
produces an output tensor x. The node operation can be any

valid operations in DNN architectures, parameterized by
weight parameter W. For Convolutional Neural Networks,
each node can choose the operation from either 1 x 1 Con-
volution or 3 x 3 Depthwise Separable Convolution. Each
Convolution operation uses a conv-bn-relu triplet. Each
edge e € & of a DAG represents the flow of tensors be-
tween its two connected nodes, and we use w to denote the
probability of connection of this edge. For example, for
two nodes u, v, edge €y, = (u,v,wy,) € & represents
the flow of the tensor from node u to node v, and the proba-
bility of the connection is given by w,,,,. These probabilities
of edge connections are used to generate optimal architec-
tures after the graph propagation process is completed. The
output tensor is computed by concatenating all of the input
nodes within the last dimension and performing the corre-
sponding node operation:

Ty = Ov({u : eu—weé‘}; Wv) (1)

By using filter concatenation, MSNAS-family architectures
are able to gather knowledge from different parts of DNN's
to improve the flow of information between layers like
DenseNets [5].

Search Objective. Unlike existing NAS works which tar-
get at finding the best neural architecture, MSNAS targets
at finding a wide range of neural architectures which can fit
a wide range of resource budgets. MSNAS aims to explore
a family of highly representative architectures by learning
the edge connection probabilities of each DAG (edge con-
nection weights) using a combined search metric with con-
sideration of both performance metrics (e.g., accuracy) and
IoT metrics (e.g., peak memory usage, MAC count, num-
ber of parameters, etc.). For each candidate A, the search
metric M for evaluation is defined as:

M(A) = Perf(w*(A), A D) —-IoT(A))

Where Perf{) denotes the performance metrics of current
candidate architecture given optimal weight parameters val-
idated on the proxy dataset . IoT{() is dependent on both the
resource constraints and the complexity of the graph. This
term is used to penalize extreme resource consumption. D
represents the validation dataset. w*(A) represents the op-
timal weight parameters which are defined as:

w™ (.A) = arg Hgn Ctr(zin (U), A) (3)

Structural wiring. We define the metric of searching a
hardware-aware structural wiring architecture as follows:

ToT(A) =all - > ki ® adj(A)o @

+ Xy - MACs + M. - param

'We randomly select 5,000 samples from the entire CIFAR-10 dataset
as our proxy dataset.

iy C
Meta-Graph Update the weight of

DS: Down Samplin (Fo |
(pling) . ' each edge Metrics
A SEEY B Train on
Sampling Sampling Proxy dataset
g E— e i — 5

|
HDAG(3)[; * Flatten{+Output
R—— |

Sampled Neural Network

Figure 3. Overview diagram of the search process. To form a sam-
pled DNN, we subsample multiple DAGs from the complete DAG.
After several training epochs with the proxy training set, we use
the search metrics (such as latency and accuracy) to update the
complete DAG.

The Strong interconnection between nodes may induce
activation buffer overflow in SRAM, so we regulate the lo-
cal and global complexity of a sampled neural architecture
by Ly-norm. To feed this information as a penalty term in
the search process, we use different sizes of kernel matrices
convolve with the adjacency matrices of candidate architec-
ture, A, to collect local and global sparsity as visualized
in Figure 2. Here k; is the kernel matrix. adj(-) denotes
the adjacency matrix of a given DAG. M AC' and param
represents the Multi-Adds and number of parameters in the
entire neural architecture, which are measured in Millions.
Aas A\, Ac are adjustable penalty terms. As indicated in Eq.
4, our approach aims to search for IoT-friendly neural ar-
chitectures while applying the constraint of both local con-
nectivity and global connectivity during the search process.

2.1. IoT device friendly Search Workflow

The 3-phase search workflow is visualized in Figure 3.
In phase A, we sample each DAG to obtain a sampled neural
network. In phase B, we train the sampled neural network
on proxy dataset and get the feedback metrics according to
Eq. 2. We use the validation accuracy on the proxy dataset
as the performance metrics and the multi-objective penalty
term in Eq. 4 as the IoT metrics. Finally, in phase C, we
update the connection weights for all the DAGs according
to the sampled architectures and feedback metrics in Eq. 5.

kt—1

S D) expla(n — B)] Ifeb,; € &)
w(i,5) Ghit—1
wgtd) Otherwise

Note that only the weights of edges chosen in the sam-
pled neural networks are updated. Empirically, we apply
exponential function in the update process to boost the train-
ing speed. We also use a scale factor « to adjust the rate of
the update. The updated weights are normalized for a valid
probability representation by Z,.

I Downsampling k I I Downsampling k I

Meta-Graph

0.6 0.4 €= without pruning
with 0.2 prune level =y

I Downsampling k+1 I I Downsampling k+1 I

Figure 4. Visualization of structure-level pruning. The pruning
achieves a trade-off between model size and model performance
within a given hardware budget.

2.2. Post-searching Hardware Adaptation

Existing works such as MobileNets [6, 7] uses width
multiplier to thinner the models and down-scale the channel
depth to remove the redundant channels. However, such ap-
proaches could not identify redundant operations and thus
not very efficient. We propose a new structure-level pruning
method to explore compact architectures according to the
resource constraints. Specifically, the connection weights
that are below the given level are pruned while the connec-
tions weights larger than the level are kept. Figure 4 is a vi-
sualization of structure-level pruning process in a pretrained
meta-graph after knowledge accumulation in MSNAS.

3. Experimental Evaluation

Experiment Setup. We configure our target meta-graph
to have 3 coarse-grained stages. In each stage, we use a
complete DAG with 30 nodes to generate candidate neu-
ral architectures during the search workflow. For down-
sampling modules connecting these DAGs from different
stages, we use Max Pooling Layers with both pooling size
and strides set to 2. During architecture search, hyperpa-
rameters of the searching algorithm need to be configured
carefully. « is set to 0.9, 3 is the moving average of historic
performance with initial value 0.4.)\, is set to 0.1, A\p, A¢
is set to 1 to penalize hardware cost with respect to the IoT
metric function. Thanks to MSNAS’s ability to efficiently
accumulating knowledge through evaluation of candidate
architectures, we trained the Meta-Graph for 1000 iterations
before the post-searching hardware adaptation. Because of
the small number of iterations, the training process takes
only 8 GPU hours on an NVIDIA GTX 1080 GPU, which
is significantly faster than existing NAS methods such as
MNasNet and Randomly Wired Neural Networks. Previous
works apply width multiplier to adapt to smaller devices.
MnasNet can redo the hardware-aware search to adapt to
different devices. On the contrary, MSNAS does not need to
redo the searching to adapt to different devices. The meta-
graph of MSNAS is able to generate a wide range of ar-
chitectures for different tasks. We evaluate the adaptation
ability of MSNAS using CIFAR-10, Visual Wake Words,

ImageNet.

CIFAR10. We first train the meta-graph of MSNAS using
the CIFAR-10 proxy training dataset. Then we use meta-
graph to generate the neural architecture and train the archi-
tecture to convergence. To show the flexibility and adapt-
ability of MSNAS, we use different pruning threshold to
generate MSNets from MSNAS with consideration of dif-
ferent computational budget. Table | reports the validation
accuracy of MSNet on CIFAR-10 dataset and demonstrates
MSNet’s ability to fit for a wide range of computational
budgets. With different structure-level pruning threshold,
MSNet is able to achieve 85%-90% accuracy with 3-36 Mil-
lion Multi-addons. In addition, MSNet has a much higher
MAC efficiency compared to existing works, which veri-
fis that MSNet can well utilize the limited computational
power on IoT devices.

Table 1. Performance and accuracy density of different versions of
MSNet trained on CIFAR-10 in the format of MSNet-k, where k
represents the level of structure-level pruning.

Model Accuracy | #MACs
MSNet-0.65 | 85.92% 3M
MSNet-0.50 | 88.74% M
MSNet-0.40 | 89.09% 12M
MSNet-0.30 | 90.17% 36M

Adaptation to IoT devices. Visual wake words dataset
is a common vision task [1] in microcontrollers. Table 2
shows performance on visual wake words dataset for both
hand-crafted models and NAS-based models. For IoT de-
vices, both the peak memory usage limit and parameter stor-
age limit is 250KB. We can see that MSNet has reached the
state-of-art validation accuracy with fewer parameters and
less peak memory consumption than existing state-of-the-
art architectures.

Table 2. Performance of MSNet on IoT tasks.

IoT model - Visual wake words

Model Acc #param | MACs | Peak Memory
MSNet 93.5% | 231K 42M 200KB
MobileNetV1 | 88.7% | 208K 41M 220KB
MobileNetV2 | 90.1% | 290K 54M 252KB
MnasNet 90.0% | 400K 54M 255KB

Adaptation to ImageNet. We adapt the microcontroller
model to ImageNet task by changing the size of the out-
put layer to match the number of classes. We increase the
depth of ImageNet model by stacking sub-modules (i.e.,
DAGs between downsampling layers) to form a deeper ar-
chitecture. Table 3 shows the adaptation result of MSNet
on the ImageNet-1k dataset. Compared to state-of-the-art

Table 3. Performance of MSNet on ImageNet-1k.

Mobile model - ImageNet

Model Acc #param | MACs | Peak Memory
MSNet 59.1% 1556K | 58M | 250KB
MobileNetV2 | 58.2% [1] | 1660K | 43M 250KB
MnasNet 59.7% [1] | 1700K | 63M 250KB

architectures, MSNet offers competitive results within the
250KB peak memory constraint.

Structure Transferability. MSNAS is capable of provid-
ing a range of flexible neural architectures by changing the
structure-pruning level, thus it is possible for MSNAS to
generate new deep neural networks for new tasks without
further training. We select a wide range of image classi-
fication tasks and use the same meta-graph of MSNAS to
directly generate architectures for them. Table 4 shows that
the adapted models achieved good performance while the
computational cost is only around 1 Million Multi-Adds.
With the extremely low computational cost, MSNet is the
best fit for deployment on IoT applications.

Table 4. Adapt MSNAS to new tasks without further training.

Task #MACs | Accuracy
MNIST 0.23M | 99.24%
SVHN 1.ISM | 94.95%
Fashion MNIST | 0.86M | 93.56%

References

[1] A. Chowdhery, P. Warden, J. Shlens, A. Howard, and
R. Rhodes, “Visual wake words dataset,” arXiv preprint
arXiv:1906.05721,2019. 1, 4

[2] M. Tan, B. Chen, R. Pang, V. Vasudevan, and Q. V. Le, “Mnas-
net: Platform-aware neural architecture search for mobile,” in
arXiv preprint arXiv:1807.11626, 2018. 1

[3] S. Bianco, R. Cadene, L. Celona, and P. Napoletano, “Bench-
mark analysis of representative deep neural network architec-
tures,” IEEE Access, vol. 6, pp. 64270-64277, 2018. 1

[4] S. Xie, A. Kirillov, R. Girshick, and K. He, “Exploring ran-
domly wired neural networks for image recognition,” arXiv
preprint arXiv:1904.01569, 2019. 1

[5] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Wein-
berger, “Densely connected convolutional networks,” in Pro-
ceedings of the IEEE Conference on Computer Vision and Pat-
tern Recognition, pp. 4700-4708, 2017. 2

[6] A.G.Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Effi-
cient convolutional neural networks for mobile vision appli-
cations,” in arXiv preprint arXiv:1704.04861, 2017. 3

[7] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-
C. Chen, “Mobilenetv2: Inverted residuals and linear bottle-

necks,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 4510-4520, 2018. 3

