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Abstract—Recent works by Kellaris et al. (CCS’16) and
Lacharité et al. (SP’18) demonstrated attacks of data recovery
for encrypted databases that support rich queries such as range
queries. In this paper, we develop the first data recovery attacks
on encrypted databases supporting one-dimensional k-nearest
neighbor (k-NN) queries, which are widely used in spatial data
management. Our attacks exploit a generic k-NN query leakage
profile: the attacker observes the identifiers of matched records.
We consider both unordered responses, where the leakage is a set,
and ordered responses, where the leakage is a k-tuple ordered
by distance from the query point.

As a first step, we perform a theoretical feasibility study
on exact reconstruction, i.e., recovery of the exact plaintext
values of the encrypted database. For ordered responses, we
show that exact reconstruction is feasible if the attacker has
additional access to some auxiliary information that is normally
not available in practice. For unordered responses, we prove
that exact reconstruction is impossible due to the infinite number
of valid reconstructions. As a next step, we propose practical
and more realistic approximate reconstruction attacks so as to
recover an approximation of the plaintext values. For ordered
responses, we show that after observing enough query responses,
the attacker can approximate the client’s encrypted database with
considerable accuracy. For unordered responses we characterize
the set of valid reconstructions as a convex polytope in a k-
dimensional space and present a rigorous attack that reconstructs
the plaintext database with bounded approximation error.

As multidimensional spatial data can be efficiently pro-
cessed by mapping it to one dimension via Hilbert curves,
we demonstrate our approximate reconstruction attacks on
privacy-sensitive geolocation data. Our experiments on real-
world datasets show that our attacks reconstruct the plaintext
values with relative error ranging from 2.9% to 0.003%.

I. INTRODUCTION

Systems for Searchable Encryption (SE) [7], [9], [11], [12],
[17], [24], [41], [42] allow a client to outsource an encrypted
database to a server who can subsequently answer certain types
of queries by operating solely on the encrypted data. In order
to meet real-world efficiency demands, SE constructions allow,
by definition, some well-defined leakage of information.

In the case of encrypted single-keyword search [7], [9], [11],
[24], [42], this leakage reveals which file identifiers match
the encrypted queried keyword—also known as access pattern
leakage. The impact of this type of leakage had not been
clear for a long time and it was only until recently that the
community started to study its implications. In particular, the
works of Islam et al. [23], Cash et al. [8], and recently Zhang et

al. [47], demonstrate how an attacker can utilize access patterns
to launch query-recovery attacks under various assumptions.

However, in the case of richer queries (e.g., range [16], [22],
[38] and SQL [37], [39]), more severe data-recovery attacks are
possible due to the expressiveness of the query. In particular, the
work by Kellaris, Kollios, Nissim, and O’Neill [25] attacks SE-
type systems that support range queries (e.g., [16], [21], [30])
by observing record identifiers whose plaintext values belong
to the queried range. Similarly, a recent work by Lacharité,
Minaud, and Paterson [28] further explores range query leakage
to achieve exact and approximate reconstruction for the case of
dense datasets with orders of magnitude fewer queries (when
compared to [25]). Finally, order-preserving encryption based
systems (e.g., CryptDB [39]) supporting even more expressive
queries (such as SQL) have been shown to be vulnerable to
data-recovery attacks [14], [20], [34] even without observing
any queries, just by the setup leakage.

In this work, we explore the implications of another generic
query leakage profile, that of k-nearest neighbor (k-NN) queries,
which return the k nearest points of a database to a given query
point with respect to a distance metric. A spatial database
is engineered to model, store, and query data defined in a
geometric space. There is a plethora of systems and products
(e.g. Geomesa [3], PostGIS for PostgreSQL [5], and IBM’s
Cloudant NoSQL DB Geospatial [4]) that provide scalable
solutions for handling spatial data. Proximity queries such as
k-NN, appear in all of the above systems.

Support for k-NN queries on encrypted databases has drawn
a lot of attention in the database community for more than a
decade [15], [18], [26], [31], [32], [36], [43], [44], [45]. Several
of the above designs, e.g. [26], [43], reveal as query leakage
the k encrypted records returned to the client as response to a
k-NN query. In this work, we analyze what a passive adversary
can achieve by only observing the set of encrypted records
returned by a sequence of k-NN queries. Our leakage-abuse
attacks achieve significant accuracy of data recovery for one-
dimensional k-NN queries. Also, as higher-dimensional data
can be efficiently queried by mapping it to one-dimensional
values (e.g., via Hilbert curves) [29], [35], [40], [46], our
approach is applicable to a wider family of constructions. Our
findings suggest a reevaluation of what is considered secure in
the area of k-NN queries for encrypted databases.
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Fig. 1. On the left there is a black-and-white picture of the Trojan horse. In the middle there are n = 1840 sampled two-dimensional values from the original
picture projected to a Hilbert curve of order 7 so as to reduce the k-NN queries to one dimension. On the right side we demonstrate the reconstruction of the
plaintext values solely based on the query leakage under the studied assumptions. The depicted setup has relative error 0.01% both in 1D and 2D, and k = 9.

A. Our Contributions

We study what a passive and persistent adversary can achieve
by observing the query leakage that only reveals which k
encrypted records are retrieved for a private k-NN query on a
database with n one-dimensional values. We study the case of
unordered responses where the adversary observes the set of
k retrieved records as well as the case of ordered responses
where the adversary observes the k-tuple of retrieved records
ordered in ascending order with respect to the private query
point. We assume that the private query points are generated
uniformly at random. Our exact reconstruction results are:

• Ordered Responses. We show that an adversary with
auxiliary information can achieve exact reconstruction
in time O(k n log n). This auxiliary information is rather
unrealistic, e.g. the lengths of the Voronoi diagram which
is a conceptual partition of the space based on DB , but
our goal is to study the feasibility of exact reconstruction.

• Unordered Responses. We prove that even a compu-
tationally unbounded adversary can not achieve exact
reconstruction for this generic k-NN leakage. Our impos-
sibility proof shows that there exist an infinite number
of DB reconstructions that the observed query leakage
can potentially come from, thus it is infeasible for an
adversary to deterministically output client’s DB .

Even though from the adversarial point of view the above results
do not look promising (i.e. unrealistic auxiliary information
and impossibility), there is still hope. For our main results we
show the following approximate reconstruction results:

• Ordered Responses. We show an attack where the
adversary has no access to auxiliary information but
still approximately reconstructs with failure probability
δ the plaintext values with relative error εR in time
O(k n log n + 1

ε2R
(k2 n + log 1

δ )). In the heart of this
technique is an estimator that approximates the previously-
handed auxiliary information. The recovered values are
at most ±εR afar from the client’s DB values with
probability at least 1− δ, where εR, δ are tunable.

• Unordered Responses. In the main result of our work we
study the geometric structure of infinite reconstructions,

what we call feasible region. Armed with insights about
the geometry of this feasible region, we present a novel
approximation approach that outputs a reconstructed DB
with a upper-bounded worst-case reconstruction accuracy.
Interestingly, the bound is a function of a characteristic
quantity of the feasible region, what we call diameter
of the feasible region, and in the evaluation section
we examine the interplay between the diameter and the
accuracy of the reconstruction.

Evaluation of Approximate Reconstructions. Since map-
ping higher-dimensional data to one dimension is a standard
approach for both unencrypted [29], [35], [40], [46] and
encrypted DB [26] we conduct experiments on a publicly
available dataset of geolocation trace of the German politician
Malte Spitz. The two-dimensional data is mapped down to one
dimension, via the so-called Hilbert curves [33], where the
discussed k-NN query is simulated for different values of k.
All the experiments for both ordered and unordered took only
a few seconds, achieved reconstruction error from 2.9% to as
low as 0.003% and required the observation of thousands to
hundreds of millions of queries depending on the distribution
of the values. Interestingly, we used orders of magnitude less
number of queries than our theoretical analysis.

In Figure 1 we demonstrate the accuracy of our reconstruc-
tion in a larger dataset, about 2000 data points. The original
picture of the Trojan horse on the left was sampled to create
the two-dimensional set of black plaintext values depicted
in the middle. By projecting the 2D points to the Hilbert
curve we created a 1D dataset where the k-NN query leakage
was simulated (see Section V for details). After mounting
our attack on unordered responses we “folded” the recovered
one-dimensional dataset back to 2D to showcase its accuracy,
depicted on the right. With relative error 0.01% both in 1D
and 2D this visual example demonstrates the dangers of poorly
understood leakage profiles.

II. PRELIMINARIES

Database and its Organization. A database is a collection
DB of n records. Let α, β ∈ R. We consider records with one-
dimensional values in the continuous range [α, β] on which one-



Fig. 2. The partition of [α, β] in Voronoi segments of ordered and unordered responses for k = 2 (left) and k = 3 (right). The curly brackets on the bottom
indicate the unordered responses that correspond to each Voronoi segments. The vertically written k-tuples indicate the ordered responses. The term bi,j
denotes the bisector between vi and vj which is also the Voronoi endpoint that separates the corresponding neighboring Voronoi segments.

dimensional k-nearest neighbor (k-NN) queries are performed.
Thus, each record has two fields: (1) a unique identifier, idi;
and (2) a value val(idi) ∈ [α, β], for i = 0, · · · , n − 1. We
denote with S = (s0, . . . , sn−1) the sequence of record ids
sorted in increasing order with respect to their values. Also,
we write vi = val(si). We denote with pos(idi) the position of
record idi in sequence S. Finally we assume that a database
responds to a k-NN for a fixed k decided at setup-time. For the
sake of simplicity of the analysis, we assume that the mapping
from records to values is injective, that is, there is a single
record in the database associated with a value.

High-Order Voronoi Diagrams in One-Dimension. Given
two values vi and vj of database DB , the bisector bi,j of vi
and vj is the point (vi + vj)/2. For a value vi of DB , the
locus of points of [α, β] for which vi is the nearest neighbor
among the values of DB is called the Voronoi segment of vi,
denoted V (vi). The endpoints of V (vi) are bi−1,i and bi,i+1,
where we conventionally define b−1,0 = α and bn−1,n = β.
The Voronoi diagram V (DB) is the partition of range [α, β]
into regions associated with the Voronoi segments of DB .

The notions of Voronoi segment and Voronoi diagram can
be extended to sets and tuples of values in DB . Given a set H
of k values, we define Voronoi segment Vk(H) as the locus
of points for which the k-nearest values of every query that
lands in this segment comprise set H . If H is a tuple of k
values, we define the Voronoi segment Vk(H) as the locus of
points whose k-nearest values sorted from closest to furthest
comprise the tuple H . Thus, for a query that lands in the a
locus Vk(H) the server returns the corresponding identifiers of
the values of H . We define the Voronoi diagram of order k of
DB , denoted with Vk(DB), as the collection of all nonempty
Voronoi segments Vk(H), for all k-sized subsets (or tuples)
H of values in DB . Finally, we denote with R the set of all
possible responses for k-NN queries on DB .
k-NN Responses. We consider two variants of k-NN queries.

If the returned response is a set, then we have an unordered
response, denoted with r, which does not differentiate between
closeness among the values of r to the query point. In case
the response is a k-tuple where the order of the components
indicates the closeness to the query point (from closest to
furthest), then we have an ordered response. In this work, both
type of responses are denoted with r and the exact meaning
is either explicitly stated or can be inferred from the context.

Figure 2 illustrates Voronoi segments for ordered and unordered
responses on a database. In our work we consider k that takes
values from the following range: 2 ≤ k ≤ �n

2 �. In case k = 1 it
is not possible to reconstruct the order of the record identifiers
due to absence of overlap in the responses. In case k ≥ �n

2 �+1
there is at least one pair of records that appears in all possible
responses, thus order reconstruction is not possible.

We denote with Len(r) the length of the Voronoi seg-
ment Vk(r) associated with response r. For the case of
unordered responses the set of Voronoi endpoints of Vk(DB)
is {b0,k, b1,k+1, . . . , bn−k−1,n−1}. The above set of bisectors
is also denoted as Bk because each bisector refers to values
that are k-positions apart wrt the ordering of S. For the case
of ordered responses, the set of Voronoi endpoints of Vk(DB)
consists of the union of the sets of bisectors B1, B2, . . . , Bk.

In Sections III-B through III-D and IV-A we study attacks
on ordered responses and in Sections III-E and IV-B through
IV-D we study attacks on unordered responses.

Adversarial Model. In our work, we assume that the
adversary is passive and persistent, that is, the adversary sees all
the communication between the client and the server. The goal
of the adversary is to reconstruct the plaintext value of each
record of the encrypted database by just observing the encrypted
identifiers returned as responses to k-NN queries. If the attacker
recovers the exact values, then the attack is called exact
reconstruction. If the attacker recovers an approximation of
the values, then the attack is called approximate reconstruction
and in our work is accompanied by rigorous approximation
guarantees. Our adversary does not have the power to issue
queries or inject data and has no prior knowledge about the
distribution of the data.

Leakage Profile Under Attack. To design generic attacks
that are applicable to a family of present solutions, e.g. [26],
[43], for k-NN queries, we consider a leakage profile that
is typical in this line of work. Given a fixed k the only
information that our adversary sees is the query leakage
LQ(DB) which is either the set (unordered) or the k-tuple
(ordered) of the deterministically encrypted identifiers that are
retrieved for an issued query. For simplicity in the rest of the
work we refer to the deterministically encrypted identifiers as
‘records’. The only setup leakage LS(DB) that we assume is
the number of encrypted records, n. We note here that leaking
the encrypted record ids returned as responses to queries is



a standard approach in the vast majority of encrypted search
constructions [7], [9], [11], [16], [22], [24], [26], [38], [42],
[43] and to the best of our knowledge, it can only be avoided
with heavier cryptographic primitives such as ORAM [19] and
response-hiding STE [10], which negatively affect the running
time and storage of the overall construction. From this leakage
profile the attacker can detect which ids correspond to the two
extreme values but it is not possible to differentiate between the
ids of the first and the last value. Thus, all our reconstructions,
similarly to [25], [28], are correct up to reflection.

Assumptions for Our Attacks. For our attacks, we have
three assumptions:
A1 The queries observed are generated uniformly at random.
A2 The database is static, no data is updated after the setup.
A3 The boundaries α and β of the values are known.

Assumption A1, uniform query generation, appears in other
leakage-abuse attacks [25], [28] and is crucial for our proposed
estimation techniques. An application where assumption A2
holds is the historical geo-location trace of a user for a fixed
time period, similar to the dataset in our evaluation.

Access to Auxiliary Information. In Section III, we show
that an attacker who has additional knowledge can achieve
exact reconstruction. In particular, for the results of Section III,
the adversary is given the following auxiliary information, Aux:

• The set of all possible ordered (resp. unordered) responses
to k-NN queries on DB , denoted with R.

• The exact length of the Voronoi segment for every response
in R, with is modeled by oracle access to function Len(r)
for a response r in R.

Note that set R has size k(n − (k + 1)/2) + 1 for ordered
responses and n− k + 1 for unordered responses. One might
say that knowledge of the above auxiliary information by the
attacker is too much to assume. Indeed, the results of Section III
are primarily of theoretical interest. Nevertheless, they provide
a sufficient condition that makes exact reconstruction feasible.
Also, the attack of Section III can be modified to achieve
approximate reconstruction without access to the auxiliary
information. Indeed, as we show in Section IV the auxiliary
information can be approximated by an attacker who observes
a sufficently large number of queries. In particular, the attacker
can (1) analyze the probability of the event of observing all
the possible responses and (2) rigorously estimate the lengths
of the Voronoi segments from the frequency of each response.

For the omitted proofs see the full version in [27].

III. EXACT RECONSTRUCTION

In this section, we consider exact reconstruction attacks for
k-NN queries on a one-dimensional encrypted database DB .
An exact reconstruction attack is one that always and correctly
retrieves the values of the underlying encrypted database by
just accessing the leakage. We assume that the attacker has
access to the auxiliary information, which we recall consists
of the set R (all possible responses to k-NN queries) and
oracle access to the function Len(r) that returns the length of
the Voronoi segment associated with a response r in R. The

auxiliary information subsumes Assumption A1, which is not
necessary for the results in this section. However, we still rely
on Assumptions A2 (static database), and A3 (knowledge of
the range [α, β] of database values).

First, in Section III-A, we present an algorithm that re-
constructs the order of the records by value given the set of
all the possible responses, R, which is part of the auxiliary
information. This algorithm only needs unordered responses.
Next, we study the complete exact reconstruction attack for
two cases: (i) ordered responses, for which we present an exact
reconstruction attack (Sections III-B through III-D); (ii) un-
ordered responses for which we show that exact reconstruction
is impossible under this leakage profile (Section III-E). The
following two theorems summarize the findings of this section.

Theorem 1. Let DB be an encrypted database consisting of n
records with values in the range [α, β]. Assume the adversary
is given the set R of all possible ordered responses to k-NN
queries and oracle access to the length Len(r) of the Voronoi
segment of each response r in R. Algorithm AttackOrdered
achieves exact reconstruction of the values of DB , up to
reflection, in O(k n log n) time.

Theorem 2. Let DB be an encrypted database with n records,
and let k ≥ 2. Given only the leakage of unordered responses
to k-NN queries, it is impossible for any attacker (even
computationally unbounded) to achieve exact reconstruction.

A. Reconstructing the Order of Records

Consider a database that consists of three points x, y, z and
where the set of possible unordered responses to 2-NN queries
is R = {{x, z}, {y, x}}. Clearly, the only possible order is
z < x < y (up to reflection) since x appears in both responses,
i.e. overlaps, and thus x is the intermediate value. Our algorithm
ReconstructOrder is a generalization of the above idea.

In particular, Algorithm 1 initially finds the identifiers for
the largest and smallest values—this is easy since these are
the only ones appearing in a single k-NN response. Then we
construct the order sequence S by finding the response r that
overlaps with the k − 1 most-recently discovered entries of
S, denoted in the algorithm as seq. The single remaining
identifier is the one that finally extends the discovered S. See
Algorithm 1 for the detailed pseudocode.

Theorem 3. Given the set R of all possible unordered
responses to k-NN queries on an encrypted database DB
with n records, Algorithm ReconstructOrder computes the
order of the records of DB with respect to their values, up to
reflection, in time O(k2 n).

Prior Work on Order Reconstruction. The work of Lacharité
et al. [28] also uses order reconstruction as a step for their
attack on range queries leakage. In particular, the “sorting step”
proposed in [28] can be directly applied to the case of k-NN
queries1. But just this step in [28] takes O(k n3) time whereas
our algorithm takes O(k2 n) time overall.

1Specifically, Lines 9-15 of Algorithm 2 in [28] iteratively build a set of
responses that covers the entire set of records except a single record.



Algorithm 1: ReconstructOrder
Input: Set R of unordered responses
Output: Sequence of ordered records (s0, . . . , sn−1)

1 Let Responses[j] be the set of responses containing identifier j;
2 Let id′, id′′ be the identifiers that are part of only one response in R;
3 Set s0 ← id′ and sn−1 ← id′′;
4 for all pi ∈ Responses[s0]− {s0} do
5 ind ← |Responses[pi]|;
6 sind ← pi;
7 end
8 while k − 1 ≤ ind < n− 2 do
9 seq ← {sind−k+1, . . . , sind};

10 Find response r from Responses[sind] s.t. |r ∩ seq| = k − 1;
11 sind+1 ← r − seq;
12 ind← ind +1;
13 end
14 return (s0, . . . , sn−1)

B. Overview of the Attack For Ordered Responses

Our proposed attack reconstructs the Voronoi diagram of
the database values as an intermediate step. This task consists
of finding the order of the Voronoi segments and finding the
location of the Voronoi endpoints that separate the segments.
As we will see, this is enough for total reconstruction. Our
attack consists of five steps, which are illustrated in Figure 3.
Step-1: Reconstruct Order of Records and Relabel. We
find the order of the records with respect to their corresponding
(unknown) values by executing Algorithm ReconstructOrder,
presented in Section III-A. This algorithm takes as input
unordered responses, thus ignoring the order of the ids in
the response tuples. The output of this step is the n-tuple of
ids of DB sorted by value, denoted S = (s0, . . . , sn−1).
Step-2: Find Left-to-Right Geometric Order of Voronoi
Segments. We sort lexicographically the response tuples of
R using the order S from the previous step. As shown in
Lemma 1, the resulting sorted sequence of responses yields
the left-to-right geometric order of the Voronoi segments.
Step-3: Find Bisectors Between Voronoi Segments. By
definition, except for α and β, each endpoint of a Voronoi
segment is a bisector of two values from DB. In the previous
step, we discovered the neighboring relation between Voronoi
segments, in this step, we further discover which bisector
corresponds to which Voronoi segment endpoint. Towards this
goal, we use Lemma 2, which shows that by comparing the
ordered responses of two neighboring Voronoi segments, we
can infer which bisector separates them.
Step-4: Use Voronoi Segments’ Length to Find the Loca-
tion of Bisectors. Starting from α, we use the left-to-right
order of the Voronoi segments, and “expand” each segment
by its length so as to find the exact location of each bisector.
Step-5: Use Bisector Equations to Reconstruct Encrypted
Values. At this point, we have reconstructed the exact
Voronoi diagram. In the final step of the attack, we take
advantage of the fact that bisectors impose constraints
on the location of the associated values. Specifically, by
the definition of the bisector, the following equality holds
bi,j = (vi + vj)/2. Notice that as long as k ≥ 2 then
the bisectors B1 = {b0,1, b1,2, . . . , bn−2,n−1} and B2 =

{b0,2, b1,3, . . . , bn−3,n−1} appear as Voronoi endpoints (see
Preliminaries). Additionally, the locations of these bisectors are
known from the previous steps. Therefore, by forming a system
of |B1|+ |B2| = 2n−3 linear equations with the n unknowns
v0, . . . , vn−1, the adversary reconstructs the encrypted values.
Standard algorithms for solving such a system take O(nc)
time, where c ≈ 3. In Section III-D, we prove that there is
a unique solution to this system and by taking advantage of
the structure of the equations, we derive a significantly faster
reconstruction in O(n) time.

Fig. 3. An overview of the attack based on ordered responses where k = 2.

C. Ordering Voronoi Segments and Computing Bisectors

To complete the attack the attacker must order the Voronoi
segments and compute the locations of the bisectors separating
them. As a reminder, the ordering of the underlying identifiers
is derived from Step-1 of the attack.

Lemma 1. For a database DB with n records, let S be the
sequence of identifiers sorted by increasing value. Let R be
the universe of all ordered responses for k-NN queries on DB ,
where each response is a k-tuple of ids of DB . We have that
the left-to-right geometric order of the Voronoi segments of the
values of DB is given by the lexicographic order of the tuples
of R with respect to the ordering of identifiers given by S.



Finally, two neighboring Voronoi segments are separated by
a Voronoi endpoint which is a bisector between two values.
The next lemma explains how an attacker can infer which
bisector separates two neighboring Voronoi segments.

Lemma 2. Let rleft and rright be ordered responses to k-NN
queries associated with consecutive Voronoi segments. We have
that k-tuples rleft and rright differ in either:

• the last position, k, where the bisector that separates their
segments refers to the values of the record rleft(k) and
the record rright(k); or

• two consecutive positions, l and l+ 1, where the bisector
that separates their segments refers to the values of records
rleft(l) and rleft(l + 1).

D. From Exact Bisectors to Full Reconstruction

Given the length of each Voronoi segment, given via Aux
that the attacker has access to in this section, it is easy to
compute the exact location of each bisector. In particular,
starting from point α, we use the left-to-right order of the
Voronoi segments, and “expand” each Voronoi segment by
its length. Since we found which bisector separates which
Voronoi segments, we can compute the exact location of every
bisector. In the final step of the attack the adversary utilizes the
exact locations of bisectors B1 = {b0,1, b1,2, . . . , bn−2,n−1}
B2 = {b0,2, b1,3, . . . , bn−3,n−1} so as to reconstruct the exact
values of DB. We use the relation between the bisector and the
corresponding values in order to form linear equations where
the unknowns are the encrypted values of DB. Specifically,
from the locations of the bisectors of set B1 we can formulate
a set of n − 1 equations, whereas from the locations of the
bisectors of set B2 we can formulate a set of n− 2 equations.
The above two sets of equations are labeled as L1 . . . , L2n−3

and are depicted in the following:

L1 :v0 + v1 = 2b0,1

L2 :v1 + v2 = 2b1,2
...

Ln−1 :vn−2 + vn−1 = 2bn−2,n−1

Ln :v0 + v2 = 2b0,2

Ln+1 :v1 + v3 = 2b1,3
...

L2n−3 :vn−3 + vn−1 = 2bn−3,n−1

Lemma 3. The above linear system has a unique solution.

Notice that each equation of the derived augmented matrix
(see the proof of Lemma 3 in the Appendix) gives an expression
of the corresponding value in terms of three bisectors. For
example, v0 = b0,2 − b1,2 + b0,1 and v1 = b1,3 − b2,3 + b1,2
etc. As a result in AttackOrdered we don’t have to solve the
system of linear equations derived by the set of bisectors B1

and B2 which would take O(nc) time, where c ≈ 3. Instead
we use directly the derived formulas to fully reconstruct all
values, which requires O(n) time, as it is captured in Lines
22-25 of AttackOrdered. In terms of time complexity, Step
1 takes O(nk2), Step-2 takes2 O(kn log(n)), Step-3 & 4 take
O(k2n), and Step-5 takes O(n) time.

2Since the total number of ordered responses is k(n− (k + 1)/2) + 1 the
sorting step of that many items takes O(kn log(n))

Algorithm 2: AttackOrdered
Input: Auxiliary information Aux=(R, Len), where R corresponds to

the ordered responses, and Len : r → R is the length function
where r ∈ R.

Output: Reconstructed encrypted values v0, . . . , vn−1

1 Rset ←Transform each k-tuple of R to a set of size k; // Step-1
2 (s0, . . . , sn−1) ← ReconstructOrder(Rset);
3 Create an empty array VoronoiOrder ; // Step-2
4 Iterate through all r ∈ R and add each k-tuple(

pos(r(1)), . . . , pos(r(k))
)

in VoronoiOrder;
5 VoronoiOrder← Sort(VoronoiOrder,’ascending’);
6 left← VoronoiOrder[1] ; // Step-3 & Step-4
7 current r ← (sleft(1), sleft(2), . . . , sleft(k));
8 covered area ← α+ Len(current r);
9 for all 2 ≤ i ≤ |VoronoiOrder| do

10 left← VoronoiOrder[i− 1], right← VoronoiOrder[i];
11 if k-tuples left and right differ in only one position then
12 j ← left(k);
13 bj,j+k ← covered area;
14 else
15 Let x be the smallest position left and right differ;
16 j ← left(x), j′ ← left(x + 1);
17 bj,j′ ← covered area;
18 end
19 current r ← (sright(1), sright(2), . . . , sright(k));
20 covered area ← covered area+ Len(current r);
21 end
22 v0 ← b0,2 − b1,2 + b0,1, v1 ← b1,3 − b2,3 + b1,2; // Step-5
23 for all 2 ≤ i ≤ n− 1 do
24 vi ← bi−2,i − bi−2,i−1 + bi−1,i;
25 end
26 return v0, . . . , vn−1

E. Exact Reconstruction Impossibility for Unordered Responses

We sketch here the proof of the impossibility of exact
reconstruction for the case of unordered responses (Theorem 2).
We show that for any fixed k ≥ 2, there exist arbitrarily
many distinct databases with same unordered-responses query
leakage, and thus the leakage is not enough to distinguish
among them. From the leakage, we can derive the Voronoi
diagram and thus the location of all the bisectors. In our
proof (see the Appendix) we demonstrate how to “displace”
a carefully chosen subset of values so as to create arbitrarily
many distinct databases, one for every possible displacement
value, while maintaining the location of the bisectors.

IV. APPROXIMATE RECONSTRUCTION

We now turn our attention to attacks that approximate the
plaintext values when there is no guarantee that all possible
responses are observed by the adversary and the exact Voronoi
segment lengths are not available, i.e. no auxiliary information.
Again, we consider ordered and unordered responses. In both
cases, our approximate reconstruction fails if the adversary
has not observed the set of all possible responses, R. The
probability of this happening (over m uniformly distributed
queries) is summarized in the following lemma.

Lemma 4. The probability that the set of responses to m
uniform k-NN queries from [α, β] does not contain the set of
all possible ordered (unordered) responses, R, is at most

|R|e− m
β−α minr∈R Len(r) ,



where Len(r) is the length of the Voronoi segment of r.

With reference to Lemma 4, recall that the size of the set R
of all possible responses to k-NN queries on a database with
n records is |R| = k(n− (k+1)/2)+1 for ordered responses
and |R| = n− k+1 for for unordered responses. The attacker
can verify whether all responses are observed since we know
n from the setup leakage and k from the query leakage. Note
that for a fixed number of queries, the smaller the length of the
minimum Voronoi segment, the larger a probability of failure
of the attacks. Namely, our approximate reconstruction attack
fails with the probability given in Lemma 4 due to not having
observed all the responses. However, for unordered responses,
the attack can fail for another reason as well. In particular, as
discussed in Section IV-D, the attacker picks its output based
on an estimated k-dimensional polytope. Thus, if the estimated
polytope is empty, the attack fails.

A. Ordered Responses: Estimating Voronoi Segment Lengths

Given all possible responses R have been observed with
m uniformly generated queries in [α, β], our approximate
reconstruction attack is a simple modification of attack At-
tackOrdered presented in the Section III-D. In particular,
instead of assuming oracle access to function Len(r) at Line
20 of AttackOrdered, we estimate Len(r) as

(β − α) · mr

m
, (1)

where mr is the number of queries (out of m total queries) that
returned r as a response. The resulting reconstruction attack
achieves approximate reconstruction (up to reflection) with
rigorous guarantees:

Theorem 4. Let DB be an encrypted database with n records
whose values are in the range [α, β]. Suppose the attacker
observes the responses to m k-NN queries that are uniformly
generated from [α, β] (Assumption A1) and which contain all
possible ordered responses, R. For any 0 < ε < β − α and
0 < δ < 1, the variation of Algorithm AttackOrdered which
estimates Voronoi segment lengths using Equation 1 computes
in O(m+ k n log n) time a sequence of reconstructed values
such that each reconstructed value differs from its original
value by at most ε with probability at least 1− δ, provided m
is at least
max

{
180(β − α)2(k(n(k + 1)/2) + 1)

ε2
,
225(β − α)2(ln 3− ln δ)

ε2

}
.

B. Unordered Responses: Defining the Reconstruction Space

As we saw in Section III-E, in the case of unordered
responses, there are more than one databases DB that map to
the same query leakage LQ(DB). Our first step in developing
an attack is to study the space of potential reconstructions.

We first define the universe of all reconstructions. Let Vn be
the set of n-tuples v ∈ Vn such that v0, . . . , vn−1 ∈ [α, β] and
v0 < v1 < . . . < vn−1. A reconstruction algorithm returns an
n-tuple from the set Vn. We show how Vn can be partitioned
based on the concept of Voronoi diagrams of order k.

Definition 1. Let Vn be the set of ordered n-tuples with distinct
values from the range [α, β]. We define the reconstruction

relation Pk with respect to k as a subset of Vn×Vn such that
if (v, v′) ∈ Pk, also denoted as v ∼k v′, then Vk(v) = Vk(v

′)
where Vk(·) is the k-th order Voronoi diagram.

To put it simply, if we have two n-tuples v, v′ where the
reconstruction relation Pk holds then they have the same k-th
order Voronoi diagram. A corollary of the above definition is
that the reconstruction relation is an equivalence relation.

Definition 2. Given the reconstruction relation ∼k and v ∈ Vn,
we define [v] the reconstruction class of v, as :

[v] = {v′ ∈ Vn : v ∼k v′}.
It is easy to prove that the reconstruction class of v is

also an equivalence class. From the properties of equivalence
classes we know that every two equivalence classes [v] and
[v′] are either equal or disjoint. Additionally, the set of all
equivalence classes of Vn forms a partition of Vn, i.e. every
n-tuple v ∈ Vn belongs to one and only one equivalence class.
Given an equivalence class [v], a representative for [v] is an
n-tuple of [v], i.e. it is a v′ ∈ Vn such that v′ ∼k v.

One of the n-tuples of the reconstruction class is the original
database, but given the considered leakage profile our attacker
does not know which one. We focus on attacks that return a
representative of the correct3 reconstruction class. The success
of the reconstruction attack is measured using the L∞ distance
metric, also known as Chebyshev distance, so as to capture the
largest error among all reconstructed values. More formally:

dL∞(v, v′) = max0≤i<n(|vi − v′i|).
The next step of our analysis is to characterize the n-tuples of
a given reconstruction class.

Characterization via Offsets ξ from Bisectors. In order
for two n-tuples to be in the same reconstruction class they
must have the same k-th order Voronoi diagram. Therefore
the Voronoi endpoints (i.e. the bisectors) must be in the same
fixed location. In this approach we model the n-tuples of the
reconstruction class using only k unknown offsets from the
above fixed bisectors, as opposed to n unknowns of a naive
approach. To give an intuitive explanation of our attack we
proceed with an illustration of our result for k = 2, the general
case where k > 2 is addressed in Section IV-D.

Analyzing Case k = 2. Our goal is to characterize the space
of n-tuples of a reconstruction class given its 2nd order Voronoi
diagram. We will demonstrate that we need to define unknowns
for the location of only two values and the rest of the n− 2
values can be expressed as function of these two. The unknown
variables are ξ = (ξ0, ξ1) and their geometric description
follows. Let the first value v0 be ξ0 to the left of the bisector
b0,2. Since the location of b0,2 is fixed, it follows that the
value v2 must be ξ0 to the right of the bisector b0,2. Using the
formulated equation v2 = b0,2+ ξ0 we can express v4 so as v4
and v2 are equidistant from the fixed location of b2,4. Using the
same reasoning let v1 be ξ1 to the left of the bisector b1,3. The
location of values v3, v5, v7, . . . can be expressed as a function

3Other attack techniques might be possible if the attacker is willing to
output an n-tuple from any (and possibly incorrect) reconstruction class.



of the offset ξ1 and the location of the relevant bisectors. As one
can easily see, by picking a value for the unknown ξ0 we fix
the location of v0 (resp. v1) which in turn has a domino effect
on the location of v2, v4, v6, . . . (resp. v3, v5, v7, . . .). Figure 4
highlights which values can be expressed as a function of the
unknown offsets ξ0, ξ1. Specifically for n = 10 we have:

v0 = b0,2 − ξ0

v2 = b0,2 + ξ0

v4 = 2b2,4 − v2 = 2b2,4 − b0,2 − ξ0

v6 = 2b4,6 − v4 = 2b4,6 − 2b2,4 + b0,2 + ξ0

v8 = 2b6,8 − v6 = 2b6,8 − 2b4,6 + 2b2,4 − b0,2 − ξ0
v1 = b1,3 − ξ1

v3 = b1,3 + ξ1

v5 = 2b3,5 − v3 = 2b3,5 − b1,3 − ξ1

v7 = 2b5,7 − v5 = 2b5,7 − 2b3,5 + b1,3 + ξ1

v9 = 2b7,9 − v7 = 2b7,9 − 2b5,7 + 2b3,5 − b1,3 − ξ1

The next lemma describes the closed-form of each value as
function of the appropriate bisectors and offset for any k ≥ 2.

Lemma 5. Let Vk(v) be the Voronoi diagram of the reconstruc-
tion class [v] with Voronoi endpoints b0,k, . . . , bn−k−1,n−1. If
an n-tuple v′ belongs to [v], there exists a k-tuple denoted as
ξ where ξ0, . . . , ξk−1 ≥ 0 such that for all 0 ≤ i ≤ n− 1:

v′i =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
bi,i+k − ξi , for 0 ≤ i < k

bi mod k,i mod k+k + ξi mod k , for k ≤ i < 2k

(−1)�i/k−1�(bi mod k,(i mod k)+k + ξi mod k)+ , for 2k ≤ i ≤ n− 1

+
∑

2≤j≤�i/k�(−1)j+�i/k�2b(i mod k)+(j−1)k,(i mod k)+jk,

We call the k-tuple ξ = (ξ0, . . . , ξk−1) the offset vector of v′.

After characterizing the n-tuples of [v] using 2 unknowns
we address the following question: What values can ξ take so
as to give an n-tuple that belongs to [v]?

Ordering Constraints. We define the ordering constraints
as the inequalities that guarantee that two consecutive values
do not surpass each other, e.g. v0 ≤ v1, v1 ≤ v2 etc. By
substituting the formulas for v0, . . . , vn−1 defined in Lemma 5,
we get inequalities with the unknowns ξ0 and ξ1. As an example,
for n = 10 we have the following inequalities:
v0 < v1 ⇒ −ξ0 + ξ1 < c0,1 , where c0,1 = (b1,3 − b0,2)

v1 < v2 ⇒ −ξ0 − ξ1 < c1,2 , where c1,2 = −(b1,3 − b0,2)

v2 < v3 ⇒ ξ0 − ξ1 < c2,3 , where c2,3 = (b1,3 − b0,2)

v3 < v4 ⇒ ξ0 + ξ1 < c3,4 , where c3,4 = (b2,4 − b1,3) + (b2,4 − b0,2)
v4 < v5 ⇒ −ξ0 + ξ1 < c4,5 , where c4,5 = 2(b3,5 − b2,4)− (b1,3 − b0,2)

v5 < v6 ⇒ −ξ0 − ξ1 < c5,6

, where c5,6 = 2(b4,6 − b3,5)− (b2,4 − b0,2)− (b2,4 − b1,3)

v6 < v7 ⇒ ξ0 − ξ1 < c6,7

, where c6,7 = 2(b5,7 − b4,6)− 2(b3,5 − b2,4) + (b1,3 − b0,2)

v7 < v8 ⇒ ξ0 + ξ1 < c7,8

, where c7,8 = 2(b6,8 − b5,7)− 2(b4,6 − b3,5) + (b2,4 − b1,3) + (b2,4 − b0,2)
v8 < v9 ⇒ −ξ0 + ξ1 < c8,9

, where c8,9 = 2(b7,9 − b6,8)− 2(b5,7 − b4,6) + 2(b3,5 − b2,4)− (b1,3 − b0,2)

By examining the first four inequalities one can see that the first
ξ1 ≤ ξ0+ c0,1 and the third ξ1 ≥ ξ0− c2,3 concern half-planes
based on parallel lines with positive slope. The y-intercept
of the first is positive while the y-intercept of the third is
negative. Similarly, the second inequality ξ1 ≥ −ξ0 − c1,2
and the fourth ξ1 ≤ −ξ0 + c3,4, concern half-planes based
on parallel lines with negative slope and y-intercepts that are

negative and positive, respectively. If we extend this reasoning
to the rest of the constraints we see that we can partition the
ordering constraints in four categories of half-planes, i.e. 1)
slope = 1 and positive y-intercept, 2) slope = 1 and negative
y-intercept 3) slope = −1 and positive y-intercept, and 4)
slope = −1 and negative y-intercept. From each of the four
categories all but one constraint are redundant. By omitting
redundant constraints we do not change the region that satisfies
the constraints. To find the non-redundant one can go through
the y-intercepts of each category and remove the overlapping
constraints, can be accomplished in time O(n).

Fig. 4. Values v0 and v2 must be equidistant, specifically ξ0 afar, from b0,2.
Using the derived equations we can express the locations of v2, v4, v6, v8
because the locations of bisectors b0,2, b2,4, b4,6, b6,8 stay fixed. Similarly,
by using offset ξ1 we can express the locations of v3, v5, v7, v9.

Fig. 5. The possible values of ξ0, ξ1 in X- and Y -axis respectively for a given
[v]. The feasible region is colored with blue. The set of redundant ordering
constraints are depicted with gray dotted-lines, and the non-redundant ordering
constraints with black bold-lines. The boundary constraints are depicted with
red dotted-lines.

Boundary Constraints. We need two inequalities to guarantee
that the first/last value do not surpass the boundary of the range
of values, i.e. [α, β]. For the example where n = 10 we have
1) α < v0 ⇒ ξ0 < cα,0 where cα,0 = b0,2 − α, and 2) v9 <
β ⇒ ξ1 > c9,β where c9,β = 2b7,9 − 2b5,7 + 2b3,5 − b1,3 − β.

The Reconstruction Class: A Convex Polygon. The pairs of
feasible offset values (ξ0, ξ1) is the set of values that satisfy:
1) the four non-redundant ordering constraints as well as 2) the
two boundary constraints. Figure 5 gives a detailed geometric
illustration of the feasible region for the running example. De-
pending on the values of the database the boundary constraints
can be redundant. Generally, we denote the feasible region
of reconstruction class [v] as F[v] = {ξ′ ∈ Rk : A · ξ′ ≤ c},
where each row of A · ξ′ ≤ c represents a constraint on ξ.
Overall, we have (1) Ordering constraints: n− 1 in number,
(2) Boundary constraints: two in number, (3) Positive-offset



constraints: k constraints to guarantee that the offsets are
positive. Therefore, A is a (n+k+1)×k matrix of coefficients
for the inequalities, ξ is a column vector with k offsets,
and c is the column vector with the n + k + 1 constants
(i.e. ca,0, cn−1,b, c0,1, c1,2, . . . , cn−2,n−1). Since we only have
linear inequalities in F[v], the region is a convex polytope.

Diameter of the Feasible Region. Given the feasible region
F[v] of the reconstruction class [v], the L∞ distance between
a pair of n-tuples v′, v′′ ∈ [v] of the class is:

dL∞(v′, v′′) = max
0≤i≤n−1

({|v′i − v′′i |}) = max
0≤i≤k−1

({|ξ′i − ξ′′i |}
= dL∞(ξ′, ξ′′) ≤ dL2

(ξ′, ξ′′) ≤ diam(F[v]) ,

where the second equality is derived by substituting the values
with the offset formulas of Lemma 5. The polytope diameter
diam(·), or simply diameter, is the largest Euclidean distance
between any pair of vertices of the polytope. Therefore if the
attacker is able to compute F[v] he can compute an upper-bound
of the distance of any pair of n-tuples in the reconstruction class.
We note here that the final output of the reconstruction attack is
a representative v∗ of the reconstruction class [v], and that the
original database can be any n-tuple of the reconstruction class.
The last key observation of the attack is that if the attacker
outputs v∗ for which the offset vector is the mean of the offsets
ξ′, ξ′′ of the diameter, then all the potential original database
n-tuples are at most diam(F[v])/2 distance afar.

C. Overview of the Unordered Response Attack
We give an overview of the approximate reconstruction for

k = 2. See Section IV-D for a generalization.
Step 1. The attacker reconstructs the order of the records

with respect to their (unknown) values by using the algorithm
ReconstructOrder. After relabeling the record ids using S =
(s0, . . . , sn−1) the attacker computes the left-to-right order of
the Voronoi segments. For the case of unordered responses this
step is straightforward and can be done by just “shifting” a
k-length window over the sequence S, e.g. the left-to-right or-
der is {s0, . . . , sk−1}, {s1, . . . , sk}, . . . , {sn−k−1, . . . , sn−1}.
For the case of unordered responses assigning the bi-
sectors to Voronoi endpoints is straightforward as well.
The corresponding left-to-right order of the bisectors is
b0,k, b1,k+1, . . . , bn−k−1,n−1. This attack differs significantly
from the the Ordered Responses Attack in the next two steps.

Step 2: Estimate the Constraints of the Feasible Region.
There are infinitely many value n-tuples for DB that can give
a fixed k-th order Voronoi diagram. The next step of our
attack characterizes the set of all such n-tuples using only k
unknowns, namely the offsets ξ = (ξ0, . . . , ξk−1). We define a
set of linear constraints, namely the ordering, the boundary, and
the positive-offset constraints, imposed on the unknowns ξ so
as to find the offsets assignments that correspond to a valid n-
tuple of the reconstruction class. Each constraint imposed on ξ
is a half-space and the intersection of these constraints defines
the feasible region F[v]. Geometrically, F[v] is a bounded
convex k-dimensional polyhedron, i.e. a polytope. But since
the constraints’ constants are not known to the attacker we
propose a way to estimate them. In particular the new algorithm
estimates the right-hand side constant of each constraint, e.g.

estimation of terms cα,0, c0,1, . . . , c4,5, c5,β in Figure 6. The
key observation is that each c term can be expressed as the
linear combination of lengths of Voronoi segments, e.g. in
Figure 6 term c4,5 involves Len({s1, s2}) and Len({s3, s4}).
Our estimator uses the frequency of each unordered response
to estimate the appropriate linear combination of lengths of
each constraint with rigorous probabilistic guarantees.

Fig. 6. An overview of the attack based on unordered responses for k = 2.

Step 3: Compute Convex Polytope & Output the Mean
of the Polytope Diameter. At this point we have estimated the
feasible region of the offset vector ξ, depicted in Figure 6. As a
next step the attack utilizes a solver for the Vertex Enumeration
Problem [6] which takes as an input the linear inequalities (i.e.
the constraints) and outputs the vertices on the boundary of
the feasible region F[v]. Having the coordinates of the vertices
of F[v], our attack can compute the diameter of the convex
polytope. As it is shown in Theorem 5, the offset ξ∗, which is
defined as the mean of a pair of polytope-vertices that constitute
the diameter, gives a representative v∗ that has distance at most
diam(F[v])/2 from all the n-tuples of the reconstruction class,
including the (unknown) original database.



D. Unordered Responses: Reconstruction for k ≥ 2

Estimating the Constraints. We define the tuple L as:
L =

(
Len({s0, . . . , sk−1}), . . . ,Len({sn−k, . . . , sn−1})

)
, where Len(·) indicates the length of the Voronoi segment
that is given as an input. Our goal is to estimate the expression
of each constraint and to achieve this the next (simplified)
lemma is of great importance. The analytical formulas for
the constraints can be found in Lemma 7 in the Appendix.
Specifically, the following lemma shows that each of the
ordering constraints (same argument holds for the boundary)
can be expressed as a simple linear combination of ξ and L
where the coefficients are known. Since we can estimate the
lengths of L using Equation (1) we have a way to estimate
the constraints as well. The proof performs a case analysis of
the inequality vi < vi+1 based on the value of i with respect
to the formulas of Lemma 5.

Lemma 6. The inequality vi < vi+1 for 0 ≤ i ≤ n − 2 can
be expressed as fLeft

i · ξT ≤ fRight
i · LT , where ξ is the

unknown offset row vector and fLeft
i , fRight

i are row vectors
of constant coefficients. All but two entries of fLeft

i are zero.
Vector fRight

i has at most 
(n − 1)/k� + k non-zero terms
which come from the set {−2,−1, 1, 2}.

A similar lemma can be formed for the boundary constraints.
The values of the coefficients of fLeft

i and fRight
i can be

easily computed since they only depend on i, n, k and can be
found in the Appendix. The ConstraintEstimation algorithm
focuses on estimating ci,i+1 = fRight

i · LT and performs the
following series of actions for each boundary and ordering
constraint: given i, n, k compute the coefficients fLeft

i , fRight
i ,

scan the multiset of unordered responses U that come from
uniformly generated queries and record the observed frequency
of each relevant entry of L, use the coefficients fRight

i and
the values in LT to finalize the estimation of the terms ci,i+1.

High-Level Description of ConstraintEstimation
• Input: Multiset U of responses from queries generated uniformly

at random. Order S of the ids wrt their values. Boundaries α, β.
• Step 1: Let L be the (n − k + 1)-tuple of the labels of the

(unknown) lengths of the Voronoi segments. Calculate the formula
of each ordering constraint wrt ξ and compute the coefficients
fRight
i of ci,i+1. Given the analytical formula of each term

ci,i+1 define Ti,i+1 to be the set of triplets (lbl, cfc, cnt), where
lbl is the label of the participating length from L, cfc is the
coefficient of this lbl in the formula, and cnt is a counter
initialized to zero.

• Step 2: Similarly, calculate the analytical formulas of the terms
cα,0 and cn−1,β of the boundary constraints. Define the sets of
triplets Tα,0 and Tn−1,β . Let T be the collection of sets
{Tα,0, T0,1, . . . , Tn−2,n−1, Tn−1,β}.

• Step 3: For each response r ∈ U find the sets from collection T
where the term Len(r) is part of a lbl and increase the
corresponding cnt entry by one.

• Step 4: Set all estimations c̃i,i+1 to zero. For each set of
collection T , go through all the triplets. For each triplet of Ti,i+1,
multiply cfc with the counter cnt and add the result to c̃i,i+1.

• Step 5: Multiply each of the c̃i,i+1 by (β − α), divide the result
by |U |, and store the final result at c̃i,i+1.

• Step 6: Output c̃α,0, c̃0,1, . . . , c̃n−2,n−1, c̃n−1,β .

Attack Algorithm. The attack algorithm utilizes algorithm
ConstraintEstimation to approximate the inequalities of the
feasible region, i.e. get the estimates c̃. The final set of

inequalities is captured by the expression A · ξ ≤ c̃ where by a
linear scan the attacker can remove the redundant constraints
(Line 3 of the algorithm). Notice that the ordering constraints
concern a pair of consecutive values and by substituting
from Lemma 5 we finally get a constraint on a pair of
offsets that appear consecutively in the cyclical ordering
↪→ ξ0 → ξ1 → . . . → ξk−1. Due to the periodicity on the
cyclical ordering (see the Appendix for the closed form) we
have 2k non-redundant ordering constraints among the total
n− 1. For n > 2k the polytope is bounded and thus the solver
of the vertex enumeration problem [6] returns the vertices of
the k-dimensional polytope formed by A · ξ ≤ c̃ in O(k2 z)
time, where z is the number of vertices of the polytope. In
general, z could be as large as 2k. Thus, our approach is
suitable for small values of k, which is typical in practical
scenarios where k is often a small constant.

We note here that in case the estimation of the constraints
is not “accurate enough”, which depends on the distribution
of the values, the feasible region might be empty. In this case
the solver will return an empty set and the attack will fail
since no offset can meet the (not adequately) approximated
constraints. Given the vertices we can compute the diameter
of the polytope of F[v] in time quadratic in the number of
vertices. So as a last step our attack returns the mean of the
diameter vertices which guarantees that all the n-tuples of the
class are at most diam(F[v])/2 distance afar.

Algorithm 3: AttackUnordered
Input: Response multiset U = {r1, r2, . . .}, Boundaries α, β
Output: Reconstructed values (v∗0 , . . . , v

∗
n−1) or ⊥

1 S ← ReconstructOrder(U), c̃ ← ConstraintEstimation(U, S, α, β);
2 Compute the (n+ k + 1)× k matrix A of coefficients such that each

line of A · ξ < c̃ represents a constraint, ξ is the column vector with k
offsets, c̃ is the column vector with (n+ k+ 1) entries of the constants;

3 Remove the redundant constraints from A;
4 Deploy an algorithm that solves the ‘Vertex Enumeration Problem’ with

input A · ξ ≤ c̃ and output a matrix Ξ of k columns where each row
represents a vertex of the convex polytope of the feasible region;

5 If Ξ is non-empty then compute the Euclidean distance between every
pair of rows (i.e. vertices) of Ξ and record the pair (ξ′, ξ′′) with the
maximum distance, else return ⊥;

6 Compute ξ∗ as the mean of ξ′ and ξ′′;
7 Use the offset ξ∗ = (ξ∗0 , . . . , ξ

∗
k−1) in the expressions of Lemma 5 to

compute the corresponding value v∗ = (v∗0 , . . . , v
∗
n−1);

8 return (v∗0 , . . . , v
∗
n−1)

Theorem 5. Let DB be an encrypted database with n records
whose values are in the range [α, β]. Suppose the attacker
observes the responses to m k-NN queries uniformly generated
from [α, β] (Assumption A1) and which contain the set of all
possible unordered responses, R. For any 0 < ε < β − α and
0 < δ < 1, Algorithm AttackUnordered runs in time O(m+
k2z + z2), where z is the number of vertices of the feasible
region, F[v], and returns either ⊥ (failure) or a sequence of
reconstructed values (success) such that each reconstructed

value differs from its original value by at most
diam(˜F[v])

2 + ε
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Fig. 7. Three date ranges for the month October of the publicly available mobile records with the geolocation of the German Green party politician Malte Spitz.
on the first row we demonstrate the original dataset and in the bottom the accuracy of the reconstruction that we achieve for unordered responses for k = 2.

with probability at least 1− δ, provided m is at least

max

{
25(β − α)2(ln 3− ln δ)

ε2
,
20(β − α)2(n− k + 1)

ε2

}
On the Size of the Diameter Since the approximation is

a function of a quantity that depends on the distribution of
the data, we further study the possible values that diam(F[v])
can take. In the next theorem we show that the 3k consecutive
values that are within the smallest possible γ range give an
upper-bound on the diameter of F[v]. Thus, a small concentrated
number of consecutive values affects heavily the diameter of
F[v]. We note here that the smaller the γ the higher the number
of samples required to achieve meaningful approximation
guarantees since the sample size is a function of the length of
the smallest Voronoi segment, so there is an inherent trade-off.

Theorem 6. Let Vk(v) be the Voronoi diagram of reconstruc-
tion class [v], and let v′ be an n-tuple such that v′ ∈ [v]. If
there are 3k values of v′ within an γ range in [α, β] then we
have diam(F[v]) ≤ 2γ.

V. EVALUATION OF APPROXIMATE RECONSTRUCTION

In our evaluation, we test our reconstruction attacks on
encrypted versions of databases, e.g. [26], that reduce their
two-dimensional data to one dimension via Hilbert curves [33].

Mapping 2D Data to 1D via Hilbert Curves. Organizing
multidimensional data for efficient access and indexing is
a challenging problem due to the lack of a total ordering
that preserves locality. Space-filling curves [33], which map
points in a high-dimensional space onto one-dimensional points
while preserving locality and proximity relations, have been
thoroughly explored in spatial data management. See, e.g.,

[29], [35], [40], [46]. These curves essentially span the desired
higher-dimensional space, with granularity tuned by the so-
called order of the curve. The higher the order the better
the approximation of locality. The second row of Figure 7
shows an example of a Hilbert curve of order 7 that spans a
square in the two-dimensional space. In particular, this single
continuous line of gray color that starts at (0,0) and ends at (0,
27) gives a 27 × 27 grid of points. A value of the DB in the
two-dimensional space is projected to the closest segment of
the curve. By “untangling” the curve we get a single straight
line segment where all the projected values are within the
boundaries α = 0 and β = 27 × 27 = 214. Conceptually, to
run a (non-secure) k-NN query it is enough to traverse the
one-dimensional points of DB towards the left and the right
of the projections of the query point on the curve. Due to
the properties of Hilbert curves, the set of k-NN on the one-
dimensional space is an approximation of the neighbors in the
two-dimensional space.

Dataset & Experiment Design. The dataset SpitzLoc [2],
also used in [14], consists of the latitude and longitude of
the German Green party politician Malte Spitz over a period
of six months. A record is stored whenever the phone was
connected to a cell tower, received a call or sent a text. We
used the two-dimensional data from the date ranges 1-5 Oct.,
1-15 Oct., and 1-31 Oct., depicted in Figure 7. In all of our
experiments we used a Hilbert curve of order 7 and placed
the geolocation data in the center of the above Hilbert curve,
the size n of each dataset is denoted in Table I. We simulated
the k-NN query leakage of this setup and recorded the quality
of the reconstruction for different values of k = {2, 5, 8} and
number of queries m. The quality measures are the Chebyshev
distance between the original values and the reconstruction,



TABLE I
EVALUATION OF ATTACKUNORDERED ON THE SPITZLOC DATASET

1-5 October, m = 25 · 106, n = 46 1-5 October, m = 800 · 106, n = 46
diameter Abs. Error-1D Rel. Error-1D Abs. Error-2D Success diameter Abs. Error-1D Rel. Error-1D Abs. Error-2D Successexact est avg std avg max exact est avg std avg max

k = 2 1.8 1.1 3.6 1.1 0.02% 3.0 40% 1.8 1.7 0.5 0.1 0.003% 0.9 100%
k = 5 18.3 17.9 5.7 1.6 0.03% 5.0 80% 18.3 18.3 3.4 0.2 0.02% 2.9 100%
k = 8 79.9 78.3 16.9 1.4 0.1% 7.4 100% 79.9 79.5 14.6 0.15 0.09% 6.5 100%

1-15 October, m = 70 · 106, n = 79 1-15 October, m = 800 · 106, n = 79
diameter Abs. Error-1D Rel. Error-1D Abs. Error-2D Success diameter Abs. Error-1D Rel. Error-1D Abs. Error-2D Successexact est avg std avg max exact est avg std avg max

k = 2 1.9 0.8 1.8 0.7 0.010% 3.0 45% 1.9 1.4 0.6 0.1 0.003% 0.8 100%
k = 5 6.6 6.0 1.9 0.6 0.011% 2.5 80% 6.6 6.7 0.6 0.2 0.003% 1.3 100%
k = 8 15.4 14.6 2.5 0.6 0.015% 2.9 80% 15.4 15.1 1.0 0.1 0.006% 1.2 100%

1-31 October, m = 250 · 106, n = 183 1-31 October, m = 800 · 106, n = 183
diameter Abs. Error-1D Rel. Error-1D Abs. Error-2D Success diameter Abs. Error-1D Rel. Error-1D Abs. Error-2D Successexact est avg std avg max exact est avg std avg max

k = 2 1.8 1.0 1.0 0.2 0.006% 1.4 70% 1.8 1.1 0.7 0.1 0.004% 1.0 95%
k = 5 6.4 5.0 1.4 0.3 0.008% 2.0 95% 6.4 5.6 0.7 0.1 0.004% 1.1 100%
k = 8 12.8 11.6 1.4 0.3 0.008% 2.0 95% 12.8 12.2 0.8 0.2 0.004% 1.0 100%

denoted as AbsoluteError-1D, and the max Euclidean distance
computed by inverting the mapping of the curve. Each of the
above setup was repeated 20 times for m queries that were
generated uniformly at random in [α, β]. We note that we did
not choose m based on the desired ε guarantee, but rather
chose a value for m that is orders of magnitude smaller so as
to demonstrate that the attack needs fewer samples than the
derived bounds. The attack run on a commercial laptop and the
code is written in Matlab. For the vertex enumeration problem,
we use routines from the File Exchange of MathWorks [1].

We note here that not only size but also the distribution of
the data plays a significant role in the success of our attack.
This can be seen from the role of the diam(F[v]) in the quality
of the reconstruction as well as in the statement of Theorem 6.
Thus, even though the number of encrypted values in our
experiments appears relatively small we can draw interesting
conclusions due to values being highly concentrated.

A. Evaluation of Unordered Response Attack

Table I gives an overview of our experiments. In the right
set of columns of Table I we present the accuracy of the
reconstruction across all three datasets for the same large
number of queries whereas in the left column we attempt to
significantly reduce the number of observed queries without
compromising the quality of the reconstruction. As it is
expected, if the exact diameter of the reconstruction class is
large then the reconstruction error is large as well. Interestingly,
the diameter of the estimated feasible region, denoted as
diameter est, is consistently close to the real one. Notice
that for smaller number of samples we have smaller success
percentage which means that no feasible region was found
because the constraints were not approximated in a satisfactory
accuracy. This trend does not appear when we increase the
number of observed queries, i.e. m = 800 · 106 on the right
column. To visualize the accuracy, Figure 7 illustrates the
reconstruction output for m = 800 · 106 and k = 2 across
all three datasets. Overall, the approximate reconstruction is
extremely accurate, from 0.003% to 0.1%, not only in one
dimension but also in two-dimensions as well.

A Visual Example of a Larger Dataset. In Figure 1, we
present a visualization of the accuracy of our reconstruction for
a larger dataset. On the left there is a picture of the Trojan horse
of 341× 385 pixels, where each pixel is either black or white.
To create a two-dimensional data set we sampled pixels until
we collected n = 1840 black points that are uniquely mapped
on a Hilbert curve of order 7. The middle subplot of Figure 1
shows how the two-dimensional plaintext values are mapped to
the corresponding Hilbert curve. The feasible region for k = 9
has exact diameter 11.62. After observing m = 109 queries
our attack successfully forms an approximation of the feasible
region with diameter 7.03 which results into the reconstruction
depicted in the right plot. The visual similarity is confirmed
by the absolute error in 1-D which is 2.84, i.e. relative error
1-D of 0.01%. Even in two dimensions the absolute error is
6.15 which is equivalent to relative error in 2-D of 0.01%.
For completeness we note that for this amount of queries the
attack failed for 2 ≤ k ≤ 4 and succeeded for 4 < k ≤ 9. This
phenomenon is explained in the next paragraph.

Why Reconstruction for Small k is Harder. According
to Table I, the percentage of failures is significantly higher
for k = 2. To better understand why smaller k values require
tighter approximation guarantees, we note that by Lemma 6,
each ci,i+1 term of the ordering constraint vi < vi+1 consists
of the sum of a number of lengths of Voronoi segments. Since
our attack uses estimations of the above lengths, each term
comes with its corresponding error, ε. Thus, a sum of 500
length terms introduces 500 ε error since the error compounds.
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Fig. 8. Distribution of length terms per ordering constraint for different values
of k. The error compounds as the number of length terms per constraint grows.



In Figure 8 we fix n = 2000 and analyze the number
of length terms involved in each of the n − 1 ordering
constraints for varying values of k, independently of the DB.
The minimum number of length terms for all k values is one
and corresponds to the first constraint that has only a single
length term involved. The average and maximum number of
length terms are inversely proportional to k. As a result, the
combination of small diameter (i.e., concentrated values) of
the tested dataset and the above sensitivity to the compound
error results in a higher percentage of failures when k is small.

TABLE II
EVALUATION OF ATTACKORDERED ON THE SPITZLOC DATASET

1-5 Oct., m = 103 1-5 Oct., m = 25 · 106
Absolute Relative Absolute Absolute Relative Absolute
Error-1D Error-1D Error-2D Error-1D Error-1D Error-2D

avg std avg max avg std avg max
k = 2 436.8 200.7 2.6% 60.9 2.9 1.1 0.01% 4.1
k = 5 452.7 193.0 2.7% 54.7 2.9 1.3 0.01% 3.7
k = 8 480.2 146.1 2.9% 61.7 2.6 1.2 0.01% 4.1

1-15 Oct., m = 104 1-15 Oct., m = 25 · 106
Absolute Relative Absolute Absolute Relative Absolute
Error-1D Error-1D Error-2D Error-1D Error-1D Error-2D

avg std avg max avg std avg max
k = 2 147.4 49.2 0.8% 25.8 2.6 0.9 0.01% 3.0
k = 5 150.6 59.1 0.9% 26.0 2.8 1.2 0.01% 3.1
k = 8 150.0 56.9 0.9% 26.0 2.8 1.0 0.01% 3.5

1-31 Oct., m = 105 1-31 Oct., m = 25 · 106
Absolute Relative Absolute Absolute Relative Absolute
Error-1D Error-1D Error-2D Error-1D Error-1D Error-2D

avg std avg max avg std avg max
k = 2 45.2 15.9 0.2% 16.6 3.2 1.1 0.01% 3.9
k = 5 47.6 18.2 0.2% 15.4 3.2 1.2 0.01% 3.8
k = 8 50.3 17.7 0.3% 15.5 3.1 1.1 0.01% 3.9

B. Evaluation of Ordered Response Attack

Table II shows the accuracy of the approximate reconstruc-
tion attack for ordered responses. For this experiment, we
simulated the query leakage by ordering the k returned ids.
Note that the number of queries is significantly reduced. Since
1) the feasible region and its diameter does not play any role
and 2) the estimation of each value is a function of only 3
bisectors, the quality of the reconstruction is almost unaffected
by the value of k. Similarly to the case of unordered responses,
the accuracy of the reconstruction grows significantly with the
number of observed queries.

On Efficiency and Number of Queries. We report
that having observed enough queries our experiments took
a few seconds to reconstruction the plaintext values. We
also report that for the accuracy, i.e. ε, δ, that we observed
from the reconstructed output the theoretical lower bound
of our theorems required orders of magnitude more queries.
Therefore even though we have rigorous analysis for the
required number of queries, our experiments demonstrate that
we need a significantly smaller number of queries in practice.

VI. EXTENSIONS & OPEN PROBLEMS

In this section, we discuss approaches toward extending our
attack techniques to work under different assumptions.

Nonuniform Query Distribution. The query-uniformity
assumption A1 simplifies the estimation of the lengths of the
Voronoi segments. More work is therefore required to adjust
the analysis to arbitrary query distributions. In particular, an

attacker with knowledge of the (not necessarily uniform) query
distribution can use our techniques and weigh the contribution
of each response to our estimators.

Recovery Under Partial and Auxiliary Information. A
phase of our attack is the reconstruction of the order of the
identifiers with respect to their values. Towards this goal, we
first considered the scenario where the attacker observes all
possible responses (Section III). In certain cases, it is possible
to reconstruct the order even without seeing all responses.
Namely, a variation of Algorithm 2 from Lacharité et al. [28]
can be used to reconstruct the order of the identifiers from a
collection of overlapping k-NN responses whenever the order
can be inferred from such responses.

Another setting that could be considered is the one where
the adversary observes a subset of the identifiers. Specifically,
when the attacker sees the identifiers for a range of consecutive
Voronoi segments, the adversary can directly utilize our
techniques and the adjusted frequency of the responses to find
the geometry of the local structure of this subset of identifiers.

Regarding the power of auxiliary information, in Sec-
tion IV-B, we partitioned the database into k non-overlapping
sets of records with respect to their dependence on the ξ offset.
Interestingly, an attacker with knowledge of the location of
a single value from each of the k non-overlapping sets can
achieve exact reconstruction even in the case of unordered
responses.

Attack with Varying Parameter k. An interesting variation
occurs when parameter k can change on every k-NN query.
Our attacks can not be directly applied to this case. We expect
that a solution to this open problem involves similar intuition
to our techniques, i.e. estimation of the length of Voronoi
segments and then formulation of equations based on the
derived locations of the bisectors. Note that the response set of
a database with fixed k parameter is a subset of the response set
for varying k parameter. Furthermore, for one-dimensional data,
the response set for all possible varying k values is exactly the
same as the response set of range queries in the same database.
Intuitively, the attacker of the k-NN leakage profile for a fixed
k has “less information to work with” compared to the attacker
of varying k-NN profile and range queries profile.

Practical Considerations. Practitioners must be cautious
with the deployment of encrypted databases that support k-NN
queries. In our work, we showed that reconstruction is possible
for databases of moderate size with high accuracy and rigorous
reconstruction guarantees. Also, our findings show that the
ordering of the responses (a useful feature as far as the user is
concerned) leaks significantly more information and allows a
reconstruction with orders of magnitude fewer queries.
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VII. APPENDIX

A. Proof of Theorem 2

Let DB have n values v0, v1, . . . , vn−1. Recall that in the
case of k-NN unordered responses, the bisectors that define the
Voronoi segments are b0,k, b1,k+1, b2,k+2 up to bn−1−k,n−1.
To construct DB′ we will change the values vi in a way that
the bisectors stay put. This implies that Voronoi segments
will not change. Therefore the leakage LQ(DB) = LQ(DB′)
while DB �= DB′. To compute DB′, we set v′0 = v0 + ε and
v′k = vk − ε, thus not affecting bisector b0,k. Changing v′k by
−ε, however, requires a change on v′2k by +ε so that bisector
bk,2k is not affected either. This cascading effect continues
until we finally adjust v′�n/k�k. Note that the range of values
that ε can take is easily computable. Specifically, it is the



range from 0 to the minimum distance between any vi and
vi+1 or vi−1 for all i = 0, k, 2k, . . . , 
n/k�k. Since there are
arbitrarily many values in this range, we have an arbitrarily
number of potential DB′ with the same Voronoi diagram.

B. Proof of Lemma 3

Using elementary row operations on the augmented matrix
we compute the echelon form and thus compute the rank of
the matrix. Specifically we introduce two types of echelon
transformations:

Transformation (1)
Ln−1+i − Li → L′

i+2

L′
i+2 + Li+1 → L′

i+2

1

2
L′
i+2 → L′

i+2

Transformation (2)
Ln−1+i − Li+1 → L′

i

L′
i + Li → L′

i

1

2
L′
i → L′

i

where Transformation (1) takes values 1 ≤ i ≤ (n− 2), and
Transformation (2) takes values 1 ≤ i ≤ 2. For example,
for Transformation (1) and i = 1 we have: Ln − L1 →
L′
3, L

′
3 + L2 → L′

3,
1
2L

′
3 → L′

3. By applying the above two
transformations to all possible values of i we can construct
the new set of linear equations, L′

1, L
′
2, . . . , L

′
n and get the

following augmented matrix.

⎡
⎢⎢⎢⎢⎣

L′
1: 1 0 0 . . . 0 0 b0,2 − b1,2 + b0,1

L′
2: 0 1 0 . . . 0 0 b1,3 − b2,3 + b1,2

L′
3: 0 0 1 . . . 0 0 b0,2 − b0,1 + b1,2

... . . . . . . . . . . . . . . . . . . . . .
L′

n: 0 0 0 . . . 0 1 bn−3,n−1 − bn−3,n−2 + bn−2,n−1

⎤
⎥⎥⎥⎥⎦

From the resulting augmented matrix we can verify that the
rank of the matrix is n, therefore the derived solution of the
overdetermined system is unique.

C. Proof of Lemma 4

Let Z be a random variable defined to be the number of
queries required to see at least one of each Voronoi segments.
Let pi be the probability that i-th leftmost Voronoi segment is
observed by a uniformly generated query. Let El

i be the even
that the i-th leftmost Voronoi segment (wrt to their left-to-right
order) is not observed in the first l queries.

Pr(El
i) = (1− pi)

l ≤ e−pil

Using the union bound we get:

Pr(Z > m) = Pr
(
∪|R|
i=1E

m
i

)
≤

|R|∑
i=1

Pr(Em
i ) ≤

|R|∑
i=1

e−pim

≤
|R|∑
i=1

e−m·min1≤j≤|R| pj = |R|e−m·min1≤j≤|R| pj

= |R|e− m
β−α minr∈R Len(r)

Thus, Pr(Z < m) ≥ 1− |R|e− m
β−α minr∈R Len(r)

D. Proof of Theorem 4

Let (Y1, . . . , Y|R|) be a multinomial distribution, that is
|R| is a fixed number and we have |R| mutually exclusive
outcomes with corresponding probabilities p1, . . . , p|R|, and
m independent trials. Due to the fact that the |R| outcomes

are mutually exclusive and one must occur every probability
is non-zero and

∑|R|
i=1 pi = 1. Additionally, the expectation

of every Yi is E[Yi] = mpi. From Lemma 3 in [13] we have
that for all ε1 ∈ (0, 1) and all R satisfying |R|/m ≤ ε21/20 we
have:

Pr
( |R|∑
i=1

|Yi − E[Yi]| > mε1) ≤ 3e−mε21/25

⇒ Pr
( |R|∑
i=1

|Yi − E[Yi]| ≤ mε1) > 1− 3e−mε21/25.

Let us now analyze the above probability event:
|R|∑
i=1

|Yi − E[Yi]| ≤ mε1

⇒ |
|R|∑
i=1

(Yi − E[Yi])| ≤
|R|∑
i=1

|Yi − E[Yi]| ≤ mε1

⇒ −mε1 ≤
|R|∑
i=1

(
Yi − E[Yi]

) ≤ mε1

⇒ ( |R|∑
i=1

E[Yi]

m

)− ε1 ≤
|R|∑
i=1

Yi

m
≤ ( |R|∑

i=1

E[Yi]

m

)
+ ε1

(2)

Transformation to Bisector Estimation. The multinomial
formulation can be adjusted to assist to the task of bisector
approximation. Let each trial correspond to a uniformly
chosen query point from [α, β], then the outcome of the trial
corresponds to an ordered response from the Voronoi diagram
Vk(DB). The number of trials for the case of a multinomial
was denoted by m which in the bisector estimation is the
number of queries. Therefore the number of possible outcomes
|R| is the number of Voronoi segments of order k. Notice that
the probability that a response is ri is equal to the probability
pi that a uniformly chosen query point lands to the Voronoi
segment Vk(ri), which in turn is equal to the ratio of the length
of the corresponding Voronoi segment to the length of the entire
bounded metric space. Specifically pi = Len(Vk(ri))/(β−α).

Let Pi,j be the set of Voronoi segments that precede bi,j ,
then we know that bi,j = α +

∑
l∈Pi,j

Len(Pi,j(l)). Since
|Pi,j | < R we have:

|
∑

l∈Pi,j

(Yi − E[Yi])| ≤
∑

l∈Pi,j

|Yl − E[Yl]| ≤
R∑
i=1

|Yi − E[Yi]| ≤ mε1

, and similarly to the summation of (2) we can derive:( ∑
l∈Pi,j

E[Yl]

m

)− ε1 ≤
∑

l∈Pi,j

Yl

m
≤ ( ∑

l∈Pi,j

E[Yl]

m

)
+ ε1

⇒ ( ∑
l∈Pi,j

pl)− ε1 ≤
∑

l∈Pi,j

Yl

m
≤ ( ∑

l∈Pi,j

pl
)
+ ε1

⇒ ( ∑
l∈Pi,j

Len(Pi,j(l))

(β − α)
)− ε1 ≤

∑
l∈Pi,j

Yl

m
≤ ( ∑

l∈Pi,j

Len(Pi,j(l))

(β − α)

)
+ ε1

⇒ ( ∑
l∈Pi,j

Len(Pi,j(l))
)− (β − α)ε1 ≤ (β − α)

∑
l∈Pi,j

Yl

m
≤ ( ∑

l∈Pi,j

Len(Pi,j(l))
)
+ (β − α)ε1

⇒ bi,j − (β − α)ε1 ≤ α+ (β − α)
∑

l∈Pi,j

Yl

m
≤ bi,j + (β − α)ε1

⇒ bi,j − (β − α)ε1 ≤ b̃i,j ≤ bi,j + (β − α)ε1

⇒ |bi,j − b̃i,j | ≤ (β − α)ε1



Therefore the overall probability expression becomes:
Pr

(|bi,j − b̃i,j | ≤ (β − α)ε1) > 1− 3e−mε21/25.

We define ε2 = (β − α)ε1 and get:

Pr
(|bi,j − b̃i,j | ≤ ε2) > 1− 3e

− mε22
(β−α)225 .

With further analysis we get:
bi−2,i − ε2 ≤ b̃i−2,i ≤ bi−2,i + ε2

bi−2,i−1 − ε2 ≤ ˜bi−2,i−1 ≤ bi−2,i−1 + ε2

−bi−1,i − ε2 ≤ −b̃i−1,i ≤ −bi−1,i + ε2

⎫⎪⎪⎬
⎪⎪⎭

⇒ bi−2,i + bi−2,i−1 − bi−1,i − 3ε2 ≤ b̃i−2,i + ˜bi−2,i−1 − b̃i−1,i

≤ bi−2,i + bi−2,i−1 − bi−1,i + 3ε2

⇒ vi − 3ε2 ≤ b̃i−2,i + ˜bi−2,i−1 − b̃i−1,i ≤ vi + 3ε2

⇒ vi − 3ε2 ≤ ṽi ≤ vi + 3ε2

, where for the last substitution we used the augmented matrix
described in Section III-D. Finally, we define ε = 3ε2. We also

define δ as δ ≥ 3e
− mε22

25(β−α)2 and get:

δ ≥ 3e
− mε22

25(β−α)2 = 3e
− mε2

225(β−α)2

⇒ ln δ ≥ ln 3− mε2

225(β − α)2

⇒ m ≥ 225(ln 3− ln δ)(β − α)2

ε2

Also with some algebraic manipulation of the inequality
about m from Lemma 3 in [13] we get:

|R|
m

≤ ε21
20

⇒ |R|
m

≤ ε22
20(β − α)2

⇒ m ≥ |R|(β − α)220

ε22
⇒ m ≥ 180(β − α)2|R|

ε2

Since |R| = k(n(k + 1)/2) + 1 we get

m ≥ 180(β − α)2(k(n(k + 1)/2) + 1)

ε2
.

By using the two derived inequalities about m we get:

m = max

{
180(β − α)2(k(n(k + 1)/2) + 1)

ε2
,
225(β − α)2(ln 3− ln δ)

ε2

}
Then the out put ṽ of the algorithm satisfies the following
probability expression:

⇒ Pr
(|vi − ṽi| ≤ ε) > 1− δ.

E. Proof of Theorem 5

The proof of this Theorem is similar to the proof of
Theorem 4, in terms of probabilistic analysis. Let (Y1, . . . , Y|R|)
be a multinomial distribution, that is |R| is a fixed number and
we have |R| mutually exclusive outcomes with corresponding
probabilities p1, . . . , p|R|, and m independent trials. From
Lemma 3 in [13] we have that for all ε1 ∈ (0, 1) and all
|R| satisfying |R|/m ≤ ε21/20 we have:

Pr
( |R|∑
i=1

|Yi − E[Yi]| > mε1) ≤ 3e−mε21/25

From which we can similarly derive:(∑|R|
i=1

E[Yi]
m

)− ε1 ≤ ∑|R|
i=1

Yi

m ≤ (∑|R|
i=1

E[Yi]
m

)
+ ε1

Transformation to Constraint Estimation. The multinomial
formulation can be adjusted to assist to the task of constraint es-
timation. Let each trial correspond to a uniformly chosen query

point from [α, β], then the outcome of the trial corresponds
to an unordered response from the Voronoi diagram Vk(DB).
The number of trials for the case of a multinomial corresponds
to the number of queries and is denoted by m. Therefore the
number of possible outcomes is |R| which is the number of
Voronoi segments of order k. Notice that the probability that a
response is ri is equal to the probability pi that a uniformly
chosen query point lands to the Voronoi segment Vk(ri), which
in turn is equal to the ratio of the length of the corresponding
Voronoi segment to the length of the entire bounded metric
space. Specifically pi = Len(Vk(ri))/(β − α).

We proceed by doing a case analysis on the possible values
of i and how it affects the formulation of the ci,i+1 (see
Lemma 7) of the ordering constraint and consequently the
probability expression of the previous paragraph. Each outcome
of the multinomial (Y1, . . . , Y|R|) corresponds to a Voronoi
segment in the left-to-right order. Roughly, the calculations of
Theorem 4 are performed for summation with |R| terms, using
Lemma 7 we show that in this Theorem and for cases (1)-(5)
we sum |Ci| terms where |Ci| ≤ |R|. Therefore the analysis of
Theorem 4 holds for these cases as well. Case (6) is different
and we explain how the analysis changes.

Case (1) where 0 ≤ i < k− 1. In this case the term ci,i+1

has the following formulation:
ci,i+1 = Len({si+1, . . . , si+k})

Let Ci be the set that contains the index of the Voronoi segment
with ids {si+1, . . . , si+k} wrt the ordering (Y1, . . . , Y|R|).
Since |Ci| = 1 we have:∑

l∈Ci

|Yl − E[Yl]| ≤
|R|∑
i=1

|Yi − E[Yi]| ≤ mε1

Following similar calculations as in the proof of Theorem 4
we get:

Pr
(|ci,i+1 − c̃i,i+1| ≤ (β − α)ε1) > 1− 3e−mε21/25.

Case (2) where i = k− 1. In this case the term ci,i+1 has
the following formulation:

ck−1,k = −
∑

1≤l≤k−1

Len({sl, . . . , sl+k−1})

Let Ci be the set that contains the index of each Voronoi
segment of the above expression, i.e. the index of responses
{sl, . . . , si+k−1} for 1 ≤ l ≤ k − 1 wrt the ordering
(Y1, . . . , Y|R|). Since |Ci| = k − 1 and all the participating
lengths are unique we have:∑

l∈Ci

|Yl − E[Yl]| ≤
|R|∑
i=1

|Yi − E[Yi]| ≤ mε1

Following similar calculations as in the proof of Theorem 4
we get:

Pr
(|ci,i+1 − c̃i,i+1| ≤ (β − α)ε1) > 1− 3e−mε21/25.

Case (3) where k ≤ i < 2k − 1. In this case the term
ci,i+1 has the following formulation:

ci,i+1 = Len({si mod k+1, . . . , si mod k+k})
Let Ci be the set that contains the index of the



Lemma 7. The ordering constraint vi < vi+1 can be expressed as a function of A) the offsets ξ = (ξ0, . . . , ξk−1) and B)
the lengths of a subset of Voronoi segments. Specifically by using the expressions of vi from Lemma 5 we get the following
cases:

• if 0 ≤ i < k − 1, then vi < vi+1 can be written as:
− ξi + ξi+1 < ci,i+1, where ci,i+1 = Len({si+1, . . . , si+k})

• if i = k − 1, then vi < vi+1 can be written as:
− ξk−1 − ξ0 < ck−1,k, where ck−1,k = −

∑
1≤l≤k−1

Len({sl, . . . , sl+k−1})

• if k ≤ i < 2k − 1, then vi < vi+1 can be written as:
ξi mod k − ξi mod k+1 < ci,i+1, where ci,i+1 = Len({si mod k+1, . . . , si mod k+k})

• if i = 2k − 1, then vi < vi+1 can be written as:
ξk−1 + ξ0 < c2k−1,2k, where c2k−1,2k = Len({sk, . . . , s2k−1}) +

∑
1≤l≤k

Len({sl, . . . , sl+k−1})

• if 2k ≤ i < n− 1 and (i+ 1) mod k �= 0, then vi < vi+1 can be written as:
(−1)�i/k−1�(ξi mod k − ξ(i+1) mod k) < ci,i+1

, where ci,i+1 = (−1)�i/k−1�(Len({s(i+1) mod k, . . . , s(i+1) mod k+k−1}) +
∑

2≤j≤�i/k�
(−1)j+�i/k�2Len({si mod k+(j−1)k+1, . . . , s(i+1) mod k+jk−1})

• if 2k ≤ i < n− 1 and (i+ 1) mod k = 0, then vi < vi+1 can be written as:
(−1)�i/k�+1(ξi mod k + ξ(i+1) mod k) < ci,i+1

, where ci,i+1 = (−1)�i/k�+1
( ∑
1≤l≤k

Len({sl, . . . , sl+k−1})
)
+ (−1)�i/k�+1Len({sk, . . . , s2k−1}) +

∑
2≤j≤�i/k�

(−1)j+�i/k�2(Len({sjk, . . . , sjk+k−1}))

The first three cases the term ci,i+1 consists of the length of a single Voronoi segment. For the fourth case the term ci,i+1

is a linear combination of 2k − 1 length terms. For the fifth case the term ci,i+1 is a linear combination of at most

(n− 1)/k� length terms. Finally for the last case ci,i+1 is a linear combination of at most 
(n− 1)/k�+ k length terms.

Voronoi segment of the above expression, i.e. index of
{si mod k+1, . . . , si mod k+k} wrt (Y1, . . . , Y|R|). Since |Ci| =
1 we have:∑

l∈Ci

|Yl − E[Yl]| ≤
|R|∑
i=1

|Yi − E[Yi]| ≤ mε1

Following similar calculations as in the proof of Theorem 4
we get:

Pr
(|ci,i+1 − c̃i,i+1| ≤ (β − α)ε1) > 1− 3e−mε21/25.

Case (4) where i = 2k − 1. In this case the term ci,i+1

has the following formulation:
c2k−1,2k = Len({sk, . . . , s2k−1}) +

∑
1≤l≤k

Len({sl, . . . , sl+k−1})

Let Ci be the set that contains the index of each Voronoi
segment of the above expression, i.e. index of {sl, . . . , si+k−1}
for 1 ≤ l ≤ k wrt (Y1, . . . , Y|R|). Notice that in the above
expression the length of segment {sk, . . . , s2k−1} is counted
twice. Additionally the size of the set Ci is k+1, i.e. less than
|R|. So if we define an ε2 such that ε2 = 2ε1 then we have:

∑
l∈Ci

|Yl − E[Yl]| ≤
|R|∑
i=1

|Yi − E[Yi]| ≤ m2ε1 = mε2/2

Following similar calculations as in the proof of Theorem 4
we get:

Pr
(|ci,i+1 − c̃i,i+1| ≤ (β − α)ε2/2) > 1− 3e−mε22/100.

Case (5) where i ≥ 2k and (i + 1) mod k �= 0. In this

case the term ci,i+1 has the following formulation:
ci,i+1 = (−1)�i/k−1�(Len({s(i+1) mod k+1, . . . , s(i+1) mod k+k−1})
+

∑
2≤j≤�i/k�

(−1)j+�i/k�2Len({si mod k+(j−1)k+1, . . . , s(i+1) mod k+jk−1})

Let Ci be the set that contains the index of
each Voronoi segment of the above expression,
i.e. {s(i+1) mod k+1, . . . , s(i+1) mod k+k−1} and
{si mod k+(j−1)k+1, . . . , s(i+1) mod k+jk−1} for
2 ≤ j ≤ 
i/k�, in the ordering of (Y1, . . . , Y|R|). Notice that
in the above expression all the Voronoi segments are unique
since we have (i + 1) mod k + 1 �= i mod k + (j − 1)k + 1
for integer values of i and j. Therefore, since the size of the
set Ci is upper-bounded by |R| and all segments are unique
we have: ∑

l∈Ci

|Yl − E[Yl]| ≤
|R|∑
i=1

|Yi − E[Yi]| ≤ mε1

Following similar calculations as in the proof of Theorem 4
we get:

Pr
(|ci,i+1 − c̃i,i+1| ≤ (β − α)ε1) > 1− 3e−mε21/25.

Case (6) where i ≥ 2k and (i + 1) mod k = 0. In this
case the term ci,i+1 has the following formulation:

ci,i+1 = (−1)�i/k�+1
( ∑
1≤l≤k

Len({sl, . . . , sl+k−1})
)

+ (−1)�i/k�+1Len({sk, . . . , s2k−1})
+

∑
2≤j≤�i/k�

(−1)j+�i/k�2(Len({sjk, . . . , sjk+k−1}))



Let Ci be the set that contains the index of each Voronoi
segment of the above expression, i.e. index of {sl, . . . , sl+k−1}
for 1 ≤ l ≤ k and {sk, . . . , s2k−1} and {sjk, . . . , sjk+k−1}
for 2 ≤ j ≤ 
i/k� wrt the ordering (Y1, . . . , Y|R|). Notice
that in the above expression of ci,i+1 the length of segment
{sk, . . . , s2k−1} is counted twice. Additionally the size of the
set Ci is upper-bounded by |R|. So if we define an ε2 such
that ε2 = 2ε1 then we have:∑

l∈Ci

|Yl − E[Yl]| ≤
|R|∑
i=1

|Yi − E[Yi]| ≤ m2ε1 = mε2/2

Following similar calculations as in the proof of Theorem 4
we get:

Pr
(|ci,i+1 − c̃i,i+1| ≤ (β − α)ε2/2) > 1− 3e−mε22/100.

Overall. Let us define ε = (β − α)ε2/2. From the above case
analysis we conclude that the following expression holds for
all the cases:

Pr
(|ci,i+1 − c̃i,i+1| ≤ ε) > 1− 3e

− mε2

(β−α)225 .

We define δ as δ ≥ 3e
− mε2

(β−α)225 , and we get:

δ ≥ 3e
− mε2

(β−α)225 ⇒ ln δ ≥ ln 3− mε2

(β − α)225
⇒ m ≥ 25(β − α)2(ln 3− ln δ)

ε2

Also with some algebraic manipulation of the inequality
about m from Lemma 3 in [13] we get:

|R|
m

≤ ε21
20

⇒ |R|
m

≤ ε22
80

⇒ |R|
m

≤ 4ε2

80(β − α)2
⇒ m ≥ 20(β − α)2|R|

ε2

Since |R| = n− k + 1 we get

m ≥ 20(β − α)2(n− k + 1)

ε2
.

So with the above analysis we proved the following statement

Let m be the number of uniformly drawn query points
from [α, β] for a database DB with n unique values. Let’s
assume that:

m ≥ max

{
25(β − α)2(ln 3− ln δ)

ε2
,
20(β − α)2(n− k + 1)

ε2

}
Then for any δ ∈ (0, 1) and ε ∈ (0, |β−α|) the Algorithm
ConstraintEstimation returns c̃i,i+1 in O(kn) time such
that:

Pr
(|ci,i+1 − c̃i,i+1| ≤ ε

) ≥ 1− δ

, for any 0 ≤ i ≤ n− 2.

Therefore the hyperplanes derived by the attacker (see the
inequalities of Lemma 7) are a function of the estimations c̃i,i+1

rather then actual ci,i+1. As a result we have an approximation
F̃[v] of the real F[v]. Which implies that the diameter that is
computed by the output of the solver of the Vertex Enumeration
Problem is an estimate of the actual diameter. Since the
location of a vertex of the approximated polytope F̃[v] in the
k-dimensional space is within an ε-ball of the corresponding
vertex of the actual polytope F[v], the estimated diameter can
be at most 2ε afar with probability 1− δ Specifically:

Pr
(
|diam (F[v]

)− diam
(
F̃[v]

)
| ≤ 2ε

)
≥ 1− δ

Therefore the above analysis about the constraints can be
interpreted as:

Let m be the number of uniformly drawn query points
from [α, β] for a database DB with n unique values. Let’s
assume that:

m ≥ max

{
25(β − α)2(ln 3− ln δ)

ε2
,
20(β − α)2(n− k + 1)

ε2

}
Then for any δ ∈ (0, 1) and ε ∈ (0, |β−α|) the Algorithm
ConstraintEstimation returns c̃i,i+1 in O(kn) time such
that:

Pr
(
|diam (F[v]

)− diam
(
F̃[v]

)
| ≤ 2ε

)
≥ 1− δ

, for any 0 ≤ i ≤ n− 2.

From the above statement we can derive the following
probability expression:
Pr

(
diam

(F[v]

)
+ 2ε ≥ diam

(
F̃[v]

)
≥ diam

(F[v]

)− 2ε
)
≥ 1− δ

⇒ Pr

⎛
⎝diam

(F[v]

)
2

≤
diam

(
F̃[v]

)
2

+ ε

⎞
⎠ ≥ 1− δ

Let’s assume for a second that the attack could compute the
real value of the diameter, i.e. diam

(F[v]

)
. Then if we denote

as vDB the unknown encrypted n-tuple of values of DB we
would have the following guarantee for the output v∗ of the
reconstruction:

dL∞(vDB , v∗) = max0≤i≤n−1 |vDB
i − v∗i | ≤

diam(F[v])
2 .

But since the attacker can only computed the diameter of
the approximated polytope we derive:

Pr

⎛
⎝ max

0≤i≤n−1
|vDB

i − v∗i | ≤
diam

(
F̃[v]

)
2

+ ε

⎞
⎠ ≥ 1− δ


