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Abstract
We study the problem of training deep fully connected neural networks with Rectified Linear
Unit (ReLU) activation function and cross entropy loss function for binary classification using
gradient descent. We show that with proper random weight initialization, gradient descent
can find the global minima of the training loss for an over-parameterized deep ReLU network,
under certain assumption on the training data. The key idea of our proof is that Gaussian
random initialization followed by gradient descent produces a sequence of iterates that stay
inside a small perturbation region centered at the initial weights, in which the training loss
function of the deep ReLU networks enjoys nice local curvature properties that ensure the
global convergence of gradient descent. At the core of our proof technique is (1) a milder
assumption on the training data; (2) a sharp analysis of the trajectory length for gradient
descent; and (3) a finer characterization of the size of the perturbation region. Compared
with the concurrent work (Allen-Zhu et al. in A convergence theory for deep learning via
over-parameterization, 2018a; Du et al. in Gradient descent finds global minima of deep
neural networks, 2018a) along this line, our result relies on milder over-parameterization
condition on the neural network width, and enjoys faster global convergence rate of gradient
descent for training deep neural networks.
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1 Introduction

Deep neural networks have achieved great success inmany applications like image processing
(Krizhevsky et al. 2012), speech recognition (Hinton et al. 2012) and Go games (Silver et al.
2016). However, the reason why deep networks work well in these fields remains a mystery
for long time. Different lines of research try to understand the mechanism of deep neural
networks from different aspects. For example, a series of work tries to understand how the
expressive power of deep neural networks are related to their architecture, including thewidth
of each layer and depth of the network (Telgarsky 2015, 2016; Lu et al. 2017; Liang and
Srikant 2016; Yarotsky 2017, 2018; Hanin 2017; Hanin and Sellke 2017). These work shows
that multi-layer networks with wide layers can approximate arbitrary continuous function.

Very recently, there emerges a large body of work that study the global convergence of
gradient descent (GD) for training neural networks (Li andLiang2018;Du et al. 2018b;Allen-
Zhu et al. 2018a; Du et al. 2018a). In particular, Li and Liang (2018) showed that for a one-
hidden-layer networkwithReLUactivation function using over-parameterization and random
initialization, GD and stochastic gradient descent (SGD) can find the global near-optimal
solution in polynomial time.Duet al. (2018b) showed that under the assumption that theReLU
Gram matrix is positive definite, randomly initialized GD converges to a globally optimal
solution of a one-hidden-layer network with ReLU activation function and quadratic loss
function. Beyond shallow neural network, Du et al. (2018a) considered regression problem
with square loss function, and proved that under certain assumptions on the initialization and
training data, gradient descent is able to converge to the global optimal solution for training
deep neural networks. However, Du et al. (2018a) only investigated DNNs with smooth
activation functions, which exclude the widely-used ReLU activation function. Moreover,
the theoretical results in Du et al. (2018a) heavily rely on the assumption that the smallest
eigenvalue of certain deep compositional Gram matrix is bounded below from zero, which
does not explicitly tell the dependency on the problem parameter such as the number of
training examples n and the number of hidden layers L , and this assumption cannot be
verified in practice. Allen-Zhu et al. (2018a) studied the same problem under a different
assumption on the training data, and proved that random initialization followed by gradient
descent is able to converge to the global optimal solution for training deep neural networks.
Besides, Allen-Zhu et al. (2018a) studied the convergence rate of SGD for training deep
ReLU network and discussed various extensions to classification problem and various loss
functions. However, the assumption on the training data made in Allen-Zhu et al. (2018a) is
very stringent, because they require that any two training data points are separated by some
constant, but in practice the data from the same class can be arbitrarily close (e.g., due to
data augmentation in deep learning). Our work is independent and concurrent to Du et al.
(2018a), Allen-Zhu et al. (2018a).1

In this paper, we study the optimization properties of gradient-based methods for deep
ReLU neural networks, with more realistic assumption on the training data, milder over-
parameterization condition and faster convergence rate. In specific, we consider an L-hidden-
layer fully-connected neural network with ReLU activation function. Similar to the one-
hidden-layer case studied in Li and Liang (2018) and Du et al. (2018b), we study binary
classification problem and show that GD can achieve the global minima of the training loss
for any L ≥ 1, with the aid of over-parameterization and random initialization. The high-
level idea of our proof technique is to show that Gaussian random initialization followed by
gradient descent generates a sequence of iterates within a small perturbation region centering

1 The first versions of all these three papers were all posted on arXiv in November 2018.
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around the initial weights. In addition, we will show that the empirical loss function of deep
ReLUnetworks has very good local curvature properties inside the perturbation region,which
guarantees the global convergence of gradient descent. Compared with the proof technique
in Allen-Zhu et al. (2018a), we provide a sharper analysis on the GD algorithm and prove
that GD can be guaranteed to have sufficient descent in a larger perturbation region with
a larger step size. This leads to a faster convergence rate and a milder condition on the
over-paramterization. More specifically, our main contributions are summarized as follows:

– We establish the global convergence guarantee for training deep ReLU networks in terms
of classification problems. Compared with Li and Liang (2018), Allen-Zhu et al. (2018a)
our assumption on training data is more reasonable and is often satisfied by real training
data. Specifically, we only require that any two data points from different classes are
separated by some constant, while Li and Liang (2018) assumes that the data from
different classes are sampled from small balls separated by a constant margin, and Allen-
Zhu et al. (2018a) requires that any two data points are well separated, even though they
belong to the same class.

– We show that with Gaussian random initialization on each layer, when the number of
hidden nodes per layer is at least !̃

(
n14L16/φ4), GD can achieve zero training error

within Õ
(
n5L3/φ

)
iterations, where φ is the data separation distance,2 n is the number

of training examples, and L is the number of hidden layers. This significantly improves
the state-of-the-art results by Allen-Zhu et al. (2018a), where the authors proved that GD
can converge within Õ

(
n6L2/φ2) iterations if the number of hidden nodes per layer is at

least !̃(n24L12/φ8). Compared with Du et al. (2018a), our result only has a polynomial
dependency on the number of hidden layers, which is much better than their result that
has an exponential dependency on the depth for fully connected deep neural networks.

2 Additional related work

Due to the huge amount of literature on deep learning theory, we are not able to include all
papers in this big vein here. Instead, we review the following two additional lines of research,
which are also related to our work.
One-hidden-layer neural networks with ground truth parameters Recently a series of work
(Tian 2017; Brutzkus and Globerson 2017; Li and Yuan 2017; Du et al. 2017; Zhang et al.
2018) studied a specific class of shallow two-layer (one-hidden-layer) neural networks,whose
training data are generated by a ground truth network called “teacher network”. This series
of work aim to provide recovery guarantee for gradient-based methods to learn the teacher
networks based on either the population or empirical loss functions. More specifically, Tian
(2017) proved that for two-layer ReLU networks with only one hidden neuron, GD with
arbitrary initialization on the population loss is able to recover the hidden teacher network.
Brutzkus and Globerson (2017) proved that GD can learn the true parameters of a two-layer
network with a convolution filter. Li and Yuan (2017) proved that SGD can recover the
underlying parameters of a two-layer residual network in polynomial time. Moreover, Du
et al. (2017) proved that both GD and SGD can recover the teacher network of a two-layer
CNN with ReLU activation function. Zhang et al. (2018) showed that GD on the empirical
loss function can recover the ground truth parameters of one-hidden-layer ReLU networks
at a linear rate.

2 We will define the data separation distance, training sample size n and number of hidden layers L formally
in Sects. 3 and 4.
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Deep linear networks Beyond shallow one-hidden-layer neural networks, a series of recent
work (Hardt and Ma 2016; Kawaguchi 2016; Bartlett et al. 2018; Gunasekar et al. 2018;
Arora et al. 2018a, b) focused on the optimization landscape of deep linear networks. More
specifically, Hardt andMa (2016) showed that deep linear residual networks have no spurious
local minima. Kawaguchi (2016) proved that all local minima are global minima in deep
linear networks. Arora et al. (2018b) showed that depth can accelerate the optimization of
deep linear networks. Bartlett et al. (2018) proved that with identity initialization and proper
regularizer, GD can converge to the least square solution on a residual linear network with
quadratic loss function, while Arora et al. (2018a) proved the same properties for general
deep linear networks.

3 Preliminaries

3.1 Notation

We use lower case, lower case bold face, and upper case bold face letters to denote scalars,
vectors and matrices respectively. For a positive integer n, we denote [n] = {1, . . . , n}. For a
vector x = (x1, . . . , xd)⊤, we denote by ∥x∥p =

( ∑d
i=1 |xi |p

)1/p the ℓp norm of x, ∥x∥∞ =
maxi=1,...,d |xi | the ℓ∞ norm of x, and ∥x∥0 = |{xi : xi ̸= 0, i = 1, . . . , d}| the number of
non-zero entries of x. We use Diag(x) to denote a square diagonal matrix with the elements
of vector x on the main diagonal. For a matrix A = (Ai j ) ∈ Rm×n , we use ∥A∥F to denote
the Frobenius norm of A, ∥A∥2 to denote the spectral norm (maximum singular value), and
∥A∥0 to denote the number of nonzero entries. We denote by Sd−1 = {x ∈ Rd : ∥x∥2 = 1}
the unit sphere in Rd .

For two sequences {an} and {bn}, we use an = O(bn) to denote that an ≤ C1bn for some
absolute constant C1 > 0, and use an = !(bn) to denote that an ≥ C2bn for some absolute
constant C2 > 0. In addition, we also use Õ(·) and !̃(·) to hide logarithmic terms in Big-O
and Big-Omega notations. We also use the following matrix product notation. For indices
l1, l2 and a collection of matrices {Ar }r∈Z+ , we denote

l2∏

r=l1

Ar :=
{
Al2Al2−1 · · ·Al1 if l1 ≤ l2
I otherwise.

(3.1)

3.2 Problem setup

Let {(x1, y1), . . . , (xn, yn)} ∈ (Rd × {−1, 1})n be a set of n training examples. Let m0 = d.
We consider L-hidden-layer neural networks as follows:

fW(x) = v⊤σ (W⊤
L σ (W⊤

L−1 · · · σ (W⊤
1 x) · · · )),

whereσ (x) = max{0, x} is the entry-wiseReLUactivation function,Wl = (wl,1, . . . ,wl,ml )

∈ Rml−1×ml , l = 1, . . . , L are the weight matrices, and v ∈ {−1,+1}mL is the fixed output
layer weight vector with half 1 and half −1 entries. LetW = {Wl}l=1,...,L be the collection
of matrices W1, . . . ,WL , we consider solving the following empirical risk minimization
problem:

LS(W) = 1
n

n∑

i=1

ℓ(yi ŷi ) =
1
n

n∑

i=1

ℓ
(
yiv⊤σ (W⊤

L σ (W⊤
L−1 · · · σ (W⊤

1 xi ) · · · ))
)

(3.2)
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where ŷi = fW(xi ) denotes the output of neural network and ℓ(x) = log(1 + exp(−x)) is
the cross-entropy loss for binary classification.

3.3 Optimization algorithms

In this paper, we consider training a deep neural networkwithGaussian initialization followed
by gradient descent.
Gaussian initialization We say that the weight matrices W1, . . . ,WL are generated from
Gaussian initialization if each column of Wl is generated independently from the Gaussian
distribution N (0, 2/mlI) for all l = 1, . . . , L . This initialization mechanism is called He-
initialization, which was proposed in He et al. (2015).
Gradient descent We consider solving the empirical risk minimization problem (3.2) with
gradient descent with Gaussian initialization: let W(0)

1 , . . . ,W(0)
L be weight matrices gener-

ated from Gaussian initialization, we consider the following gradient descent update rule:

W(k)
l = W(k−1)

l − η∇Wl L S(W(k−1)), l = 1, . . . , L,

where ∇Wl L S(·) is the partial gradient of LS(·) with respect to the l-th layer parametersWl ,
and η > 0 is the step size (a.k.a., learning rate).

3.4 Calculations for neural network functions

Here we briefly introduce some useful notations and provide some basic calculations regard-
ing the neural network in our setting.
– Output after the l-th layer: Given an input xi , the output of the neural network after the
l-th layer is

xl,i = σ (W⊤
l σ (W⊤

l−1 · · · σ (W⊤
1 xi ) · · · ))

=
(

l∏

r=1

!r ,iW⊤
r

)

xi ,

where !1,i = Diag
(
1{W⊤

1 xi > 0}
)
,3 and !l,i = Diag[1{W⊤

l (
∏l−1

r=1 !r ,iW⊤
r )xi > 0}]

for l = 2, . . . , L .
– Output of the neural network: The output of the neural network with input xi is as

follows:

fW(xi ) = v⊤σ (W⊤
L σ (W⊤

L−1 · · · σ (W⊤
1 xi ) · · · ))

= v⊤
(

L∏

r=l

!r ,iW⊤
r

)

xl−1,i ,

where we define x0,i = xi and the last equality holds for any l ≥ 1.
– Gradient of the neural network: The partial gradient of the training loss LS(W) with

respect to Wl is as follows:

∇Wl L S(W) = 1
n

n∑

i=1

ℓ′(yi ŷi ) · yi · ∇Wl [ fW(xi )],

3 Here we slightly abuse the notation and denote 1{a > 0} = (1{a1 > 0}, . . . ,1{am > 0})⊤ for a vector
a ∈ Rm .
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where the gradient of the neural network function is defined as

∇Wl [ fW(xi )] = xl−1,iv⊤
(

L∏

r=l+1

!r ,iW⊤
r

)

!l,i .

In the remaining of this paper, we define the gradient∇LS(W) as the collection of partial
gradients with respect to all Wl ’s, i.e.,

∇LS(W) = {∇W1LS(W),∇W2LS(W), . . . ,∇WL LS(W)}.

We also define the Frobenius norm of ∇LS(W) as

∥∇Wl L S(W)∥F =
[

L∑

l=1

∥∇Wl L S(W)∥2F
]1/2

.

4 Main theory

In this section, we show that with random Gaussian initialization, over-parameterization
helps gradient descent converge to the global minimum, i.e., find a point in the parameter
space with arbitrary small training loss. We start with assumptions on the training data,

Assumption 4.1 ∥xi∥2 = 1 and (xi )d = µ for all i ∈ {1, . . . , n}, where µ ∈ (0, 1) is a
constant.

As is shown in the assumption above, the last entry of input x is considered to be a constantµ.
This assumption is natural because it can be seen as adding a bias term in the input layer, and
learning both weight vector and bias is equivalent to adding an additional dummy variable
((xi )d = µ) to all input vectors and learning the weight vector only. The same assumption
has been made in Allen-Zhu et al. (2018a). In addition, we emphasize that Assumption 4.1 is
made in order to simplify the proof. Actually, rather than restricting the norm of all training
examples to be 1, this assumption can be relaxed to be that ∥xi∥2 is lower and upper bounded
by some constants.

Assumption 4.2 For all i, i ′ ∈ {1, . . . , n}, if yi ̸= yi ′ , then ∥xi − xi ′ ∥2 ≥ φ for some φ > 0.

Assumption 4.2 basically requires that inputs with different labels in the training data are
separated from each other by at least a constant. This assumption is often satisfied in practice.
In contrast, Allen-Zhu et al. (2018a) assumes that every two different data points in the
training data are separated by a constant, which is much stronger and cannot be satisfied
since in classification it is allowed that the data with the same label can be arbitrarily close.

Furthermore, Assumption 4.2 can be easily verified based on the training data. As a com-
parison, the assumption made in Du et al. (2018a) assumes that certain deep compositional
Gram matrix defined on the training data is strictly positive definite, which is not easy to
verify, since the definition of their special Gram matrix is based on integration.

Then we have the following assumption on the structure of neural network.

Assumption 4.3 Define M = max{m1, . . . ,mL }, m = min{m1, . . . ,mL }. We assume that
M ≤ 2m.
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Assumption 4.3 states that the number of nodes at all layers are of the same order. The
constant 2 is not essential and can be replaced with an arbitrary constant greater than or equal
to 1.

Under Assumptions 4.1–4.3, we are able to establish the global convergence of gradient
descent for training deep ReLU networks. Specifically, we provide the following theorem
which characterizes the required numbers of hidden nodes and iterations such that the gradient
descent can attain the global minimum of the training loss function.

Theorem 4.4 SupposeW(0)
1 , . . . ,W(0)

L are generated by Gaussian initialization. Then under
Assumptions 4.1–4.3, if the step size η = O(M−1L−3), the number of hidden nodes per
layer satisfies

m = !̃
(
n14L16φ−4 + n12L16φ−4ϵ−1)

and the maximum number of iteration satisfies

K = Õ
(
n5L3/φ + n3L3ϵ−1/φ

)
,

then with high probability, the last iterate of gradient descentW(K ) satisfies LS(W(K )) ≤ ϵ.

Remark 4.1 Note that our bound on the required number of hidden nodes per layer, i.e., m,
depends on the target accuracy ϵ. However, in practical classification tasks, we are more
interested in finding some points with zero training error. In specific, the cross-entropy loss
ℓ(x) = log(1 + exp(−x)) is strictly decreasing in x , thus ℓ(yi ŷi ) ≤ ℓ(0) = log(2) implies
yi ŷi ≥ 0. If we set LS(W) ≤ ℓ(0)/n = log(2)/n, it holds that ℓ(yi ŷi ) ≤ nLS(W) ≤ ℓ(0)
for all i ∈ [n], which further implies that yi ŷi ≥ 0 for all i ∈ [n], i.e., all training data are
correctly classified. Therefore, Theorem4.4 implies that gradient descent can find a pointwith
zero training error if the number of hidden nodes per layer is at least m = !̃(n14L16φ−4).

Remark 4.2 Here we compare our theoretical results with those in Allen-Zhu et al. (2018a)
and Du et al. (2018a). Specifically, Allen-Zhu et al. (2018a) proved that gradient descent
can achieve zero training error within O(n6L2/φ2) iterations under the condition that the
neural network width is at least m = !̃(n24L12/φ8). As a clear comparison, our result on m
is significantly better by a factor of !̃(n10L−4/φ4), and our convergence rate is faster by a
factor of O(nL−1).4 On the other hand, Du et al. (2018a) proved similar global convergence
result when the neural network width is at least !̃

(
2O(L) · n4/λ40

)
, where λ0 is the smallest

eigenvalue of the deep compositional Gram matrix defined in their paper. Compared with
their result, our condition on m has significantly better dependency in L . In addition, for real
training data, λ0 can have high degree dependency on the reciprocal of the sample size n,
which makes the dependency of their result on n much worse.

5 Proof of themain theory

In this section, we provide the proof of the main theory. In specific, we decompose the proof
into three steps:
Step 1: We characterize a perturbation region at the initialization, and prove that the neural
network attains good properties within such region.

4 It is worth noting that in practice we usually have n ≫ L , thus our improvements in terms of the over-
parameterization condition and convergence rate are indeed significant.
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Step 2: Based on the assumption that all iterates are staying inside the region B(W(0), τ ), we
establish the convergence results of gradient descent.
Step 3:We verify that with our choice ofm, until convergence all iterates of gradient descent
would not escape from the perturbation region B(W(0), τ ), which justifies the derived con-
vergence guarantee.

Now we characterize the perturbation as follows. Given the initialization generated by
Gaussian distribution W(0) := {W(0)

l }l=1,...,L , we define by B(W(0), τ ) = {W : ∥Wl −
W(0)

l ∥2 ≤ τ for all l ∈ [L]} the perturbation region centered at W(0). Then we provide the
following Lemmas that provides key results which are essential to establish the convergence
guarantees for (stochastic) gradient descent.

Lemma 5.1 (Bounded initial training loss) Under Assumptions 4.1 and 4.3, with probability
at least 1 − δ, at the initialization the training loss satisfies LS(W(0)) ≤ C

√
log(n/δ).

Next we are going to state the following key lemmas that characterize some essential
properties of the neural network when its weight parameters satisfyW ∈ B(W(0), τ ). Firstly,
the following lemma provides the lower and upper bounds of the Frobenious norm of the
partial gradient ∇Wl [LS(W)].

Lemma 5.2 (Gradient lower and upper bound) Under Assumptions 4.1, 4.2, and 4.3, if τ =
O

(
φ3/2n−3L−2) and m = !̃(n2φ−1), then for all W̃ ∈ B(W(0), τ ), with probability at least

1 − exp
(
− O(mφ/n)

)
, there exist positive constants C and C ′ such that

∥∇WL [LS(W̃)]∥2F ≥ C
mφ

n5

(
n∑

i=1

ℓ′(yi ỹi )

)2

,

∥∇Wl [LS(W̃)]∥F ≤ −C ′LM1/2

n

n∑

i=1

ℓ′(yi ỹi ),

for all l ∈ [L], where ỹi = fW̃(xi ).

Then we provide the following lemma that characterizes the training loss decreasing after
one-step gradient descent.

Lemma 5.3 (Sufficient descent) Let W(0)
1 , . . . ,W(0)

L be generated via Gaussian random
initialization. Let W(k) = {W(k)

l }l=1,...,L be the k-th iterate in the gradient descent and
τ = O(L−11 log−3/2(M)). IfW(k),W(k+1) ∈ B(W(0), τ ), then there exist constants C ′ and
C ′′ such that with probability at least 1 − exp

(
− O(mφ/n)

)
the following holds,

LS(W(k+1)) − LS(W(k)) ≤ −
(
η − C ′ML3η2

)
∥∇LS(W(k))∥2F

− C ′′L8/3τ 1/3
√
M log(M) · η∥∇LS(W(k))∥F

n

n∑

i=1

ℓ′(yi ŷ
(k)
i )

The second term on the R.H.S. of the result in Lemma 5.3 is due to the non-smoothness of
ReLU activation, which can be characterized by counting how many nodes would change
their activation patterns during the training process. Clearly, in order to guarantee that the
gradient descent can bring sufficient descent in each step, we require the radius τ to be
sufficiently small. In the following, we are going to complete the proof of Theorem 4.4 based
on Lemmas 5.1–5.3.
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Proof of Theorem 4.4 We first prove that GD is able to achieve ϵ training loss under the
condition that all iterates are staying inside the perturbation region B(W(0), τ ). Note that by
Lemma 5.2, we know that there exists a constant c0 such that

∥∇LS(W(k))∥2F ≥ ∥∇WL [LS(W(k))]∥2F ≥ c0mφ

n5

(
n∑

i=1

ℓ′(yi ŷ
(k)
i )

)2

.

We set the radius τ and the step size η as follows,

τ=
(

c1/20 m1/2φ1/2

4C ′′L8/3n3/2
√
M log(M)

)3

= Õ(n−9/2L−8φ3/2),

η= 1
4C ′ML3 = O(M−1L−3).

Then we have

LS(W(k+1)) − LS(W(k))

≤ −3η
4

∥∇LS(W(k))∥2F − c0ηm1/2φ1/2

4n5/2
∥∇LS(W(k))∥F ·

n∑

i=1

ℓ′(yi ŷ
(k)
i )

≤ −η

2
∥∇LS(W(k))∥2F

≤ −η
c0mφ

2n5

(
n∑

i=1

ℓ′(yi ŷ
(k)
i )

)2

, (5.1)

where the first inequality is by Lemma 5.3 and the choices of η and τ , the second inequality
follows fromLemma 5.2, and the last inequality is due to the gradient lower boundwe derived
above. Note that ℓ(x) = log(1 + exp(−x)), which satisfies −ℓ′(x) = 1/(1 + exp(x)) ≥
min

{
α0,α1ℓ(x)

}
where α0 = 1/2 and α1 = 1/(2 log(2)). This implies that

−
n∑

i=1

ℓ′(yi ŷ
(k)
i ) ≥ min

{
α0,

n∑

i=1

α1ℓ(yi ŷ
(k)
i )

}
≥ min

{
α0, nα1LS(W(k))

}
.

Note thatmin{a, b} ≥ 1/(1/a+1/b), we have the following by plugging the above inequality
into (5.1)

LS(W(k+1)) − LS(W(k)) ≤ −ηmin
{
c0mφα2

0

2n5
,
c0mφα2

1

2n3
L2
S(W

(k))

}

≤ −η

(
2n5

c0mφα2
0
+ 2n3

c0mφα2
1L

2
S(W

(k))

)−1

.

Rearranging terms gives

2n5

c0mφα2
0

(
LS(W(k+1)) − LS(W(k))

)
+ 2n3

(
LS(W(k+1)) − LS(W(k))

)

c0mφα2
1L

2
S(W

(k))
≤ −η. (5.2)

Applying the inequality (x − y)/y2 ≥ y−1 − x−1 and taking telescope sum over k give

kη ≤ 2n5

c0mφα2
0

(
LS(W(0)) − LS(W(k))

)
+ 2n3

(
L−1
S (W(k)) − L−1

S (W(0))
)

c0mφα2
1
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≤ 2n5

c0mφα2
0
LS(W(0))+ 2n3

(
L−1
S (W(k)) − L−1

S (W(0))
)

c0mφα2
1

. (5.3)

Now we need to guarantee that after K gradient descent steps the loss function LS(W(K )) is
smaller than the target accuracy ϵ. By Lemma 5.1, we know that the training loss LS(W(0)) =
Õ(1). Therefore, by (5.3) and our choice of η, the maximum iteration number K satisfies

K = Õ
(
n5L3/φ + n3L3ϵ−1/φ

)
. (5.4)

Then we are going to verify the condition that all iterates stay inside the perturbation region
B(W(0), τ ). We prove this by induction. Clearly, W(0) ∈ B(W(0), τ ). Then we are going to
prove W(k+1) ∈ B(W(0), τ ) under the induction hypothesis that W(t) ∈ B(W(0), τ ) holds
for all t ≤ k. According to (5.1), we have

LS(W(t+1)) − LS(W(t)) ≤ −η

2
∥∇LS(W(t))∥2F , (5.5)

for any t < k. Therefore, by triangle inequality, we have

∥W(k)
l − W(0)

l ∥2 ≤ η

k−1∑

t=0

∥∥∇Wl [LS(W(t))]
∥∥
2

≤ η

√√√√k
k−1∑

t=0

∥∥∇LS(W(t))
∥∥2
F

≤

√√√√2kη
k−1∑

t=0

[
LS(W(t)) − LS(W(t+1))

]

≤
√
2kηLS(W(0)).

By Lemma 5.1, we know that LS(W(0)) = Õ(1). Then applying our choices of η and K , we
have

∥W(k)
l − W(0)

l ∥2 ≤
√
2KηLS(W(0)) = Õ

(
n5/2φ−1/2m−1/2 + n3/2ϵ−1/2φ−1/2m−1/2).

In addition, by Lemma 5.2 and our choice of η, we have

η∥∇Wl [LS(W(k))]∥2 ≤ −ηC ′LM1/2

n

n∑

i=1

ℓ′(yi · fW(k) (xi )
)

≤ Õ(L−2M−1/2),

where the second inequality follows from the choice of η and the fact that −1 ≤ ℓ′(·) ≤ 0.
Then by triangle inequality, we have

∥W(k+1)
l − W(0)

l ∥2 ≤ η∥∇Wl [LS(W(k))]∥2 + ∥W(k)
l − W(0)

l ∥2
= Õ(n−9/2L−8φ3/2),

which is exactly in the same order of τ , where the last equality follows from the over-
parameterization assumption m = !̃

(
n14L16φ−4 + n12L16φ−4ϵ−1). This verifies that

W(k+1) ∈ B(W(0), τ ) and completes the induction for k. Thus we can complete the
proof. ⊓.
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(a) MNIST (b) CIFAR10

Fig. 1 The convergence of GD for training deep ReLU network with different network widths. a MNIST
dataset. b CIFAR10 dataset

6 Experiments

In this section we carry out experiments on two real datasets (MNIST LeCun et al. 1998
and CIFAR10 Krizhevsky 2009) to support our theory. Since we mainly focus on binary
classification, we extract a subset with digits 3 and 8 from the original MNIST dataset, which
consists of 9, 943 training examples. In addition, we also extract two classes of images (“cat”
and “ship”) from the original CIFAR10 dataset, which consists of 7, 931 training examples.
Regarding the neural network architecture, we use a fully-connected deep ReLU network
with L = 15 hidden layers, each layer has width m. The network architecture is consistent
with the setting of our theory.

We first demonstrate that over-parameterization indeed helps optimization.We runGD for
training deepReLUnetworkswith different networkwidths and plot the training loss in Fig. 1,
where we apply cross-entropy loss on both MNIST and CIFAR10 datasets. In addition, the
step sizes are set to be small enough and fixed for ReLU networks with different width. It can
be observed that over-parameterization indeed speeds up the convergence of gradient descent,
which is consistent with Lemmas 5.2 and 5.3, since the square of gradient norm scales with
m, which further implies that wider network leads to larger function decrease if the step size
is fixed. We also display the distance between the iterates of GD and the initialization in
Fig. 2. It shows that when the network becomes wider, GD is more likely to converge to a
point closer to the initialization. This suggests that the iterates of GD for training an over-
parameterized deep ReLU network are harder to exceed the required perturbation region,
thus can be guaranteed to converge to a global minimum. This corroborates our theory.

Finally, wemonitor the activation pattern changes of all hidden neurons during the training
process, and show the results in Fig. 3, where we use cross-entropy loss on both MNIST and
CIFAR10 datasets. Specifically, in each iteration, we compare the activation status of all
hidden nodes regarding all inputs with those at the initialization, and compute the number
of nodes whose activation status differs from that at the initialization. From Fig. 3 it is
clear that the activation pattern difference ratio dramatically decreases as the neural network
becomes wider, which brings less non-smoothness during the training process. This implies
that wider ReLU network can better guarantee sufficient function decrease after one-step
gradient descent, which is consistent with our theory.
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(a) MNIST (b) CIFAR10

Fig. 2 Distance between the iterates of GD and the initialization. a MNIST dataset. b CIFAR10 dataset

(a) MNIST (b) CIFAR10

Fig. 3 Activation pattern difference ratio between iterates of GD and the initialization. a MNIST dataset. b
CIFAR10 dataset

7 Conclusions and future work

In this paper, we studied training deep neural networks by gradient descent. We proved
that gradient descent can achieve global minima of the training loss for over-parameterized
deep ReLU networks with random initialization, with milder assumption on the training
data. Compared with the state-of-the-art results, our theoretical guarantees are sharper in
terms of both over-parameterization condition and convergence rate. Our result can also be
extended to stochastic gradient descent (SGD) and other loss functions (e.g., square hinge
loss and smoothed hinge loss). Such extensions can be found in the longer version of this
paper (Zou et al. 2018). In the future, we will further improve the over-parameterization
condition such that it is closer to width of neural networks used in practice. Our proof
technique can also be extended to other neural network architectures including convolutional
neural networks (CNNs) (Krizhevsky et al. 2012), residual networks (ResNets) (He et al.
2016) and recurrent neural networks (RNNs) (Hochreiter and Schmidhuber 1997), and give
sharper over-parameterization conditions than existing results for CNNs, ResNets (Du et al.
2018a; Allen-Zhu et al. 2018a) and RNNs (Allen-Zhu et al. 2018b). Moreover, it is also
interesting to explore howour optimization guarantees of over-parameterized neural networks
can be integrated with existing universal approximation ability results such as Hornik (1991),
Telgarsky (2016), Lin and Jegelka (2018), Zhou (2019).
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A Proofs of lemmas in Sect. 5

In this section we provide the proof of all lemmas in Sect. 5.

A.1 Proof of Lemma 5.1

We first provide the following lemma that bounds the output of all hidden layer.

Lemma A.1 With Gaussian random initialization, for any δ ∈ (0, 1), if m ≥ CL2 log(nL/δ)
for some large enough constant C, then with probability at least 1 − δ, the following holds
for all l ∈ [L],

∣∣∥xl,i∥2 − 1
∣∣ ≤ Cl

√
log(nL/δ)

m
,

where m = min{m1, . . . ,mL }, and C is an absolute constant.

Proof of Lemma 5.1 Note that half of the entries of v are 1’s and the other half of the entries
are −1’s. Therefore, without loss of generality, here we assume that v1 = · · · = vmL/2 = 1
and vmL/2+1 = · · · = vmL = −1. Clearly, we have E(ŷi ) = 0. Moreover, plugging in the
value of v gives

ŷi =
mL/2∑

j=1

[σ (w⊤
L, jxL−1,i ) − σ (w⊤

L, j+mL/2xL−1,i )].

Apparently, we have ∥σ (w⊤
L, jxL−1,i )−σ (w⊤

L, j+mL/2
xL−1,i )∥ψ2 ≤ C1m

−1/2
L for some abso-

lute constant C1. Therefore by Hoeffding’s inequality and Lemma A.1, with probability at
least 1 − δ, it holds that

|̂yi | ≤ C2
√
log(n/δ)

for all i = 1, . . . , n. Then substituting the above bound into the formula of loss function
ℓ(yi ŷi ), we are able to complete the proof. ⊓.

A.2 Proof of Lemma 5.2

In order to prove Lemma 5.2, we require the following lemmas.We first establish the gradient
lower bound at the initialization. Specifically, the following lemma gives a lower bound of
gradient norm with respect to the weight matrix in the last hidden layer.

Lemma A.2 There exist absolute constants C,C ′,C ′′,C ′′′ > 0 such that, if m ≥
Cn2φ−1 log(n), then with probability at least 1 − exp(−C ′mLφ/n), for any a =
(a1, . . . , an)⊤ ∈ Rn

+, there exist at least C
′′mLφ/n nodes in {1, . . . , j, . . . ,mL } that satisfy
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∥∥∥∥∥
1
n

n∑

i=1

ai yiσ ′(⟨wL, j , xL−1,i ⟩)xL−1,i

∥∥∥∥∥
2

≥ C ′′′∥a∥∞/n

The following lemma characterizes the Lipschitz continuity of the gradients when the neural
network parameters are staying inside the required perturbation region, which is essential to
bound the norms of gradients.

Lemma A.3 [Lemmas B.1 and B.2 in Zou et al. (2018)] Suppose that W1, . . . ,WL are
generated via Gaussian initialization. For τ > 0, let W̃1, . . . , W̃L with ∥W̃l − Wl∥2 ≤ τ ,
l = 1, . . . , L be the perturbed matrices. Let !̃l,i , l = 1, . . . , L, i = 1, . . . , n be diagonal
matrices satisfying ∥!̃l,i − !l,i∥0 ≤ s and |(!̃l,i − !l,i ) j j |, |(!̃l,i ) j j | ≤ 1 for all l =
1, . . . , L, i = 1, . . . , n and j = 1, . . . ,ml. If τ,

√
s log(M)/m ≤ κL−3/2 for some small

enough absolute constant κ , then
∥∥∥∥∥∥

l2∏

r=l1

!̃r ,iW̃⊤
r

∥∥∥∥∥∥
2

≤ C
√
L,

∥∥∥∥∥∥
v⊤

L∏

r=l1

!̃r ,iW̃⊤
r

∥∥∥∥∥∥
2

≤ C ′√M,

∥∥∥∥∥∥
v⊤

L∏

r=l1

!̃r ,iW̃⊤
r u

∥∥∥∥∥∥
2

≤ C ′′√s log(M)

for any 1 ≤ l1 < l2 ≤ L and vector u with ∥u∥2 = 1 and ∥u∥0 ≤ s, where C, C ′ and C ′′

are absolute constants.

We then provide the following lemma which characterizes the difference between activa-
tion patterns and outputs of all hidden layers generated by any two different neural networks.

Lemma A.4 [Lemma B.3 in Zou et al. (2018)] Suppose thatW1, . . . ,WL are generated via
Gaussian initialization. Let W̃ = {W̃1, . . . , W̃L }, Ŵ = {Ŵ1, . . . , ŴL } be two collections of
weight matrices satisfying ∥W̃l −Wl∥2, ∥Ŵl −Wl∥2 ≤ τ , l = 1, . . . , L. Let!l,i , !̃l,i , !̂l,i
and xl,i , x̃l,i , x̂l,i be the binary matrices and hidden layer outputs at the l-th layer with
parameter matrices W, W̃, Ŵ respectively. If τ ≤ κ ′L−11(log(M))−3/2 for some small
enough absolute constant κ ′ > 0, then there exits constants C and C ′ such that

∥̂xl,i − x̃l,i∥2 ≤ CL ·
l∑

r=1

∥Ŵr − W̃r∥2, ∥!̂l,i − !̃l,i∥0 ≤ C ′L4/3τ 2/3ml ,

for all l = 1, . . . , L and i = 1, . . . , n.

Now we ready to prove Lemma 5.2.

Proof of Lemma 5.2 Wefirst prove the gradient upper bound. For the training example (xi , yi ),
let ỹi = fW̃(xi ), the gradient ∇Wl ℓ(yi ỹi ) can be written as follows,

∇Wl ℓ(yi ỹi ) = ℓ′(yi ỹi )yi∇Wl [ fW̃(xi )]

= ℓ′(yi ỹi )yi x̃l−1,iv⊤
(

L∏

r=l+1

!̃r ,iW̃⊤
l

)

!̃l,i .

Note that by Lemma A.3, there exists an absolute constantC0 such that ∥
∏l2

r=l1
!̃r ,iW̃r∥2 ≤

C0
√
L . Hence, we have the following upper bound on

∥∥∇Wl ℓ(yi ỹi )
∥∥
F ,

∥∥∇Wl ℓ(yi ỹi )
∥∥
F =

∥∥∇Wl ℓ(yi ỹi )
∥∥
2 ≤ −ℓ′(yi ỹi )

∥∥∥∥∥

l−1∏

r=1

!̃r ,iW̃⊤
r xi

∥∥∥∥∥
2

∥∥∥∥∥

L∏

r=l+1

!̃r ,iW̃⊤
l

∥∥∥∥∥
2

∥v∥2

≤ −ℓ′(yi ỹi )C2
0 LM

1/2,
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where the first equality holds due to the fact that ∇Wl ℓ(yi ỹi ) = ℓ′(yi ỹi )yi x̃l−1,iv⊤( ∏L
r=l+1

!̃r ,iW̃⊤
l

)
!̃l,i is a rank-one matrix, and the last inequality follows from the fact that ∥v∥2 =

m1/2
L ≤ M1/2. Moreover, we have the following for ∇Wl [LS(W̃)]:

∥∥∇Wl [LS(W̃)]
∥∥
F =

∥∥∥∥∥
1
n

n∑

i=1

∇Wl ℓ(yi ỹi )

∥∥∥∥∥
F

≤ 1
n

n∑

i=1

∥∥∇Wl ℓ(yi ỹi )
∥∥
F ≤ −C2

0 LM
1/2

n

n∑

i=1

ℓ′(yi ỹi ),

which completes the proof of gradient upper bound.
Now we are going to prove the gradient lower bound. Given initialization W(0) and any

W̃ ∈ B(W(0), τ ), let ỹi = fW̃(xi ), we define

g j =
1
n

n∑

i=1

ℓ′(yi ỹi )yiv jσ
′(⟨w(0)

L, j , xL−1,i ⟩)xL−1,i ,

where xL,i denotes the output of the last hidden layer with input xi at the initialization. Then
since W(0) is generated via Gaussian random initialization, by Lemma A.2, we have the
following holds for at least C2mLφ/n nodes,

∥g j∥2 ≥ C1 max
i

|ℓ′(yi ỹi )|/n

where C1,C2 > 0 are positive absolute constants. Moreover, we rewrite the gradient
∇WL, j L S(W̃) as follows:

∇WL, j L S(W̃) = 1
n

n∑

i=1

ℓ′(yi ỹi )yiv jσ
′(⟨w̃L, j , x̃L−1,i ⟩)̃xL−1,i ,

where x̃l,i denotes the output of the l-th hidden layer with input xi and weight matrices W̃.

Let bi, j = ℓ′(yi ỹi )yiv j , we have

∥g j∥2 − ∥∇WL, j L S(W̃)∥2

≤
∥∥∥∥∥
1
n

n∑

i=1

bi, j
(
σ ′(⟨w̃L, j , x̃L−1,i ⟩)̃xL−1,i − σ ′(⟨w(0)

L, j , xL−1,i ⟩)xL−1,i
)
∥∥∥∥∥
2

≤
∥∥∥∥∥
1
n

n∑

i=1

bi, j
[(

σ ′(⟨w̃L, j , x̃L−1,i ⟩) − σ ′(⟨w(0)
L, j , xL−1,i ⟩

)
xL−1,i + σ ′(⟨w̃L, j , x̃L−1,i ⟩)(̃xL−1,i − xL−1,i )

]∥∥∥∥∥
2

.

According to Lemma A.4, the number of nodes satisfying σ ′(⟨w̃L, j , x̃L−1,i ⟩) − σ ′(⟨w(0)
L, j ,

xL−1,i ⟩ ̸= 0 for at least one i is at most C3nL4/3τ 2/3mL , where C3 is an absolute constant.
For the rest of the nodes in this layer, we have

∥g j∥2 − ∥∇WL, j L S(W̃)∥2 ≤
∥∥∥∥∥
1
n

n∑

i=1

bi, jσ ′(⟨w̃L, j , x̃L−1,i ⟩)(̃xL−1,i − xL−1,i )

∥∥∥∥∥
2

≤ 1
n

n∑

i=1

C4L2τ |bi, j |

≤ C4L2τ max
i

|ℓ′(yi ỹi )|,

where C4 is an absolute constant, the first inequality holds since these nodes satisfy
σ ′(⟨w̃L, j , x̃L−1,i ⟩) − σ ′(⟨w(0)

L, j , xL−1,i ⟩) = 0 for all i , the second inequality follows from
Lemma A.4 and triangle inequality. Let
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τ ≤
(

C2φ

2C3n2L4/3

)3/2

∧ C1

2nL2C4
= O

(
φ3/2n−3L−2).

Note that we have at least C2mLφ/n nodes satisfying ∥g j∥2 ≥ C1 maxi |ℓ′(yi ỹi )|/n, thus
there are at least C2mLφ/n − C3nL4/3τ 2/3mL = C2mLφ/(2n) nodes satisfying

∥∇WL, j L S(W̃)∥2 ≥ C1 max
i

|ℓ′(yi ỹi )|/n − C4L2τ max
i

|ℓ′(yi ỹi )|/n ≥ C1 maxi |ℓ′(yi ỹi )|
2n

.

Therefore,

∥∇WL LS(W̃)∥2F =
mL∑

j=1

∥∇WL, j L S(W̃)∥22

≥ C2φmL

2n

(
C1 maxi |ℓ′(yi ŷ

(k)
i )yiv j |

2n

)2

≥ C2C2
1φmL

8n5

(
n∑

i=1

ℓ′(yi ŷ
(k)
i )

)2

,

where the last inequality follows from the fact that ℓ′(·) < 0 and |yiv j | = 1.LetC = C2C2
1/8,

we complete the proof. ⊓.

A. 3 Proof of Lemma 5.3

Proof of Lemma 5.3 Note that ℓ(x) is 1/4-smooth, thus the following holds for any - and x ,

ℓ(x + -) ≤ ℓ(x)+ ℓ′(x)- + 1
8
-2.

Then we have the following upper bound on LS(W(k+1)) − LS(W(k)),

LS(W(k+1)) − LS(W(k)) = 1
n

n∑

i=1

[
ℓ
(
yi ŷ

(k+1)
i

)
− ℓ

(
yi ŷ

(k)
i

)]

≤ 1
n

n∑

i=1

[
ℓ′(yi ŷ

(k)
i )-

(k)
i + 1

8
(-

(k)
i )2

]
, (A.1)

where -
(k)
i = yi

(
ŷ(k+1)
i − ŷ(k)i

)
. Therefore, our next goal is to bound the quantity -

(k)
i .

The upper bound of |-(k)
i | can be derived straightforwardly. By Lemma A.4, we know

that there exists a constant C1 such that

∥x(k+1)
L,i − x(k)L,i∥2 ≤ C1L ·

L∑

l=1

∥W(k+1)
l − W(k)

l ∥2

= C1Lη

L∑

l=1

∥∥∇Wl [LS(W(k))]
∥∥
2

≤ C1L1.5η∥∇LS(W(k))∥F . (A.2)

Therefore, it follows that

|-(k)
i | = |yiv⊤(x(k+1)

L,i − x(k)L,i )| ≤ ∥v∥2∥x(k+1)
L,i − x(k)L,i∥2 ≤ C1L1.5M1/2∥∇LS(W(k))∥F ,
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where we use the fact that ∥v∥2 ≤ M1/2. In what follows we are going to prove the lower
bound of -

(k)
i . Note that -(k)

i = yiv⊤(
x(k+1)
L,i −x(k)L,i

)
, thus we mainly focus on bounding the

term x(k+1)
L,i − x(k)L,i . For l = 1, . . . , L , we define the diagonal matrix !̃

(k)
l,i as

(
!̃

(k)
l,i

)
j j =

(
!

(k+1)
l,i − !

(k)
l,i

)
j j ·

w(k)⊤
l, j x(k)l−1,i

w(k+1)⊤
l, j x(k+1)

l−1,i − w(k)⊤
l, j x(k)l−1,i

.

Given the above definition of !̃
(k)
l,i , we have

x(k+1)
L,i − x(k)L,i

=
(
!

(k)
L,i + !̃

(k)
L,i

)(
W(k+1)⊤

L x(k+1)
L−1,i − W(k)⊤

L x(k)L−1,i

)

=
(
!

(k)
L,i + !̃

(k)
L,i

)
W(k+1)⊤

L

(
x(k+1)
L−1,i − x(k)L−1,i

)
+

(
!

(k)
L,i + !̃

(k)
L,i

)(
W(k+1)⊤

L − W(k)⊤
L

)
x(k)L−1,i

=
L∑

l=1

(
L∏

r=l+1

(
!

(k)
r ,i + !̃

(k)
r ,i

)
W(k+1)⊤

r

)
(
!

(k)
l,i + !̃

(k)
l,i

)(
W(k+1)⊤

l − W(k)⊤
l

)
x(k)l−1,i .

Then we define

D(k)
l,i =

(
L∏

r=l+1

!
(k)
r ,iW

(k)⊤
r

)

!
(k)
l,i , D̃(k)

l,i =
(

L∏

r=l+1

(
!

(k)
r ,i + !̃

(k)
r ,i

)
W(k+1)⊤

r

)
(
!

(k)
l,i + !̃

(k)
l,i

)
.

Then by triangle inequality, we have
∥∥v⊤(

D(k)
l,i − D̃(k)

l,i
)∥∥

2 ≤
∥∥v⊤(

D(k)
l,i − D(0)

l,i

)∥∥
2 +

∥∥v⊤(
D(0)
l,i − D̃(k)

l,i
)∥∥

2.

Note that,
∥∥v⊤(

D(k)
l,i − D(0)

l,i

)∥∥
2

≤
L∑

r=l

∥∥∥∥∥v
⊤

(
L∏

t=r+1

!
(k)
t,i W

(k)⊤
t

) (
!

(k)
t,i W

(k)⊤
t − !

(0)
t,i W

(0)⊤
t

) (
L∏

t=l+1

!
(0)
t,i W

(0)⊤
t

)∥∥∥∥∥
2

≤
L∑

r=l

∥∥∥∥∥v
⊤

(
L∏

t=r+1

!
(k)
t,i W

(k)⊤
t

) (
!

(k)
t,i − !

(0)
t,i

)∥∥∥∥∥
2

∥∥∥∥∥W
(0)⊤
t

(
L∏

t=l+1

!
(0)
t,i W

(0)⊤
t

)∥∥∥∥∥
2

+
L∑

r=l

∥∥∥∥∥v
⊤

(
L∏

t=r+1

!
(k)
t,i W

(k)⊤
t

)

!
(k)
t,i

∥∥∥∥∥
2

∥∥∥W(k)
t − W(0)⊤

t

∥∥∥
2

∥∥∥∥∥

L∏

t=l+1

!
(0)
t,i W

(0)⊤
t

∥∥∥∥∥
2

.

Then by Lemma A.3, and use the fact that ∥!(k)
t,i − !

(0)
t,i ∥0 ≤ O

(
L4/3τ 2/3M

)
, we have

∥∥v⊤(
D(k)
l,i − D(0)

l,i

)∥∥
2 ≤ C2L13/6τ 1/3

√
M log(M)+ C3L3/2

√
Mτ,

where C2 and C3 are absolute constants and we use the fact that ∥v∥2 ≤
√
M . Then note that

τ ≤ 1, the second term on the R.H.S. of the above inequality is dominated by the first one.
Then we have

∥∥v⊤(
D(k)
l,i − D(0)

l,i

)∥∥
2 ≤ C5L13/6τ 1/3

√
M log(M), (A.3)

123

Author's personal copy



Machine Learning

where C5 is an absolute constant. This inequality also holds for
∥∥v⊤(

D̃(k)
l,i − D(0)

l,i

)∥∥
2. There-

fore, we have

-
(k)
i = yiv⊤(

x(k+1)
L,i − x(k)L,i

)

= yiv⊤
L∑

l=1

D̃(k)
l,i

(
W(k+1)

l − W(k)
l

)
x(k)l−1,i

= −yiv⊤
L∑

l=1

(
D̃(k)
l,i − D(k)

l,i

)(
∇Wl [LS(W(k))]

)⊤x(k)l−1,i

︸ ︷︷ ︸
I (k)1,i

−yiv⊤
L∑

l=1

D(k)
l,i

(
∇Wl [LS(W(k))]

)⊤x(k)l−1,i

︸ ︷︷ ︸
I (k)2,i

.

By (A.3) and triangle inequality, we know that

|I (k)1,i | ≤ 2C5L13/6τ 1/3
√
M log(M)η ·

L∑

l=1

∥∥∇Wl [LS(W(k))]
∥∥
2

≤ 2C5L8/3τ 1/3
√
M log(M)η ·

∥∥∇LS(W(k))
∥∥
F .

Moreover, we have

1
n

n∑

i=1

ℓ′(yi ŷ
(k)
i )I (k)2,i = −η

n

n∑

i=1

ℓ′(yi ŷ
(k)
i )yiv⊤

(
L∏

r=l+1

!
(k)
r ,iW

(k)⊤
r

)

!
(k)
l,i

(
∇Wl [LS(W(k))]

)⊤x(k)l−1,i

= − η

n2

∥∥∥∥∥

n∑

i=1

ℓ′(yi ŷ
(k)
i )yix

(k)
l−1,iv

⊤
(

L∏

r=l+1

!
(k)
r ,iW

(k)⊤
r

)

!
(k)
l,i

∥∥∥∥∥

2

F

= −η∥∇Wl [LS(W(k))]∥2F .

Therefore, putting everything together, we have

LS(W(k+1)) − LS(W(k))

≤ 1
n

n∑

i=1

[
ℓ′(yi ŷ

(k)
i )-

(k)
i + 1

8
(-

(k)
i )2

]

≤ 1
n

n∑

i=1

ℓ′(yi ŷ
(k)
i )

(
I (k)1,i + I (k)2,i

)
+ C3ML3η2∥∇LS(W(k))∥2F

≤ −
(
η − C6ML3η2

)
∥∇LS(W(k))∥2F − C7L8/3τ 1/3

√
M log(M) · ∥∇LS(W(k))∥F

n

n∑

i=1

ℓ′(yi ŷ
(k)
i ),

where C6 and C7 are absolute constants. Thus we complete the proof. ⊓.
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B Proofs of lemmas in Appendix A

B.1 Proof of Lemma A.1

Proof of Lemma A.1 In order to prove the desired results, it suffices to prove the inequality

∣∣∥xl,i∥22 − ∥xl−1,i∥22
∣∣ ≤ C∥xl−1,i∥22 ·

√
log(nL/δ)

ml

for all i = 1, . . . , n and l = 1, . . . , L , since this inequality implies that

∥xl,i∥2 ≤
[
1+ C ′

√
log(nL/δ)

m

]1/2
∥xl−1,i∥2 ≤ · · · ≤

[
1+ C ′

√
log(nL/δ)

m

]l/2
∥xi∥2

≤ 1+ C ′l

√
log(nL/δ)

m
,

where C ′ is an absolute constant, and the last inequality follows by the fact that (1+ x)l/2 ≤
1 + lx for x ∈ (0, 1/(2L)), which is applicable here because of the assumption m ≥
CL2 log(nL/δ) for some large enough constant C . Similarly, we can also proved that

∥xl,i∥2 ≥ 1 − C ′′l

√
log(nL/δ)

m

for some absolute constant C ′′. Combining the upper and lower bounds of ∥xl,i∥2 derived
above gives the result of Lemma A.1.

For any fixed i ∈ {1, . . . , n}, l ∈ {1, . . . , L} and j ∈ {1, . . . ,ml}, condition on xl−1,i we
have w⊤

l, jxl−1,i ∼ N (0, 2∥xl−1,i∥22/ml). Therefore,

E[σ 2(w⊤
l, jxl−1,i )|xl−1,i ] =

1
2
E[(w⊤

l, jxl−1,i )
2|xl−1,i ] =

1
ml

∥xl−1,i∥22.

Since ∥xl,i∥22 = ∑ml
j=1 σ 2(w⊤

l, jxl−1,i ) and condition on xl−1, ∥σ 2(w⊤
l, jxl−1,i )∥ψ1 ≤

C1∥xl−1,i∥22/ml for some absolute constantC1, by Bernstein inequality (see Proposition 5.16
in Vershynin 2010), for any ξ ≥ 0 we have

P
(∣∣∥!l,iW⊤

l xl−1,i∥22 − ∥xl−1,i∥22
∣∣ ≥ ∥xl−1,i∥22ξ

∣∣∣xl−1,i

)
≤ 2 exp(−C2ml min{ξ2, ξ}).

Taking union bound over l and i gives

P
(∣∣∥xl,i∥22 − ∥xl−1,i∥22

∣∣ ≤ ∥xl−1,i∥22ξ, i = 1, . . . , n, l = 1, . . . , L
)

≥ 1 − 2nL exp(−C2ml min{ξ2, ξ}).

The inequality above further implies that if ml ≥ C2
3 log(nL/δ), then with probability at

least 1 − δ, we have

∣∣∥xl,i∥22 − ∥xl−1,i∥22
∣∣ ≤ C3∥xl−1,i∥22 ·

√
log(nL/δ)

ml

for any i = 1, . . . , n and l = 1, . . . , L , where C3 is an absolute constant. This completes the
proof. ⊓.
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B.2 Proof of Lemma A.2

In order to prove the gradient bounds, one key aspect is that the separation property for
training data can be well preserved after passing through layers. The following lemma shows
that the separation distance can be well preserved for all intermediate layers.

Lemma B.1 Under the same conditions in Lemma A.2, with probability at least 1 − δ,

∥xl,i − xl,i ′ ∥2 ≥ φ/2

for all i, i ′ = 1, . . . , n with yi ̸= yi ′ , l = 1, . . . , L.

Lemma B.2 Let z1, . . . , zn ∈ Sd−1 be n unit vectors and y1, . . . , yn ∈ {−1, 1} be the corre-
sponding labels. Assume that for any i ̸= j such that yi ̸= y j , ∥zi −z j∥2 ≥ φ̃ and z⊤

i z j ≥ µ̃2

for some φ̃, µ̃ > 0. For any a = (a1, . . . , an)⊤ ∈ Rn
+, let h(w) =

∑n
i=1 ai yiσ

′(⟨w, zi ⟩)zi
where w ∼ N (0, I) is a Gaussian random vector. If φ̃ ≤ µ̃/2, then there exist absolute
constants C,C ′ > 0 such that

P
[
∥h(w)∥2 ≥ C∥a∥∞

]
≥ C ′φ̃/n.

The following lemma is essential to show that deep ReLU network can provide signifi-
cantly large gradient at the initialization.

Proof of Lemma A.2 For any given j ∈ {1, . . . ,mL } and â with ∥̂a∥∞ = 1. By Lemma
B.1, we know that for any i ̸= j and yi ̸= y j , ∥x̄L−1,i − x̄L−1, j∥2 ≥ φ̃, where x̄L−1,i =
xL−1,i/∥xL−1,i∥2 and x̄L−1, j = xL−1, j/∥xL−1,i∥2. Then by Lemma B.2, we have

P
[∥∥∥∥∥

1
n

n∑

i=1

âi yiσ ′(⟨wL, j , xL−1,i ⟩)xL−1,i

∥∥∥∥∥
2

≥ C1

n

]

≥ C2φ

n
,

where C1,C2 > 0 are absolute constants. Let Sn−1
∞,+ = {a ∈ Rn

+ : ∥a∥∞ = 1}, and
N = N [Sn−1

∞,+,C1/(4n)] be a C1/(4n)-net covering Sn−1
∞,+ in ℓ∞ norm. Then we have

|N | ≤ (4n/C1)
n .

For j = 1, . . . ,mL , define

Z j = 1

[∥∥∥∥∥
1
n

n∑

i=1

âi yiσ ′(⟨wL, j , xL−1,i ⟩)xL−1,i

∥∥∥∥∥
2

≥ C1

n

]

.

Let pφ = C2φ/n. Then by Bernstein inequality and union bound, with probability at least
1 − exp[−C3mL pφ + n log(4n/C1)] ≥ 1 − exp(C4mLφ/n), we have

1
mL

mL∑

j=1

Z j ≥ pφ/2, (B.1)

where C3,C4 are absolute constants. For any a ∈ Sn−1
∞,+, there exists â ∈ N such that

∥a − â∥∞ ≤ C1/(4n).
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Therefore, we have
∣∣∣∣∣

∥∥∥∥∥
1
n

n∑

i=1

ai yiσ ′(⟨wL, j , xL−1,i ⟩)xL−1,i

∥∥∥∥∥
2

−
∥∥∥∥∥
1
n

n∑

i=1

âi yiσ ′(⟨wL, j , xL−1,i ⟩)xL−1,i

∥∥∥∥∥
2

∣∣∣∣∣

≤
∥∥∥∥∥
1
n

n∑

i=1

ai yiσ ′(⟨wL, j , xL−1,i ⟩)xL−1,i − 1
n

n∑

i=1

âi yiσ ′(⟨wL, j , xL−1,i ⟩)xL−1,i

∥∥∥∥∥
2

≤ 2
n

n∑

i=1

|ai − âi | ≤ C1

2n
. (B.2)

By (B.1) and (B.2), it is clear that with probability at least 1 − exp(C4mLφ/n), for any
a ∈ Sn−1

∞,+, there exist at least mL pφ/2 nodes on layer L that satisfy
∥∥∥∥∥
1
n

n∑

i=1

ai yiσ ′(⟨wL, j , xL−1,i ⟩)xL−1,i

∥∥∥∥∥
2

≥ C1

2n
.

This completes the proof. ⊓.

C Proofs of lemmas in Appendix B

C.1 Proof of Lemma B.1

The following lemma is necessary for proving Lemma B.1.

Lemma C.1 [Lemma A.3 in Zou et al. (2018)] For θ > 0, let Z1, Z2 be two jointly Gaussian
random variables withE(Z1) = E(Z2) = 0,E(Z2

1) = E(Z2
2) = 1 andE(Z1Z2) ≤ 1−θ2/2.

If θ ≤ κ for some small enough absolute constant κ , then

E[σ (Z1)σ (Z2)] ≤ 1
2

− 1
4
θ2 + Cθ3,

where C is an absolute constant.

Proof of Lemma B.1 We first consider any fixed l ≥ 1. Suppose that ∥xl−1,i − xl−1,i ′ ∥2 ≥
[1 − (2L)−1 log(2)]l−1φ. If we can show that under this condition, with high probability

∥xl,i − xl,i ′ ∥2 ≥ [1 − (2L)−1 log(2)]lφ,

then the result of the lemma follows by union bound and induction. Denote

φl−1 = [1 − (2L)−1 log(2)]l−1φ.

Then by assumption we have ∥xl−1,i − xl−1,i ′ ∥22 ≥ φ2
l−1. Therefore x⊤

l−1,ixl−1,i ′ ≤ 1 −
φ2
l−1/2. It follows by direct calculation that

E
(
∥xl,i − xl,i ′ ∥22

∣∣xl−1,i , xl−1,i ′
)
= E

(
∥xl,i∥22 + ∥xl,i ′ ∥22

∣∣xl−1,i , xl−1,i ′
)
− 2E

(
x⊤
l,ixl,i ′

∣∣xl−1,i , xl−1,i ′
)

= (∥xl−1,i∥22 + ∥xl−1,i ′ ∥22) − 2E
(
x⊤
l,ixl,i ′

∣∣xl−1,i , xl−1,i ′
)
.
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By Lemma C.1 and the assumption that φl−1 ≤ φ ≤ κ , we have

E
(
x⊤
l,ixl,i ′

∣∣xl−1,i , xl−1,i ′
)

= E

⎡

⎣
ml∑

j=1

σ (w⊤
l, jxl−1,i )σ (w⊤

l, jxl−1,i ′)

∣∣∣∣xl−1,i , xl−1,i ′

⎤

⎦

= ∥xl−1,i∥2∥xl−1,i ′ ∥2 · E

⎡

⎣
ml∑

j=1

σ (w⊤
l, jxl−1,i )σ (w⊤

l, jxl−1,i ′)

∣∣∣∣xl−1,i , xl−1,i ′

⎤

⎦

≤ 2
m

∥xl−1,i∥2∥xl−1,i ′ ∥2 · m ·
(
1
2

− 1
4
φ2
l−1 + Cφ3

l−1

)

= ∥xl−1,i∥2∥xl−1,i ′ ∥2 ·
(
1 − 1

2
φ2
l−1 + 2Cφ3

l−1

)
.

Therefore,

E
(
∥xl,i − xl,i ′ ∥22

∣∣xl−1,i , xl−1,i ′
)

≥ (∥xl−1,i∥2 − ∥xl−1,i ′ ∥2)2 + ∥xl−1,i∥2∥xl−1,i ′ ∥2(φ2
l−1 − 4Cφ3

l−1).

(C.1)

Condition on xl−1,i and xl−1,i ′ , by Lemma 5.14 in Vershynin (2010) we have
∥∥[σ (w⊤

l, jxl−1,i ) − σ (w⊤
l, jxl−1,i ′)]2

∥∥
ψ1

≤ 2
[∥∥[σ (w⊤

l, jxl−1,i )
∥∥

ψ2
+

∥∥σ (w⊤
l, jxl−1,i ′)

∥∥
ψ2

]2

≤ C1(∥xl−1,i∥2 + ∥xl−1,i ′ ∥2)2/ml ,

whereC1 is an absolute constant. Therefore ifml ≥ C2
2 log(4n

2L/δ), by Bernstein inequality
and union bound, with probability at least 1 − δ/(4n2L) we have

∣∣∥xl,i − xl,i ′ ∥22 − E
(
∥xl,i − xl,i ′ ∥22

∣∣xl−1,i , xl−1,i ′
)∣∣ ≤ C2(∥xl−1,i∥2 + ∥xl−1,i ′ ∥2)2 ·

√
log(8n2L/δ)

ml
,

where C2 is an absolute constant. Therefore with probability at least 1 − δ/(4n2L) we have

∥xl,i − xl,i ′ ∥22 ≥ (∥xl−1,i∥2 − ∥xl−1,i ′ ∥2)2 + ∥xl−1,i∥2∥xl−1,i ′ ∥2(φ2
l−1 − 4Cφ3

l−1)

− C2(∥xl−1,i∥2 + ∥xl−1,i ′ ∥2)2 ·
√
log(8n2L/δ)

ml
.

By union bound and Lemma A.1, if mr ≥ C3L4φ−4
l log(4n2L/δ), r = 1, . . . , l for some

large enough absolute constant C3 and φ ≤ κL−1 for some small enough absolute constant
κ , then with probability at least 1 − δ/(2n2L) we have

∥xl,i − xl,i ′ ∥22 ≥ [1 − (4L)−1 log(2)]φ2
l−1 ≥ [1 − (4L)−1 log(2)]2φ2

l−1.

Moreover, by Lemma A.1, with probability at least 1 − δ/(2n2L) we have
∣∣∥xl,i − xl,i ′ ∥2 − ∥xl,i − xl,i ′ ∥2

∣∣ ≤ ∥xl,i − xl,i∥2 + ∥xl,i ′ − xl,i ′ ∥2
=

∣∣1 − ∥xl,i∥2
∣∣ +

∣∣1 − ∥xl,i ′ ∥2
∣∣

≤ (4L)−1 log(2) · φ2
l−1,

and therefore with probability at least 1 − δ/(n2L), we have

∥xl,i − xl,i ′ ∥2 ≥ [1 − (2L)−1 log(2)]φl−1 = [1 − (2L)−1 log(2)]lφ.
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Applying union bound and induction over l = 1, . . . , L completes the proof. ⊓.

C.2 Proof of Lemma B.2

Proof of Lemma B.2 Without loss of generality, assume that a1 = ∥a∥∞. Since ∥z1∥2 = 1,
we can construct an orthonormal matrix Q = [z1,Q′] ∈ Rd×d . Let u = Q⊤w ∼ N (0, I) be
a standard Gaussian random vector. Then we have

w = Qu = u1z1 +Q′u′,

where u′ := (u2, . . . , ud)⊤ is independent of u1. We define the following two events based
on a parameter γ ∈ (0, 1]:

E1(γ ) =
{
|u1| ≤ γ

}
, E2(γ ) =

{
|⟨Q′u′, zi ⟩| ≥ γ for all zi such that ∥zi − z1∥2 ≥ φ̃

}
.

Let E(γ ) = E1(γ ) ∩ E2(γ ). We first give lower bound for P(E) = P(E1)P(E2). Since u1 is a
standard Gaussian random variable, we have

P(E1) =
1√
2π

∫ γ

−γ
exp

(
− 1

2
x2

)
dx ≥

√
2
πe

γ .

Moreover, by definition, for any i = 1, . . . , n we have

⟨Q′u′, zi ⟩ ∼ N
[
0, 1 − (z⊤

1 zi )
2].

Let I = {i : ∥zi − z1∥2 ≥ φ̃}. By the assumption that φ̃ ≤ µ̃/2, for any i ∈ I, we have

−1+ φ̃2/2 ≤ −(1 − µ̃2)+ µ̃2 ≤ ⟨zi , z1⟩ ≤ 1 − φ̃2/2,

and if φ̃2 ≤ 2, then

1 − (z⊤
1 zi )

2 ≥ φ̃2 − φ̃4/4 ≥ φ̃2/2.

Therefore for any i ∈ I,

P[|⟨Q′u′, zi ⟩| < γ ] = 1√
2π

∫ [1−(z⊤1 zi )
2]−1/2γ

−[1−(z⊤1 zi )2]−1/2γ
exp

(
− 1

2
x2

)
dx ≤

√
2
π

γ

[1 − (z⊤
1 zi )

2]1/2 ≤ 2√
π

γ φ̃−1.

By union bound over I, we have

P(E2) = P[|⟨Q′u′, zi ⟩| ≥ γ , i ∈ I] ≥ 1 − 2√
π
nγ φ̃−1.

Therefore we have

P(E) ≥
√

2
πe

γ ·
(
1 − 2√

π
nγ φ̃−1

)
.

Setting γ = √
πφ̃/(4n), we obtain P(E) ≥ φ̃/(

√
32en). Now let I ′ = [n] \ (I ∪ {1}). Then

conditioning on event E , we have

h(w) =
n∑

i=1

ai yiσ ′(⟨w, zi ⟩)zi

= a1y1σ ′(u1)z1 +
∑

i∈I
ai yiσ ′(u1⟨z1, zi ⟩ + ⟨Q′u′, zi ⟩

)
zi

123

Author's personal copy



Machine Learning

+
∑

i∈I′
ai yiσ ′(u1⟨z1, zi ⟩ + ⟨Q′u, zi ⟩

)
zi

= a1y1σ ′(u1)z1 +
∑

i∈I
ai yiσ ′(⟨Q′u′, zi ⟩

)
zi +

∑

i∈I′
ai yiσ ′(u1⟨z1, zi ⟩ + ⟨Q′u′, zi ⟩

)
zi ,

(C.2)

where the last equality follows from the fact that conditioning on event E , for all i ∈ I, it
holds that |⟨Q′u′, zi ⟩| ≥ |u1| ≥ |u1⟨z1, zi ⟩|. We then consider two cases: u1 > 0 and u1 < 0,
which occur equally likely conditioning on E . Therefore we have

P
[
∥h(w)∥2 ≥ inf

u(1)1 >0,u(2)1 <0
max

{∥∥h(u(1)1 z1 +Q′u′)
∥∥
2,

∥∥h(u(2)1 z1 +Q′u′)
∥∥
2

}∣∣∣∣E
]

≥ 1/2.

By the inequality max{∥a∥2, ∥b∥2} ≥ ∥a − b∥2/2, we have

P
[
∥h(w)∥2 ≥ inf

u(1)1 >0,u(2)1 <0

∥∥h(u(1)1 z1 +Q′u′) − h(u(2)1 z1 +Q′u′)
∥∥
2/2

∣∣∣∣E
]

≥ 1/2.

(C.3)

For any u(1)1 > 0 and u(2)1 < 0, denote w1 = u(1)1 z1 + Q′u′, w2 = u(2)1 z1 + Q′u′. We now
proceed to give lower bound for ∥h(w1) − h(w2)∥2. By (C.2), we have

h(w1) − h(w2) = a1y1z1 +
∑

i∈I′
a′
i yizi , (C.4)

where

a′
i = ai

[
σ ′(u(1)1 ⟨z1, zi ⟩ + ⟨Q′u′, zi ⟩

)
− σ ′(u(2)1 ⟨z1, zi ⟩ + ⟨Q′u′, zi ⟩

)]
.

Note that for all i ∈ I ′, we have yi = y1 and ⟨z1, zi ⟩ ≥ 1 − φ̃2/2 ≥ 0. Therefore, since
u(1)1 > 0 > u(2)1 , we have

σ ′(u(1)1 ⟨z1, zi ⟩ + ⟨Q′u′, zi ⟩
)
− σ ′(u(2)1 ⟨z1, zi ⟩ + ⟨Q′u′, zi ⟩

)
≥ 0.

Therefore a′
i ≥ 0 for all i ∈ I ′ and

h(w1) − h(w2) = a1y1z1 +
∑

i∈I′
a′
i y1zi = y1

(
a1z1 +

∑

i∈I′
a′
izi

)
,

We have shown that ⟨zi , z1⟩ ≥ 0 for all i ∈ I ′. Therefore we have

∥h(w1) − h(w2)∥2 ≥
∥∥∥∥∥y1

(

a1z1 +
∑

i∈I′
a′
izi

)∥∥∥∥∥
2

≥
〈

a1z1 +
∑

i∈I′
a′
izi , z1

〉

≥ a1.

Since the inequality above holds for any u(1)1 > 0 and u(2)1 < 0, taking infimum gives

inf
u(1)1 >0,u(2)1 <0

∥h(w1) − h(w2)∥2 ≥ a1. (C.5)

Plugging (C.5) back to (C.3), we obtain

P
[
∥h(w)∥2 ≥ a1/2

∣∣E
]

≥ 1/2,
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Since a1 = ∥a∥∞ and P(E) ≥ φ̃/(
√
32en), we have

P
[
∥h(w)∥2 ≥ C∥a∥∞

]
≥ C ′φ̃/n,

where C and C ′ are absolute constants. This completes the proof. ⊓.
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