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Abstract
We initiate a study of algorithms with a focus on the computational complexity of individual elements,
and introduce the fragile complexity of comparison-based algorithms as the maximal number of
comparisons any individual element takes part in. We give a number of upper and lower bounds on
the fragile complexity for fundamental problems, including Minimum, Selection, Sorting and
Heap Construction. The results include both deterministic and randomized upper and lower
bounds, and demonstrate a separation between the two settings for a number of problems. The depth
of a comparator network is a straight-forward upper bound on the worst case fragile complexity
of the corresponding fragile algorithm. We prove that fragile complexity is a different and strictly
easier property than the depth of comparator networks, in the sense that for some problems a fragile
complexity equal to the best network depth can be achieved with less total work and that with
randomization, even a lower fragile complexity is possible.
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1 Introduction

Comparison-based algorithms is a classic and fundamental research area in computer science.
Problems studied include minimum, median, sorting, searching, dictionaries, and priority
queues, to name a few, and by now a huge body of work exists. The cost measure analyzed
is almost always the total number of comparisons needed to solve the problem, either in the
worst case or the expected case. Surprisingly, very little work has taken the viewpoint of
the individual elements, asking the question: how many comparisons must each element be
subjected to?

This question not only seems natural and theoretically fundamental, but is also practically
well motivated: in many real world situations, comparisons involve some amount of destructive
impact on the elements being compared, hence, keeping the maximum number of comparisons
for each individual element low can be important. One example of such a situation is ranking
of any type of consumable objects (wine, beer, food, produce), where each comparison reduces
the available amount of the objects compared. Here, classical algorithms like QuickSort,
which takes a single object and partitions the whole set with it, may use up this pivot element
long before the algorithm completes. Another example is sports, where each comparison
constitutes a match and takes a physical toll on the athletes involved. If a comparison scheme
subjects one contestant to many more matches than others, both fairness to contestants
and quality of result are impacted. The selection process could even contradict its own
purpose—what is the use of finding a national boxing champion to represent a country at
the Olympics if the person is injured in the process? Notice that in both examples above,
quality of elements is difficult to measure objectively by a numerical value, hence one has to
resort to relative ranking operations between opponents, i.e., comparisons. The detrimental
impact of comparisons may also be of less directly physical nature, for instance if it involves
a privacy risk for the elements compared, or if bias in the comparison process grows each
time the same element is used.

▶ Definition 1. We say that a comparison-based algorithm A has fragile complexity f(n) if
each individual input element participates in at most f(n) comparisons. We also say that A
has work w(n) if it performs at most w(n) comparisons in total. We say that a particular
element e has fragile complexity fe(n) in A if e participates in at most fe(n) comparisons.

In this paper, we initiate the study of algorithms’ fragile complexity—comparison-based
complexity from the viewpoint of the individual elements—and present a number of upper
and lower bounds on the fragile complexity for fundamental problems.

https://arxiv.org/abs/1901.02857
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1.1 Previous work
One body of work relevant to what we study here is the study of sorting networks, propelled
by the 1968 paper of Batcher [5]. In sorting networks, and more generally comparator
networks, the notions of depth and size correspond to fragile complexity and standard worst
case complexity,1 respectively, since a network with depth f(n) and size w(n) easily can be
converted into a comparison-based algorithm with fragile complexity f(n) and work w(n).

Batcher gave sorting networks with O(log2 n) depth and O(n log2 n) size, based on clever
variants of the MergeSort paradigm. A number of later constructions achieve the same
bounds [9, 14, 15, 18], and for a long time it was an open question whether better results
were possible. In the seminal result in 1983, Ajtai, Komlós, and Szemerédi [1, 2] answered
this in the affirmative by constructing a sorting network of O(log n) depth and O(n log n)
size. This construction is quite complex and involves expander graphs [20, 21], which can be
viewed as objects encoding pseudorandomness, and which have many powerful applications
in computer science and mathematics. The size of the constant factors in the asymptotic
complexity of the AKS sorting network prevents it from being practical in any sense. It
was later modified by others [7, 11, 16, 19], but finding a simple, optimal sorting network,
in particular one not based on expander graphs, remains an open problem. Comparator
networks for other problems, such as selection and heap construction have also been studied
[4, 6, 13, 17, 22]. In all these problems the size of the network is super-linear.

As comparator networks of depth f(n) and size w(n) lead to comparison-based algorithms
with f(n) fragile complexity and w(n) work, a natural question is, whether the two models
are equivalent, or if there are problems for which comparison-based algorithms can achieve
either asymptotically lower f(n), or asymptotically lower w(n) for the same f(n).

One could also ask about the relationship between parallelism and fragile complexity.
We note that parallel time in standard parallel models generally does not seem to capture
fragile complexity. For example, even in the most restrictive exclusive read and exclusive
write (EREW) PRAM model it is possible to create n copies of an element e in O(log n) time
and, thus, compare e to all the other input elements in O(log n) time, resulting in O(log n)
parallel time but Ω(n) fragile complexity. Consequently, it is not clear whether Richard
Cole’s celebrated parallel merge sort algorithm [8] yields a comparison-based algorithm with
low fragile complexity as it copies some elements.

1.2 Our contribution
In this paper we present algorithms and lower bounds for a number of classical problems,
summarized in Table 1. In particular, we study finding the Minimum (Section 2), the
Selection problem (Section 3), and Sorting (Section 4).

Minimum. The case of the deterministic algorithms is clear: using an adversary lower bound,
we show that the minimum element needs to suffer Ω(log n) comparisons and a tournament
tree trivially achieves this bound (Subsection 2.1). The randomized case, however, is much
more interesting. We obtain a simple algorithm where the probability of the minimum element
suffering k comparisons is doubly exponentially low in k, roughly 1/22k (see Subsection 2.2).
As a result, the Θ(log n) deterministic fragile complexity can be lowered to O(1) expected or
even O(log log n) with high probability. We also show this latter high probability case is lower

1 For clarity, in the rest of the paper we call standard worst case complexity work.
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2:4 Fragile Complexity of Comparison-Based Algorithms

Problem Upper Lower
f(n) w(n) f(n)

Minimum

Determ. O(log n) [T 2] O(n) fmin = Ω(log n) [T 2](Sec. 2)
Rand.

⟨
O(log∆ n)†, O(∆ + log∆ n)†⟩ [T 9] ⟨Ω(log∆ n)†, ∆⟩ [T 10]

(Sec. 2)
⟨
O(1)†, O(nε)

⟩
(setting ∆ = nε) O(n)

O( log n
log log n )† [Cor 11] Ω( log n

log log n )† [Cor 11]⟨
O(log∆ n log log ∆)‡, O(n) fmin =

O(∆ + log∆ n log log ∆)‡⟩ [T 9] O(n) = Ω(log log n)‡ [T 14]

Selection

Determ. O(log n) [T 15] O(n) [T 15] Ω(log n) [Cor 3](Sec. 3)
Rand.

⟨
O(log log n)†, O (

√
n)†
⟩

[T 17] O(n)† ⟨
Ω(log∆ n)†, ∆

⟩
[T 10]

(Sec. 3)
⟨

O
(

log n
log log n

)†
, O(log2 n)†

⟩
[T 17]

Merge Determ. O(log n) [T 24] O(n) Ω(log n) [Lem 18](Sec. 4)
Heap Determ. O(log n) [Obs 26] O(n) Ω(log n) [T 2]Constr. (Sec. 5)

Table 1 Summary of presented results. Notation: f(n) means fragile complexity; w(n) means
work; ⟨fm(n), frem(n)⟩ means fragile complexity for the selected element (minimum/median) and
for the remaining elements, respectively – except for lower bounds, where it means ⟨expected for the
selected, limit for remaining⟩; † means holds in expectation; ‡ means holds with high probability
(1 − 1/n). ε > 0 is an arbitrary constant.

bounded by Ω(log log n) (Subsection 2.3). Furthermore, we can achieve a trade-off between
the fragile complexity of the minimum element and the other elements. Here ∆ = ∆(n) is a
parameter we can choose freely that basically upper bounds the fragile complexity of the
non-minimal elements. We can find the minimum with O(log∆ n) expected fragile complexity
while all the other elements suffer O(∆ + log∆ n) comparisons (Subsection 2.3). Furthermore,
this is tight: we show an Ω(log∆ n) lower bound for the expected fragile complexity of the
minimum element where the maximum fragile complexity of non-minimum elements is at
most ∆.

Selection. Minimum finding is a special case of the selection problem where we are interested
in finding an element of a given rank. As a result, all of our lower bounds apply to this
problem as well. Regarding upper bounds, the deterministic case is trivial if we allow for
O(n log n) work (via sorting). We show that this can be reduced to O(n) time while keeping
the fragile complexity of all the elements at O(log n) (Section 3). Once again, randomization
offers a substantial improvement: e.g., we can find the median in O(n) expected work and with
O(log log n) expected fragile complexity while non-median elements suffer O(

√
n) expected

comparisons, or we can find the median in O(n) expected work and with O(log n/ log log n)
expected fragile complexity while non-median elements suffer O(log2 n) expected comparisons.

Sorting and other results. The deterministic selection, sorting, and heap construction fragile
complexities follow directly from the classical results in comparator networks [2, 6]. However,
we show a separation between comparator networks and comparison-based algorithms for the
problem of Median (Section 3) and Heap Construction (Section 5), in the sense that
depth/fragile complexity of O(log n) can be achieved in O(n) work for comparison-based
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algorithms, but requires Ω(n log n) [4] and Ω(n log log n) [6] sizes for comparator networks
for the two problems, respectively. For sorting the two models achieve the same complexities:
O(log n) depth/fragile complexity and O(n log n) size/work, which are the optimal bounds in
both models due to the Ω(log n) lower bound on fragile complexity for Minimum (Theorem 2)
and the standard Ω(n log n) lower bound on work for comparison-based sorting. However,
it is an open problem whether these bounds can be achieved by simpler sorting algorithms
than sorting networks, in particular whether expander graphs are necessary. One intriguing
conjecture could be that any comparison-based sorting algorithm with O(log n) fragile
complexity and O(n log n) work implies an expander graph. This would imply expanders,
optimal sorting networks and fragile-optimal comparison-based sorting algorithms to be
equivalent, in the sense that they all encode the same level of pseudorandomness.

We note that our lower bound of Ω(log2 n) on the fragile complexity of MergeSort
(Theorem 19) implies the same lower bound on the depth of any sorting network based
on binary merging, which explains why many of the existing simple sorting networks have
Θ(log2 n) depth. Finally, our analysis of MergeSort on random inputs (Theorem 23) shows
a separation between deterministic and randomized fragile complexity for such algorithms.
In summary, we consider the main contributions of this paper to be:

the introduction of the model of fragile complexity, which we find intrinsically interesting,
practically relevant, and surprisingly overlooked
the separations between this model and the model of comparator networks
the separations between the deterministic and randomized setting within the model
the lower bounds on randomized minimum finding

Due to space constraints, some proofs only appear in the full paper [?].

2 Finding the minimum

2.1 Deterministic Algorithms
As a starting point, we study deterministic algorithms that find the minimum among an input
of n elements. Our results here are simple but they act as interesting points of comparison
against the subsequent non-trivial results on randomized algorithms.

▶ Theorem 2. The fragile complexity of finding the minimum of n elements is ⌈log n⌉.

Proof. The upper bound is achieved using a perfectly balanced tournament tree. The lower
bound follows from a standard adversary argument. ◀

Observe that in addition to returning the minimum, the balanced tournament tree can also
return the second smallest element, without any increase to the fragile complexity of the
minimum. We refer to this deterministic algorithm that returns the smallest and the second
smallest element of a set X as TournamentMinimum(X).

▶ Corollary 3. For any deterministic algorithm A that finds the median of n elements, the
fragile complexity of the median element is at least ⌈log n⌉ − 1.

Proof. By a standard padding argument with n − 1 small elements. ◀

2.2 Randomized Algorithms for Finding the Minimum
We now show that finding the minimum is provably easier for randomized algorithms than
for deterministic algorithms. We define fmin as the fragile complexity of the minimum

ESA 2019
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and frem as the maximum fragile complexity of the remaining elements. For deterministic
algorithms we have shown that fmin ≥ log n regardless of frem. This is very different in the
randomized setting. In particular, we first show that we can achieve E [fmin] = O(1) and
fmin = O(1) + log log n with high probability (we later show this high probability bound is
also tight, Theorem 14).

1: procedure SampleMinimum(X) ▷ Returns the smallest and 2nd smallest element of X

2: if |X| ≤ 8 return TournamentMinimum(X)
3: Let A ⊂ X be a uniform random sample of X, with |A| = ⌈|X|/2⌉
4: Let B ⊂ A be a uniform random sample of A, with |B| =

⌊
|X|2/3⌋

5: ▷ The minimum is either in (i) C ⊆ X \ A, (ii) D ⊆ A \ B or (iii) B

6: (b1, b2) = SampleMinimum(B) ▷ the minimum participates only in case (iii)
7: Let D = {x ∈ A \ B | x < b2} ▷ the minimum is compared once only in case (ii)
8: Let (a′

1, a′
2) = SampleMinimum(D) ▷ only case (ii)

9: Let (a1, a2) = TournamentMinimum(a′
1, a′

2, b1, b2) ▷ case (ii) and (iii)
10: Let C = {x ∈ X \ A | x < a2} ▷ only case (i)
11: Let (c1, c2) = TournamentMinimum(C) ▷ only case (i)
12: return TournamentMinimum(a1, a2, c1, c2) ▷ always

First, we show that this algorithm can actually find the minimum with expected constant
number of comparisons. Later, we show that the probability that this algorithm performs t

comparisons on the minimum drops roughly doubly exponentially on t.
We start with the simple worst-case analysis.

▶ Lemma 4. Algorithm SampleMinimum(X) achieves fmin ≤ 3 log |X| in the worst case.

Proof. First, observe that the smallest element in Lines 9 and 12 participates in at most one
comparison because pairs of elements are already sorted. Then the fragile complexity of the
minimum is defined by the maximum of the three cases:

(i) One comparison each in Lines 10 and 12, plus (by Theorem 2) ⌈log |C|⌉ ≤ log |X|
comparisons in Line 11.

(ii) One comparison each in Lines 7, 9, and 12, plus the recursive call in line 8.
(iii) One comparison each in Lines 6, 9, and 12, plus the recursive call in line 6.

The recursive calls in lines 8 and 6 are on at most |X|/2 elements because B ⊂ A, D ⊂ A,
and |A| = ⌈|X|/2⌉. Consequently, the fragile complexity of the minimum is defined by the
recurrence

T (n) ≤
{

max {3 + T (n/2), 2 + log n} if n > 8
3 if n ≤ 8 ,

which solves to T (n) ≤ 3 log n.
◀

▶ Lemma 5. Assume that in Algorithm SampleMinimum, the minimum y is in X \ A, i.e.
we are in case (i). Then Pr[|C| = k | y ̸∈ A] ≤ k

2k for any k ≥ 1 and n ≥ 7.

Proof. There are
(

n−1
⌈n/2⌉

)
possible events of choosing a random subset A ⊂ X of size ⌈n/2⌉

s.t. y ̸∈ A. Let us count the number of the events {|C| = k | y ̸∈ A}, which is equivalent to
a2, the second smallest element of A, being larger than exactly k + 1 elements of X.

For simplicity of exposition, consider the elements of X = {x1, . . . , xn} in sorted order.
The minimum y = x1 ̸∈ A, therefore, a1 (the smallest element of A) must be one of the k

elements {x2, . . . , xk+1}. By the above observation, a2 = xk+2. And the remaining ⌈n/2⌉ − 2
elements of A are chosen from among {xk+3, . . . , xn}. Therefore,
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Pr[|C| = k | y ̸∈ A] =
k ·
(

n−(k+2)
⌈n/2⌉−2

)(
n−1

⌈n/2⌉
) = k · (n − (k + 2))!

(⌊n/2⌋ − k)!(⌈n/2⌉ − 2)! · (⌈n/2⌉)!(⌊n/2⌋ − 1)!
(n − 1)!

Rearranging the terms, we get:

Pr[|C| = k | y ̸∈ A] = k · (n − (k + 2))!
(n − 1)! · (⌈n/2⌉)!

(⌈n/2⌉ − 2)! · (⌊n/2⌋ − 1)!
(⌊n/2⌋ − k)!

There are two cases to consider:

k = 1 : Pr[|C| = k | y ̸∈ A] = 1 · 1
(n − 1)(n − 2) · ⌈n/2⌉ (⌈n/2⌉ − 1) · 1

≤ 1
(n − 1)(n − 2) · (n + 1)

2 · (n − 1)
2

= n + 1
4 · (n − 2) ≤ 1

2 = k

2k
for every n ≥ 5.

k ≥ 2 : Pr[|C| = k | y ̸∈ A] = k · 1∏k+1
i=1 (n − i)

· ⌈n/2⌉ (⌈n/2⌉ − 1) ·
k−1∏
i=1

(⌊n

2

⌋
− i
)

≤ k · 1∏k+1
i=1 (n − i)

· n + 1
2 · n − 1

2 ·
k−1∏
i=1

n − 2i

2

≤ k

2k+1 · (n + 1)(n − 1) ·
∏k−1

i=1 (n − 2i)∏k+1
i=1 (n − i)

≤ k

2k+1 · (n + 1)(n − 1) · n − 2
(n − 1)(n − 2)(n − 3)

= k

2k+1 · n + 1
n − 3 ≤ k

2k+1 · 2 = k

2k
for every n ≥ 7.

◀

▶ Theorem 6. Algorithm SampleMinimum achieves E [fmin] ≤ 9.

Proof. By induction on the size of X. In the base case |X| ≤ 8, clearly fmin ≤ 3, implying
the theorem.

Now assume that the calls in Line 8 and Line 6 have the property that E [f(b1)] ≤ 9
and E [f(a′

1)] ≤ 9. Both in case (ii) and case (iii), the expected number of comparisons of
the minimum is ≤ 9 + 3. Case (i) happens with probability at least 1/2. In this case, the
expected number of comparisons is 2 plus the ones from Line 11. By Lemma 5 we have
Pr[|C| = k | case (i)] ≤ k2−k. Because TournamentMinimum (actually any algorithm not
repeating the same comparison) uses the minimum at most k − 1 times, the expected number
of comparisons in Line 11 is

∑⌊n/2⌋
k=1 (k − 1)k2−k ≤

∑∞
k=1(k − 1)k2−k ≤ 4. Combining the

bounds we get E [fmin] ≤ 9+3
2 + 2+4

2 = 9. ◀

Observe that the above proof did not use anything about the sampling of B, and also did
not rely on TournamentMinimum.

ESA 2019



2:8 Fragile Complexity of Comparison-Based Algorithms

▶ Lemma 7. For |X| > 2 and any γ > 1: Pr
[
|D| ≥ γ|X|1/3] < |X| exp(−Θ(γ))

Proof. Let n = |X|, a = |A| = ⌈n/2⌉ and b = |B| =
⌊
n2/3⌋. The construction of the set B

can be viewed as the following experiment. Consider drawing without replacement from an
urn with b blue and a − b red marbles. The i-th smallest element of A is chosen into B iff
the i-th draw from the urn results in a blue marble. Then |D| ≥ γ|X|1/3 = γn1/3 implies
that this experiment results in at most one blue marble among the first t = γn1/3 draws.
There are precisely t + 1 elementary events that make up the condition |D| ≥ t, namely that
the i-th draw is a blue marble, and where i = 0 stands for the event “all t marbles are red”.
Let us denote the probabilities of these elementary events as pi.

Observe that each pi can be expressed as a product of t factors, at least t − 1 of which
stand for drawing a red marble, each upper bounded by 1− b−1

a . The remaining factor stands
for drawing the first blue marble (from the urn with a − i marbles, b of which are blue), or
another red marble. In any case we can bound

pi ≤
(

1 − b − 1
a

)t−1
≤
(

1 − b − 1
a

)γn1/3−1
= exp

(
−Θ

(
bγn1/3

a

))
.

Summing the t + 1 terms, and observing t + 1 < n if the event can happen at all, we get

Pr[|D| ≥ γ|X|1/3] < n · exp
(

−Θ
(

γn1/3n2/3

n/2

))
= n · exp (−Θ(γ)) .

◀

▶ Theorem 8. There is a positive constant c, such that for any parameter t ≥ c, the minimum
in the Algorithm SampleMinimum(X) participates in at most O(t + log log |X|) comparisons
with probability at least 1 − exp(−2t)2 log log |X|.

Proof. Let n = |X| and y be the minimum element. In each recursion step, we have one of
three cases: (i) y ∈ C ⊆ X \ A, (ii) y ∈ D ⊆ A \ B or (iii) y ∈ B. Since the three sets are
disjoint, the minimum always participates in at most one recursive call. Tracing only the
recursive calls that include the minimum, we use the superscript X(i), A(i), B(i), C(i), and
D(i) to denote these sets at depth i of the recursion.

Let h be the first recursive level when y ∈ C(h), i.e., y ̸∈ A(h). It follows that y will not be
involved in the future recursive calls because it is in a single call to TournamentMinimum.
Thus, at this level of recursion, the number of comparisons that y will accumulate is
equal to O(1) + log |C(h)|. To bound this quantity, let k = 4 · 2t. Then, by Lemma 5,
Pr[|C(h)| > k] ≤ k2−k = 4 · 2t · 2−4·2t = 4 · 2t · 4−2t · 4−2t . Since 4x4−x ≤ 1 for any x ≥ 1,
Pr[|C(h)| > k] ≤ 4−2t for any t ≥ 0. I.e., the number of comparisons that y participates in at
level h is at most O(1) + log k = O(1) + t with probability at least 1 − 4−2t ≥ 1 − exp(−2t).

Thus, it remains to bound the number of comparisons involving y at the recursive levels
i ∈ [1, h − 1]. In each of these recursive levels y ̸∈ C(i), which only leaves the two cases:
(ii) y ∈ D(i) ⊆ A(i) \ B(i) and (iii) y ∈ B(i). The element y is involved in at most O(1)
comparisons in lines 7, 9 and 12. The two remaining lines of the algorithm are lines 6 and 8
which are the recursive calls. We differentiate two types of recursive calls:

Type 1: |X(i)| ≤ 24t. In this case, by Lemma 4, the algorithm will perform O(t)
comparisons at the recursive level i, as well as any subsequent recursive levels.
Type 2: |X(i)| > 24t. In this case, by Lemma 7 on the set X(i) and γ = |X(i)|1/3 we get:

Pr[|D(i)| ≥ γ|X(i)|1/3] < |X(i)| exp
(

−Θ
(

|X(i)|1/3
))

< exp
(

−Θ
(

|X(i)|1/3
))
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Note that since |X(i)|1/3 > 2t, by the definition of the Θ-notation, there exists a positive
constant c, such that exp

(
−Θ

(
|X(i)|1/3)) < exp(−2t). Thus, it follows that with

probability 1 − exp(−2t), we will recurse on a subproblem of size at most γ|X(i)|1/3 ≤
|X(i)|2/3. Let Gi be this (good) event, and thus Pr[Gi] ≥ 1 − exp(−2t).

Observe that the maximum number of times we can have good events of type 2 is very
limited. With every such good event, the size of the subproblem decreases significantly and
thus eventually we will arrive at a recursive call of type 1. Let j be this maximum number
of “good” recursive levels of type 2. The problem size at the j-th such recursive level is
at most n(2/3)j−1 and we must have that n(2/3)j−1

> 24t which reveals that we must have
j = O (log log n).

We are now almost done and we just need to use a union bound. Let G be the event that
at the recursive level h, we perform at most O(1) + t comparisons, and all the recursive levels
of type 2 are good. G is the conjunction of at most j + 1 events and as we have shown, each
such event holds with probability at least 1 − exp(−2t). Thus, it follows that G happens
with probability 1 − (j + 1) exp(−2t) > 1 − 2 log log n exp(−2t). Furthermore, our arguments
show that if G happens, then the minimum will only particpate in O(t+ j) = O (t + log log n)
comparisons. ◀

The major strengths of the above algorithm is the doubly exponential drop in probability
of comparing the minimum with too many elements. Based on it, we can design another
simple algorithm to provide a smooth trade-off between fmin and frem. Let 2 ≤ ∆ ≤ n be
an integral parameter. We will design an algorithm that achieves E [fmin] = O(log∆ n) and
fmin = O(log∆ n · log log ∆) whp, and frem = ∆ + O(log∆ n · log log ∆) whp. For simplicity
we assume n is a power of ∆. We build a fixed tournament tree T of degree ∆ and of height
log∆ n on X. For a node v ∈ T , let X(v) be the set of values in the subtree rooted at v. The
following code computes m(v), the minimum value of X(v), for every node v.

1: procedure TreeMinimum∆(X)
2: For every leaf v, set m(v) equal to the single element of X(v).
3: For every internal node v with ∆ children u1, . . . , u∆ where the values

m(u1), . . . , m(u∆) are known, compute m(v) using SimpleMinimum algorithm on
input {m(u1), . . . , m(u∆)}.

4: Repeat the above step until the minimum of X is computed.

The correctness of TreeMinimum∆ is trivial. So it remains to analyze its fragile complexity.

▶ Theorem 9. In TreeMinimum∆, E [fmin] = O(log∆ n) and E [frem] = ∆+O(log∆ n). Fur-
thermore, with high probability, fmin = O

(
log n log log ∆

log ∆

)
and frem = O

(
∆ + log n log log ∆

log ∆

)
.

Proof. First, observe that E [fmin] = O(log∆ n) is an easy consequence of Theorem 6. Now
we focus on high probability bounds. Let k = c · h log ln ∆, and h = log∆ n for a large enough
constant c. There are h levels in T . Let fi be the random variable that counts the number of
comparisons the minimum participates in at level i of T . Observe that these are independent
random variables. Let f1, . . . , fh be integers such that fi ≥ 1 and

∑h
i=1 fi = k, and let c′ be

the constant hidden in the big-O notation of Theorem 8. Use Theorem 8 h times (with n set
to ∆, and t = fi), and also bound 2 log log ∆ < ∆ to get

Pr
[
f1 ≥ c′(f1 + log log ∆) ∨ · · · ∨ fh ≥ c′(fh + log log ∆)

]
≤ ∆he−

∑
i

2fi ≤ ∆he−h2k/h

where the last inequality follows from the inequality of arithmetic and geometric means
(specifically, observe that

∑h
i=1 2fi is minimized when all fi’s are distributed evenly).
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Now observe that the total number of different integral sequences f1, . . . , fh that sum up
to k is bounded by

(
h+k

h

)
(this is the classical problem of distributing k identical balls into h

distinct bins). Thus, we have

Pr[fmin = O(k + h log log ∆)] ≤
(

h + k

h

)
· ∆h 1

eh·2k/h
≤
(

e(h + k)
h

)h

· ∆h 1
eh·2k/h

≤

(
O
(

k
h

)
· ∆

e2k/h

)h

=
(

O
(
∆2)

e2c log ln ∆

)h

<

(
O(∆2)
elnc ∆

)h

<

(
∆3

∆lnc−1 ∆

)h

< ∆−ch = n−c

where in the last step we bound (ln ∆)c−1 − 3 > c for large enough c and ∆ ≥ 3. This is
a high probability bound for fmin. To bound frem, observe that for every non-minimum
element x, there exists a lowest node v such that x is not m(v). If x is not passed to
the ancestors of v, x suffers at most ∆ comparisons in v, and below v x behaves like the
minimum element, which means that the above analysis applies. This yields that whp we
have frem = ∆ + O

(
log n log log ∆

log ∆

)
. ◀

2.3 Randomized Lower Bounds for Finding the Minimum

2.3.1 Expected Lower Bound for the Fragile Complexity of the
Minimum.

The following theorem is our main result.

▶ Theorem 10. In any randomized minimum finding algorithm with fragile complexity of at
most ∆ for any element, the expected fragile complexity of the minimum is at least Ω(log∆ n).

Note that this theorem implies the fragile complexity of finding the minimum:

▶ Corollary 11. Let f(n) be the expected fragile complexity of finding the minimum (i.e. the
smallest function such that some algorithm achieves f(n) fragile complexity for all elements
(minimum and the rest) in expectation). Then f(n) = Θ( log n

log log n ).

Proof. Use Theorem 9 as the upper bound and Theorem 10, both with ∆ = log n
log log n , observing

that if f(n) is an upper bound that holds with high probability, it is also an upper bound on
the expectation. ◀

To prove Theorem 10 we give a lower bound for a deterministic algorithm A on a random
input of n values, x1, . . . , xn where each xi is chosen iid and uniformly in (0, 1). By Yao’s
minimax principle, the lower bound on the expected fragile complexity of the minimum when
running A also holds for any randomized algorithm.

We prove our lower bound in a model that we call “comparisons with additional information
(CAI)”: if the algorithm A compares two elements xi and xj and it turns out that xi < xj ,
then the value xj is revealed to the algorithm. Clearly, the algorithm can only do better
with this extra information. The heart of the proof is the following lemma which also acts as
the “base case” of our proof.

▶ Lemma 12. Let ∆ be an upper bound on frem. Consider T values x1, . . . , xT chosen iid
and uniformly in (0, b). Consider a deterministic algorithm A in CAI model that finds the
minimum value y among x1, . . . , xT . If T > 1000∆, then with probability at least 7

10 A will
compare y against an element x such that x ≥ b/(100∆).
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Proof. By simple scaling, we can assume b = 1. Let p be the probability that A compares y

against a value larger than 1/(100∆). Let Ismall be the set of indices i such that xi < 1/(100∆).
Let A′ be a deterministic algorithm in CAI model such that:

A′ is given all the indices in Ismall (and their corresponding values) except for the index
of the minimum. We call these the known values.
A′ minimizes the probability p′ of comparing the y against a value larger than 1/(100∆).
A′ finds the minimum value among the unknown values.

Since p′ ≤ p, it suffices to bound p′ from below. We do this in the remainder of the proof.
Observe that the expected number of values xi such that xi < 1/(100∆) is T/(100∆).

Thus, by Markov’s inequality, Pr[|Ismall| ≤ T/(10∆)] ≥ 9
10 . Let’s call the event |Ismall| ≤

T/(10∆) the good event. For algorithm A′ all values smaller than 1/(100∆) except for
the minimum are known. Let U be the set of indices of the unknown values. Observe
that a value xi for i ∈ U is either the minimum or larger than 1/(100∆), and that |U | =
T − |Ismall| + 1 > 9

10 T (using ∆ ≥ 1) in the good event. Because A′ is a deterministic
algorithm, the set U is split into set F of elements that have their first comparison against a
known element, and set W of those that are first compared with another element with index
in U . Because of the global bound ∆ on the fragile complexity of the known elements, we
know |F | < ∆ · |Ismall| ≤ ∆T/(10∆) = T/10. Combining this with the probability of the
good event, by union bound, the probability of the minimum being compared with a value
greater than 1/(100∆) is at least 1 − (1 − 9

10 ) − (1 − 8
9 ) ≥ 7/10. ◀

Based on the above lemma, our proof idea is the following. Let G = 100∆. We would like
to prove that on average A cannot avoid comparing the minimum to a lot of elements. In
particular, we show that, with constant probability, the minimum will be compared against
some value in the range [G−i, G−i+1] for every integer i, 1 ≤ i ≤ logG n

2 . Our lower bound
then follows by an easy application of the linearity of expectations. Proving this, however, is
a little bit tricky. However, observe that Lemma 12 already proves this for i = 1. Next, we
use the following lemma to apply Lemma 12 over all values of i, 1 ≤ i ≤ logG n

2 .

▶ Lemma 13. For a value b with 0 < b < 1, define pk =
(

n
k

)
bi(1 − b)n−k, for 0 ≤ k ≤ n.

Choosing x1, . . . , xn iid and uniformly in (0, 1) is equivalent to the following: with probability
pk, uniformly sample a set I of k distinct indices in {1, . . . , n} among all the subsets of
size k. For each i ∈ I, pick xi iid and uniformly in (0, b). For each i ̸∈ I, pick xi iid and
uniformly in (b, 1).

Proof. It is easy to see that choosing x1, . . . , xn iid uniformly in (0, 1) is equivalent to
choosing a point X uniformly at random inside an n dimensional unit cube (0, 1)n. Therefore,
we will prove the equivalence between (i) the distribution defined in the lemma, and (ii)
choosing such point X.

Let Q be the n-dimensional unit cube. Subdivide Q into 2n rectangular region defined
by the Cartesian product of intervals (0, b) and (b, 1), i.e., {(0, b), (b, 1)}n (or alternatively,
bisect Q with n hyperplanes, with the i-th hyperplane perpendicular to the i-th axis and
intersecting it at coordinate equal to b).

Consider the set Rk of rectangles in {(0, b), (b, 1)}n with exactly k sides of length b and
n − k sides of length 1 − b. Observe that for every choice of k (distinct) indices i1, . . . , ik

out of {1, . . . , n}, there exists exactly one rectangle r in Rk such that r has side length b at
dimensions i1, . . . , ik, and all the other sides of r has length n − k. As a result, we know that
the number of rectangles in Rk is

(
n
k

)
and the volume of each rectangle in Rk is bk(1 − b)k.

Thus, if we choose a point X randomly inside Q, with probability pk it will fall inside a
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rectangle r in Rk; furthermore, conditioned on this event, the dimensions i1, . . . , ik where r

has side length b is a uniform subset of k distinct indices from {1, . . . , n}. ◀

Remember that our goal was to prove that with constant probability, the minimum will
be compared against some value in the range [G−i, G−i+1] for every integer i, 1 ≤ i ≤ logG n

2 .
We can pick b = G−i+1 and apply Lemma 13. We then observe that it is very likely that
the set of indices I that we are sampling in Lemma 13 will contain many indices. For
every element xi, i ∈ I, we are sampling xi independently and uniformly in (0, b) which
opens the door for us to apply Lemma 12. Then we argue that Lemma 12 would imply
that with constant probability the minimum will be compared against a value in the range
(b/G, b) = (G−i, G−i+1). The lower bound claim of Theorem 10 then follows by invoking the
linearity of expectations.

We are ready to prove that the minimum element will have Ω(log∆ n) comparisons on
average.

Proof of Theorem 10. First, observe that we can assume n ≥ (100, 000∆)2 as otherwise we
are aiming for a trivial bound of Ω(1). ##(N:) ∆ can be as large as n. How is this inequality
possible? Or should we bound ∆ ≤

√
n ##

We create an input set of n values x1, . . . , xn where each xi is chosen iid and uniformly
in (0, 1). Let G = 100∆. Consider an integer i such that 1 ≤ i < logG n

2 . ##(N:) in the
beginning of this section i ≤ logG n

2 . ## We are going to prove that with constant probability,
the minimum will be compared against a value in the range (G−i, G−i+1), which, by linearity
of expectation, shows the stated Ω(log∆ n) lower bound for the fragile complexity of the
minimum.

Consider a fixed value of i. Let S be the set of indices with values that are smaller than
G−i+1. Let p be the probability that A compares the minimum against an xj with j ∈ S

such that xj ≥ G−i. To prove the theorem, it suffices to prove that p is lower bounded by
a constant. Now consider an algorithm A′ that finds the minimum but for whom all the
values other than those in S have been revealed and furthermore, assume A′ minimizes the
probability of comparing the minimum against an element x ≥ G−i (in other words, we pick
the algorithm which minimizes this probability, among all the algorithms). Clearly, p′ ≤ p.
In the rest of the proof we will give a lower bound for p′.

Observe that |S| is a random variable with binomial distribution. Hence E [|S|] =
nG−i+1 >

√
n where the latter follows from i < logG n

2 . By the properties of the binomial
distribution we have that Pr

[
|S| < E[|S|]

100

]
< 1

10 . Thus, with probability at least 9
10 , we will

have the “good” event that |S| ≥ E[|S|]
100 ≥

√
n

100 .
In case of the good event, Lemma 13 implying that conditioned on S being the set

of values smaller than G−i+1, each value xj with j ∈ S is distributed independently and
uniformly in the range (0, G−i+1). As a result, we can now invoke Lemma 12 on the set S

with T = |S|. ##(R:) strictly speaking, we are missing a scaling lemma ## Since n ≥ (100, 000∆)2

we have T = |S| ≥
√

n
100 ≥ 100,000∆

100 . By Lemma 12, with probability at least 7
10 , the minimum

will be compared against a value that is larger than G−i.
Thus, by law of total probability, it follows that in case of a good event, with probability

7
10 the minimum will be compared to a value in the range (G−i, G−i+1). However, as the
good event happens with probability 9

10 , it follows that with probability at least 1−(1− 7
10 )−

(1 − 9
10 ) = 6

10 , the minimum will be compared against a value in the range (G−i, G−i+1). ◀
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2.3.2 Lower bound for the fragile complexity of the minimum whp.
With Theorem 8 in Subsection 2.2, we show in particular that SampleMinimum guarantees
that the fragile complexity of the minimum is at most O(log log n) with probability at least
1 − 1/nc for any c > 1. (By setting t = 2 log log n).

Here we show that this is optimal up to constant factors in the fragile complexity.

▶ Theorem 14. For any constant ε > 0, there exists a value of n0 such that the following
holds for any randomized algorithm A and for any n > n0: there exists an input of size
n such that with probability at least n−ε, A performs ≥ 1

2 log log n comparisons with the
minimum.

Proof. We use (again) Yao’s principle and consider a fixed deterministic algorithm A
working on the uniform input distribution, i.e., all input permutations have probability 1/n!.
Let f = 1

2 log log n be the upper bound on the fragile complexity of the minimum. Let
k = 2f =

√
log n and let S be the set of the k smallest input values. Let π be a uniform

permutation (the input) and π(S) be the permutation of the elements of S in π. Observe
that π(S) is a uniform permutation of the elements of S. We reveal the elements not in S to
A. So, A only needs to find the minimum in π(S). By Theorem 2 there is at least one “bad”
permutation of S which forces algorithm A to do log k = f comparisons on the smallest
element. Observe log k! < log kk = k log k =

√
log n 1

2 log log n. Observe that there exists a
value of n0 such that for n > n0 the right hand side is upper bounded by ε log n, so k! ≤ nε,
for n > n0. Hence, the probability of a “bad” permutation is at least 1/k! > n−ε. ◀

3 Selection and median

The (n, t)-selection problem asks to find the t-th smallest element among n elements of the
input. The simplest solution to the (n, t)-selection problem is to sort the input. Therefore, it
can be solved in O(log n) fragile complexity and O(n log n) work by using the AKS sorting
network [1]. For comparator networks, both of these bounds are optimal: the former is shown
by Theorem 2 (and in fact it applies also to any algorithm) and the latter is shown in the
full version of this paper [?].

In contrast, in this section we show that comparison-based algorithms can do better:
we can solve Selection deterministically in Θ(n) work and Θ(log n) fragile complexity,
thus, showing a separation between the two models. However, to do that, we resort to
constructions that are based on expander graphs. Avoiding usage of the expander graphs or
finding a simpler optimal deterministic solution is an interesting open problem (see Section 6).
Moreover, in Subsection 3.2 we show that we can do even better by using randomization.

3.1 Deterministic selection
▶ Theorem 15. There is a deterministic algorithm for Selection which performs O(n)
work and has O(log n) fragile complexity.

Proof sketch. It suffices to just find the median since by simple padding we can generalize
the solution for the (n, t)-selection problem.

We use ε-halvers that are the central building blocks of the AKS sorting network. An
ε-halver approximately performs a partitioning of an array of size n into the smallest half and
the largest half of the elements. More precisely, for any m ≤ n/2, at most εn of the m smallest
elements will end up in the right half of the array, and at most εn of the m largest elements
will end up in the left half of the array. Using expander graphs, a comparator network
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n εn/2
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n/ log(n) ≤ εn
log(n)

≤ εn
log(n)

size of (sub)array upper bounds on left / right far elements

Figure 1 Illustration of the alternating division process using ε-halvers.

implementing an ε-halver of constant depth can be built [1, 3]. We use the corresponding
comparison-based algorithm of constant fragile complexity.

The idea is to use ε-halvers to find roughly n
log n elements with rank between (1 + α)n

2
and (2 − α) n

2 and also roughly n
log n elements with rank between α n

2 and (1 − α) n
2 , for some

constant 0 < α < 1. This is done by repeatedly using ε-halvers but alternating between
selecting the left half and the right half (Figure 1). Using these, we filter the remaining
elements and discard a constant fraction of them. Then we recurse on the remaining elements.
The details are a bit involved, as we have to guarantee that no element accumulates too
many comparisons throughout the recursions. We have to do some bookkeeping as well as
some additional ideas to provide this guarantee. Details can be found in the full version of
the paper [?]. ◀

▶ Corollary 16. There is a deterministic algorithm for partition which performs O(n) work
and has O(log n) fragile complexity.

Proof. At the end of the Selection algorithm, the set of elements smaller (larger) than
the median is the union of the respective filtered sets (sets L and R in the proof in the full
version of the paper [?]) and the first (last) half of the sorted set in the base case of the
recursion. Again, simple padding generalizes this to (n, t)-partition for arbitrary t ̸= n

2 . ◀

3.2 Randomized selection
In the full paper [?], we present the details of an expected work-optimal selection algorithm
with a trade-off between the expected fragile complexity fmed(n) of the selected element and
the maximum expected fragile complexity frem(n) of the remaining elements. In particular,
we obtain the following combinations:

▶ Theorem 17. Randomized selection is possible in expected linear work, while achieving
expected fragile complexity of the median E [fmed(n)] = O(log log n) and of the remaining
elements E [frem(n)] = O(

√
n), or E [fmed(n)] = O

(
log n

log log n

)
and E [frem(n)] = O(log2 n).

4 Sorting

Recall from Section 1 that the few existing sorting networks with depth O(log n) are all based
on expanders, while a number of O(log2 n) depth networks have been developed based on
binary merging. Here, we study the power of the mergesort paradigm with respect to fragile
complexity. We first prove that any sorting algorithm based on binary merging must have
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a worst-case fragile complexity of Ω(log2 n). This provides an explanation why all existing
sorting networks based on merging have a depth no better than this. We also prove that the
standard mergesort algorithm on random input has fragile complexity O(log n) with high
probability, thereby showing a separation between the deterministic and the randomized
situation for binary mergesorts. Finally, we demonstrate that the standard mergesort
algorithm has a worst-case fragile complexity of Θ(n), but that this can be improved to
O(log2 n) by changing the merging algorithm to use exponential search. The omitted proofs
can be found in the full paper [?].

▶ Lemma 18. Merging of two sorted sequences A and B has fragile complexity at least
⌊log2 |A|⌋ + 1.

▶ Theorem 19. Any binary mergesort has fragile complexity Ω(log2 n).

Proof. The adversary is the same as in the proof of Lemma 21, except that as scapegoat
element for a merge of A and B it always chooses the scapegoat from the larger of A and
B. We claim that for this adversary, there is a constant c > 0 such that for any node v in
the mergetree, its scapegoat element has participated in at least c log2 n comparisons in the
subtree of v, where n is the number of elements merged by v. This implies the theorem.

We prove the claim by induction on n. The base case is n = O(1), where the claim is
true for small enough c, as the scapegoat by Lemma 18 will have participated in at least one
comparison. For the induction step, assume v merges two sequences of sizes n1 and n2, with
n1 ≥ n2. By the base case, we can assume n1 ≥ 3. Using Lemma 18, we would like to prove
for the induction step

c log2 n1 + ⌊log n2⌋ + 1 ≥ c log2(n1 + n2). (1)

This will follow if we can prove

log2 n1 + log n2

c
≥ log2(n1 + n2) . (2)

The function f(x) = log2 x has first derivative 2(log x)/x and second derivative 2(1−log x)/x2,
which is negative for x > e = 2.71 . . . . Hence, f(x) is concave for x > e, which means that
first order Taylor expansion (alias the tangent) lies above f , i.e., f(x0)+f ′(x0)(x−x0) ≥ f(x)
for x0, x > e. Using x0 = n1 and x = n1 +n2 and substituting the first order Taylor expansion
into the right side of (2), we see that (2) will follow if we can prove

log n2

c
≥ 2 log n1

n1
n2 ,

which is equivalent to

log n2

n2
≥ 2c

log n1

n1
. (3)

Since n1 ≥ n2 and (log x)/x is decreasing for x ≥ e, we see that (3) is true for n2 ≥ 3 and c

small enough. Since log(3)/3 = 0.366 . . . and log 2/2 = 0.346 . . . , it is also true for n2 = 2
and c small enough. For the final case of n2 = 1, the original inequality (1) reduces to

log2 n1 + 1
c

≥ log2(n1 + 1) . (4)
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Here we can again use concavity and first order Taylor approximation with x0 = n1 and
x = n1 + 1 to argue that (4) follows from

1
c

≥ 2 log n1

n1
.

which is true for c small enough, as n1 ≥ 3 and (log x)/x is decreasing for x ≥ e. ◀

▶ Theorem 20. Standard MergeSort with linear merging has a worst-case fragile complexity
of Θ(n).

▶ Lemma 21. Standard MergeSort has fragile complexity Ω(log2 n).

Proof. In MergeSort, when merging two sorted sequences A and B, no comparisons
between elements of A and B have taken place before the merge. Also, the sorted order of
A∪B has to be decided by the algorithm after the merge. We can therefore run the adversary
argument from the proof of Lemma 18 in all nodes of the mergetree of MergeSort. If
the adversary reuses scapegoat elements in a bottom-up fashion—that is, as scapegoat for a
merge of A and B chooses one of the two scapegoats from the two merges producing A and
B—then the scapegoat at the root of the mergetree has participated in

Ω(
log n∑
i=0

log 2i) = Ω(
log n∑
i=0

i) = Ω(log2 n)

comparisons, by Lemma 18 and the fact that a node at height i in the mergetree of standard
MergeSort operates on sequences of length Θ(2i). ◀

▶ Observation 1. Consider two sorted sequences A = (a1, . . . , an) and B = (b1, . . . , bn). In
linear merging, the fragile complexity of element ai is at most ℓ + 1 where ℓ is the largest
number of elements from B that are placed directly in front of ai (i.e. bj < . . . < bj+ℓ−1 < ai).

▶ Lemma 22. Let X = {x1, . . . , x2k} be a finite set of distinct elements, and consider
a random bipartition XL, XR ⊂ X with |XL| = |XR| = k and XL ∩ XR = ∅, such that
Pr [xi ∈ XL] = 1/2. Consider an arbitrary ordered set Y = {y1, . . . , ym} ⊂ X with m ≤ k.
Then Pr [Y ⊆ XL ∨ Y ⊆ XR] < 21−m.

Proof.

Pr [Y ⊆ XL ∨ Y ⊆ XR] = 2
m∏

i=1
Pr [ yi ∈ XL | y1, . . . yi−1 ∈ XL ] = 2(2k)−mk!

(k − m)! ≤ 2 · 2−m.◀

▶ Theorem 23. Standard MergeSort with linear merging on a randomized input permuta-
tion has a fragile complexity of O(log n) with high probability.

Proof. Let Y = (y1, . . . , yn) be the input-sequence, π−1 be the permutation that sorts Y

and X = (x1, . . . , xn) with xi = yπ−1(i) be the sorted sequence. Wlog we assume that all
elements are unique2, that any input permutation π is equally likely3, and that n is a power
of two.

2 If this is not the case, use input sequence Y ′ = ((y1, 1), . . . , (yn, n)) and lexicographical compares.
3 If not shuffle it before sorting in linear time and no fragile comparisons.
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Merging in one layer. Consider any merging-step in the mergetree. Since both input
sequences are sorted, the only information still observable from the initial permutation is
the bi-partitioning of elements into the two subproblems. Given π, we can uniquely retrace
the mergetree (and vice-versa): we identify each node in the recursion tree with the set of
elements it considers. Then, any node with elements XP = {yℓ, . . . , yℓ+2k−1} has children

XL =
{

xπ(i)
⏐⏐ ℓ ≤ π(i) ≤ ℓ + k − 1

}
= {yℓ, . . . , yℓ+k−1} ,

XR =
{

xπ(i)
⏐⏐ ℓ + k ≤ π(i) ≤ ℓ + 2k − 1

}
= {yℓ+k, . . . , yℓ+2k−1} .

Hence, locally our input permutation corresponds to an stochastic experiment in which we
randomly draw exactly half of the parent’s elements for the left child, while the remainder
goes to right.

This is exactly the situation in Lemma 22. Let Ni be a random variable denoting the
number of comparisons of element yi in the merging step. Then, from Observation 1 and
Lemma 22 it follows that Pr [Ni = m+1] ≤ 2−m. Therefore Ni is stochastically dominated
by Ni ⪯ 1+Yi where Yi is a geometric random variable with success probability p = 1/2.

Merging in all layers. Let Nj,i be the number of times element yi is compared in the
j-th recursion layer and define Yj,i analogously. Due to the recursive partitioning argument,
Nj,i and Yj,i are iid in j. Let NT

i be the total number of comparisons of element i, i.e.
NT

i ⪯ log2 n +
∑log2 n

j=1 Yj,i. Then a tail bound on the sum of geometric variables (Theorem
2.1 in [12]) yields:

Pr
[∑log2 n

j=1
Yj,i ≥ λE

[∑log2 n

j=1
Yj,i

]
= 2λ log2 n

]
[12]
≤ exp

(
−1

2
2 ln n

ln 2 [λ−1− log λ]
)

= n−2,

where we set λ ≈ 3.69 in the last step solving λ− log λ = 2 log 2. Thus, we bound the
probability Pr

[
NT

i ≥ (1+2λ) log2 n
]

≤ n−2.
Fragile complexity. It remains to show that with high probability no element exceeds the

claimed fragile complexity. We use a union bound on NT
i for all i:

Pr
[
max

i
{NT

i } = ω(log n)
]

≤ nPr
[
NT

i = ω(log n)
]

≤ 1/n . ◀

▶ Theorem 24. Exponential merging of two sequences A = (a1, . . . , an) and B = (b1, . . . , bn)
has a worst-case fragile complexity of O(log n).

▶ Corollary 25. Applying Theorem 24 to standard MergeSort with exponential merging
yields a fragile complexity of O(log2 n) in the worst-case.

5 Constructing binary heaps

▶ Theorem 26. The fragile complexity of the standard binary heap construction algorithm
of Floyd [10] is O(log n).

The above observation is easy to verify (shown in the full paper [?]). We note that this
fragile complexity is optimal by Theorem 2, since Heap Construction is stronger than
Minimum. Brodal and Pinotti [6] showed how to construct a binary heap using a comparator
network in Θ(n log log n) size and O(log n) depth. They also proved a matching lower bound
on the size of the comparator network for this problem. This, together with Observation 26
and the fact that Floyd’s algorithm has work O(n), gives a separation between work of
fragility-optimal comparison-based algorithms and size of depth-optimal comparator networks
for Heap Construction.
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6 Conclusions

In this paper we introduced the notion of fragile complexity of comparison-based algorithms
and we argued that the concept is well-motivated because of connections both to real world
situations (e.g., sporting events), as well as other fundamental theoretical concepts (e.g.,
sorting networks). We studied the fragile complexity of some of the fundamental problems and
revealed interesting behavior such as the large gap between the performance of deterministic
and randomized algorithms for finding the minimum. We believe there are still plenty of
interesting and fundamental problems left open. Below, we briefly review a few of them.

The area of comparison-based algorithms is much larger than what we have studied.
In particular, it would be interesting to study “geometric orthogonal problems” such
as finding the maxima of a set of points, detecting intersections between vertical and
horizontal line segments, kd-trees, axis-aligned point location and so on. All of these
problems can be solved using algorithms that simply compare the coordinates of points.
Is it possible to avoid using expander graphs to obtain simple deterministic algorithms to
find the median or to sort?
Is it possible to obtain a randomized algorithm that finds the median where the median
suffers O(1) comparisons on average? Or alternatively, is it possible to prove a lower
bound? If one cannot show a ω(1) lower bound for the fragile complexity of the median,
can we show it for some other similar problem?
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