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ABSTRACT

A determinacy race occurs if two or more logically parallel instruc-
tions access the same memory location and at least one of them
tries to modify its content. Races are often undesirable as they can
lead to nondeterministic and incorrect program behavior. A data
race is a special case of a determinacy race which can be eliminated
by associating a mutual-exclusion lock with the memory location in
question or allowing atomic accesses to it. However, such solutions
can reduce parallelism by serializing all accesses to that location.
For associative and commutative updates to a memory cell, one can
instead use a reducer, which allows parallel race-free updates at the
expense of using some extra space. More extra space usually leads
to more parallel updates, which in turn contributes to potentially
lowering the overall execution time of the program.

We start by asking the following question. Given a fixed budget
of extra space for mitigating the cost of races in a parallel program,
which memory locations should be assigned reducers and how
should the space be distributed among those reducers in order to
minimize the overall running time? We argue that under reasonable
conditions the races of a program can be captured by a directed
acyclic graph (DAG), with nodes representing memory cells and
arcs representing read-write dependencies between cells. We then
formulate our original question as an optimization problem on this
DAG. We concentrate on a variation of this problem where space
reuse among reducers is allowed by routing every unit of extra
space along a (possibly different) source to sink path of the DAG
and using it in the construction of multiple (possibly zero) reducers
along the path. We consider two different ways of constructing a
reducer and the corresponding duration functions (i.e., reduction
time as a function of space budget).
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We generalize our race-avoiding space-time tradeoff problem
to a discrete resource-time tradeoff problem with general non-
increasing duration functions and resource reuse over paths of
the given DAG.

For general DAGs, we show that even if the entire DAG is avail-
able offline the problem is strongly NP-hard under all three duration
functions, and we give approximation algorithms for solving the
corresponding optimization problems. We also prove hardness of
approximation for the general resource-time tradeoff problem and
give a pseudo-polynomial time algorithm for series-parallel DAGs.
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1 INTRODUCTION

A determinacy race (or a general race) [14, 27] occurs if two or more
logically parallel instructions access the same memory location and
at least one of them modifies its content. Races are often undesir-
able as they can lead to nondeterministic and incorrect program
behavior. A data race is a special case of a determinacy race which
can be eliminated by associating a mutual-exclusion lock with the
memory location in question or allowing only atomic accesses to it.
Such a solution, however, makes all accesses to that location serial
and thus destroys all parallelism. Figure 1 shows an example.

One can use a reducer [8, 15, 30] to eliminate data races on a
shared variable without destroying parallelism, provided the up-
date operation is associative and commutative. Figure 2 shows the
construction of a simple recursive binary reducer. For any inte-
ger h > 0 such a reducer is a full binary tree of height h and size
2h*+1 _ 1 with the shared variable at the root. Each nonroot node is
associated with a unit of extra space initialized to zero. All updates
to the shared variable are equally distributed among the leaves of
the tree. Each node has a lock and a waiting queue to avoid races by
serializing the updates it receives, but updates to different nodes can
be applied in parallel. As soon as a node undergoes its last update,
it updates its parent using its final value. In fact, such a reducer can
be constructed using only 21 units of extra space because if a node
completes before its sibling it can become its own parent (with
ties broken arbitrarily) and the sibling then updates the new par-
ent. Assume that the time needed to apply an update significantly
dominates the execution time of every other operation the reducer
performs and each update takes one unit of time to apply. Then
a reducer of height h can correctly apply n parallel updates on a
shared variable in I'Z%'I +h+1 time provided at least 2" processors
are available. Hence, for large n, the speedup achieved by a reducer
(w.r.t. serially and directly updating the shared variable) is almost
linear in the amount of extra space used.

To see how extra space can speed up real parallel programs
consider the iterative matrix multiplication code PARALLEL-MM
shown in Figure 3 which multiplies two nX n matrices X[1..n][1..n]
and Y[1..n][1..n] and puts the results in another n X n matrix
Z[1..n][1..n]; that is, it sets Z[i][j] = X1<k<n X[i][k] X Y[K][j]
for 1 < i,j < n. Since every Z[i][j] value can be computed inde-
pendently of others, all iterations of the loops in Lines 1 and 2 can
be executed in parallel without compromising correctness of the
computation. However, the same is not true for the loop in Line
4 because if parallelized, for fixed values of i and j, all iterations
of that loop will update the same memory location Z[i][j] giving
rise to data races and thus producing potentially incorrect results.
Use of a mutual-exclusion lock or atomic updates for each Z[i][]
will ensure correctness but in that case even with an unbounded
number of processors, the code will take © (n) time to multiply the
two n X n matrices. Now if we put a reducer of height h (integer
h € [1,log, n]) at the top of each Z[i][j] the time to fully update
each Z[i][j] and thus the overall running time of the code will drop
to ® (zlh + h) at the cost of using n? x 2h units of extra space. Ob-
serve that when h = 1, the running time of the code almost halves
using 2n? units of extra space, and when h = |log, n], the running

time drops to © (log n) using © (n3) extra space.
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In order to analyze a program P with data races, we capture those
races in a directed acyclic graph (DAG) D(P), assuming that there
are no cyclic read-write dependencies among the memory locations
accessed by P. Figure 4 shows an example. We restrict P to the
set of programs that perform O (1) other operations between two
successive writes to the memory, e.g., PARALLEL-MM in Figure 3. We
assume that an update operation is significantly more expensive
than any other single operation performed by P and hence the
costs of those operations can be safely ignored. Each node x of
D(P) represents a memory location, and a directed edge from node
x to node y means that y is updated using the value stored at x. The
in-degree d;m) of node x gives the number of times x is updated.
With x we also associate a work value wy and set wy = d;cm),
Assuming that each update operation requires unit time to execute
and each node has a lock and a wait queue to serialize the updates,
the wy value represents the time spent updating x (excluding all idle
times). The wy value also represents an upper bound on the time
elapsed between the trigger time of any incoming edge of x and
the time the edge completes updating x. We assume that updates
along all outgoing edges of x trigger as soon as all incoming edges
complete updating x. One can then make the following observation.

OBSERVATION 1.1. The running time of P with an unbounded
number of processors is upper bounded by the makespan of D(P).

Then one natural question to ask is the following.

QUESTION 1.1. Given a fixed budget of units of extra space to
mitigate the cost of data races in P, which memory locations should
be assigned reducers and how should the space be distributed among
those reducers in order to minimize the makespan of D(P)?

Figure 5 shows how to minimize the makespan of the DAG in
Figure 4 using two units of extra space.

The question above ignores the possibility that space can be
reused among reducers in D(P). Indeed, after node x reaches its

final value (i.e., updated wy = d,((in) times) it can release all (if any)
space it used for its reducer which can then be reused by some
other node y. A global memory manager can be used by the nodes
to allocate/deallocate space for reducers. The following modified
version of Question 1.1 now allows space reuse.

QUESTION 1.2. Repeat Question 1.1 but allow for space reuse
among nodes of D(P) by putting all extra space under the control of a
global memory manager that each node calls to allocate space for its
reducer right before its first update and to deallocate that space right
after its last update.

The problem with a single global memory manager is that it
can easily become a performance bottleneck for highly parallel
programs. Though better memory allocators have been developed
for multi-core or multi-threaded systems [1-3, 5, 33], we can in-
stead use an approach often used by recursive fork-join programs
[7,9, 16] which avoids repeated calls to an external memory man-
ager altogether along with the overhead of repeated memory alloca-
tions/deallocations. A single large segment of memory is allocated
1To see why this is true start from the sink node and move backward toward the source

by always moving to that predecessor y of the current node x that performed the last
update on x and noting that after edge (y, x) was triggered it did not have to wait for

more than d;i ™ time units to complete applying y’s update to x.



Session 10 SPAA ’19, June 22-24, 2019, Phoenix, AZ, USA

i=1 i=2

== e G
-1 |—2 Ty <X r; X
’ T T

i
parallel for i« 1 to 2 do
xex+i > [xex+t | [xexez | > [riemet | [raemez |

print x ITl l
|x<—r1 | ‘x<—r2 |
| |

Figure 1: This figure shows a race on global variable x caused by two parallel threads trying to increment x, where r; and
ry are local registers. The value printed by the ‘print’ statement depends on how the two threads are scheduled. Unless the
two threads are executed sequentially, the print statement will print an incorrect result (either 1 or 2 depending on which
thread updated x last).

x<0

f PARALLEL-MM(Z, X, Y, n) ]
fa;y  (ap) '\,aslr (ay)
~¢ e ~¢ ~r (1) parallel for i < 1 to n do
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ras) rag) ®) Z[i]lj] <0
AN Lo (4) for k « 1tondo
| ) Z[iU] < Z[0] + X[ [k] x Y[k] (]
Figure 3: Parallel code that multiplies two nxn ma-
Figure 2: [LEFT] A memory location a with eight updates using trices X[1..n][1..n] and Y[1..n][1..n], and puts the re-
an associative and commutative operator. [RicHT] The same sult in Z[1..n][1..n].
location a with a recursive binary reducer of height two on top

of it.

Figure 4: A DAG in which each node’s work value is set to
its in-degree. The makespan of this DAG is 11, and path s —
a— b—c—d—tachievesit.

Figure 5: Node ¢ from the DAG in Figure 4 has been replaced
with a supernode ¢’ in this figure which is nothing but node
¢ with a reducer of height 1 on top. The makespan of this
reduced DAG is 10, and paths »a > b > ¢ 5 ¢c —>d >t
achieves it.

361
RIGHTS L



RIGHTS

Session 10

before the initial recursive call is made and a pointer to that seg-
ment is passed to the recursive call. Each recursive call splits and
distributes its segment among its child recursive calls and reclaims
the space when the children complete execution. So, we will assume
that all the given extra space initially reside at the source node (i.e.,
node with in-degree zero). Then they flow along the edges toward
the sink (i.e., node with outdegree zero) possibly splitting along
outgoing edges and merging at the tip of incoming edges as they
flow. Each unit of space reaching node x moves out of x along some
outgoing edge as soon as x becomes fully updated and those edges
trigger. Every unit of space may participate in the construction of
multiple reducers (possibly zero) along the path it takes.

QUESTION 1.3. Repeat Question 1.1 but now allow for space reuse
among nodes of D(P) by flowing each unit of space along a source
to sink path and using it in the construction of zero or more reducers
along that path.

While several existing results [11, 12, 20, 35] can be extended
to answer Questions 1.1 and 1.2, to the best of our knowledge,
Question 1.3 had not been raised before. In this paper we investigate
answers to Question 1.3 by extending it to a more general resource-
time tradeoff question posed on a DAG in which nodes represent
jobs (not necessarily of updating memory locations), resources
(not necessarily space) flow along source to sink paths, and an
general duration function (i.e., time needed to complete a job as
a function of the amount of resources used) is specified for each
node. We consider the following three duration functions: general
non-increasing function for the general resource-time question,
and recursive binary reduction and multiway (k-way) splitting for
the space-time case.

For general DAGs, we show that even if the entire DAG is avail-
able to us offline the problem is strongly NP-hard under all three du-
ration functions, and we give approximation algorithms for solving
the corresponding optimization problems. We also prove hardness
of approximation for the general resource-time tradeoff problem
and give a pseudo-polynomial time algorithm for series-parallel
DAGs. Our main results are summarized in Table 1.

Related Work

While several prior works either directly or indirectly address
Questions 1.1 (nonreusable resources) and 1.2 (globally reusable
resources), to the best of our knowledge, Question 1.3 (reusable
along flow paths) has not been considered before.

The well-known time-cost tradeoff problem (TCTP) is closely
related to our nonreusable resources question. In TCTP, some activ-
ities are expediated at additional cost so that the makespan can be
shortened. Deadline and budget problems are two TCTP variants
with different objectives. While the deadline problem seeks to min-
imize the total cost to satisfy a given deadline, the budget problem
aims to minimize the project duration to meet the given budget
constraint [4]. Most researchers consider the tradeoff functions to
be either linear continuous or discrete giving rise to linear TCTP
and discrete TCTP, respectively.

Linear TCTP was formulated by Kelley and Walker in 1959 [22].
They assumed affine linear and decreasing tradeoff functions. In
1961, linear TCTP was solved in polynomial time using network
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flow approaches independently by Fulkerson [17] and Kelley [21].
Phillips and Dessouky [29] later improved that result.

In 1997, De et al. [11] proved that discrete TCTP is NP-hard. For
this problem, Skutella [35] proposed the first approximation algo-
rithm under budget constraints which achieves an approximation
ratio of O (logr), where r is the ratio of the maximum duration of
any activity to the minimum one. Discrete TCTP can also be used
to approximate the TCTP with general time-cost tradeoff functions,
see, e.g., Panagiotakopoulos [28] and Robinson [31].

Our problem with globally reusable resources (Question 1.2) is
very similar to the problem of scheduling precedence-constrained
malleable tasks [36]. In 1978, Lenstra and Rinnooy Kan [23] showed
that no polynomial time algorithm can solve it with approxima-
tion ratio less than % unless P = NP. In 1989, Du and Leung [12]
showed that the problem is strongly NP-hard even for two units of
resources. In 2002, under the monotonous penalty assumptions of
Blayo et al [6], Lepére et al. [24] first proposed the idea of two-step
algorithms — computing an allocation first, and then scheduling
tasks, and used this idea [25] to design a algorithm that achieve an
approximation ratio of ~ 5.236. In the first phase, they approximate
an allocation using Skutella’s algorithm [35]. Similarly, based on
Skutella’s approximation algorithm, Jansen and Zhang [20] devised
a two-phase approximation algorithm with the best-known ratio of
~ 4.730598 and showed that the ratio is tight when the problem size
is large. For more details on the problems of scheduling malleable
tasks with precedence constraints, please check Dutot et al. [13].

There are memory allocators based on global memory manager
for multi-core or multi-threaded systems such as scalloc [3], Hoard
[5], llalloc [2], Streamflow [33], and TCMalloc [1]. They use thread-
local space for memory allocation and a global manager for memory
deallocation/reuse. For the global manager, they use concurrent data
structures. However, these data structures can not completely avoid
synchronization [3, 19, 34] without compromising correctness.

Preliminaries, Problem Formulation

In general, the option to use reducers to trade off between extra
space and the time to complete race-free writing operations leads to
a discrete resource-time tradeoff problem, where, here, the valuable
“resource” is the space that is added, in order to reduce the time
necessary for the write operations. By investing in additional space,
we can reduce the time it takes to do conflict-free write operations.
We formalize the discrete resource-time tradeoff problem. Con-
sider a DAG, D = (V,E), whose nodes V correspond to jobs, and
whose edges represent precedence relations among jobs. Without
loss of generality, we assume that the DAG has a single source and
a single sink node. The duration of a job depends on how many
resource it receives. For each job v € V, there is a non-increasing
duration function t(r) that denotes the time required to complete
job v using r units of resources. We call (r, t,,(r)) a resource-time
tuple associated with job (node) v. We consider three classes of
duration functions - general non-increasing step functions, k-way
splitting functions, and recursive binary splitting functions.

General non-increasing step function. Let [;, be the number
of resource-time tuples associated with job v. The i-th resource-
time tuple is (o, i, tv (rv,i)) where 1 < i < [,. Then, the duration
function t; (r) is a step function with [, steps described as follows:
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Duration function Hardness

Hardness of Approximation

Approximation Results

General non-increasing strongly NP-hard

Recursive binary strongly NP-hard

Multiway splitting strongly NP-hard

e makespan < 2 OPT with resources fixed
e resource < % OPT with makespan fixed

(é, ﬁ) bi-criteria (resource, makespan),
0<a<l1
e makespan < 4 OPT with resources fixed

. (%, %) bi-criteria (resource, makespan)

makespan < 5 OPT with resources fixed

Table 1: Our main results on resource-time tradeoff problems in which resources are routed along source to sink paths (i.e.,

related to Question 1.3 and its generalization).

ifro,; <r<ryis1,1<i<ly,

to(r) = {tv(rv,i), 1)

tv(rv,lv)'

where 1,1 = 0,70, j < Ty j+1, to(ro,j) = to(ro,j+1) for 1 < j < I,.

ifry g, <7,

k-way splitting. A k-way split reducer utilizes k units of extra
space, Sy, = {s1,52, .., S}, associated with a node v, with 2 < k <
di}") , such that the write operations associated with incoming edges
at v are distributed among the nodes in S, which then have edges
linking each s; to v. The duration function that results from k-way
split reducers is given by

to(0), if k € {0,1}
to(r) = 3 [t,(0)/k] + k, if2 <k < |[+/tu(0)]
tv(L\/tv(O)J)- ifLVtv(O)J <k.

Recursive binary splitting. The duration function that results
from a recursive binary split reducer is given by a step function,
as follows. The resource-time tuples are defined for r = 0 and 2
where 0 < i < k and k = [log, t,,(0) — log, log, e]. The duration
function f5(2%) = [£,(0)/2X7 + k + 1 is minimized when k =
Llog, t,(0) — log, log, e] (by differentiating t(25) wrt. k).

@)

£, (0), ifr=0,1
[ty (0)/201 +i+1, ifr=2i2<i<k
t‘U(r) = U(i) . i i+1 . (3)
t(24), if2' <r<22<i<k
1o (25), ifi>k

When utilizing a reducer, extra space serves as the limited re-
source and the time taken for race-free writing at a node v is the
duration of the job corresponding to v. Both the k-way splitting du-
ration function and the recursive binary splitting duration function
are special cases of general non-increasing function.

We distinguish between two optimization problems, depending
on the objective function:

Minimum-Makespan Problem. Given a resource budget of B,
assign the resources to nodes V such that the makespan of the
project is minimized. Resources can be reused over a path.

Minimum-Resource Problem. Given a makespan target of T,
minimize the amount of resources to achieve target makespan.
Resources can be reused over a path.

Finally, we remark that instead of jobs corresponding to nodes
of the DAG, we can transform the DAG D into another DAG D’ in
which jobs correspond to edges of D’, and the precedence relations
among jobs are enforced by introducing dummy edges, as follows:
For each node v in D, we introduce an edge e, = (ay,by) in D’
(which then has the corresponding duration function, specified, e.g.,
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by resource-time tuples). For each edge (u,v) of D, we introduce
a dummy edge, e = (by, ay) in D’, from the endpoint b, of edge
eu = (ay, by) to the origin a,, of edge e, = (av, by), with resource-
time function t.(r) = 0 for all valid resource levels r.

2 APPROXIMATION ALGORITHMS

2.1 Bi-criteria Approximation for
Non-increasing Duration Functions

We use linear programming in our approximation algorithms. First,
we relax the discrete duration function to a linear one. We transform
the DAG so that a relaxed linear non-increasing duration function
can be used. The transformation happens in two steps.

Activity on edge reduction. We reduce the input DAG D into an
equivalent DAG D’ with activities on edges instead of nodes. This
is a simple transformation described earlier in Section 1.

Activity with two tuples. Following [35], we create a DAG D’
from D' such that all activities in D" are still on edges and each
such activity has at most 2 resource-time tuples. Let j be a job
with [; > 2 resource-time tuples (rj ;, tj(rj,i)),1 < i < I; with
0= rj1 <rjz2<---< rj’lj and tj(rj,l) > tj(rj,z) > 2 tj(rj,lj)
(following Equation 1). Let edge (u, v) of D represent job j. We add
Ij parallel chains, each consisting of two edges in D" For1<i<lI;,
we create a chain of two edges (u, ;) and (u;, v). We create a job
Jji for edge (u,u;) and associate two resource-time tuples with it.
For 1 < i < [}, job j; can be finished either using 0 resource in
tj(rj,i) units of time or using (r,i+1 — rj,;) units of resource in 0
unit of time. The logic is that job j’s duration can be reduced from
tj(rj,i) to tj(rj i+1) provided the resource difference (r;,i+1 —rj,i)
is allocated to j;. Thus the duration function is tj,(0) = t;(r;,;) and
tj; (rj,i+1 — 1j,i) = 0. Job jlj’s (bottommost edge in the [; parallel
edges for job j) duration cannot be further improved from ;(r;, lj)
units of time by using extra resources. The resource-time tuple at
edge (u;,v) is (0,0) where 1 < i < [;.

There is a canonical mapping of resource usages and durations
for jobs j; to that of job j. Let x; be the units of resource used

for job j;, then for job j, ijzl x; units of resource are used. The
time taken to finish job j is max{t;, (x;)|1 < i < [;}. Without loss
of generality, if we use 0 unit of resource for job j; if t; ;(0) <
max{t; 1(x1), tj,2(x2), - - - , tj, i-1(xi-1)}, then this mapping is bijec-
tive. Thus we get the following lemma.

LEMMA 2.1. Any approximation algorithm A on DAG D’ (activity
on edge and each edge has at most two resource-time tuples) with an
approximation ratio a implies an approximation algorithm with the
same approximation ratio a on general DAG D (activity on node and
each job can have more than two resource-time tuples).
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From now on, we will only consider DAGs whose edges represent
jobs, with each edge having at most two resource-time tuples.

Linear relaxation. In D, any edge (u,v) can have either two
resource-time tuples {(0, () (0)), {r(u,v)> 0)} or a single resource-
time tuple {{0, t(,, .,)(0)}}. With linear relaxation, r € [0,r(, )]
units of resource can be used to reduce the completion time of the
job corresponding to edge (u, v) that has two resource-time tuples.
The corresponding duration function t(,, ,,)(r) is as follows:

L, v) (r)= (t(u,v) (0)/r(u,v)) rforr € [0, r(u,v)] (4)

The linear duration function #(, ,)(r) for the job (u,v) with
single resource-time tuple is as follows:

Hu,v) (r) = Ly, v) (0) forallr >0 (5)
Linear programming formulation. Since we are allowed to reuse
resources over a path we can model the problem as a network flow
problem where resources are allowed to flow from the source to
the sink in D". Let E be the set of edges in D’ Let f(u,v) denote
the amount of resources that flow through the edge (u,v). Using
linear relaxation on edge (u, v), the time taken to finish the activity
is t(y,0) (f(, v))- Let the nodes in D" denote events. From now on-
wards, we use a node and its corresponding event synonymously.
Let E;, = {(x,v)} be the set of edges that are incident on node v.
Event v occurs if and only if all the jobs corresponding to the edges
in E,, are finished. Let T;, denote the time when event v occurs. Let
s and t denote the source node and the sink node, respectively. We
assume T = 0. All variables are non-negative.
Constraints:

flu,0) < T(u,v) » (4, v) with two resource-time tuples.  (6)
Tu + tu,o(flu,0)) < To, Y(u,0) €E 7)
D fow + D fuw) =0, Yo i {s,1) ®)
w u
Z fis,k) <B 9
k
Objective function:

Inequality 6 upper bounds the resource flow variable f{,, . for
edges with two tuples. This ensures that these variables remain in
the range [0, 7(,, ;)] and the duration function is linear in this range.
Note that there is no such upper bound on the edges with single
resource-time tuple (except for the trivial upper bound B). This
allows the flow of more resources over an edge that can be used
later on a path. Equation 8 is a flow conservation constraint for all
the nodes v ¢ {s, t}. Inequality 9 constrains the flow of resources
from source s to be upper bounded by the resource budget.

Solving the LP and rounding. We first solve the LP described
above. This might give solution as fractional flow f; and dura-
tion t. (f;") at edge e = (u,v). Let the resource-time tuples at edge
e be {0, t.(0)), (re, 0)}. The range of feasible duration of activity e is

[0, ¢ (0)]. We divide this range into two parts [0, ate (0)), [ate(0), te (0)]

where 0 < a < 1. If t.(f}) € [0, ate(0)) we round it down to 0,
otherwise, we round it up to t.(0). Observe that in the first case,
the resource requirement at e can be increased by at most a fac-
tor of 1/(1 — a). In the second case, the completion time can be
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increased at most by a factor of 1/a. Let fe’ denote the rounded

integer resource requirement at edge e.

Computing min-flow. After rounding the LP solution, we get an

integral resource requirement fé € {0, re} for every edge e. We now

compute a min-flow through this DAG where f; serves as the lower

bound on the flow through (or resource requirement at) edge e.
Constraints:

furo) = oy Yw.0) €E (11)
Zf(v,W) + Zif(u,v) =0, Yo ¢ {s,t} (12)
w u
Objective function:
min " fis. k) (13)
k

Let, f and f* be the optimal solutions of LP 11-13 and LP 6-10,
respectively.

LEMMA 2.2. f*/(1— ) is a feasible solution of min-flow LP 11-13.

Proor. For every edge e, fé < f&/(1 — a) holds in the optimal
solution of LP 6—10. Hence, f*/(1 — a) is a feasible solution of LP
11-13 as it meets the resource requirement fe/ at every edgee. O

LEmMMA 2.3. f is an integral flow and f < f*/(1 — a), where
0<a<l

Proor. The minflow problem has integral optimality. If f is the
optimal solution then it is an integral flow. From Lemma 2.2 we
know that f*/(1 — «) is a feasible solution of LP 11-13. Since f is
optimal and f*/(1 — @) is feasible, we have, f < f*/(1-a). O

Bi-criteria approximation. We now summarize our bi-criteria
approximation result for general non-increasing duration functions:

THEOREM 2.4. For any a € (0,1), there is a (1/a,1/(1 — a))
bi-criteria approximation algorithm for the discrete resource-time
tradeoff problem with a general non-increasing duration function
which allows resource reuse over paths.

Proor. First, we know from Lemma 2.3 that f is an integral flow
and f < f*/(1 — «), where 0 < a < 1.

Second, we claim that the makespan of the DAG used in the
minflow LP 11-13 is at most a factor of 1/« away from that of the
LP 6-10 solution. Let us consider any s — t path P. The makespan
is at least the sum of completion times of the edges in P. Now, after
rounding the LP 6-10 solution, the completion time of an edge may
increase by at most a factor of a. Hence, the sum of duration of
edges along any path is increased by a factor of at most «, and thus
the makespan will not increase by more than an « factor. O

2.2 Improved Bi-criteria Approximation for
Recursive Binary Splitting Functions

Putting @ = 3/4 in Theorem 2.4 we obtain a (4/3,4) bi-criteria
approximation algorithm for general non-increasing duration func-
tions. Hence, if we use 4/3 times more resources than OPT (i.e.,
the optimal solution), we are guaranteed to get a makespan within
factor of 4 of OPT. In this section we show that the bound can be
improved to (4/3, 14/5) for recursive binary splitting functions.
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For a node with in-degree x, the resource-time tuples based on

the recursive binary splitting function are as follows: {0, x), (1, x), (2, t1),

281, 27 t41) o, (2K, 1)) where t) = [x/277+j+1forj > 2
and k = |log, x — log, log, e] is the largest value of j for which t;
decreases with the increase of j.

After solving LP 6-10 from Section 2.1, we sum up the (possibly
fractional) resources allocated to all the [; parallel edges correspond-
ing to job j. Let r be that sum. Let ¢ be the maximum among the
time values given by the LP solution for the I; parallel edges. Thus,
the LP takes t units of time for job j.

We round r to an integer r based on the following criteria.

0, ifr<1
F=12¢ if2l <r< (2 +2"Y/2,0<i<k
241 f @i 42ty 2 <r <2t 0<i<k

We want to find a constant p, such that if t = t;/p, then the LP
must use at least (2! + 2/¥1)/2 = 3(2/~1) units of resources.
In the full paper [10] we show that r can be expressed as follows.

1 e Y . t oJ
r:2(1——t)+§ Y- t)=8-(2h) -2 2/x+§—
x — tj P — t;

j=1 Jj=1

Since we want to have r > 3(2/71), we want to find the smallest
value of p such that

i+1 i

ti | 2 2
Sl

j=1 7

i+1

. ti L
< 5. (2i71 = > _l + - .l
€3-@7) P15 2i=2x z; 2i-J-1g;
]:

Our full paper [10] shows that < 14.

ti i+1 t;
2124 + Zj:l 2i—j—1tj

ti i+1 ti
7 ox T Zj=1 W)
The computation above implies the following lemma.

So, by setting p = 14/5, we get p > 1/5 (

LEMMA 2.5. If the LP uses 2 < r < 3(2!~1) units of resources and
we round r down tor = 2" where0 < i < k, then t; < (14/5)t where
t is the duration from the LP solution.

We can also show the following (details in [10]).

LEMMA 2.6. Ifthe LP usesr < 1 unit of resource and we round r
down to 0, then t; < 2t, where t is the duration from the LP solution.

LEMMA 2.7. Ifr is rounded to7 thenr < (4/3)r
From Lemmas 2.5, 2.6 and 2.7, we get the following theorem.

THEOREM 2.8. There is a (4/3,14/5) bi-criteria approximation
algorithm for the discrete resource-time tradeoff problem with resource
reuse along paths when the recursive binary duration function is used.

2.3 Single-criteria Approximation for k-Way
and Recursive Binary Splitting

First, observe that Section 2.1 gives a bi-criterian approximation
for both k-way and recursive binary splitting. Setting & = 1/2 in
Theorem 2.4, we obtain a (2, 2) bi-criteria approximation. Now,
after LP rounding, say a job j uses 7; units of resource and takes
t; units of time. Then the optimal solution uses rJ’f > 7;/2 units of
resource and takes ¢ > 7;/2 units of time for job j. Recall that job j
consists of [; parallel jobs j; where 1 < i < [;. Hence, 7; is the sum
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of the resource (after rounding) used by I; parallel jobs and 7; is the
maximum time (after rounding) taken by [; parallel jobs.
Approximation algorithm for k-way splitting. To obtain a single-
criteria approximation, in the case of k-way splitting, we use at
most r; units of resource for job j. If rj > r]’.k, we reduce 7j to k (a
nonnegative integer) units of resource such that k < r;.‘, Using k
units of resource, job j takes ¢j(k) units of time to complete.

LEMMA 2.9. [d/k] + k < 2.54; for7; > 3 whered = t;(0) and
k = [77/2).

Proor. Since k = |rj/2] > ¥j/2.5 for rj > 3, we have [d/k] <
d/k+1<2.5d/rj+1 < 2.5[d/rj]+1. Alsosince k = |7j/2] <7j+1
and 2.5rj > rj + 2 for 7j > 3, we have [d/k] +k < 2.5[d/rj]+1+
7 +1 < 2.5 ([d/7;] +7;). Hence, t; (k) < 2.5;. o

LEMMA 2.10. If7j > 3 thentj(k) < St;‘.

Proor. We know tj(k) = [d/k] +k as k > 4. Also in Lemma 2.9,
we prove tj(k) < 2.5t;. However, we show that 7; < Zt;. Hence,
combining these two results we get ¢ (k) < Stj’.‘. O

LemMmA 2.11. Ift; = d/4 thenr} > 2.

PrOOF. Recall thatin D", job j is represented as [; parallel jobs
Jji where 1 < i < [;. The resource-time tuples of jobs j; and j2
are {(0,d),(2,0)} and {€0, [d/2] + 2), (1, 0)}, respectively. To attain
d/4 duration, j; requires at least 3/2 units of resource and job j
requires 1/2 unit of resource (applying linear relaxation). Hence,
r; > (3/2 + 1/2) = 2 units of resource to achieve tJ’.‘ =d/4. ]

LEMMA 2.12. If7j < 3 thentj(k) < 4t;.‘.

Proor. If 7; < 3 and r; < 2, then we round down 7j to k = 0.
So, from Lemma 2.11 it follows that after rounding down to 0 unit
of resource, job j takes d < 4t* units of time.

Ifrj < 3 and rJ’f‘ > 2, then we round 7;j to k = 2. It is true that
tj(2) < 2tj(3) because ([d/2] + 2) < 2([d/3] + 3). Also, t;(3) <
tj(rj) < Zt;‘. Combining this two results we get ¢;(2) < 4t*. o

So, now we have the following result.

THEOREM 2.13. There is a 5-approximation algorithm for the
minimum-makespan problem with k-way splitting duration function.

Proor. Combining Lemmas 2.12 and 2.10 we get ¢ (k) < St; for
all valid 7;. This proves that the makespan is at most 5 times the
optimal solution. We now calculate the total amount of resource
required to flow from the source of D'. We compute a min-flow
in D' where k is the resource requirement for job j. Note that we
are now working on D’ that does not have [ ; parallel chains for
job j. Let f be the min flow from the source of D’ such that all the
resource requirements are met. The flow f* from the LP solution
before rounding is also a valid flow for the resource requirement
k for job j as k < r}. We know that min-flow gives an optimal
integral solution. Hence, f < f*. O

Approximation algorithm for recursive binary splitting. We
have the following result.
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THEOREM 2.14. There is a 4-approximation algorithm for the
minimum-makespan problem with recursive binary splitting function.

PRrROOF. As in the case of k-way splitter, to get a single-criteria
approximation, we use no more than r;.‘ units of resource for job
JIfr; > r;, we reduce 7; to 7j/2. We know that t;(r;/2) < 2t;(r;)
from the properties of the recursive binary splitting function. Thus,
tj(rj/2) < 2tj(rj) < 4t;(r}) = 4t} o

2.4 Exact Algorithm for Series-Parallel Graphs

We consider now the special case in which the underlying DAG D is
a series-parallel graph. A series-parallel graph G can be transformed
into (and represented as) a rooted binary tree T in polynomial time
by decomposing it into its atomic parts according to its series and
parallel compositions (see, e.g., [26]). In T, the leaves correspond
to the vertices of G. Internal nodes of T are labeled as “s" or “p"
based on series or parallel composition. We associate each internal
node v of T with the series-parallel graph G, induced by the
leaves of the subtree rooted at v.

Let T(v, A) denote the makespan of G, using 0 < A < B units
of resources where B is the resource budget. We want to solve for
T (s, B), where s is the root of T. This can be done using dynamic
programming, solving for the leaves first, and then progressing
upward to the root of Tg. We compute T (v, 1) as follows which
assumes that node v corresponds to job j if it is a leaf, otherwise it
has two children v and v,.

tj(A) if v is a leaf

T(v1,A) + T(v2, 4)

' T(v1,i),
ming<j<) ymax T(va, A — i)

There are O (m) nodes in Tg if G has m edges. For each node
v we compute T(v, 1) for 0 < A < B. Computing T(v, A) for any
particular value of A takes O (1) time, since, if the node is a “p" node,
then for 0 < i < A we need to look up values T(v1, i). Thus, for
any internal node v, it takes Zfzo oWN=0 (BZ) time. As there
are O (m) nodes in Tg, the (pseudo-polynomial) time complexity
of the algorithm is O (mBz).

if v is an internal

« »

T(v,A) = node with label “s

if v is an internal

@,

node with label “p

3 NP-HARDNESS

In this section we give a variety of NP-hardness and inapproxima-
bility results related to the discrete time-resource tradeoff problem
in the offline setting (i.e., when the entire DAG is available offline).
All problems consider the version where there is resource reuse
over paths, but they vary the cost-function, graph structure, and
minimization goal. Section 3.1 gives several reductions from 1-in-
3SAT. Theorem 3.1 gives a base reduction for the problem with
general non-increasing duration function which will provide the
ideas and structure for later more complex proofs. Theorems 3.3
and 3.4 adapt this proof to give constant factor inapproximability
for the minimum-resource and minimum-makespan problems. The-
orems 3.5 and 3.6 adapt the NP-hardness proof to apply when the
duration functions are restricted to be the recursive binary splitting
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and the k-way splitting. Section 3.2 shows weak NP-hardness in
bounded treewidth graphs by a reduction from Partition.

3.1 Reuse Over a Path with General
Non-increasing Duration Function

THEOREM 3.1. It is (strongly) NP-hard to decide if there exists a
solution to the (offline) discrete resource-time tradeoff problem, with
resource reuse over paths and a non-increasing duration function,
satisfying a resource bound B and a makespan bound T.

Our proof is based on a polynomial-time reduction from the
strongly NP-hard problem 1-in-3SAT [32]: Given n variables (V;, 1 <
i < n)and m clauses (Cj, 1 < j < m), with each clause a disjunction
of three literals, is there a truth assignment to the variables such
that each clause has exactly one true literal?

v one(two) edges to every

0,1), clause having V (V)
1,00 7
] 0,1y, 0,1y,
(1,0) (1,0)
O JO— -©—©

(0,1,
(1,0) " one(two) edges to every

clause having 'V (V)
N

(b)

Figure 6: (a) Gadget for variable V, and (b) gadget for clause
C = (Vi VV; Vv V) (Section 3.1).

Variable gadget. The gadget for variable V consists of nodes v,
V@ y0) v@® v and v as shown in Figure 6(a). We show
in the hardness proof that a variable gadget will get exactly one
unit of extra resource, otherwise the makespan will be greater than
the target makespan of 1. Sending one unit of resource to node
v@ (Figure 6(a)) corresponds to setting the variable V to TRUE
and sending the unit of resource to v corresponds to setting V'
to FALSE. The remaining nodes ensure the extra resource is used in
the variable and not transferred into one of the clauses.

Clause gadget. The gadget corresponding to clause C has 10 nodes
c® (1 <€ i < 10) as shown in Figure 6(b). Edges (C(l),C(z)),
(C(z), C(4)), (c®,cO)y and (C(3),C(4)) have resource-time pairs
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as {(0, 1),(1,0)}. If clause C has three literals V;, V; and V, then
(3) .(3) and Vk(z). These
nodes correspond to —V;,-V; and Vi, respectively. Node C(©) s
connected to Vl.(3), Vj(z) and Vk(3) which correspond to =V;, V; and

node C® is connected to the nodes V;

-V, respectively. Node € is connected to Vl.(z), Vj(a) and Vk(3).
These nodes correspond to V;, =V; and =V, respectively. Edges
(C(S), C(S)), (Cc®, ), and (C(7), C(19)) have resource-time pairs
as {(0, 1), (1,0)}. The part of the clause gadget consisting of cW,
C(z), C®) and c® demand at least two units of memory be allo-
cated there and then these units of resource go to satisfy two of C(®),
C(® and C(). There is still one of these lines that has no allocated
resource so its cost is 1. Thus, to be satisfied, the corresponding
variable must have had its path length reduced (by setting it to
TRUE).

See the full paper [10] for a complete construction from a 1-in-
3SAT formula.

LEMMA 3.2. There exists a solution to the input instance of 1-
in-3SAT iff there exists a valid flow of resources through the DAG
achieving a makespan of 1 under a resource bound of B = n + 2m.

Proor. Forward direction. We prove that if there is a solu-
tion to the 1-in-3SAT instance with n variables and m clauses,
then the reduced DAG has a solution of makespan 1 with (n +
2m) units of resource. If a variable V’s truth assignment is TRUE,
then we allow one unit of resource to flow through node v
along the path (S, V(I), V(z), V(4), V(S), V(6),T), otherwise we al-
low one unit of resource to flow through node v along the path
(S, V(l), V(3), V(4), V(S), V(é), T). For every clause C, we allow one
unit of resource to flow through the path (S, C(l), C(z), C(4)) and
another unit of resource through the path (S, C(l), c® s c® Y. Thus,
2 units of resource can flow from node C*. In a valid assignment of
1-in-3SAT, for each clause C, exactly 2 nodes of C(S), C(®) and c(7)
will have the earliest start time of 1 and the other one will have 0
(Table 2).

Also, if only one literal is TRUE in a clause, exactly two nodes
among €, and € need one unit of extra resource each to
meet the makespan requirement (from Table 2). We are allowed to
flow 2 units of resource from node C(). Thus the project makespan
is 1 using (n + 2m) units of resource.

Backward direction. Now, we prove that if there exists a solution
of makespan 1 using (n + 2m) units of resource in the reduced
DAG, then there also exists a solution to the 1-in-3SAT instance.
To achieve a makespan of 1, every variable gadget needs 1 unit of
resource and each clause gadget needs 2 units of resource, otherwise
the makespan would be greater than 1. Also, any resource that
is used in a variable gadget cannot be used further in any other
variable or clause gadget because the resource can be reused over a
path only. Similarly, any resource that is used in any clause gadget,
cannot be reused in any other gadget. Only one node that is either
v or V(3), will have the earliest start time 0. Both cannot be 0,
as there is only 1 unit of resource per variable gadget. Both cannot
be 1 as in a clause C where the literal V or =V is present, each
of C®), C®) and C(7) would have earliest starting time of 1. This
requires use of 3 units of resource in the clause gadget C to achieve
a makespan of 1. However, each clause gadget can have exactly
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2 units of resource. Thus, for every variable, it has to be a valid
assignment (V is set to either TRUE or FALSE). From Table 2, if a
clause has exactly one TRUE literal, then the clause gadget requires
2 units of resource to achieve a makespan of 1. Otherwise, the
clause gadget would have a makespan of 2 with the same amount
of resource or would require more resource to achieve the target
makespan of 1. Thus, each clause has exactly one TRUE literal. This

satisfies the 1-in-3SAT instance. O
V; V; Vie c® c© c
TrRUE TrRUE TRUE max(1,1,0)=1 max(1,0,1)= max(0,1,1) =1
FaLse TrRUE TRUE max(0,1,0)=1 max(0,0,1) = max(1,1,1) =1
TrRUE Fatse TRUE max(1,0,0)=1 max(1,1,1) = max(0,0,1) =1
TrRUE TrUE FALsE max(1,1,1)=1 max(1,0,0) = max(0,1,0) =1
Fatse Fause TrRue max(0,0,0)=0 max(0,1,1) = max(1,0,1) =1
Fatse True Fause max(0,1,1) =1 max(0,0,0) = max(1,1,0) =1
True Faise Fause max(1,0,1) =1 max(1,1,0) = max(0,0,0) =0
FaLse Faiuse False max(0,0,1) =1 max(0,1,0) = max(1,0,0) =1

Table 2: Makespan at nodes c®), c®) and C(7) for different
truth value assignments to V;,V; and Vi in Figure 6(b).

We also prove hardness of approximation, both for the minimum-
makespan problem and for the minimum-resource problem. We
note that the minimum-makespan result follows from the prior
construction since a satisfying answer to the reduction results in a
makespan of 1 and any non-satisfying answer returns a makespan
of at least 2.

THEOREM 3.3. The minimum-makespan discrete resource-time
tradeoff problem that allows resources to be reused only over paths
cannot have a polynomial-time approximation algorithm with ap-
proximation factor less than 2 unless P = NP.

For the minimum-resource problem, we need substantial changes
to the proof to get a hardness of approximation. The key idea is to
put variable and clause gadgets in sequence, allowing the resources
to be resued many times, a satifying solution needing only 2 units
of resources and a non-satisfying solution requiring at least 3. A
detailed proof is given in the full paper [10].

THEOREM 3.4. The minimum-resource discrete resource-time trade-
off problem that allows resources to be reused only over paths cannot
have a polynomial-time approximation algorithm with approxima-
tion factor less than 3/2 unless P = NP.

Finally, the full version of the paper [10] shows how to adapt the
framework in this section to show NP-hardness for the recursive
binary and k-way splitting costs. Adapting to these cost functions
requires significantly more infrastructure and care in choosing
values for the cost functions, but uses the same overall structure
for the reduction.

THEOREM 3.5. It is (strongly) NP-hard to decide if there exists a
solution to the (offline) discrete resource-time tradeoff problem, with
resource reuse over paths and a recursive binary splitting function,
satisfying a resource bound B and a makespan bound T.

THEOREM 3.6. It is (strongly) NP-hard to decide if there exists a
solution to the (offline) discrete resource-time tradeoff problem, with
resource reuse over paths and a k-way splitting function, satisfying a
resource bound B and a makespan bound T.
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3.2 Underlying Bounded Treewidth Graph

The proof of the following theorem is based on a reduction from
PARTITION[18]. A complete proof appears in the full paper [10].

THEOREM 3.7. It is weakly NP-hard to decide if there exists a
solution to the (offline) discrete resource-time tradeoff problem, with
resource reuse over paths and a non-increasing duration function,
satisfying a resource bound B and a makespan bound T, provided the
undirected graph obtained by ignoring the directedness of the edges
of the input DAG is of bounded treewidth.

4 CONCLUSION

In this paper we introduce the discrete resource-time tradeoff prob-
lem with resource reuse in which each unit of resource is routed
along a source to sink path and is possibly used and reused to ex-
pedite activities encountered along that path. We assume that a
general duration function (i.e., time needed to complete an activity
as a function of the amount of resources used) is associated with
each activity. We consider two different objective functions: (1) op-
timize makespan given a limited resource budget and (2) optimize
resource requirement given a target makespan.

Our original motivation came from a desire to mitigate the cost
of data races in shared-memory parallel programs by using extra
space to reduce the time it takes to perform conflict-free write
operations to shared memory locations. We consider three duration
functions: general non-increasing function for the general resource-
time question, and recursive binary reduction and multiway (k-way)
splitting for the space-time case.

We present the first hardness and approximation hardness results
as well as the first approximation algorithms for our problems. We
show that the makespan optimization problem is strongly NP-hard
under all three duration functions. When the duration function is
general non-increasing we also show that it is strongly NP-hard
to achieve an approximation ratio less than 2 for the makespan

optimization problem and less than ;—’ for the resource optimiza-
11

o T-a
approximation algorithm for that same duration function, where
14
5

tion problem. We give a ( ) bi-criteria (resource, makespan)

0 < a < 1. We present an improved (%, ) bi-criteria approxima-

tion algorithm for the recursive binary reduction function. We also
give 4- and 5-approximation algorithms for the makespan optimiza-
tion problem under the recursive binary reduction function and the
multiway (k-way) splitting function, respectively.
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