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ABSTRACT

A determinacy race occurs if two or more logically parallel instruc-

tions access the same memory location and at least one of them

tries to modify its content. Races are often undesirable as they can

lead to nondeterministic and incorrect program behavior. A data

race is a special case of a determinacy race which can be eliminated

by associating a mutual-exclusion lock with the memory location in

question or allowing atomic accesses to it. However, such solutions

can reduce parallelism by serializing all accesses to that location.

For associative and commutative updates to a memory cell, one can

instead use a reducer, which allows parallel race-free updates at the

expense of using some extra space. More extra space usually leads

to more parallel updates, which in turn contributes to potentially

lowering the overall execution time of the program.

We start by asking the following question. Given a fixed budget

of extra space for mitigating the cost of races in a parallel program,

which memory locations should be assigned reducers and how

should the space be distributed among those reducers in order to

minimize the overall running time?We argue that under reasonable

conditions the races of a program can be captured by a directed

acyclic graph (DAG), with nodes representing memory cells and

arcs representing read-write dependencies between cells. We then

formulate our original question as an optimization problem on this

DAG. We concentrate on a variation of this problem where space

reuse among reducers is allowed by routing every unit of extra

space along a (possibly different) source to sink path of the DAG

and using it in the construction of multiple (possibly zero) reducers

along the path. We consider two different ways of constructing a

reducer and the corresponding duration functions (i.e., reduction

time as a function of space budget).
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We generalize our race-avoiding space-time tradeoff problem

to a discrete resource-time tradeoff problem with general non-

increasing duration functions and resource reuse over paths of

the given DAG.

For general DAGs, we show that even if the entire DAG is avail-

able offline the problem is strongly NP-hard under all three duration

functions, and we give approximation algorithms for solving the

corresponding optimization problems. We also prove hardness of

approximation for the general resource-time tradeoff problem and

give a pseudo-polynomial time algorithm for series-parallel DAGs.
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1 INTRODUCTION

A determinacy race (or a general race) [14, 27] occurs if two or more

logically parallel instructions access the same memory location and

at least one of them modifies its content. Races are often undesir-

able as they can lead to nondeterministic and incorrect program

behavior. A data race is a special case of a determinacy race which

can be eliminated by associating a mutual-exclusion lock with the

memory location in question or allowing only atomic accesses to it.

Such a solution, however, makes all accesses to that location serial

and thus destroys all parallelism. Figure 1 shows an example.

One can use a reducer [8, 15, 30] to eliminate data races on a

shared variable without destroying parallelism, provided the up-

date operation is associative and commutative. Figure 2 shows the

construction of a simple recursive binary reducer. For any inte-

ger h > 0 such a reducer is a full binary tree of height h and size

2
h+1 − 1 with the shared variable at the root. Each nonroot node is

associated with a unit of extra space initialized to zero. All updates

to the shared variable are equally distributed among the leaves of

the tree. Each node has a lock and a waiting queue to avoid races by

serializing the updates it receives, but updates to different nodes can

be applied in parallel. As soon as a node undergoes its last update,

it updates its parent using its final value. In fact, such a reducer can

be constructed using only 2
h
units of extra space because if a node

completes before its sibling it can become its own parent (with

ties broken arbitrarily) and the sibling then updates the new par-

ent. Assume that the time needed to apply an update significantly

dominates the execution time of every other operation the reducer

performs and each update takes one unit of time to apply. Then

a reducer of height h can correctly apply n parallel updates on a

shared variable in ⌈ n
2
h ⌉ +h + 1 time provided at least 2

h
processors

are available. Hence, for large n, the speedup achieved by a reducer

(w.r.t. serially and directly updating the shared variable) is almost

linear in the amount of extra space used.

To see how extra space can speed up real parallel programs

consider the iterative matrix multiplication code Parallel-MM

shown in Figure 3 which multiplies two n×n matricesX [1..n][1..n]
and Y [1..n][1..n] and puts the results in another n × n matrix

Z [1..n][1..n]; that is, it sets Z [i][j] =
∑
1≤k≤n X [i][k] × Y [k][j]

for 1 ≤ i, j ≤ n. Since every Z [i][j] value can be computed inde-

pendently of others, all iterations of the loops in Lines 1 and 2 can

be executed in parallel without compromising correctness of the

computation. However, the same is not true for the loop in Line

4 because if parallelized, for fixed values of i and j, all iterations
of that loop will update the same memory location Z [i][j] giving
rise to data races and thus producing potentially incorrect results.

Use of a mutual-exclusion lock or atomic updates for each Z [i][j]
will ensure correctness but in that case even with an unbounded

number of processors, the code will take Θ (n) time to multiply the

two n × n matrices. Now if we put a reducer of height h (integer

h ∈ [1, log
2
n]) at the top of each Z [i][j] the time to fully update

each Z [i][j] and thus the overall running time of the code will drop

to Θ
(
n
2
h + h

)
at the cost of using n2 × 2h units of extra space. Ob-

serve that when h = 1, the running time of the code almost halves

using 2n2 units of extra space, and when h =
⌊
log

2
n
⌋
, the running

time drops to Θ (logn) using Θ
(
n3

)
extra space.

In order to analyze a program P with data races, we capture those

races in a directed acyclic graph (DAG) D (P ), assuming that there

are no cyclic read-write dependencies among the memory locations

accessed by P . Figure 4 shows an example. We restrict P to the

set of programs that perform O (1) other operations between two

successive writes to the memory, e.g., Parallel-MM in Figure 3. We

assume that an update operation is significantly more expensive

than any other single operation performed by P and hence the

costs of those operations can be safely ignored. Each node x of

D (P ) represents a memory location, and a directed edge from node

x to node y means that y is updated using the value stored at x . The

in-degree d
(in)
x of node x gives the number of times x is updated.

With x we also associate a work value wx and set wx = d
(in)
x .

Assuming that each update operation requires unit time to execute

and each node has a lock and a wait queue to serialize the updates,

thewx value represents the time spent updating x (excluding all idle

times). Thewx value also represents an upper bound on the time

elapsed between the trigger time of any incoming edge of x and

the time the edge completes updating x . We assume that updates

along all outgoing edges of x trigger as soon as all incoming edges

complete updating x . One can then make the following observation.

Observation 1.1. The running time of P with an unbounded
number of processors is upper bounded by the makespan of D (P )1.

Then one natural question to ask is the following.

Question 1.1. Given a fixed budget of units of extra space to
mitigate the cost of data races in P , which memory locations should
be assigned reducers and how should the space be distributed among
those reducers in order to minimize the makespan of D (P )?

Figure 5 shows how to minimize the makespan of the DAG in

Figure 4 using two units of extra space.

The question above ignores the possibility that space can be

reused among reducers in D (P ). Indeed, after node x reaches its

final value (i.e., updatedwx = d
(in)
x times) it can release all (if any)

space it used for its reducer which can then be reused by some

other node y. A global memory manager can be used by the nodes

to allocate/deallocate space for reducers. The following modified

version of Question 1.1 now allows space reuse.

Question 1.2. Repeat Question 1.1 but allow for space reuse
among nodes of D (P ) by putting all extra space under the control of a
global memory manager that each node calls to allocate space for its
reducer right before its first update and to deallocate that space right
after its last update.

The problem with a single global memory manager is that it

can easily become a performance bottleneck for highly parallel

programs. Though better memory allocators have been developed

for multi-core or multi-threaded systems [1–3, 5, 33], we can in-

stead use an approach often used by recursive fork-join programs

[7, 9, 16] which avoids repeated calls to an external memory man-

ager altogether along with the overhead of repeated memory alloca-

tions/deallocations. A single large segment of memory is allocated

1
To see why this is true start from the sink node and move backward toward the source

by always moving to that predecessor y of the current node x that performed the last

update on x and noting that after edge (y, x ) was triggered it did not have to wait for

more than d (in )
x time units to complete applying y’s update to x .
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Figure 1: This figure shows a race on global variable x caused by two parallel threads trying to increment x , where r1 and
r2 are local registers. The value printed by the ‘print’ statement depends on how the two threads are scheduled. Unless the

two threads are executed sequentially, the print statement will print an incorrect result (either 1 or 2 depending on which

thread updated x last).

Figure 2: [Left] Amemory location a with eight updates using

an associative and commutative operator. [Right] The same

location a with a recursive binary reducer of height two on top

of it.

Parallel-MM(Z ,X ,Y ,n)

(1) parallel for i ← 1 to n do

(2) parallel for j ← 1 to n do

(3) Z [i][j]← 0

(4) for k ← 1 to n do

(5) Z [i][j]← Z [i][j] +X [i][k] × Y [k][j]

Figure 3: Parallel code that multiplies two n×nma-

trices X [1..n][1..n] and Y [1..n][1..n], and puts the re-

sult in Z [1..n][1..n].

Figure 4: A DAG in which each node’s work value is set to

its in-degree. The makespan of this DAG is 11, and path s →
a → b → c → d → t achieves it.

Figure 5: Node c from the DAG in Figure 4 has been replaced

with a supernode c ′ in this figure which is nothing but node

c with a reducer of height 1 on top. The makespan of this

reduced DAG is 10, and path s → a → b → c1 → c → d → t
achieves it.
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before the initial recursive call is made and a pointer to that seg-

ment is passed to the recursive call. Each recursive call splits and

distributes its segment among its child recursive calls and reclaims

the space when the children complete execution. So, we will assume

that all the given extra space initially reside at the source node (i.e.,

node with in-degree zero). Then they flow along the edges toward

the sink (i.e., node with outdegree zero) possibly splitting along

outgoing edges and merging at the tip of incoming edges as they

flow. Each unit of space reaching node x moves out of x along some

outgoing edge as soon as x becomes fully updated and those edges

trigger. Every unit of space may participate in the construction of

multiple reducers (possibly zero) along the path it takes.

Question 1.3. Repeat Question 1.1 but now allow for space reuse
among nodes of D (P ) by flowing each unit of space along a source
to sink path and using it in the construction of zero or more reducers
along that path.

While several existing results [11, 12, 20, 35] can be extended

to answer Questions 1.1 and 1.2, to the best of our knowledge,

Question 1.3 had not been raised before. In this paper we investigate

answers to Question 1.3 by extending it to a more general resource-

time tradeoff question posed on a DAG in which nodes represent

jobs (not necessarily of updating memory locations), resources

(not necessarily space) flow along source to sink paths, and an

general duration function (i.e., time needed to complete a job as

a function of the amount of resources used) is specified for each

node. We consider the following three duration functions: general

non-increasing function for the general resource-time question,

and recursive binary reduction and multiway (k-way) splitting for

the space-time case.

For general DAGs, we show that even if the entire DAG is avail-

able to us offline the problem is strongly NP-hard under all three du-

ration functions, and we give approximation algorithms for solving

the corresponding optimization problems. We also prove hardness

of approximation for the general resource-time tradeoff problem

and give a pseudo-polynomial time algorithm for series-parallel

DAGs. Our main results are summarized in Table 1.

Related Work

While several prior works either directly or indirectly address

Questions 1.1 (nonreusable resources) and 1.2 (globally reusable

resources), to the best of our knowledge, Question 1.3 (reusable

along flow paths) has not been considered before.

The well-known time-cost tradeoff problem (TCTP) is closely

related to our nonreusable resources question. In TCTP, some activ-

ities are expediated at additional cost so that the makespan can be

shortened. Deadline and budget problems are two TCTP variants

with different objectives. While the deadline problem seeks to min-

imize the total cost to satisfy a given deadline, the budget problem

aims to minimize the project duration to meet the given budget

constraint [4]. Most researchers consider the tradeoff functions to

be either linear continuous or discrete giving rise to linear TCTP

and discrete TCTP, respectively.

Linear TCTP was formulated by Kelley and Walker in 1959 [22].

They assumed affine linear and decreasing tradeoff functions. In

1961, linear TCTP was solved in polynomial time using network

flow approaches independently by Fulkerson [17] and Kelley [21].

Phillips and Dessouky [29] later improved that result.

In 1997, De et al. [11] proved that discrete TCTP is NP-hard. For

this problem, Skutella [35] proposed the first approximation algo-

rithm under budget constraints which achieves an approximation

ratio of O (log r ), where r is the ratio of the maximum duration of

any activity to the minimum one. Discrete TCTP can also be used

to approximate the TCTP with general time-cost tradeoff functions,

see, e.g., Panagiotakopoulos [28] and Robinson [31].

Our problem with globally reusable resources (Question 1.2) is

very similar to the problem of scheduling precedence-constrained

malleable tasks [36]. In 1978, Lenstra and Rinnooy Kan [23] showed

that no polynomial time algorithm can solve it with approxima-

tion ratio less than
4

3
unless P = NP. In 1989, Du and Leung [12]

showed that the problem is strongly NP-hard even for two units of

resources. In 2002, under the monotonous penalty assumptions of

Blayo et al [6], Lepère et al. [24] first proposed the idea of two-step

algorithms – computing an allocation first, and then scheduling

tasks, and used this idea [25] to design a algorithm that achieve an

approximation ratio of ≈ 5.236. In the first phase, they approximate

an allocation using Skutella’s algorithm [35]. Similarly, based on

Skutella’s approximation algorithm, Jansen and Zhang [20] devised

a two-phase approximation algorithm with the best-known ratio of

≈ 4.730598 and showed that the ratio is tight when the problem size

is large. For more details on the problems of scheduling malleable

tasks with precedence constraints, please check Dutot et al. [13].

There are memory allocators based on global memory manager

for multi-core or multi-threaded systems such as scalloc [3], Hoard

[5], llalloc [2], Streamflow [33], and TCMalloc [1]. They use thread-

local space for memory allocation and a global manager for memory

deallocation/reuse. For the global manager, they use concurrent data

structures. However, these data structures can not completely avoid

synchronization [3, 19, 34] without compromising correctness.

Preliminaries, Problem Formulation

In general, the option to use reducers to trade off between extra

space and the time to complete race-free writing operations leads to

a discrete resource-time tradeoff problem, where, here, the valuable

“resource” is the space that is added, in order to reduce the time

necessary for the write operations. By investing in additional space,

we can reduce the time it takes to do conflict-free write operations.

We formalize the discrete resource-time tradeoff problem. Con-

sider a DAG, D = (V ,E), whose nodes V correspond to jobs, and

whose edges represent precedence relations among jobs. Without

loss of generality, we assume that the DAG has a single source and

a single sink node. The duration of a job depends on how many

resource it receives. For each job v ∈ V , there is a non-increasing
duration function tv (r ) that denotes the time required to complete

job v using r units of resources. We call ⟨r , tv (r )⟩ a resource-time
tuple associated with job (node) v . We consider three classes of

duration functions – general non-increasing step functions, k-way
splitting functions, and recursive binary splitting functions.

General non-increasing step function. Let lv be the number

of resource-time tuples associated with job v . The i-th resource-

time tuple is ⟨rv,i , tv (rv,i )⟩ where 1 ≤ i ≤ lv . Then, the duration
function tv (r ) is a step function with lv steps described as follows:
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Duration function Hardness Hardness of Approximation Approximation Results

General non-increasing strongly NP-hard

• makespan < 2 OPT with resources fixed

• resource < 3

2
OPT with makespan fixed

(
1

α ,
1

1−α

)
bi-criteria (resource, makespan),

0 < α < 1

Recursive binary strongly NP-hard –

• makespan ≤ 4 OPT with resources fixed

•
(
4

3
, 14

5

)
bi-criteria (resource, makespan)

Multiway splitting strongly NP-hard – makespan ≤ 5 OPT with resources fixed

Table 1: Our main results on resource-time tradeoff problems in which resources are routed along source to sink paths (i.e.,

related to Question 1.3 and its generalization).

tv (r ) =



tv (rv,i ), if rv,i ≤ r < rv,i+1, 1 ≤ i < lv ,

tv (rv,lv ). if rv,lv ≤ r ,
(1)

where rv,1 = 0, rv, j < rv, j+1, tv (rv, j ) ≥ tv (rv, j+1) for 1 ≤ j < lv .

k-way splitting. A k-way split reducer utilizes k units of extra

space, Sv = {s1, s2, .., sk }, associated with a node v , with 2 ≤ k ≤

d
(in)
v , such that the write operations associatedwith incoming edges

at v are distributed among the nodes in Sv , which then have edges

linking each si to v . The duration function that results from k-way
split reducers is given by

tv (r ) =




tv (0), if k ∈ {0, 1}

⌈tv (0)/k⌉ + k, if 2 ≤ k ≤ ⌊
√
tv (0)⌋

tv (⌊
√
tv (0)⌋). if ⌊

√
tv (0)⌋ < k .

(2)

Recursive binary splitting. The duration function that results

from a recursive binary split reducer is given by a step function,

as follows. The resource-time tuples are defined for r = 0 and 2
i

where 0 ≤ i ≤ k and k = ⌊log
2
tv (0) − log

2
log

2
e⌋. The duration

function tv (2
k ) = ⌈tv (0)/2

k ⌉ + k + 1 is minimized when k =
⌊log

2
tv (0) − log2 log2 e⌋ (by differentiating tv (2

k ) w.r.t. k).

tv (r ) =




tv (0), if r = 0, 1

⌈tv (0)/2
i ⌉ + i + 1, if r = 2

i , 2 ≤ i ≤ k

tv (2
i ), if 2

i ≤ r < 2
i+1, 2 ≤ i ≤ k

tv (2
k ), if i > k

(3)

When utilizing a reducer, extra space serves as the limited re-

source and the time taken for race-free writing at a node v is the

duration of the job corresponding to v . Both the k-way splitting du-
ration function and the recursive binary splitting duration function

are special cases of general non-increasing function.

We distinguish between two optimization problems, depending

on the objective function:

Minimum-Makespan Problem. Given a resource budget of B,
assign the resources to nodes V such that the makespan of the

project is minimized. Resources can be reused over a path.

Minimum-Resource Problem. Given a makespan target of T ,
minimize the amount of resources to achieve target makespan.

Resources can be reused over a path.

Finally, we remark that instead of jobs corresponding to nodes

of the DAG, we can transform the DAG D into another DAG D ′ in
which jobs correspond to edges of D ′, and the precedence relations
among jobs are enforced by introducing dummy edges, as follows:

For each node v in D, we introduce an edge ev = (av ,bv ) in D ′

(which then has the corresponding duration function, specified, e.g.,

by resource-time tuples). For each edge (u,v ) of D, we introduce
a dummy edge, e = (bu ,av ) in D ′, from the endpoint bu of edge

eu = (au ,bu ) to the origin av of edge ev = (av ,bv ), with resource-

time function te (r ) = 0 for all valid resource levels r .

2 APPROXIMATION ALGORITHMS

2.1 Bi-criteria Approximation for

Non-increasing Duration Functions

We use linear programming in our approximation algorithms. First,

we relax the discrete duration function to a linear one.We transform

the DAG so that a relaxed linear non-increasing duration function

can be used. The transformation happens in two steps.

Activity on edge reduction.We reduce the input DAG D into an

equivalent DAG D
′

with activities on edges instead of nodes. This

is a simple transformation described earlier in Section 1.

Activity with two tuples. Following [35], we create a DAG D
′′

from D
′

such that all activities in D
′′

are still on edges and each

such activity has at most 2 resource-time tuples. Let j be a job

with lj ≥ 2 resource-time tuples ⟨r j,i , tj (r j,i )⟩, 1 ≤ i ≤ lj with
0 = r j,1 < r j,2 < · · · < r j,lj and tj (r j,1) ≥ tj (r j,2) ≥ · · · ≥ tj (r j,lj )

(following Equation 1). Let edge (u,v ) of D
′

represent job j . We add

lj parallel chains, each consisting of two edges inD
′′

. For 1 ≤ i ≤ lj ,
we create a chain of two edges (u,ui ) and (ui ,v ). We create a job

ji for edge (u,ui ) and associate two resource-time tuples with it.

For 1 ≤ i < lj , job ji can be finished either using 0 resource in

tj (r j,i ) units of time or using (r j,i+1 − r j,i ) units of resource in 0

unit of time. The logic is that job j’s duration can be reduced from

tj (r j,i ) to tj (r j,i+1) provided the resource difference (r j,i+1 − r j,i )
is allocated to ji . Thus the duration function is tji (0) = tj (r j,i ) and
tji (r j,i+1 − r j,i ) = 0. Job jlj ’s (bottommost edge in the lj parallel

edges for job j) duration cannot be further improved from tj (r j,lj )

units of time by using extra resources. The resource-time tuple at

edge (ui ,v ) is ⟨0, 0⟩ where 1 ≤ i ≤ lj .
There is a canonical mapping of resource usages and durations

for jobs ji to that of job j. Let xi be the units of resource used

for job ji , then for job j,
∑lj
i=1 xi units of resource are used. The

time taken to finish job j is max{tji (xi ) |1 ≤ i ≤ lj }. Without loss

of generality, if we use 0 unit of resource for job ji if tj,i (0) ≤
max{tj,1 (x1), tj,2 (x2), · · · , tj,i−1 (xi−1)}, then this mapping is bijec-

tive. Thus we get the following lemma.

Lemma 2.1. Any approximation algorithmA on DAGD
′′

(activity
on edge and each edge has at most two resource-time tuples) with an
approximation ratio α implies an approximation algorithm with the
same approximation ratio α on general DAG D (activity on node and
each job can have more than two resource-time tuples).
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From now on, wewill only consider DAGswhose edges represent

jobs, with each edge having at most two resource-time tuples.

Linear relaxation. In D
′′

, any edge (u,v ) can have either two

resource-time tuples {⟨0, t(u,v ) (0)⟩, ⟨r (u,v ) , 0⟩} or a single resource-
time tuple {⟨0, t(u,v ) (0)⟩}. With linear relaxation, r ∈ [0, r (u,v )]
units of resource can be used to reduce the completion time of the

job corresponding to edge (u,v ) that has two resource-time tuples.

The corresponding duration function t(u,v ) (r ) is as follows:

t(u,v ) (r ) =
(
t(u,v ) (0)/r (u,v )

)
r for r ∈ [0, r (u,v )] (4)

The linear duration function t(u,v ) (r ) for the job (u,v ) with
single resource-time tuple is as follows:

t(u,v ) (r ) = t(u,v ) (0) for all r ≥ 0 (5)

Linear programming formulation. Sincewe are allowed to reuse

resources over a path we can model the problem as a network flow

problem where resources are allowed to flow from the source to

the sink in D
′′

. Let E be the set of edges in D
′′

. Let f(u,v ) denote
the amount of resources that flow through the edge (u,v ). Using
linear relaxation on edge (u,v ), the time taken to finish the activity

is t(u,v ) ( f(u,v ) ). Let the nodes in D
′′

denote events. From now on-

wards, we use a node and its corresponding event synonymously.

Let Ev = {(x ,v )} be the set of edges that are incident on node v .
Event v occurs if and only if all the jobs corresponding to the edges

in Ev are finished. LetTv denote the time when event v occurs. Let

s and t denote the source node and the sink node, respectively. We

assume Ts = 0. All variables are non-negative.

Constraints:

f(u,v ) ≤ r (u,v ) , ∀(u,v ) with two resource-time tuples. (6)

Tu + tu,v ( f(u,v ) ) ≤ Tv , ∀(u,v ) ∈ E (7)∑
w

f(v,w ) +
∑
u

f(u,v ) = 0 , ∀v < {s, t } (8)∑
k

f(s,k ) ≤ B (9)

Objective function:

minTt (10)

Inequality 6 upper bounds the resource flow variable f(u,v ) for
edges with two tuples. This ensures that these variables remain in

the range [0, r (u,v )] and the duration function is linear in this range.

Note that there is no such upper bound on the edges with single

resource-time tuple (except for the trivial upper bound B). This
allows the flow of more resources over an edge that can be used

later on a path. Equation 8 is a flow conservation constraint for all

the nodes v < {s, t }. Inequality 9 constrains the flow of resources

from source s to be upper bounded by the resource budget.

Solving the LP and rounding. We first solve the LP described

above. This might give solution as fractional flow f ∗e and dura-

tion te ( f
∗
e ) at edge e = (u,v ). Let the resource-time tuples at edge

e be {⟨0, te (0)⟩, ⟨re , 0⟩}. The range of feasible duration of activity e is
[0, te (0)].We divide this range into two parts [0,αte (0)), [αte (0), te (0)]
where 0 < α < 1. If te ( f

∗
e ) ∈ [0,αte (0)) we round it down to 0,

otherwise, we round it up to te (0). Observe that in the first case,

the resource requirement at e can be increased by at most a fac-

tor of 1/(1 − α ). In the second case, the completion time can be

increased at most by a factor of 1/α . Let f
′

e denote the rounded

integer resource requirement at edge e .

Computing min-flow. After rounding the LP solution, we get an

integral resource requirement f
′

e ∈ {0, re } for every edge e . We now

compute a min-flow through this DAG where f
′

e serves as the lower

bound on the flow through (or resource requirement at) edge e .
Constraints:

f(u,v ) ≥ f
′

(u,v ) , ∀(u,v ) ∈ E (11)∑
w

f(v,w ) +
∑
u

f(u,v ) = 0 , ∀v < {s, t } (12)

Objective function:

min

∑
k

f(s,k ) (13)

Let, f and f ∗ be the optimal solutions of LP 11–13 and LP 6–10,

respectively.

Lemma 2.2. f ∗/(1−α ) is a feasible solution of min-flow LP 11–13.

Proof. For every edge e , f
′

e ≤ f ∗e /(1 − α ) holds in the optimal

solution of LP 6–10. Hence, f ∗/(1 − α ) is a feasible solution of LP

11–13 as it meets the resource requirement f
′

e at every edge e . □

Lemma 2.3. f is an integral flow and f ≤ f ∗/(1 − α ), where
0 < α < 1.

Proof. The minflow problem has integral optimality. If f is the

optimal solution then it is an integral flow. From Lemma 2.2 we

know that f ∗/(1 − α ) is a feasible solution of LP 11–13. Since f is

optimal and f ∗/(1 − α ) is feasible, we have, f ≤ f ∗/(1 − α ). □

Bi-criteria approximation. We now summarize our bi-criteria

approximation result for general non-increasing duration functions:

Theorem 2.4. For any α ∈ (0, 1), there is a (1/α , 1/(1 − α ))
bi-criteria approximation algorithm for the discrete resource-time
tradeoff problem with a general non-increasing duration function
which allows resource reuse over paths.

Proof. First, we know from Lemma 2.3 that f is an integral flow

and f ≤ f ∗/(1 − α ), where 0 < α < 1.

Second, we claim that the makespan of the DAG used in the

minflow LP 11–13 is at most a factor of 1/α away from that of the

LP 6–10 solution. Let us consider any s − t path P. The makespan

is at least the sum of completion times of the edges in P. Now, after

rounding the LP 6–10 solution, the completion time of an edge may

increase by at most a factor of α . Hence, the sum of duration of

edges along any path is increased by a factor of at most α , and thus
the makespan will not increase by more than an α factor. □

2.2 Improved Bi-criteria Approximation for

Recursive Binary Splitting Functions

Putting α = 3/4 in Theorem 2.4 we obtain a (4/3, 4) bi-criteria
approximation algorithm for general non-increasing duration func-

tions. Hence, if we use 4/3 times more resources than OPT (i.e.,

the optimal solution), we are guaranteed to get a makespan within

factor of 4 of OPT. In this section we show that the bound can be

improved to (4/3, 14/5) for recursive binary splitting functions.
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For a node with in-degree x , the resource-time tuples based on

the recursive binary splitting function are as follows: {⟨0,x⟩, ⟨1,x⟩, ⟨2, t1⟩,

..., ⟨2i , ti ⟩, ⟨2
i+1, ti+1⟩ ..., ⟨2

k , tk ⟩}where tj = ⌈x/2
j ⌉+j+1 for j ≥ 2

and k = ⌊log
2
x − log

2
log

2
e⌋ is the largest value of j for which tj

decreases with the increase of j.
After solving LP 6–10 from Section 2.1, we sum up the (possibly

fractional) resources allocated to all the lj parallel edges correspond-
ing to job j. Let r be that sum. Let t be the maximum among the

time values given by the LP solution for the lj parallel edges. Thus,
the LP takes t units of time for job j.

We round r to an integer r based on the following criteria.

r =




0, if r < 1

2
i

if 2
i ≤ r < (2i + 2i+1)/2, 0 ≤ i ≤ k

2
i+1, if (2i + 2i+1)/2 ≤ r < 2

i+1, 0 ≤ i ≤ k

We want to find a constant ρ, such that if t = ti/ρ, then the LP

must use at least (2i + 2i+1)/2 = 3(2i−1) units of resources.
In the full paper [10] we show that r can be expressed as follows.

r = 2

(
1 −

1

x
t
)
+

i+1∑
j=1

(
2
j −

2
j

tj
t

)
= 8 · (2i−1) −

ti
ρ
*.
,
2/x +

i+1∑
j=1

2
j

tj

+/
-

Since we want to have r ≥ 3(2i−1), we want to find the smallest

value of ρ such that

ti
ρ
*.
,

2

x
+

i+1∑
j=1

2
j

tj

+/
-
≤ 5 · (2i−1) ⇒ ρ ≥ 1/5

*.
,

ti
2
i−2x

+

i+1∑
j=1

ti
2
i−j−1tj

+/
-
.

Our full paper [10] shows that
ti

2
i−2x +

∑i+1
j=1

ti
2
i−j−1tj

< 14.

So, by setting ρ = 14/5, we get ρ > 1/5
(

ti
2
i−2x +

∑i+1
j=1

ti
2
i−j−1tj

)
.

The computation above implies the following lemma.

Lemma 2.5. If the LP uses 2i ≤ r < 3(2i−1) units of resources and
we round r down to r = 2

i where 0 ≤ i ≤ k , then ti ≤ (14/5)t where
t is the duration from the LP solution.

We can also show the following (details in [10]).

Lemma 2.6. If the LP uses r < 1 unit of resource and we round r
down to 0, then ti ≤ 2t , where t is the duration from the LP solution.

Lemma 2.7. If r is rounded to r then r ≤ (4/3)r

From Lemmas 2.5, 2.6 and 2.7, we get the following theorem.

Theorem 2.8. There is a (4/3, 14/5) bi-criteria approximation
algorithm for the discrete resource-time tradeoff problem with resource
reuse along paths when the recursive binary duration function is used.

2.3 Single-criteria Approximation for k-Way

and Recursive Binary Splitting

First, observe that Section 2.1 gives a bi-criterian approximation

for both k-way and recursive binary splitting. Setting α = 1/2 in

Theorem 2.4, we obtain a (2, 2) bi-criteria approximation. Now,

after LP rounding, say a job j uses r j units of resource and takes

tj units of time. Then the optimal solution uses r∗j ≥ r j/2 units of

resource and takes t∗j ≥ tj/2 units of time for job j . Recall that job j

consists of lj parallel jobs ji where 1 ≤ i ≤ lj . Hence, r j is the sum

of the resource (after rounding) used by lj parallel jobs and tj is the
maximum time (after rounding) taken by lj parallel jobs.

Approximation algorithm fork-way splitting.To obtain a single-

criteria approximation, in the case of k-way splitting, we use at

most r∗j units of resource for job j. If r j > r∗j , we reduce r j to k (a

nonnegative integer) units of resource such that k ≤ r∗j . Using k

units of resource, job j takes tj (k ) units of time to complete.

Lemma 2.9. ⌈d/k⌉ + k ≤ 2.5tj for r j > 3 where d = tj (0) and
k = ⌊r j/2⌋.

Proof. Since k = ⌊r j/2⌋ ≥ r j/2.5 for r j > 3, we have ⌈d/k⌉ ≤
d/k+1 ≤ 2.5d/r j +1 ≤ 2.5⌈d/r j ⌉+1. Also since k = ⌊r j/2⌋ ≤ r j +1
and 2.5r j ≥ r j + 2 for r j > 3, we have ⌈d/k⌉ + k ≤ 2.5⌈d/r j ⌉ + 1 +

r j + 1 ≤ 2.5
(
⌈d/r j ⌉ + r j

)
. Hence, tj (k ) ≤ 2.5tj . □

Lemma 2.10. If r j > 3 then tj (k ) ≤ 5t∗j .

Proof. We know tj (k ) = ⌈d/k⌉ +k as k ≥ 4. Also in Lemma 2.9,

we prove tj (k ) ≤ 2.5tj . However, we show that tj ≤ 2t∗j . Hence,

combining these two results we get tj (k ) ≤ 5t∗j . □

Lemma 2.11. If t∗j = d/4 then r
∗
j ≥ 2.

Proof. Recall that in D
′′

, job j is represented as lj parallel jobs
ji where 1 ≤ i ≤ lj . The resource-time tuples of jobs j1 and j2
are {⟨0,d⟩, ⟨2, 0⟩} and {⟨0, ⌈d/2⌉ + 2⟩, ⟨1, 0⟩}, respectively. To attain

d/4 duration, j1 requires at least 3/2 units of resource and job j2
requires 1/2 unit of resource (applying linear relaxation). Hence,

r∗j ≥ (3/2 + 1/2) = 2 units of resource to achieve t∗j = d/4. □

Lemma 2.12. If r j ≤ 3 then tj (k ) ≤ 4t∗j .

Proof. If r j ≤ 3 and r∗j < 2, then we round down r j to k = 0.

So, from Lemma 2.11 it follows that after rounding down to 0 unit

of resource, job j takes d ≤ 4t∗ units of time.

If r j ≤ 3 and r∗j ≥ 2, then we round r j to k = 2. It is true that

tj (2) ≤ 2tj (3) because (⌈d/2⌉ + 2) ≤ 2(⌈d/3⌉ + 3). Also, tj (3) ≤
tj (r j ) ≤ 2t∗j . Combining this two results we get tj (2) ≤ 4t∗. □

So, now we have the following result.

Theorem 2.13. There is a 5-approximation algorithm for the
minimum-makespan problem with k-way splitting duration function.

Proof. Combining Lemmas 2.12 and 2.10 we get tj (k ) ≤ 5t∗j for

all valid r j . This proves that the makespan is at most 5 times the

optimal solution. We now calculate the total amount of resource

required to flow from the source of D
′

. We compute a min-flow

in D
′

where k is the resource requirement for job j. Note that we

are now working on D
′

that does not have lj parallel chains for

job j. Let f be the min flow from the source of D
′

such that all the

resource requirements are met. The flow f ∗ from the LP solution

before rounding is also a valid flow for the resource requirement

k for job j as k ≤ r∗j . We know that min-flow gives an optimal

integral solution. Hence, f ≤ f ∗. □

Approximation algorithm for recursive binary splitting.We

have the following result.
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Theorem 2.14. There is a 4-approximation algorithm for the
minimum-makespan problem with recursive binary splitting function.

Proof. As in the case of k-way splitter, to get a single-criteria

approximation, we use no more than r∗j units of resource for job

j. If r j > r∗j , we reduce r j to r j/2. We know that tj (r j/2) ≤ 2tj (r j )

from the properties of the recursive binary splitting function. Thus,

tj (r j/2) ≤ 2tj (r j ) ≤ 4tj (r
∗
j ) = 4t∗j . □

2.4 Exact Algorithm for Series-Parallel Graphs

We consider now the special case in which the underlying DAGD is

a series-parallel graph. A series-parallel graphG can be transformed

into (and represented as) a rooted binary treeTG in polynomial time

by decomposing it into its atomic parts according to its series and

parallel compositions (see, e.g., [26]). In TG , the leaves correspond
to the vertices of G. Internal nodes of TG are labeled as “s" or “p"
based on series or parallel composition. We associate each internal

node v of TG with the series-parallel graph Gv , induced by the

leaves of the subtree rooted at v .
Let T (v, λ) denote the makespan of Gv using 0 ≤ λ ≤ B units

of resources where B is the resource budget. We want to solve for

T (s,B), where s is the root of TG . This can be done using dynamic

programming, solving for the leaves first, and then progressing

upward to the root of TG . We compute T (v, λ) as follows which
assumes that node v corresponds to job j if it is a leaf, otherwise it
has two children v1 and v2.

T (v, λ) =




tj (λ) if v is a leaf

T (v1, λ) +T (v2, λ)
if v is an internal

node with label “s”

min
0≤i≤λ



max




T (v1, i ),

T (v2, λ − i )







if v is an internal

node with label “p”

There are O (m) nodes in TG if G hasm edges. For each node

v we compute T (v, λ) for 0 ≤ λ ≤ B. Computing T (v, λ) for any
particular value of λ takes O (λ) time, since, if the node is a “p" node,
then for 0 ≤ i ≤ λ we need to look up values T (v1, i ). Thus, for

any internal node v , it takes
∑B
λ=0 O (λ) = O

(
B2

)
time. As there

are O (m) nodes in TG , the (pseudo-polynomial) time complexity

of the algorithm is O
(
mB2

)
.

3 NP-HARDNESS

In this section we give a variety of NP-hardness and inapproxima-

bility results related to the discrete time-resource tradeoff problem

in the offline setting (i.e., when the entire DAG is available offline).

All problems consider the version where there is resource reuse

over paths, but they vary the cost-function, graph structure, and

minimization goal. Section 3.1 gives several reductions from 1-in-

3SAT. Theorem 3.1 gives a base reduction for the problem with

general non-increasing duration function which will provide the

ideas and structure for later more complex proofs. Theorems 3.3

and 3.4 adapt this proof to give constant factor inapproximability

for the minimum-resource and minimum-makespan problems. The-

orems 3.5 and 3.6 adapt the NP-hardness proof to apply when the

duration functions are restricted to be the recursive binary splitting

and the k-way splitting. Section 3.2 shows weak NP-hardness in

bounded treewidth graphs by a reduction from Partition.

3.1 Reuse Over a Path with General

Non-increasing Duration Function

Theorem 3.1. It is (strongly) NP-hard to decide if there exists a
solution to the (offline) discrete resource-time tradeoff problem, with
resource reuse over paths and a non-increasing duration function,
satisfying a resource bound B and a makespan bound T .

Our proof is based on a polynomial-time reduction from the

strongly NP-hard problem 1-in-3SAT [32]: Givenn variables (Vi , 1 ≤
i ≤ n) andm clauses (Cj , 1 ≤ j ≤ m), with each clause a disjunction

of three literals, is there a truth assignment to the variables such

that each clause has exactly one true literal?

(a)

(b)

Figure 6: (a) Gadget for variable V, and (b) gadget for clause
C = (Vi ∨Vj ∨Vk ) (Section 3.1).

Variable gadget. The gadget for variable V consists of nodes V (1)
,

V (2)
, V (3)

, V (4)
, V (5)

, and V (6)
as shown in Figure 6(a). We show

in the hardness proof that a variable gadget will get exactly one

unit of extra resource, otherwise the makespan will be greater than

the target makespan of 1. Sending one unit of resource to node

V (2)
(Figure 6(a)) corresponds to setting the variable V to True

and sending the unit of resource to V (3)
corresponds to setting V

to False. The remaining nodes ensure the extra resource is used in

the variable and not transferred into one of the clauses.

Clause gadget. The gadget corresponding to clauseC has 10 nodes

C (i )
(1 ≤ i ≤ 10) as shown in Figure 6(b). Edges (C (1) ,C (2) ),

(C (2) ,C (4) ), (C (1) ,C (3) ) and (C (3) ,C (4) ) have resource-time pairs
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as {⟨0, 1⟩, ⟨1, 0⟩}. If clause C has three literals Vi ,Vj and Vk , then

node C (5)
is connected to the nodes V

(3)
i ,V

(3)
j and V

(2)
k . These

nodes correspond to ¬Vi ,¬Vj and Vk , respectively. Node C
(6)

is

connected to V
(3)
i ,V

(2)
j and V

(3)
k which correspond to ¬Vi ,Vj and

¬Vk , respectively. Node C
(7)

is connected to V
(2)
i ,V

(3)
j and V

(3)
k .

These nodes correspond to Vi ,¬Vj and ¬Vk , respectively. Edges

(C (5) ,C (8) ), (C (6) ,C (9) ), and (C (7) ,C (10) ) have resource-time pairs

as {⟨0, 1⟩, ⟨1, 0⟩}. The part of the clause gadget consisting of C (1)
,

C (2)
, C (3)

and C (4)
demand at least two units of memory be allo-

cated there and then these units of resource go to satisfy two ofC (5)
,

C (6)
and C (7)

. There is still one of these lines that has no allocated

resource so its cost is 1. Thus, to be satisfied, the corresponding

variable must have had its path length reduced (by setting it to

True).

See the full paper [10] for a complete construction from a 1-in-

3SAT formula.

Lemma 3.2. There exists a solution to the input instance of 1-
in-3SAT iff there exists a valid flow of resources through the DAG
achieving a makespan of 1 under a resource bound of B = n + 2m.

Proof. Forward direction. We prove that if there is a solu-

tion to the 1-in-3SAT instance with n variables and m clauses,

then the reduced DAG has a solution of makespan 1 with (n +
2m) units of resource. If a variable V ’s truth assignment is True,

then we allow one unit of resource to flow through node V (2)

along the path ⟨S,V (1) ,V (2) ,V (4) ,V (5) ,V (6) ,T ⟩, otherwise we al-

low one unit of resource to flow through node V (3)
along the path

⟨S,V (1) ,V (3) ,V (4) ,V (5) ,V (6) ,T ⟩. For every clause C , we allow one

unit of resource to flow through the path ⟨S,C (1) ,C (2) ,C (4)⟩ and

another unit of resource through the path ⟨S,C (1) ,C (3) ,C (4)⟩. Thus,

2 units of resource can flow from node C4
. In a valid assignment of

1-in-3SAT, for each clause C , exactly 2 nodes of C (5) ,C (6)
and C (7)

will have the earliest start time of 1 and the other one will have 0

(Table 2).

Also, if only one literal is True in a clause, exactly two nodes

among C (5) ,C (6)
and C (7)

need one unit of extra resource each to

meet the makespan requirement (from Table 2). We are allowed to

flow 2 units of resource from nodeC (4)
. Thus the project makespan

is 1 using (n + 2m) units of resource.

Backward direction. Now, we prove that if there exists a solution

of makespan 1 using (n + 2m) units of resource in the reduced

DAG, then there also exists a solution to the 1-in-3SAT instance.

To achieve a makespan of 1, every variable gadget needs 1 unit of

resource and each clause gadget needs 2 units of resource, otherwise

the makespan would be greater than 1. Also, any resource that

is used in a variable gadget cannot be used further in any other

variable or clause gadget because the resource can be reused over a

path only. Similarly, any resource that is used in any clause gadget,

cannot be reused in any other gadget. Only one node that is either

V (2)
or V (3)

, will have the earliest start time 0. Both cannot be 0,

as there is only 1 unit of resource per variable gadget. Both cannot

be 1 as in a clause C where the literal V or ¬V is present, each

of C (5) ,C (6)
and C (7)

would have earliest starting time of 1. This

requires use of 3 units of resource in the clause gadgetC to achieve

a makespan of 1. However, each clause gadget can have exactly

2 units of resource. Thus, for every variable, it has to be a valid

assignment (V is set to either True or False). From Table 2, if a

clause has exactly one True literal, then the clause gadget requires

2 units of resource to achieve a makespan of 1. Otherwise, the

clause gadget would have a makespan of 2 with the same amount

of resource or would require more resource to achieve the target

makespan of 1. Thus, each clause has exactly one True literal. This

satisfies the 1-in-3SAT instance. □

Vi Vj Vk C (5) C (6) C (7)

True True True max (1, 1, 0) = 1 max (1, 0, 1) = 1 max (0, 1, 1) = 1

False True True max (0, 1, 0) = 1 max (0, 0, 1) = 1 max (1, 1, 1) = 1

True False True max (1, 0, 0) = 1 max (1, 1, 1) = 1 max (0, 0, 1) = 1

True True False max (1, 1, 1) = 1 max (1, 0, 0) = 1 max (0, 1, 0) = 1

False False True max (0, 0, 0) = 0 max (0, 1, 1) = 1 max (1, 0, 1) = 1

False True False max (0, 1, 1) = 1 max (0, 0, 0) = 0 max (1, 1, 0) = 1

True False False max (1, 0, 1) = 1 max (1, 1, 0) = 1 max (0, 0, 0) = 0

False False False max (0, 0, 1) = 1 max (0, 1, 0) = 1 max (1, 0, 0) = 1

Table 2: Makespan at nodes C (5)
, C (6)

and C (7)
for different

truth value assignments to Vi ,Vj and Vk in Figure 6(b).

We also prove hardness of approximation, both for the minimum-

makespan problem and for the minimum-resource problem. We

note that the minimum-makespan result follows from the prior

construction since a satisfying answer to the reduction results in a

makespan of 1 and any non-satisfying answer returns a makespan

of at least 2.

Theorem 3.3. The minimum-makespan discrete resource-time
tradeoff problem that allows resources to be reused only over paths
cannot have a polynomial-time approximation algorithm with ap-
proximation factor less than 2 unless P = NP .

For theminimum-resource problem, we need substantial changes

to the proof to get a hardness of approximation. The key idea is to

put variable and clause gadgets in sequence, allowing the resources

to be resued many times, a satifying solution needing only 2 units

of resources and a non-satisfying solution requiring at least 3. A

detailed proof is given in the full paper [10].

Theorem 3.4. Theminimum-resource discrete resource-time trade-
off problem that allows resources to be reused only over paths cannot
have a polynomial-time approximation algorithm with approxima-
tion factor less than 3/2 unless P = NP .

Finally, the full version of the paper [10] shows how to adapt the

framework in this section to show NP-hardness for the recursive

binary and k-way splitting costs. Adapting to these cost functions

requires significantly more infrastructure and care in choosing

values for the cost functions, but uses the same overall structure

for the reduction.

Theorem 3.5. It is (strongly) NP-hard to decide if there exists a
solution to the (offline) discrete resource-time tradeoff problem, with
resource reuse over paths and a recursive binary splitting function,
satisfying a resource bound B and a makespan bound T .

Theorem 3.6. It is (strongly) NP-hard to decide if there exists a
solution to the (offline) discrete resource-time tradeoff problem, with
resource reuse over paths and a k-way splitting function, satisfying a
resource bound B and a makespan bound T .
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3.2 Underlying Bounded Treewidth Graph

The proof of the following theorem is based on a reduction from

Partition[18]. A complete proof appears in the full paper [10].

Theorem 3.7. It is weakly NP-hard to decide if there exists a
solution to the (offline) discrete resource-time tradeoff problem, with
resource reuse over paths and a non-increasing duration function,
satisfying a resource bound B and a makespan bound T , provided the
undirected graph obtained by ignoring the directedness of the edges
of the input DAG is of bounded treewidth.

4 CONCLUSION

In this paper we introduce the discrete resource-time tradeoff prob-

lem with resource reuse in which each unit of resource is routed

along a source to sink path and is possibly used and reused to ex-

pedite activities encountered along that path. We assume that a

general duration function (i.e., time needed to complete an activity

as a function of the amount of resources used) is associated with

each activity. We consider two different objective functions: (1) op-
timize makespan given a limited resource budget and (2) optimize

resource requirement given a target makespan.

Our original motivation came from a desire to mitigate the cost

of data races in shared-memory parallel programs by using extra

space to reduce the time it takes to perform conflict-free write

operations to shared memory locations. We consider three duration

functions: general non-increasing function for the general resource-

time question, and recursive binary reduction andmultiway (k-way)
splitting for the space-time case.

We present the first hardness and approximation hardness results

as well as the first approximation algorithms for our problems. We

show that the makespan optimization problem is strongly NP-hard

under all three duration functions. When the duration function is

general non-increasing we also show that it is strongly NP-hard

to achieve an approximation ratio less than 2 for the makespan

optimization problem and less than
3

2
for the resource optimiza-

tion problem. We give a

(
1

α ,
1

1−α

)
bi-criteria (resource, makespan)

approximation algorithm for that same duration function, where

0 < α < 1. We present an improved

(
4

3
, 14
5

)
bi-criteria approxima-

tion algorithm for the recursive binary reduction function. We also

give 4- and 5-approximation algorithms for the makespan optimiza-

tion problem under the recursive binary reduction function and the

multiway (k-way) splitting function, respectively.
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