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Abstract The purpose of this article is to produce effective versions of some
rigidity results in algebra and geometry. On the geometric side, we focus on the
spectrum of primitive geodesic lengths (resp., complex lengths) for arithmetic
hyperbolic 2-manifolds (resp., 3-manifolds). By work of Reid, this spectrum
determines the commensurability class of the 2-manifold (resp., 3-manifold).
We establish effective versions of these rigidity results by ensuring that, for
two incommensurable arithmetic manifolds of bounded volume, the length sets
(resp., the complex length sets) must disagree for a length that can be explicitly
bounded as a function of volume. We also prove an effective version of a similar
rigidity result established by the second author with Reid on a surface analog
of the length spectrum for hyperbolic 3-manifolds. These effective results have
corresponding algebraic analogs involving maximal subfields and quaternion
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698 B. Linowitz et al.

subalgebras of quaternion algebras. To prove these effective rigidity results, we
establish results on the asymptotic behavior of certain algebraic and geometric
counting functions which are of independent interest.

1 Introduction

1.1 Inverse problems

1.1.1 Algebraic problems

Given a degree d central division algebra D over a field k, the set of isomor-
phism classes of maximal subfields MF(D) of D is a basic and well studied
invariant of D.

Question 1 Do there exist non-isomorphic, central division algebras

D1, D2/k with MF(D1) = MF(D2)?

Restricting to the class of number fields k, by a well-known consequence
of class field theory, when D/k is a quaternion algebra, MF(D) = MF(D′)
if and only if D ∼= D′ as k-algebras. Unfortunately, for most higher degree
division algebras, we have MF(D) = MF(Dop) and D ≇ Dop where Dop is the
opposite algebra for D. For a fixed algebra D/k, the number of isomorphism
classes of algebras D′/k with MF(D) = MF(D′) is the genus of D and is
finite in this setting; see [14,30,60] for some recent work on genus of D/k for
general fields k.

The Brauer group Br(k) of a field k is the set of Morita equivalence classes
[A] of central, simple k-algebras. The group operation is given by tensor prod-
uct ⊗k with inverses given by [Aop]. Each class [A] has a unique central
division algebra DA. Given a finite extension L/k, we have a homomorphism
ResL/k : Br(k) → Br(L) defined by ResL/k([A0]) = [A0 ⊗k L]. For a class
[A] ∈ Br(L), the set (ResL/k)

−1([A]) is the set of Morita equivalence classes
[A0] in Br(k) such that [A] = [A0 ⊗k L]. Fix a finite extension L1/k and
algebra A/L1.

Question 2 Does there exist a finite extension L2/k and an algebra A′/L2
with (ResL1/k)

−1(A) = (ResL2/k)
−1(A′)?

In this generality, we cannot hope to conclude that L1
∼= L2 and A ∼= A′ (see

[58]). However, when L1, L2/k are quadratic extensions and A is a quaternion
algebra, we have L1

∼= L2 provided (ResL1/k)
−1(A) is non-empty.

1.1.2 Geometric problems

Given a closed, negatively curved, Riemannian manifold M , we have an ana-
lytic invariant given by the eigenvalue spectrum E (M) of the Laplace–Beltrami
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Counting and effective rigidity in algebra and geometry 699

operator acting on L2(M). Similarly, we have a geometric invariant given by
the primitive geodesic length spectrum Lp(M) of lengths ℓ of primitive, closed
geodesics. Both geometric invariants of M are multi-sets of the form

E (M), Lp(M) =
{
(λ j , mλ j

)
}
,
{
(ℓ j , mℓ j

)
}

⊂ R≥0 × N.

The integers mλ j
, mℓ j

are called the multiplicities and give the dimension of
the associated λ j -eigenspace or the number of distinct occurrences of the prim-
itive length ℓ j , respectively. Forgetting the multiplicities, the set of primitive
lengths will be called the length set. Two consequences of the manifold being
negatively curved are that every free homotopy class of closed loops contains a
unique geodesic representative and the length spectrum is discrete; the eigen-
value spectrum is always discrete when M is closed. Discreteness here means
that the sets without multiplicity {λ j }, {ℓ j } are discrete and the multiplicities
mλ j

, mℓ j
are finite. These spectra are closely related (see [29]). When M is

hyperbolic 2-manifold, these spectra determine one another by Selberg’s trace
formula (see [12, Chapter 9, Section 5]). When M is a hyperbolic 3-manifold,
each closed geodesic can be assigned a complex length ℓ = ℓ0 +θ i where θ is
the angle of rotation and ℓ0 is the length of the geodesic. In this case, we have
the complex length spectrum Lc(M) and associated complex length set, and
the spectra E (M), Lc(M) determine one another by Selberg’s trace formula.

Question 3 Do there exist non-isometric Riemannian manifolds M1, M2 such

that Lp(M1) = Lp(M2) (resp., Lc(M1) = Lc(M2) or E (M1) = E (M2))?

Restricting to the class of closed hyperbolic n-manifolds, starting with the
constructions of Vignéras [80], Sunada [76], many papers have constructed
arbitrarily large finite families pairwise non-isometric hyperbolic n-manifolds
with identical eigenvalue and (complex) length spectra for all n ≥ 2; such
manifolds are said to be isospectral or (complex) length isospectral. By con-
struction, the pairs produced by Vignéras, Sunada are commensurable; all
presently known pairs are commensurable. It is not known if such pairs must
be commensurable in any dimension n ≥ 2. For arithmetic hyperbolic 2- or
3-manifolds, they must be. Reid [72] proved that hyperbolic 2-manifolds with
identical length spectra are commensurable provided one of the manifolds
is arithmetic. Using Selberg’s trace formula, Reid also obtained an identical
result for eigenvalue spectra. As arithmeticity is a commensurability invari-
ant, the other manifold is also arithmetic. Reid also established this result
for arithmetic hyperbolic 3-manifolds with the length spectrum replaced with
the complex length spectrum. Chinburg–Hamilton–Long–Reid [18] extended
Reid’s result on length spectra for arithmetic hyperbolic 2-manifolds to arith-
metic hyperbolic 3-manifolds. Prasad–Rapinchuk [69] also extended [72] for
many classes of arithmetic, locally symmetric manifolds. Before [69], it was
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known that [72] could not be extended to general locally symmetric manifolds
as Lubotzky–Samuels–Vishne [50] constructed arbitrarily large finite families
of pairwise incommensurable, isospectral arithmetic, compact, locally sym-
metric manifolds with real rank n for all n using a method similar to Vignéras.
For a fixed manifold, the number of commensurability classes is always finite
by [69] but can be can be arbitrarily large by [50]. This finiteness is the geo-
metric analog of the finiteness of genera for division algebras over number
fields where genera are also arbitrarily large.

1.2 Main results: effective rigidity

We refer the reader to the notation list found at the beginning of Sect. 2 for
any undefined symbols or terms.

1.2.1 Geodesics

Our first result is an effective version of Reid [72].

Theorem 1.1 Let M1, M2 be compact arithmetic hyperbolic 2-manifolds

(resp., 3-manifolds) with volume less than V . There exist absolute effectively

computable constants c1, c2 (resp., c3) such that if the length sets (resp., com-

plex length) of M1 and M2 agree for all lengths less than c1ec2 log(V )V 130
(resp.,

c3e
(
log(V )log(V )

)
), then M1 and M2 are commensurable.

Millichap [61,62] constructed roughly (2n)! incommensurable hyperbolic
3-manifolds that have the same first 2n +1 (complex) geodesic lengths. More-
over, the manifolds all have the same volume and the volume of these manifolds
grows linearly in n. His examples are non-arithmetic and his methods are geo-
metric/topological. Neither of these constructions produce lower bounds near
the upper bound we provide in Theorem 1.1. Since the completion of this
paper, Futer–Millichap [28] and [46] have produced additional examples of
non-arithmetic and arithmetic hyperbolic 2- and 3-manifolds that share the
same geodesic lengths for the first n lengths or any finite subset of lengths.
Additionally, both constructions give control on the volumes of the examples.

We now sketch the proof of Theorem 1.1 in the case that M1, M2 are hyper-
bolic 3-manifolds with π1(M j ) = Ŵ j and volumes bounded above by V .
This proof appears in Sect. 5.4 and makes use of a wide variety of effective
results in algebraic number theory. For simplicity, we assume that M1, M2 are
derived from quaternion algebras. To prove Theorem 1.1, it suffices to show
that the invariant trace fields and invariant quaternion algebras of M1, M2 are
isomorphic (see for instance [54, Chapter 8.4]). That the trace fields are iso-
morphic is relatively straightforward. We show (in Proposition 5.2) that there
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exist hyperbolic γ1 ∈ Ŵ1, γ2 ∈ Ŵ2, all of whose powers have non-real eigen-
values and whose associated geodesics have the same length. It follows that
tr(γ1) = ± tr(γ2) and hence γ1, γ2 generate the same extension k of Q. By [18,
Lemma 2.3] this extension k is isomorphic to the trace fields of both M1, M2.

That M1, M2 have isomorphic quaternion algebras B1, B2 is more nuanced.
To prove that B1, B2 are isomorphic it suffices to show that MF(B) = MF(B ′).
We prove an effective version of this result in Theorem 1.3 by proving that
if two quaternion algebras B1, B2/k with |disc(B1)| , |disc(B2)| < x admit
embeddings of precisely the same quadratic extensions of L/k with |�L/k |
less than some explicit function f (x) (which may involve constants depend-
ing on k), then B1, B2 are isomorphic. In order to use Theorem 1.3 with
quaternion algebras B1, B2 for M1, M2, we first show (in Lemma 4.1) that
|disc(B1)| , |disc(B2)| are bounded above by an explicit function g(V ). Set-
ting x = g(V ), let L/k be a quadratic extension which embeds into B1 and
has |�L/k | less than f (g(V )). Proposition 5.5 shows that there exists u1 ∈ B1
with L = k(u1) that has image γ1 ∈ Ŵ1 that is associated to a geodesic in M1

of length less than c3e
(
log(V )log(V )

)
for some constant c3. By hypothesis there

exists γ2 ∈ Ŵ2 associated to a geodesic with the same complex length as γ1.
The preimage u2 ∈ B2 of γ2 generates a quadratic extension k(u2)/k which
is isomorphic to L . Interchanging the roles of M1, M2 and applying Theorem
1.3, we conclude that B1, B2 are isomorphic.

1.2.2 Totally geodesic surfaces

For a finite volume hyperbolic 3-manifold M , GS(M) will denote the isometry
classes of finite volume, properly immersed, totally geodesic surfaces up to
free homotopy. A special case of Thurston [79, Corollary 8.8.6.] implies that
GS(M) contains only finitely many Riemann surfaces of a fixed finite topolog-
ical type; this also follows from a compactness argument. Reid and the second
author [59, Theorem 1.1] prove that if M1, M2 are arithmetic hyperbolic 3-
manifolds with GS(M1) = GS(M2) 	= ∅, then M1, M2 are commensurable.
Our second result is an effective version.

Theorem 1.2 Let M1, M2 be arithmetic hyperbolic 3-manifolds with volumes

less than V and GS(M1) ∩ GS(M2) 	= ∅. Then there exists an absolute,

effectively computable constant c such that if GS(M1), GS(M2) agree for

all totally geodesic surfaces with area less than ecV , then M1 and M2 are

commensurable.

There are infinitely many commensurability classes C of arithmetic hyper-
bolic 3-manifolds such that all M ∈ C have GS(M) = ∅ (see [53, Corollary
7] and [19, p. 546]). However, once an arithmetic hyperbolic 3-manifold has
one such surface, it is a well-known fact that there are necessarily infinitely
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many distinct commensurability classes of such surfaces. Below, Theorem
1.11 provides a lower bound for the number of commensurability classes of
surfaces up to some volume in these arithmetic hyperbolic 3-manifold and
hence implies the infinitude of such surfaces for those manifolds. To the best
of our knowledge the lower bound we provide is the first such lower bound.

1.2.3 Algebraic

We now turn to algebraic effective rigidity results which, aside from being
independently interesting, provide us with tools for proving the above geo-
metric effective rigidity results. Our first result is an effective version of the
fact that quaternion algebras over number fields are determined by their max-
imal subfields.

Theorem 1.3 Let k be a number field and let B, B ′/k be quaternion algebras

satisfying |disc(B)| , |disc(B ′)| < x. If every quadratic field extension L/k

with

∣∣�L/k

∣∣ < 64n3
k d

nk

k e
2nk

[
21x

log3(x)
+x
]

embeds into B if and only if it embeds into B ′, then B ∼= B ′.

We further note that in Theorem 1.3, if the quaternion algebras B, B ′ are
both unramified at a common real place of k, then we need only consider
quadratic extensions L/k which are not totally complex.

Our second result is the algebraic counterpart of our effective result, Theo-
rem 1.2, on totally geodesic surfaces.

Theorem 1.4 Suppose that k is a number field and B0/k is a quaternion

algebra. Let L1, L2/k be quadratic extensions and define B1 = B0 ⊗k L1 and

B2 = B0 ⊗k L2. If B ⊗k L1
∼= B1 if and only if B ⊗k L2

∼= B2 for every

quaternion algebra B/k with Ram∞(B) = Ram∞(B0) and satisfying

|disc(B)| ≤ d2C
ℓ (2 log (|disc(B1)| |disc(B2)|))4 |disc(B1)| |disc(B2)| ,

then L1
∼= L2 and B1

∼= B2.

Here C is the (absolute) constant appearing in the bound on the least prime
ideal in the Chebotarev density theorem [40]. Theorem 1.4 is stronger than the
algebraic result deduced in [59]. Consequently, Theorem 1.4 provides similar
geometric spectral rigidity results but for a broader class of manifolds modeled
on (H2)a × (H3)b.
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Counting and effective rigidity in algebra and geometry 703

1.3 Main tools: counting function and asymptotic behavior

Understanding the asymptotic behavior of counting functions is central to
the field of analytic number theory. Our work falls within the subfield of
arithmetic statistics, which centers around counting problems on number fields
and elliptic curves with bounded discriminant. The analytic method used in
our proofs goes at least back to Cohn [22], who used a similar approach to
count the number of abelian cubic extensions of Q with bounded discriminant.
Other seminal works in this area include the classical theorem of Davenport–
Heilbronn [24], which provides an asymptotic formula for the number of cubic
number fields with bounded discriminant, and its various generalizations to
certain classes of number fields of higher degree (for an excellent survey of
these results we refer the reader to Bhargava’s lecture from the 2006 ICM [6]).
The general philosophy used in all of this work is to introduce a generating
function whose coefficients count the object being studied and then apply a
Tauberian theorem to convert information about the analytic behavior of these
functions near their singularities into useful information about the counts.
Although the results in this subsection are functioning as tools for proving
our above stated results, they fall naturally within this larger program of study
and thus are of independent interest. Specifically, the technical results that we
discuss below all involve counting problems on central division algebras with
bounded discriminant.

1.3.1 Algebraic

We now turn to the statements of our main algebraic asymptotic results. Let

Nm,n(x) := #
{
central simple algebras A/k of dimension n2 of the form

A = M(r, D), where dim(D) = d2 for some d|m, and |disc(A)| ≤ x
}
.

We now state our first algebraic asymptotic counting result.

Theorem 1.5 If N (x) denotes the number of division algebras D/k of dimen-

sion n2 with |disc(D)| ≤ x and ℓ is the smallest prime divisor of n, then

N (x) =
∑

m|n
μ(n/m)Nm,n(x).

Moreover, there is a constant δn > 0, which may depend on k, so that

N (x) = (δn + o(1))x
1

n2(1−1/ℓ) (log x)ℓ−2 as x → ∞. (1)
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704 B. Linowitz et al.

The key component of this proof is a classical Tauberian theorem of Delange,
which allows us to precisely estimate Nm,n(x) provided that we understand
the analytic behavior of its associated Dirichlet series. We next provide an
asymptotic count of the quadratic extensions that embed in a fixed quaternion
algebra over a fixed field k.

Theorem 1.6 Fix a number field k and a quaternion algebra B/k. The number

of quadratic extensions L/k which embed into B and satisfy |�L/k | ≤ x is

asymptotic to ck,B x as x → ∞, where ck,B > 0. Moreover, if κk is the residue

at s = 1 of ζk(s), r2 is the number of pairs of complex embeddings of k, and

r ′
B is the number of places of k (both finite and infinite) that ramify in B, then

ck,B ≥ 1

2r ′
B

+r2

κk

ζk(2)
.

The proof of this result stems from a powerful theorem of Wood [84],
which allows us to model the splitting of finitely many primes as mutually
independent events, over the class of random extensions of k. Our final result
provides an asymptotic count of the quaternion algebras over k with a specified
finite collection of maximal subfields. Note that we require some conditions
on the collection of subfields as some selections might not have any algebra
that contains them as maximal subfields.

Theorem 1.7 Fix a number field k, fix quadratic extensions L1, L2, . . . , Lr/k,

let L be the compositum of the L i , and suppose that [L : k] = 2r . Then the

number of quaternion algebras B/k with |disc(B)| less than x and which

admit embeddings of all of the L i is ∼ δ · x1/2/(log x)1− 1
2r as x → ∞. Here

δ is a positive constant explicitly given in the proof and depending only on the

L i and k.

In this proof, we make use of the well-developed theory of sums of non-
negative multiplicative functions due to Wirsing in order to obtain a precise
asymptotic for our counting function. We highlight an explicit value of the
constant δ in the case where r = 1 below.

Example 1 When r = 1, the expression for δ can be put in compact form. We
find that the number of quaternion algebras B/k that admit an embedding of
a fixed quadratic extension L/k is

∼ 2r ′
1−

1
2

(
κ

L(1, χ)

)1/2

·
∏

p finite
p not split

(
1 −

1

|p|2

)1/2

·
∏

p finite
p ramified

(
1 +

1

|p|

)1/2

·
x1/2

(log x)1/2
as x → ∞.
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Counting and effective rigidity in algebra and geometry 705

Here κ is the residue at s = 1 of ζk(s), and L(1, χ) is the value at s = 1 of
the nontrivial Artin L-function associated to the extension L/k.

1.3.2 Geometric

The above algebraic counting results have geometric companions. We briefly
supply some additional, independent motivation before stating our geometric
counting applications. Basic problems like counting arithmetic manifolds of
a bounded volume modeled on a fixed symmetric space involve two distinct
mechanisms for growth: the growth rate coming from a fixed commensura-
bility class and the growth rate of the number of distinct commensurability
classes. Several papers have been written on the growth rate of (arithmetic)
lattices in a fixed Lie group and also manifolds modeled on a fixed symmetric
space; see [3–5,11,32,34–36,42,43], and [49]. Our counting results focus on
counting commensurability classes of manifolds with some prescribed fea-
tures, or counting commensurability classes of geodesics or totally geodesic
submanifolds in a fixed manifold.

Our first two results provide upper bounds for the number of commensu-
rability classes of arithmetic hyperbolic 2- or 3-manifolds with a fixed trace
field. In the statement of these results, the volume VC of a commensurability
class C is the minimum volume achieved by its members. That this volume
is achieved in a commensurability class follows from Borel [7]. Belolipetsky
[3, Section 4] gave a polynomial upper bound for the number of commensu-
rability classes of irreducible arithmetic lattices in a fixed isotypic semisimple
Lie group H arising from a fixed number field k under the assumption that the
simple factors are not of type A1. When H has type A1 factors (i.e. H is isoge-
nous with SL(2, R)a ×SL(2, C)b), Belolipetsky–Gelander–Lubotzky–Shalev
[4, Section 3] gave a polynomial upper bound for the number of commensu-
rability classes of arithmetic lattices in H arising from a fixed number field k.
Varying k, both [3,4] provided super-polynomial upper bounds for the num-
ber of classes without restriction on k. Our first results give upper bounds
for the number of commensurability classes of arithmetic hyperbolic 2- or
3-manifolds with trace field k. These upper bounds are explicit refinements of
the upper bounds from [4] in these cases.

Corollary 1.8 Let k be a totally real number field of degree nk and let Nk(V )

be the number of commensurability classes C of arithmetic hyperbolic 2-

orbifolds with trace field k and VC ≤ V . Then Nk(V ) ≪ κ2nk−1V 130

ζk(2)
for

sufficiently large V , where ζk(s) is the Dedekind zeta function of k and κ is

the residue of ζk(s) at s = 1.

Corollary 1.9 Let k be a number field of degree nk with a unique com-

plex place and let Nk(V ) be the number of commensurability classes C
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706 B. Linowitz et al.

of arithmetic hyperbolic 3-orbifolds with trace field k and VC ≤ V . Then

Nk(V ) ≪ κ2nk−3V 7

ζk(2)
for sufficiently large V , where ζk(s) is the Dedekind zeta

function of k and κ is the residue of ζk(s) at s = 1.

There is one commensurability class of non-compact arithmetic hyperbolic
2-manifolds and for non-compact arithmetic 3-manifolds, the commensura-
bility classes are in bijection with the imaginary quadratic number fields. In
particular, for a fixed k, they do not affect the growth of Nk(V ).

We say (complex) geodesic lengths ℓ1, ℓ2 are rationally inequivalent if
ℓ1/ℓ2 /∈ Q. Our next result provides a lower bound for the number of rationally
inequivalent geodesics of bounded length.

Corollary 1.10 Let M be an arithmetic hyperbolic 2-manifold (resp., 3-

manifold) of covolume V with invariant trace field k and invariant quaternion

algebra B. Then for sufficiently large V and x, M contains at least[
κk

2

(
3
π2

)nk
]

x rationally inequivalent geodesics of length at most ecV xnk

where c is an absolute, effectively computable constant.

An alternative form of this inequality is that there are at least[
κk

2

(
3
π2

)nk

e−cV/nk

]
ℓ1/nk rationally inequivalent geodesics of length at most

ℓ provided that V and ℓ are sufficiently large. By Huber [39], Margulis [56],
the asymptotic growth rate for the number of primitive geodesics of length at

most ℓ is ehℓ

hℓ
where h is the entropy of the geodesic flow.

Our final geometric counting result provides a lower bound for the growth
rate of incommensurable totally geodesic surfaces of bounded area in an arith-
metic hyperbolic 3-manifold that contains at least one totally geodesic surface.

Theorem 1.11 Let M = H3/Ŵ be an arithmetic hyperbolic 3-orbifold of

volume V with invariant trace field k and invariant quaternion algebra B. If

M contains a totally geodesic surface, then for sufficiently large x, M con-

tains at least
[
c(k)disc(B)1/2

]
x/ log(x)1/2 pairwise incommensurable totally

geodesic surfaces with area at most
[
2π2ecV

]
x. Here c(k) is a constant

depending only on k and c is an absolute, effectively computable constant.

Theorem 1.11 in tandem with Theorem 1.2 gives an estimate on the num-
ber of surfaces needed to distinguish a pair of incommensurable, arithmetic
hyperbolic 3-manifolds with a totally geodesic surface. We prove that if an
arithmetic hyperbolic 3-manifold contains a totally geodesic surface then in
fact it contains a totally geodesic surface with area bounded above by data
from the manifold (see Proposition 6.3).
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1.4 Layout

In Sect. 2 we introduce some of the basic concepts, terms, and objects for the
paper. In Sect. 3 we prove the main algebraic counting results. In Sect. 4 we
prove the main geometric counting results. In Sect. 5 we prove the effective
results on geodesic lengths while in Sect. 6 we prove the results involving sur-
faces, including the asymptotic results on incommensurable, totally geodesic
surfaces.

2 Background

Notation

The following notation is utilized throughout this article.

• N, Z, Q, R, C are the natural numbers, integers, and rational, real, and com-
plex fields. ϕ(n) is the Euler totient function, μ(n) is the Möbius function,
and log(x) is the natural logarithm function.

• k is a number field and L/k is a finite extension. Ok, O∗
k , O1

k are the ring of
integers, the group of units, and the group of norm 1 elements, respectively.
k̂ is the Galois closure of k and k+ is the maximal, totally real subfield of k.
dk is the absolute discriminant, Regk is regulator for k, and hk is the class
number of k

• Pk is the set of places/primes of k. For p ∈ Pk , we denote the norm by
|p| and the associated valuation by |·|p. For a place P ∈ PL residing over
a place p ∈ Pk , we denote this by P|p or simply P|p. Occasionally, P|k
will denote the prime p ∈ Pk that P is over.

• nk is the degree of k/Q. r1(k) and r2(k), or simply r1, r2, are the number
of real and complex places.

• fL/k is the conductor. �L/k is the relative discriminant of an extension
L/k. ζk(s) is the Dedekind ζ -function and κk is the residue of the pole of
ζk at s = 1. Jk is the idèle group for k.

• D/k is a division algebra over k. B/k is a quaternion algebra over k. A/k is
a central simple algebra over k with norm nr, group of invertible elements
A×, group of norm 1 elements A1, and discriminant disc(A).

• Ram(A) ⊂ Pk is the set of ramified places of A, Ram f (A) is the set of
finite ramified places of A, Ram∞(A) is the set of infinite ramified places
of A, and rA = |Ram∞(A)|.

• For a quaternion algebra B, kB is the maximal abelian extension of k which
has 2-elementary Galois group, is unramified outside of the real places in
Ram(B), and in which every p ∈ Ram f (B) splits completely.

• O, E , D are Ok-orders in a central simple k-algebra. For each place
p ∈ Pk , Op is the completion of O at p.
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708 B. Linowitz et al.

• H2, H3 are real hyperbolic 2- and 3-spaces. M is an arithmetic hyperbolic 2-
or 3-manifold and Ŵ = π1(M) < PSL(2, R) or PSL(2, C) is the associated
arithmetic lattice. When Ŵ = Pρ(O1), we write Ŵ = ŴO .

• c, C and variously decorated versions are constants. We interchangeably
use the Landau “Big Oh” notation, f = O(g), and the Vinogradov notation,
f ≪ g, when there exists a constant C > 0 such that | f | ≤ C |g|. f ∼ g

if limx→∞
f (x)
g(x)

= 1 and f = o(g) if limx→∞
f (x)
g(x)

= 0.

2.1 Algebraic

We refer the reader to [13,41,55,65], and [73] for the below material.

2.1.1 Central simple algebras

One main algebraic requisite for later discussion is the theory of central simple
algebras A/k and their orders. By the Artin–Wedderburn Structure Theorem
[65, p. 49], every such A is isomorphic to a matrix algebra over a division
algebra A = M(r, D) where r and D are uniquely determined. We require the
following theorem in this paper.

Theorem 2.1 Let k be a number field. Let S be a finite collection of primes

of k consisting of finite primes and real infinite places. Suppose that for each

p ∈ S we are given a reduced fraction
ap

mp
∈ Q ∩ (0, 1) such that

(i) mp > 1 and ap > 0,

(ii) ap

mp
= 1

2 whenever p is real,

(iii)
∑

p∈S
ap

mp
∈ Z.

There is a unique division algebra D/k possessing S as its set of rami-

fied primes and with Hasse invariants
ap

mp
for p ∈ S. Conversely, every

division algebra D/k arises in this way. The dimension of D is n2, where

n := lcmp∈S[mp]. The discriminant of D is the modulus of k given by

disc(D) =
∏

p∈S
p real

p
∏

p∈S
p finite

p
n2(1− 1

mp
)
.

This theorem is a consequence of the Albert–Brauer–Hasse–Noether theo-
rem (see for instance [65, Section 18.4]) and more generally, the short exact
sequence of Brauer groups appearing in local class field theory. Moreover, one
can show that
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disc(A) =
∏

p real
p|disc(D)

p ·

⎛
⎜⎜⎝

∏

p finite
p|disc(D)

p

⎞
⎟⎟⎠

r2

=
∏

p∈S
p real

p
∏

p∈S
p finite

p
n2(1− 1

mp
)

when A = M(r, D). Thus,

|disc(A)| = |disc(D)|r2 =
∏

p∈S
p finite

|p|n
2(1− 1

mp
)
. (2)

By Theorem 2.1, D corresponds to certain Hasse invariants ap/mp for p ∈ P ,
and the dimension of D over k is d2 for d = lcmp∈P [mp]. In the future, the
Hasse invariants of D will also be referred to as the Hasse invariants of A. If
the dimension of A over k is n2, then r2d2 = n2.

2.1.2 Parametrizing maximal orders

In what follows, k will be a fixed number field and B/k a fixed quaternion
algebra. Our exposition follows Sections 3–4 of [44]. We refer the reader to
[73] for a general treatment on orders.

Let Jk (respectively JB) denote the idèle group of k (respectively B). In
this context, the idèle group JB acts on the set of maximal orders of B as
follows. Given x̃ ∈ JB and O a maximal order of B we define x̃O x̃−1 to be
the unique maximal order of B with the property that for every finite prime
p of k, its completion at p is equal to xpOpx−1

p (existence and uniqueness
follow from the local-to-global correspondence for orders). With this action
we see that the set of maximal orders corresponds to the coset space JB/N(O),
where N(O) = JB ∩

∏
p NB∗

p
(Op) and NB∗

p
(Op) is the normalizer in B∗

p of
O∗

p . The isomorphism classes of maximal orders of B (which by the Skolem–
Noether theorem [65, p. 230] coincide with conjugacy classes) thus correspond
to points in the double coset space B∗\JB/N(O). The reduced norm nr(·)
induces a bijection [44, Theorem 4.1] between the latter double coset space
and k∗\Jk/ nr(N(O)) ∼= Jk/k∗ nr(N(O)). The latter group is finite and, as
J 2

k ⊂ nr(N(O)), is of exponent 2. Hence, there exists an integer m ≥ 1 such
that the number of isomorphism classes of maximal orders is equal to 2m and
Jk/k∗ nr(N(O)) ∼= (Z/2Z)m .

We now parameterize the maximal orders of B. Let p1, . . . , pm be a set of
primes of k such that Bpi

∼= M(2, kpi
) for all i and such that the cosets of

Jk/k∗ nr(N(O)) defined by the elements
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{
epi

= (1, . . . , 1, πpi
, 1, . . . )

}m

i=1

form a generating set. For each prime pi , let δi = diag(πpi
, 1) and O ′

pi
=

δiOpi
δ−1

i . Given γ = (γi ) ∈ (Z/2Z)m , we define a maximal order Oγ via the
local-to-global correspondence:

O
γ
p =

⎧
⎨
⎩

Opi
if p = pi and γi = 0

O ′
pi

if p = pi and γi = 1
Op otherwise.

By [44, Proposition 4.1], every maximal order of B is conjugate to one of the
orders defined above. Henceforth we will refer to this as a parameterization of
the maximal orders of B relative to O .

Let L/k be a quadratic extension and kB be the class field corresponding to
Jk/k∗ nr(N(O)) by class field theory. Alternatively, kB can be characterized
as the maximal abelian extension of k which has 2-elementary Galois group,
is unramified outside of the real places in Ram(B) and in which every finite
prime of Ram(B) splits completely. The following lemma appears as [44,
Lemma 3.7]:

Lemma 2.2 Let the notation be as above.

(i) If L 	⊂ kB then there exists a generating set {epi
} of Jk/k∗ nr(N(O)) in

which all of the pi split in L/k.

(ii) If L ⊂ kB and q is any prime of k which is inert in L/k then there exists a

generating set {epi
} of Jk/k∗ nr(N(O)) in which p1 = q and p2, . . . , pm

all split in L/k.

We conclude this section with a technical result which we will utilize in the
proof of Theorem 1.1.

Proposition 2.3 Let E , D be maximal orders of B and suppose that u ∈ E 1

with u /∈ k and set L = k(u). Then there exists an absolute constant C1 > 0
and a positive integer n ≤ d

C1
L such that D admits an embedding of Ok[un].

In the proof of Proposition 2.3, we require the following lemma, which is an
immediate consequence of the bound on the least prime ideal in the Chebotarev
density theorem [40].

Lemma 2.4 If L/k is a quadratic extension, then there exists an absolute,

effectively computable constant C1 such that there exists a prime of k which

is inert in L/k and has norm less than d
C1
L .

Proof of Proposition 2.3 If L 	⊂ kB , then the selectivity theorem of Chinburg–
Friedman [16] (see also [44]) shows that D admits an embedding of Ok[u],
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hence we may take n = 1. Suppose now that L ⊂ kB and let q be a prime of k

of smallest norm which is inert in L/k. Let {epi
} be the set of representatives

of Jk/k∗ nr(N(O)) from Lemma 2.2(ii) (in which p1 = q and p2, . . . , pm all
split in L/k). We claim that q does not ramify in B. Indeed, suppose that q

ramified in B. By our characterization of kB , it would follow that q would
split completely in kB and hence in L as L ⊂ kB . However, this observation
contradicts the fact that q is inert in L/k, proving our claim.

For each i = 2, . . . , m, we have an kpi
-isomorphism fpi

: Bpi
→ M(2, kpi

)

such that fpi
(L) ⊂

(
kpi

0
0 kpi

)
. Consequently, fpi

(OL) ⊂
(

Okpi
0

0 Okpi

)
,

and so Ok[u] is contained in two adjacent vertices in the tree of maximal orders
of M(2, kpi

). Upon conjugating E if necessary, we may assume that {E γ } is
a parameterization of the maximal orders of B relative to E . Additionally,
we have u ∈ E

γ
pi

for all γ and i = 2, . . . , m. By construction Eq, E ′
q are

adjacent in the tree of maximal orders of M(2, kq). By [54, p. 340], we have
[E 1

q : E 1
q ∩ E ′

q
1] = |q| (|q| + 1). Setting n = |q| (|q| + 1), we have shown that

un ∈ E
γ
pi

for all γ and 1 ≤ i ≤ m. As E
γ
p = Ep for all primes p /∈ {p1, . . . , pm},

we conclude that un ∈ E γ for all γ . As all maximal orders of B are conjugate
to one of the E γ , the proposition follows from Lemma 2.4. ⊓⊔

2.2 Geometric

We refer the reader to Maclachlan–Reid [54] for a thorough treatment of this
material.

2.2.1 Hyperbolic geometry

Hyperbolic n-space Hn is the real rank one symmetric space associated to
the real simple Lie group SO(n, 1). We identify the group of orientation
preserving isometries of H2, H3 with PSL(2, R), PSL(2, C), respectively.
We view H2, H3 as the symmetric spaces H2 = PSL(2, R)/ SO(2), H3 =
PSL(2, C)/ SU(2). Isometries of H2, H3 split into three classes depend-
ing on the trace of the element. An isometry γ ∈ PSL(2, C) is elliptic if
Tr(γ ) ∈ (−2, 2), parabolic if |Tr(γ )| = 2, and hyperbolic if |Tr(γ )| > 2.

We will sometimes refer to lattices Ŵ in PSL(2, R) or PSL(2, C) as Fuchsian
of Kleinian groups. Given a lattice Ŵ in PSL(2, R), PSL(2, C), the associated
quotient M = H2/Ŵ, H3/Ŵ is a complete finite volume hyperbolic 2- or 3-
orbifold. We state an inequality of Gelander [31, Theorem 1.7] involving the
volume of a complete, finite volume hyperbolic 3-manifold M and the rank of
the fundamental group π1(M) = Ŵ.
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Theorem 2.5 (Gelander) There exists a constant C such that if M is a com-

plete, finite volume hyperbolic 3-manifold of volume V and rank r fundamental

group, then r ≤ CV .

2.2.2 Arithmetic hyperbolic manifolds

Let k be a totally real field with real places p1, . . . , pr1 . Fix a real place of k

which, reordering if necessary, we denote by p1. We select a quaternion algebra
B/k with the property that p j ∈ Ram(B) if and only if j > 1. In particular,
Bp1

∼= M(2, R) and Bp j
∼= H for j > 1, where H is the quaternions over R.

Under the first isomorphism, the group of norm one elements B1 maps into
SL(2, R). Selecting a maximal order O ⊂ B, the image of O1 in SL(2, R) and
the image of the projection PO1 of O1 to PSL(2, R) are both lattices. We say
Ŵ < SL(2, R) or PSL(2, R) is an arithmetic lattice if Ŵ is commensurable in
the wide sense with O1 or PO1 for some totally real number field k, quaternion
algebra B/k, and maximal order O ⊂ B as above. We use ŴO to denote O1

and we say a lattice Ŵ < SL(2, R) is derived from a quaternion algebra if
Ŵ < ŴO for some k, B, O as above.

The construction of arithmetic lattices in PSL(2, C) is similar. Let k be a
number field with a unique complex place p1 and real places p2, . . . , pr1+1
and let B/k be quaternion algebra such that p j ∈ Ram(B) if and only
if j > 1. Fixing an isomorphism Bp1

∼= M(2, C) and a maximal order
O ⊂ B, the groups O1, PO1 are lattices in SL(2, C), PSL(2, C). Any lat-
tice Ŵ < SL(2, C), PSL(2, C) that is commensurable in the wide sense with
O1, PO1, for some k, B, O as above, will be called an arithmetic lattice in
SL(2, C), PSL(2, C). We say a lattice Ŵ < SL(2, C) is derived from a quater-
nion algebra if Ŵ < ŴO for some k, B, O as above. Finally, if B is a division
algebra, O1, PO1 are cocompact.

Given two arithmetic lattices Ŵ1, Ŵ2 arising from (k j , B j ), Ŵ1, Ŵ2 will be
commensurable in the wide sense if and only if k1

∼= k2 and B1
∼= B2 (see

[54, Theorem 8.4.1]). We will make use of this fact throughout the remainder
of this article.

Theorem 2.6 Let Ŵ1, Ŵ2 be arithmetic lattices in PSL(2, R) or PSL(2, C)

with arithmetic data (k1, B1), (k2, B2), respectively. Then Ŵ1, Ŵ2 are com-

mensurable in the wide sense if and only if k = k1
∼= k2 and B1

∼= B2 as

k-algebras.

Theorem 2.6 was proven by Takeuchi [77] for Fuchsian groups and for
Kleinian groups by Macbeath [52], Reid [71]. We say that M is an arith-
metic hyperbolic 2- or 3-orbifold if the orbifold fundamental group of M is an
arithmetic lattice in PSL(2, R) or PSL(2, C). In this case, π1(M) = Ŵ is com-
mensurable with PO1 for some k, B, O as above. We call k the invariant trace
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field/trace field and B the invariant quaternion algebra/quaternion algebra of
M .

2.2.3 Geodesics and quadratic subfields

Let M be an arithmetic hyperbolic 2- or 3-orbifold arising from (k, B) with orb-
ifold fundamental group Ŵ < PSL(2, R) or PSL(2, C). The closed geodesics
cγ : S1 → M on M are in bijection with the Ŵ-conjugacy classes [γ ]Ŵ of
hyperbolic elements γ in Ŵ. The roots of the characteristic polynomial pγ (t)

are given by the eigenvalues of γ and the associated (complex) geodesic length
ℓ(cγ ) is given by (see [54, p. 372])

cosh

(
ℓ(cγ )

2

)
= ±

Tr(γ )

2
. (3)

When Ŵ < PSL(2, R), (3) gives the length of the geodesic associated to γ .
When Ŵ < PSL(2, C), (3) gives the complex length of the geodesic associated
to γ . In this case, ℓ(γ ) = ℓ0(γ ) + iθ(γ ) where θ(γ ) is the angle of rotation
about the geodesic axis associated to γ and ℓ0(γ ) is the length of the geodesic
associated to γ . In particular, when Ŵ < PSL(2, C), ℓ(γ ) is the associated
complex length and ℓ0(γ ) is the length. When Ŵ < PSL(2, R), ℓ(γ ) will
denote the length of the associated geodesic. We denote by λγ the unique
eigenvalue of γ with |λγ | > 1 and note that λγ ∈ O1

kγ
when Ŵ is arithmetic.

Also, each γ determines a maximal subfield kγ = k(λγ ) of the quaternion
algebra B.

2.2.4 Totally geodesic surfaces

Asssociated to an arithmetic hyperbolic 3-orbifold is a pair (L , B), where L

is a number field with exactly one complex place and B/L is a quaternion
algebra that is ramified at all of the real places. If there exists a totally real
subfield k ⊂ L with L/k quadratic and B0/k is a quaternion algebra such
that B0 ⊗k L ∼= B, then the pair (k, B0) will be data for a commensurability
class of arithmetic hyperbolic 2-orbifolds provided that B0 is unramified at the
real place p under the complex place P of K . The following appears as [54,
Theorem 9.5.5].

Theorem 2.7 Let Ŵ be an arithmetic lattice in PSL(2, C) with arithmetic

data (L , B) and suppose that k is a totally real subfield of L with [L : k] = 2.

Suppose B0 is a quaternion algebra over k ramified at all real places of k except

at the place under the complex place of L. Then B ∼= B0 ⊗k L if and only if

Ram f (B) consists of 2r places (where r ≥ 0 )
{
Pi, j

}
where j ranges over

{1, . . . , r} and i ranges over {1, 2} and satisfy P1, j ∩ Ok = P2,i ∩ Ok = pi ,
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where {p1, . . . , pr } ⊂ Ram f (B0) with Ram f (B0)\ {p1, . . . , pr } consisting of

primes in Ok which are inert or ramified in L/k.

3 Main tools: algebraic counting results

We now begin our first main section, where we will establish our algebraic
counting results. For the reader interested only in the applications of these
results to the rigidity theorems stated in the introduction, the reader can start
at Sect. 5 and refer back to the results from Sects. 3 and 4.

3.1 Proof of Theorem 1.5

Fix a number field k and fix a positive integer n. In this section, we estimate
the number of division algebras D/k of dimension n2 whose discriminant lies
below a large bound x . Our main tool is the following Tauberian theorem of
Delange [25,26].

Theorem 3.1 (Delange) Let

G(s) =
∞∑

N=1

aN N−s

be a Dirichlet series satisfying the following conditions for certain real num-

bers ρ > 0 and β > 0:

(i) each aN ≥ 0,

(ii) G(s) converges for ℜ(s) > ρ,

(iii) G(s) can be continued to an analytic function in the closed half-plane

ℜ(s) ≥ ρ, except possibly for a singularity at s = ρ itself,

(iv) there is an open neighborhood of ρ, and functions A(s) and B(s) analytic

at s = ρ, with

G(s) =
A(s)

(s − ρ)β
+ B(s)

at every point s in this neighborhood having ℜ(s) > ρ.

Then as x → ∞,

∑

N≤x

aN =
(

A(ρ)

ρŴ(β)
+ o(1)

)
xρ(log x)β−1.
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Remark We allow the possibility that A(ρ) = 0, in which case the conclusion
of Theorem 3.1 is that

∑

N≤x

aN = o(xρ(log x)β−1),

as x → ∞. While Delange’s theorem is usually stated with the restriction
that A(ρ) 	= 0, the cases when A(ρ) = 0 follow with no extra difficulty.
For instance, suppose that ρ is the reciprocal of a positive integer, a condition
that holds in all of our applications. If A(ρ) = 0, we can apply the restricted
theorem first to G(s)+ ζ(s/ρ)β , then to ζ(s/ρ)β , and then subtract the results
to get the assertion we want. If ρ is not the reciprocal of a positive integer, then
ζ(s/ρ) need not be a Dirichlet series itself. However, this argument still works,
provided we take as our starting point Delange’s original Tauberian theorem
[25], which is in terms of Laplace transforms, instead of its consequences for
Dirichlet series [26].

According to Theorem 2.1, a division algebra D over k is uniquely specified
by its Hasse invariants (i.e., the set S = Ram(D) and the choice of frac-
tions {ap/mp}p∈S). Thus, our task is to count the number of ways of choosing
these invariants so that the resulting division algebra D has dimension n2 and
|disc(D)| ≤ x . It turns out that this is a difficult problem to attack directly. More
natural, from the analytic side, is to first count all central simple algebras over
k of dimension n2. The count of division algebras can then be obtained by the
inclusion-exclusion principle. We now carefully execute the above approach
by introducing the following set:

Nm,n(x) := #
{
central simple algebras A/k of dimension n2 of the form

A = M(r, D), where dim(D) = d2 for some d | m, and |disc(A)| ≤ x
}
.

The remarks earlier in this paragraph show that in general, Nm,n(x) counts the
number of choices for Hasse invariants for which lcmp∈S[mp] divides m and
the product in (2) is bounded by x . Our key lemma is the following estimate
for Nm,n(x). Note that the special case of the lemma when m = n provides us
with asymptotic behavior for the counting function of all dimension n2 central
simple algebras over k.

Lemma 3.2 Let k/Q be a number field. Let n > 1 be an integer, and let ℓ be

the smallest prime factor of n. Let m be a divisor of n. Then as x → ∞,

Nm,n(x) = (δm,n + o(1))x
1

n2(1−1/ℓ) (log x)ℓ−2

for a certain constant δm,n . If ℓ ∤ m, then δm,n = 0. Suppose now that ℓ|m. Let

κ denote the residue at s = 1 of the Dedekind zeta function ζk(s). If m is odd,
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then

δm,n =
κℓ−1

m(ℓ − 2)!
·

1

(n2(1 − 1/ℓ))ℓ−2

·
∑

0≤ j<m
ℓ| j

⎛
⎜⎜⎜⎝
∏

p finite

⎛
⎜⎜⎜⎝1 +

ℓ − 1

|p|
+
∑

mp|m
mp>ℓ

μ

(
mp

(mp, j)

)
ϕ(mp)/ϕ

(
mp

(mp, j)

)

|p|(1−1/mp)/(1−1/ℓ)

⎞
⎟⎟⎟⎠

×
(

1 −
1

|p|

)ℓ−1
)

. (4)

If m is even, (4) needs to be multiplied by 2r1 , where r1 is the number of real

embeddings of k.

Broadly, the proof of the above lemma proceeds as follows. We first set up
the count for the algebras and produce corresponding Dirichlet series. We then
verify that our Dirichlet series satisfy (i)–(iv) of Theorem 3.1. We complete
the proof via Theorem 3.1. The latter two steps comprise the bulk of the work.

Proof To set up our count, recall that by Theorem 2.1 a division algebra is
determined by its collection of Hasse invariants, the rational numbers ap/mp

for places p| Ram(D). Thus, we need only count the number of choices for
these local invariants. To that end, we will use the orthogonality relations
among the roots of unity in an essential way. For each d dividing m, we
introduce the set

F(m, d) :=
{

1 ≤ k ≤ m :
k

m
has lowest terms denominator d

}
.

For 0 ≤ j < m, let ζ j = e2π i j/m , and consider the formal expression

1

m

⎛
⎜⎜⎜⎝
∑

0≤ j<m

⎡
⎢⎢⎢⎣
∏

p finite

⎛
⎜⎜⎜⎝1 +

∑

mp|m
mp>1

∑
ap∈F(m,mp) ζ

ap

j

pn2(1−1/mp)s

⎞
⎟⎟⎟⎠
∏

p real
2|m

(
1 +

ζ
m/2
j

ps

)
⎤
⎥⎥⎥⎦

⎞
⎟⎟⎟⎠ ,

where the conditions on the final product mean that this product appears only
when m is even. Expanding, we obtain a formal sum of terms cm/ms , where m

ranges over the moduli of k. For cm to be nonvanishing, it is necessary that every
finite prime p dividing m appears to an exponent of the form n2(1 − 1/mp)

for some integer mp > 1 dividing m, and that m is not divisible by real primes
except possibly if 2|m. If these conditions are satisfied, then
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cm =
1

m

∑

0≤ j<m

c
( j)
m , where c

( j)
m =

∑

{ap}p|m, p finite
each ap∈F(m,mp)

ζ

∑
p|m, finite ap+

∑
p|m, real

m
2

j .

Writing ap/m = a′
p/mp, and subtituting in the value of ζ j , this expression for

c
( j)
m can be put in the form

∑

{a′
p}p|m, p finite

1≤a′
p≤mp, gcd(a′

p,mp)=1

exp

⎛
⎝2π i j

m

⎛
⎝m

∑

p|m, finite

a′
p

mp
+ m

∑

p|m, real

1

2

⎞
⎠
⎞
⎠ .

For each integer k, the sum
∑

0≤ j<m exp(2π i jk/m) vanishes unless m|k, in
which case the sum takes the value m. Now

m
∑

p|m
p finite

a′
p

mp
+ m

∑

p|m
p real

1

2
is a multiple of m ⇐⇒

∑

p|m
p finite

a′
p

mp
+
∑

p|m
p real

1

2
∈ Z.

Letting S be the set of primes dividing m, we conclude that cm =
1
m

∑
0≤ j<m c

( j)
m counts the number of choices of Hasse invariants for which

lcmp∈S[mp] divides m and

⎛
⎜⎜⎝
∏

p real
p∈S

p

⎞
⎟⎟⎠

⎛
⎜⎜⎝
∏

p finite
p∈S

pn2(1−1/m P )

⎞
⎟⎟⎠ = m.

There is a one-to-one correspondence between these choices of Hasse param-
eters and central simple algebras A/k of dimension n2 of the form M(r, D),
where dim(D) = d2 for some d|m, and disc(A) = m. Since d = lcm[mp]
and r = n/d, we can view the coefficients cm as counting these central simple
algebras. Thus,

Nm,n(x) =
∑

|m|≤x

cm.

In order to apply Delange’s theorem, Theorem 3.1, we need Dirichlet series.
We obtain the needed series by simply replacing the primes p with their
norms |p| in the above products; here we set |p| = 1 when p is real. For
j = 0, 1, 2, . . . , m − 1, the Dirichlet series G j (s) is given by the following
product expansion:
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G j (s) =
∏

p finite

⎛
⎜⎜⎜⎝1 +

∑

mp|m
mp>1

∑
ap∈F(m,mp) ζ

ap

j

|p|n2(1−1/mp)s

⎞
⎟⎟⎟⎠
∏

p real
2|m

(
1 +

ζ
m/2
j

|p|s

)
. (5)

If we then set

G(s) =
1

m

∑

0≤ j<m

G j (s),

the coefficient of N−s in G(s) is precisely
∑

|m|=N cm. Hence, Nm,n(x) is
precisely the partial sum up to x of the coefficients of G(s).

We now establish that our Dirichlet series satisfy the conditions of Theorem
3.1.
Claim G(s) satisfies (i)–(iv) of Theorem 3.1.
Proof of Claim Since the coefficients of G(s) count central simple algebras,
their non-negativity is obvious. This shows that condition (i) of Delange’s
theorem is satisfied. To verify conditions (ii)–(iv) for G(s), it suffices
to verify that they hold for each individual G j (s). We will show this
with

ρ =
1

n2(1 − 1/ℓ)
and β = ℓ − 1. (6)

Proceeding further requires a careful study of the product definition (5)
of G j (s). First, we deal with the product over real primes, which is
present only when 2|m. By our convention that real primes have norm
1,

(
1 +

ζ
m/2
j

|p|s

)
= (1 + ζ

m/2
j )r1;

in particular, this factor is independent of s. For all finite primes p, the pth
term in (5) has the form 1 + Ap(s), where

Ap(s) =
∑

mp|m
mp>1

∑
ap∈F(m,mp) ζ

ap

j

|p|n2(1−1/mp)s
. (7)

Since m divides n and ℓ is the least prime divisor of n, we have n2(1 −
1/mp) ≥ n2(1 − 1/ℓ) for each term in the sum. Moreover, each numerator
on the right-hand side of (7) is trivially bounded by m. It follows that the the
formal Dirichlet series expansion of G j (s) converges absolutely for ℜ(s) >
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1
n2(1−1/ℓ)

and coincides there with its (absolutely convergent) Euler product.

This gives condition (ii). In fact, if ℓ ∤ m, then the smallest nontrivial divisor
of m is strictly larger than ℓ. The argument of the preceding paragraph then
implies that G j (s) has an Euler product converging absolutely and uniformly
in ℜ(s) > 1

n2(1−1/ℓ)
− ǫ, for some positive ǫ. This shows that conditions (iii)

and (iv) hold for G j (s), where in (iv) we may take A(s) = 0 and B(s) =
G j (s).

In the case when ℓ|m, we have to analyze the Ap(s) more closely. For each
mp dividing m, the corresponding numerator on the right-hand side of (7)
coincides with the Ramanujan sum cmp

( j). From Hölder’s explicit evaluation
of such sums [38, Theorem 272, p. 309],

∑

ap∈F(m,mp)

ζ
ap

j = cmp
( j) = μ

(
mp

(mp, j)

)
ϕ(mp)

ϕ(mp/(mp, j))
.

Thus, the first term on the right-hand sum in (7)—corresponding to mp = ℓ—
is

μ

(
ℓ

(ℓ, j)

)
ℓ − 1

ϕ(ℓ/(ℓ, j))

1

|p|n2(1−1/ℓ)s
.

For all of the remaining terms, n2(1 − 1/mp) > n2(1 − 1/ℓ). Now if ℓ ∤
j ,

μ

(
ℓ

(ℓ, j)

)
ℓ − 1

ϕ(ℓ/(ℓ, j))

1

|p|n2(1−1/ℓ)s
= −

1

|p|n2(1−1/ℓ)s
.

Put H j (s) = G j (s)ζk(n
2(1 − 1/ℓ)s). Since

ζk(n
2(1 − 1/ℓ)s) =

∏

p finite

(
1 +

1

|p|n2(1−1/ℓ)s
+

1

|p|2n2(1−1/ℓ)s
+ · · ·

)
,

the pth factor in the Euler product expansion of H j (s) has the form 1 +
O(|p|−Ns) for a positive integer N strictly larger than n2(1 − 1/ℓ). Thus,
H j (s) continues analytically to ℜ(s) > 1/N , and so also to the region
ℜ(s) ≥ 1

n2(1−1/ℓ)
. Since ζk(s) has no zeros on ℜ(s) = 1, this gives an analytic

continuation of G j (s) = H j (s)ζk(n
2(1 − 1/ℓ)s)−1 to ℜ(s) ≥ 1

n2(1−1/ℓ)
. This

proves (iii) and (iv) with A(s) = 0 and B(s) = G j (s). Now suppose that ℓ| j .
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Then

μ

(
ℓ

(ℓ, j)

)
ℓ − 1

ϕ(ℓ/(ℓ, j))

1

|p|n2(1−1/ℓ)s
=

ℓ − 1

|p|n2(1−1/ℓ)s
.

Now arguing with Euler products as above, we find that if we set H j (s) =
G j (s)ζk(n

2(1 − 1/ℓ)s)−(ℓ−1), then H j (s) is analytic for ℜ(s) ≥ 1
n2(1−1/ℓ)

.

This implies that G j (s) = H j (s)ζk(n
2(1 − 1/ℓ)s)ℓ−1 continues analytically

to the same closed half-plane, except for a pole of order at most ℓ − 1 at
s = 1

n2(1−1/ℓ)
. Consequently, (iii) and (iv) hold with

A(s) = G j (s)

(
s −

1

n2(1 − 1/ℓ)

)ℓ−1

and B(s) = 0. Collecting everything, we see that (i)–(iv) all hold for G(s),
for ρ and β as in (6). Moreover, we can take the A(s) in (iv) corresponding to
G(s) as 1

m
times the sum of the functions A(s) corresponding to each G j (s).

⊓⊔
We now establish the lemma with a few applications of Theorem 3.1. We

split into two cases.
Case 1 ℓ ∤ m. In the case when ℓ ∤ m, the A(s) corresponding to each
G j (s) was identically zero, hence our final A(s) is also 0. Thus, Theorem
3.1 yields

Nm,n(x) = o(x
1

n2(1−1/ℓ) (log x)ℓ−2) as x → ∞.

This completes the proof of the lemma in the case ℓ ∤ m.
Case 2 ℓ|m. If ℓ|m, our work shows that

A(s) =
(

s −
1

n2(1 − 1/ℓ)

)ℓ−1

·
1

m

⎛
⎜⎜⎝
∑

0≤ j<m
ℓ| j

G j (s)

⎞
⎟⎟⎠ .

To evaluate this A(s) at s = 1
n2(1−1/ℓ)

, we recall that κ denotes the residue at
s = 1 of the simple pole of ζk(s). Writing

(
s −

1

n2(1 − 1/ℓ)

)ℓ−1

G j (s) =
(

ζk(n
2(1 − 1/ℓ)s)

(
s −

1

n2(1 − 1/ℓ)

))ℓ−1

· G j (s)ζk(n
2(1 − 1/ℓ)s)−(ℓ−1),
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we see that

A

(
1

n2(1 − 1/ℓ)

)
=
(

κ

n2(1 − 1/ℓ)

)ℓ−1

·
1

m

⎡
⎢⎢⎣
∑

0≤ j<m
ℓ| j

⎛
⎝ lim

s→ 1
n2(1−1/ℓ)

G j (s)ζk(n
2(1 − 1/ℓ)s)−(ℓ−1)

⎞
⎠

⎤
⎥⎥⎦ .

It remains to evaluate the limits inside the final sum. For the val-
ues of j and m under consideration, ℓ| j and ℓ|m. So for each finite
prime p, the pth term in the product expansion (5) of G j (s) begins
as

1 + (ℓ − 1)/|p|n2(1−1/ℓ)s + · · · .

Now consider the factors corresponding to infinite primes. If m is odd, then
there are no such factors in (5). If m is even, then we must have ℓ = 2, and
since ℓ| j ,

1 + ζ
m/2
j = 1 + eπ i j = 1 + (−1) j = 2;

thus, the factor in (5) giving the contribution of the infinite primes is precisely
2r1 . We conclude that if m is odd, then

lim
s→ 1

n2(1−1/ℓ)

G j (s)ζk(s)
−(ℓ−1)

=
∏

p finite

⎛
⎜⎜⎜⎝1 +

ℓ − 1

|p| +
∑

mp|m
mp>ℓ

μ

(
mp

(mp, j)

)
ϕ(mp)

ϕ(mp/(mp, j))

|p|(1−1/mp)/(1−1/ℓ)

⎞
⎟⎟⎟⎠

(
1 −

1

|p|

)ℓ−1

,

while if m is even, this must be multiplied by 2r1 . So if m is odd,
then

A

(
1

n2(1 − 1/ℓ)

)
=
(

κ

n2(1 − 1/ℓ)

)ℓ−1
·

1

m

·
∑

0≤ j<m
ℓ| j

⎛
⎜⎜⎜⎝
∏

p finite

⎛
⎜⎜⎜⎝1 +

ℓ − 1

|p| +
∑

mp|m
mp>ℓ

μ

(
mp

(mp, j)

)
ϕ(mp)

ϕ(mp/(mp, j))

|p|(1−1/mp)/(1−1/ℓ)

⎞
⎟⎟⎟⎠

(
1 −

1

|p|

)ℓ−1

⎞
⎟⎟⎟⎠ ,
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while if m is even, this expression should be multiplied by 2r1 . According to
Theorem 3.1, we have

Nm,n(x) =

⎛
⎝

A
(

1
n2(1−1/ℓ)

)

1
n2(1−1/ℓ)

Ŵ(ℓ − 1)
+ o(1)

⎞
⎠ x

1
n2(1−1/ℓ) (log x)ℓ−2 as x → ∞.

(8)
Comparing Eq. (8) with the definition of δm,n in the statement of the lemma,
we see the proof is complete. ⊓⊔

We now prove Theorem 1.5 from the introduction.

Proof of Theorem 1.5 We view N (x) as counting central simple algebras of
the form M(r, D) where r = 1. To single these out, we make use of the well-
known identity

∑
d|r μ(d) = 1 if r = 1 and 0 otherwise. Writing

∑
A for a

sum on central simple algebras A of dimension n2, and
∑(r)

A for such a sum
restricted to A of the form M(r, D), we find that

N (x) =
∑(1)

A
1 =

∑

m|n
μ(m)

∑

r |n
m|r

∑(r)

A
1.

Writing r2 dim(D) = n2, we see that m divides r if and only if dim(D) = d2

for divisor d of n/m. Hence,

∑

r |n
m|r

∑(r)

A
1 = Nn/m,n(x).

Putting the last two displays together, we find that

N (x) =
∑

m|n
μ(m)Nn/m,n(x).

Replacing m with n/m gives the first statement in the lemma. The asymptotic
formula (1) with

δn =
∑

m|n
μ(n/m)δm,n

now follows from Lemma 3.2.
It remains to show that δn > 0. Consider first the case when n = ℓ is prime.

In that case, δn = δℓ,n − δ1,n = δℓ,n . We used here that δ1,n = 0 since ℓ ∤ 1.
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From Lemma 3.2, δℓ,n is given by a product of nonzero factors together with

∏

p finite

(
1 +

ℓ − 1

|p|

)(
1 −

1

|p|

)ℓ−1

.

This final product is absolutely convergent and contains only nonzero terms,
and so also represents a nonzero real number. This settles the case when n = ℓ.

Now we treat the case of general n. To prove that δn > 0, it is enough to

construct ≫ x
1

n2(1−1/ℓ) (log x)ℓ−2 division algebras A′/k of dimension n2 with∣∣disc(A′)
∣∣ ≤ x . The following crude argument suffices for this purpose. Fix

(arbitrarily) finite primes p1, . . . , pn of k. We first count division algebras A/k

of dimension ℓ2 which are unramified at any of p1, . . . , pn and which satisfy
|disc(A)| ≤ X . Without the ramification condition, we have just seen (the case
n = ℓ) that the number of these A is

≫ X
1

ℓ2(1−1/ℓ) (log X)ℓ−2 (9)

for large X . An entirely analogous proof—omitting the factors correspond-
ing to p = p1, . . . , pn from the Euler products appearing previously—shows
that this lower bound continues to hold with the restrictions on ramification
imposed. Now for each such A, there is an associated n2-dimensional division
algebra A′/k determined by enlarging the set of ramified primes to include
p1, . . . , pn and correspondingly enlarging the collection of Hasse invariants to
include the numbers api

/mpi
= 1/n. (Note that the sum of the numbers ap/mp

for p| Ram(A′) is one more than the corresponding sum over p| Ram(A), so is
still an integer.) Clearly, distinct A correspond to distinct A′. Moreover,

∣∣disc(A′)
∣∣ = |p1 · · · pn|n

2(1−1/n) |disc(A)|(n/ℓ)2
.

Thus, |disc(A′)| ≤ x precisely when |disc(A)| ≤ X , where

X := (x/|p1 · · · pn|n
2(1−1/n))(ℓ/n)2

.

Plugging this value of X into (9), we see that we have constructed ≫
x

1
n2(1−1/ℓ) (log x)ℓ−2 division algebras A′/k of dimension n2 with |disc(A′)| ≤

x , for all large x . ⊓⊔

Examples 1 The explicit expression for δn is, in general, exceedingly compli-
cated. However, it can be written fairly compactly in certain special cases. To
begin with, suppose that the smallest prime factor ℓ of n is odd. If n = ℓ, then
δ = δℓ,n , where
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δℓ,n =
κℓ−1

ℓ(ℓ − 2)!
1

(n2(1 − 1/ℓ))ℓ−2

∏

p finite

(
1 +

ℓ − 1

|p|

)(
1 −

1

|p|

)ℓ−1

.

(10)
Next, suppose that n = ℓ2. Then δn = δℓ2,ℓ2 − δℓ,ℓ2 . The second term can be
calculated with (10), while

δℓ2,ℓ2 =
κℓ−1

ℓ2(ℓ − 2)!
·

1

(ℓ4(1 − 1/ℓ))ℓ−2

·

⎛
⎝ ∏

p finite

(
1 +

ℓ − 1

|p| +
ℓ(ℓ − 1)

|p|1+1/ℓ

)(
1 −

1

|p|

)ℓ−1

+ (ℓ − 1)
∏

p finite

(
1 +

ℓ − 1

|p| −
ℓ

|p|1+1/ℓ

)(
1 −

1

|p|

)ℓ−1
⎞
⎠ .

Finally, suppose that n = ℓℓ′, where ℓ′ is a prime larger than ℓ. Then δn =
δℓℓ′,ℓℓ′ − δℓ,ℓℓ′ − δℓ′,ℓℓ′ , where the second and third terms can be computed
with (10), and

δℓℓ′ =
κℓ−1

ℓℓ′(ℓ − 2)!
·

1

(ℓ2ℓ′2(1 − 1/ℓ))ℓ−2

·
( ∏

p finite

⎛
⎝1 +

ℓ − 1

|p| +
ℓ′ − 1

|p|
1−1/ℓ′
1−1/ℓ

+
ℓ(ℓ − 1)

|p|1+1/ℓ

⎞
⎠
(

1 −
1

|p|

)ℓ−1

+ (ℓ′ − 1)
∏

p finite

⎛
⎝1 +

ℓ − 1

|p| −
1

|p|
1−1/ℓ′
1−1/ℓ

−
ℓ′ − 1

|p|1+1/ℓ

⎞
⎠
(

1 −
1

|p|

)ℓ−1 )
.

If ℓ = 2, the same analysis applies, but all of these expressions for δn must be
multiplied by 2r1 .

3.2 Proof of Theorem 1.6

In this section, we fix a number field k and a quaternion algebra B defined
over k and count the number of quadratic extensions L/k with norm of relative
discriminant less than X which embed into B. In what follows, denote by �L/k

the relative discriminant of L over k. If P is any property a quadratic extension
of k may have, we make the definition
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Prob(P) := lim
x→∞

#{quadratic extensions L/k for which P holds and |�L/k | ≤ x}
#{quadratic extensions L/k with |�L/k | ≤ x}

,

(11)
provided that this limit exists. The next result, which is a special case of results
of Wood [84], asserts that for certain properties P related to splitting behavior,
these “probabilities” behave as one might naively expect.

Proposition 3.3 (Wood) Fix a finite collection S of real or finite places of k.

For each p ∈ S, let Pp be one of the properties “p ramifies in L”, “p splits in

L”, or “p is inert in L”, subject to the restriction that Pp is one of the first two

if p is a real place. Then:

(i) Prob(Pp) exists for each p ∈ S.

(ii) Prob(all Pp hold at once) =
∏

p∈S
Prob(Pp).

(iii) If p is real, then Prob(p ramifies) = Prob(p splits) =
1

2
.

(iv) If p is finite, then Prob(p splits) = Prob(p is inert) = 1
2 (1 −

Prob(p ramifies)).

It is worth saying a few words about how Proposition 3.3 follows from
the more general results of Wood. In Wood’s terminology, we are count-
ing Z/2Z-extensions of k with local specifications. We note however that
Wood’s definition of a local specification differs from our simplified picture
above, but only in the sense that it is strictly finer; she allows one to specify
the k-algebra L ⊗k kp, which gives us more information than we are mea-
suring. When G = Z/2Z, all local specifications are viable (see [84, start
of Section 2.2]), and counting by discriminant defines a fair counting func-
tion (in the sense of [84, Section 2.1]). The existence of each Prob(Pp) in
Proposition 3.3 can be seen as a special case of [84, Theorem 2.1]. The inde-
pendence result follows from [84, Corollary 2.4]. The statement about the
splitting behavior of real primes comes from [84, Corollary 2.2], while the
statement about the behavior of finite primes is guaranteed by [84, Corollary
2.3].

Theorem 1.6 follows easily from Proposition 3.3 and the following estimate
of Datskovsky and Wright [23] for the denominator appearing in the definition
(11) (see [21, Section 2.2] for an alternative proof of this proposition).

Proposition 3.4 The number of quadratic extensions L/k with |�L/k | ≤ x is

∼ 1
2r2

κk

ζk(2)
x as x → ∞, where κk denotes the residue at s = 1 of ζk(s) and r2

is the number of pairs of complex embeddings of k.

Deduction of Theorem 1.6 Recall that L embeds into B precisely when every
prime dividing the discriminant of B is non-split in L . The probability that
a fixed real prime of k ramifies in L is 1

2 (from Proposition 3.3(iii)), while
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the probability that a fixed finite prime of k is inert or ramified in L is (from
Proposition 3.3(iv))

1

2
(1 + Prob(p ramifies)) ≥

1

2
.

So from Proposition 3.3(ii), the probability that L embeds into B exists and is
at least 1

2r ′ , where r ′ is the number of distinct places dividing the discriminant
of B. Theorem 1.6 now follows from the estimate of Proposition 3.4. ⊓⊔

3.3 Proof of Theorem 1.7

For a number field k and a quadratic extension L/k, our present goal is to count
the number of quaternion algebras over k which have discriminant less than x

and which admit an embedding of L . In fact, we solve a more general problem.
Specifically, in this subsection we prove Theorem 1.7 from the introduction.

3.3.1 Setup

From Theorem 2.1, a quaternion algebra B/k is uniquely specified by a
finite set S ⊂ Pk of real and finite places of k, along with a reduced frac-
tion 0 < ap/mp < 1 for each prime p ∈ S, where lcmp∈S[mp] = 2
and

∑
p∈S ap/mp ∈ Z. The least common multiple condition forces each

ap/mp = 1/2, and the integrality condition on the sum forces the cardinality
of S to be even. We conclude that there is a bijection between quaternion alge-
bras over k and square-free moduli m of k containing a nonzero even number
of factors. Moreover, if B corresponds to m under this bijection, then

disc(B) =

⎛
⎜⎜⎝
∏

p finite
p|m

p

⎞
⎟⎟⎠

2

·
∏

p real
p|m

p.

Now let Q be the set of finite or real primes of k that do not split in any of the
L i . Asking that all of our quadratic extensions L i embed into the quaternion
algebra B/k amounts to requiring that m only be divisible by primes residing
in Q. We count the number of such B with |disc(B)| ≤ x by modifying
the approach of the last section. We now provide the details. Define G(s) =
1
2 (G0(s) + G1(s)), where

G0(s) =
∏

p real
p∈Q

(
1 +

1

|p|s
) ∏

p finite
p∈Q

(
1 +

1

|p|2s

)
(12)
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and

G1(s) =
∏

p real
p∈Q

(
1 −

1

|p|s
) ∏

p finite
p∈Q

(
1 −

1

|p|2s

)
. (13)

The infinite factors in the definitions of G0(s) and G1(s) are in fact independent
of s. If r ′

1 is the number of real primes of k that do not split in any of the L i , the
contribution of the infinite factors is given by 2r ′

1 and 0r ′
1 , respectively, where

0r ′
1 =

{
1, r ′

1 = 0,

0, otherwise.

Now observe that if G(s) is identified with its formal Dirichlet series expansion,
then the coefficient of N−s counts quaternion algebras B/k with |disc(B)| =
N admitting an embedding of all L i .

To estimate the partial sums of the G(s)-coefficients for N ≤ x , we work
with the corresponding sums for G0(s) and G1(s) individually. For G0(s),
we will apply Theorem 3.1 to obtain an asymptotic formula with main term

proportional to x1/2/(log x)1− 1
2r . We then use a result of Wirsing [83, Satz 2] to

show that the partial sums of the G1-coefficients are in fact o(x1/2/(log x)1− 1
2r )

as x → ∞. Putting these estimates together yields Theorem 1.7.

3.3.2 The partial sums of the coefficients of G0(s)

Let us check that the hypotheses of Theorem 3.1 hold with ρ = 1
2 and β = 1

2r .
Conditions (i) and (ii) of that theorem are clear from the product definition of
G0, and so we may focus on (iii) and (iv). Let L be the composite field of the L i ,
for i = 1, 2, . . . , r . The essential idea is to express G0(s) in terms of benign
factors and Artin L-functions attached to Gal(L/k). We now implement this
idea. Our assumption that [L1 · · · Lr : k] = 2r easily implies that Gal(L/k)

is canonically isomorphic to the elementary abelian 2-group

r⊕

i=1

Gal(L i/k) =
r⊕

i=1

Z/2Z = (Z/2Z)r .

For 1 ≤ i ≤ r , let χ̃i denote the unique character of Gal(L/k) whose kernel is
the subgroup fixing L i . For every subset T of {1, . . . , r}, let χ̃T =

∏
i∈T χ̃i . It

is a simple matter that χ̃S is nontrivial provided T is non-empty. Consequently,
the field LT left fixed by ker χ̃T is a quadratic extension of k in the event T is
non-empty. For each finite prime p of k, we let χT (p) = 1, 0, or −1 according
to whether p splits, ramifies, or remains inert in LT . When T consists of a
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single element 1 ≤ i ≤ r , we will write χi instead of the more cumbersome
χ{i}. In that notation, unless p belongs to

R := {finite primes of k that ramify in L},

we have the expression

χT (p) = χ̃T (Frob(p)) =
∏

i∈T

χ̃i (Frob(p)) =
∏

i∈T

χi (p),

where Frob(p) ∈ Gal(L/k) is the associated Frobenius automorphism for p.
Now we relate the χi to the definition of G0. If p is finite and not an element

of R, then

1

2r

r∏

i=1

(1 − χi (p)) = 1

if p ∈ Q and = 0 otherwise. Hence, setting Q0 := Q ∩ R, we have the expres-
sion

G0(s) = 2r ′
1
∏

p∈Q0

(
1 +

1

|p|2s

) ∏

p finite
p/∈R

(
1 +

1
2r

∏r
i=1(1 − χi (p))

|p|2s

)
. (14)

For p /∈ R, we have

r∏

i=1

(1 − χi (p)) =
∑

T ⊂{1,2,...,r}
(−1)#T χT (p). (15)

For ℜ(s) > 1/2, let

Z0(s) :=
∏

p finite
p/∈R

⎛
⎝
(

1 +
1
2r

∏r
i=1(1 − χi (p))

|p|2s

)2r

×
∏

T ⊂{1,2,...,r}

(
1 −

χT (p)

|p|2s

)(−1)#T
⎞
⎠ .
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Recalling that log(1 + t) =
∑

j≥1(−1) j−1t j/j for |t | < 1, we see that

log Z0(s) =
∑

p finite
p/∈R

∑

j≥1

⎛
⎝(−1) j−1

j
2r

(
1

2r

r∏

i=1

(1 − χi (p))

) j

−
∑

T ⊂{1,2,...,r}

(−1)#T χT (p) j

j

⎞
⎠ |p|−2 js

=
∑

p, j
p finite, p/∈R

j≥2

⎛
⎝(−1) j−1

j
2r

(
1

2r

r∏

i=1

(1 − χi (p))

) j

−
∑

T ⊂{1,2,...,r}

(−1)#T χT (p) j

j

⎞
⎠ |p|−2 js .

Here we used (15) to pass from the first line to the second. The final sum is
absolutely convergent for ℜ(s) > 1

4 , and any arrangement of the sum con-
verges uniformly on compact subsets of ℜ(s) > 1

4 . Thus, log Z0(s) continues
analytically to ℜ(s) > 1

4 , implying that Z0(s) can be extended to a function
that is analytic and nonzero there.

For each T ⊂ {1, 2, . . . , r} and all s with real part greater than 1, put

L(s, χT ) =
∏

p finite

(
1 −

χT (p)

|p|s
)−1

.

L(s, χT ) is the Artin L-function attached to the character χ̃T of Gal(L/k).
When T = ∅, we have L(s, χT ) = ζk(s), and for all other choices of T , the
function L(s, χT ) is analytic and nonzero for ℜ(s) ≥ 1.

We chose Z0(s) so that

∏

p finite
p/∈R

(
1 +

1
2r

∏r
i=1(1 − χi (p))

|p|2s

)2r

= Z0(s)
∏

T ⊂{1,2,...,r}

⎛
⎝L(2s, χT )

∏

p∈R

(
1 −

χT (p)

|p|2s

)⎞
⎠

(−1)#T

.
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The right-hand products over p ∈ R are analytic and nonzero for ℜ(s) > 0.
Keeping in mind that L(s, χT ) is analytic and nonzero for ℜ(s) ≥ 1 as long
as T 	= ∅, we see that the expression

(
s −

1

2

)
Z0(s)

∏

T ⊂{1,2,...,r}

⎛
⎝L(2s, χT )

∏

p∈R

(
1 −

χT (p)

|p|2s

)⎞
⎠

(−1)#T

(16)

is analytic and nonzero for ℜ(s) ≥ 1
2 . We note for the reader that the factor of

s− 1
2 here is used to cancel the simple pole of ζk(2s) at s = 1

2 . A function which
is nonzero and analytic on a simply connected domain possesses an analytic
logarithm on the same domain, and hence also an analytic N th root for every
N . (See, e.g., [74, Theorem 13.11, p. 274].) In particular, we can extract a 2r th
root H0(s) of (16) which is also analytic and nonzero in ℜ(s) ≥ 1

2 . The choice
of H0 is uniquely specified if we insist that H0(s) > 0 for s > 1

2 . Referring
back to (14), we find that for ℜ(s) > 1

2 ,

G0(s) =
1

(s − 1
2 )1/2r

⎛
⎝2r ′

1 ·
∏

p∈Q0

(
1 +

1

|p|2s

)
· H0(s)

⎞
⎠ ,

where (s − 1
2 )1/2r

is the principal 2r th root. This immediately implies (iii). If
we let

A0(s) := 2r ′
1 ·
∏

p∈Q0

(
1 +

1

|p|2s

)
· H0(s),

we see that G0(s) satisfies (iv) with ρ = 1
2 , β = 1

2r , A(s) = A0(s), and
B(s) = 0.

So by Theorem 3.1, the sum up to x of the coefficients of G0(s) is asymptotic
to

A0
(1

2

)

1
2Ŵ
( 1

2r

) x
1
2 /(log x)1− 1

2r as x → ∞.

3.3.3 The coefficients of G1(s)

We now show that the contribution from the coefficients of G1(s) is negligible.
Define arithmetic functions a(N ) and b(N ) by expanding

∏

p finite
p∈Q

(
1 +

1

|p|s
)

=
∞∑

N=1

a(N )

N s
and

∏

p finite
p∈Q

(
1 −

1

|p|s
)

=
∞∑

n=1

b(N )

N s
.
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The functions a(N ) and b(N ) are multiplicative and satisfy |b(N )| ≤ a(N )

for all N . Referring back to the earlier definitions of G0 and G1, we see that
the partial sum of the G0(s)-coefficients up to x is given by

2r1
∑

N≤
√

x

a(N ),

while that of the G1-coefficients is given by

0r1
∑

N≤
√

x

b(N ).

Thus, if we can show that

∑

N≤x

b(N ) = o

⎛
⎝∑

N≤x

a(N )

⎞
⎠ as x → ∞, (17)

then the partial sums of the G1-coefficients are o(x1/2/(log x)1− 1
2r ), as desired.

For that task, we use the following result, which is a slight variant of a theorem
of Wirsing [83, Satz 2].

Proposition 3.5 (Wirsing) Let a(N ) be a multiplicative function taking only

nonnegative values. Assume

(i) there is a constant τ > 0 for which
∑

p≤x a(p) log p = (τ + o(1))x as

x → ∞,

(ii) a(pℓ) is bounded uniformly on prime powers pℓ with ℓ ≥ 2.

Let b(N ) be a complex-valued multiplicative function satisfying |b(N )| ≤
a(N ) for all N . Suppose moreover that

(iii) there is a constant τ ′ 	= τ with
∑

p≤x b(p) log p = (τ ′ + o(1))x as

x → ∞,

then
∑

N≤x

b(N ) = o

⎛
⎝∑

N≤x

a(N )

⎞
⎠.

Here we have replaced the original condition (7) in [83, Satz 2] with the
simpler condition that τ 	= τ ′; this is justified in the remarks immediately
following the statement of Satz 2 in [83]. Wirsing’s original formulation also
assumes asymptotics for the sums

∑
p≤x f (p) rather than

∑
p≤x f (p) log p.

The conditions that Wirsing needs follow from our (i), (iii) after applying
partial summation. (A similar partial summation argument can be seen in the
second displayed equation in the proof of Theorem 4.4 on p. 79 of [1].)
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These remarks allow us to replace condition (7) in [83, Satz 2] with the
simpler condition that τ 	= τ ′. We now return to deducing (17).
Proof of (17) Let us check that the hypotheses of Proposition 3.5 are satisfied
for our choice of a(N ) and b(N ) above. We have

∑

p≤x

a(p) log p =
∑

p≤x

⎛
⎜⎜⎝

∑

p∈Q, finite
|p|=p

log |p|

⎞
⎟⎟⎠ =

∑

p∈Q, finite
p abs. degree 1

|p|≤x

log |p|

=
∑

p∈Q, finite
|p|≤x

log |p| + O(x1/2).

Now p ∈ Q if and only if p does not split in any of the L i . Excluding the
finitely many primes in R, this condition on p is equivalent to the requirement
that Frob(p) not restrict to the identity on L i for any i = 1, 2, . . . , r . Recalling
that

Gal(L/k) ∼=
r∏

i=1

Gal(L i/k),

we see that this condition uniquely determines Frob(p). Since #Gal(L/k) =
2r , we can apply partial summation along with the Chebotarev density theorem
for natural density (see [2, Satz 4]) to obtain

∑

p∈Q, finite
|p|≤x

log |p| =
(

1

2r
+ o(1)

)
x as x → ∞.

(An analogous partial summation argument appears in the first displayed
equation in the proof of Theorem 4.4 on p. 79 of [1]; we use the Chebotarev
prime counting function from [2, Satz 4] in lieu of π(x).) So (i) holds with
τ = 1

2r .
For each prime power pℓ,

a(pℓ) ≤ #
{

square-free ideals of Ok of norm pℓ
}

.

However, any square-free ideal of norm pℓ must be a square-free product of
the primes lying above p, and there are at most 2[k:Q] such products. This gives
(ii).
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Finally, our work towards (i) shows that

∑

p≤x

b(p) log p = −
∑

p≤x

∑

p∈Q, finite
|p|=p

log |p| = −
(

1

2r
+ o(1)

)
x as x → ∞.

Hence, (iii) holds with τ ′ = − 1
2r . ⊓⊔

3.3.4 Denouement

Since G(s) = 1
2 (G0(s) + G1(s)), combining the results of the previous two

sections shows that the number of quaternion algebras B/k admitting embed-
dings of all of the L i and having |disc(B)| ≤ x , is asymptotically

A0
(1

2

)

Ŵ
( 1

2r

) · x1/2/(log x)1− 1
2r .

The leading coefficient here is nonzero and can be given explicitly in terms of
the leading terms in the Laurent series expansions for the functions L(s, χT ).
Specifically, tracing back through the definitions, we see that with κ equal to
the residue at s = 1 of ζk(s),

A0
( 1

2

)

Ŵ
( 1

2r

) =
2r ′

1−
1

2r

Ŵ
( 1

2r

)
∏

p∈Q0

(
1 +

1

|p|

)

·

⎛
⎜⎜⎝κ

∏

p∈R

(
1 −

1

|p|

) ∏

T ⊂{1,2,...,r}
T 	=∅

⎛
⎝L(1, χT )

∏

p∈R

(
1 −

χ(p)

|p|

)⎞
⎠

(−1)#T
⎞
⎟⎟⎠

1/2r

· Z1/2r

,

where

Z := Z0

(
1

2

)
=

∏

p finite
p/∈R

⎛
⎝
(

1 +
1
2r

∏r
i=1(1 − χi (p))

|p|

)2r

×
∏

T ⊂{1,2,...,r}

(
1 −

χT (p)

|p|

)(−1)#T
⎞
⎠ .
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It is clear that in general, the explicit form of this leading coefficient is rather
complicated, but in the case r = 1 it simplifies nicely to the formula given in
Example 1.

Remark Without the assumption that [L1 · · · Lr : k] = 2r , it is possible for
there to be no quaternion division algebras B/k into which all of the L i embed.
For example, take k = Q and consider the collection of L i given by Q(

√
−3),

Q(
√

−1), Q(
√

3), Q(
√

10), Q(
√

17). One can check that every finite prime
of Q splits in at least one of these L i , and so a quaternion algebra into which
all of these fields embeds must have a discriminant not divisible by any finite
prime at all. As a quaternion algebra must ramify at a finite even number of
primes, up to isomorphism, the only quaternion algebra admitting embeddings
of all of the above extensions is M(2, Q), which is not a division algebra.

For the general situation, we proceed as follows. Suppose we are given a
finite collection of distinct quadratic extensions L i/k. Let L be the compositum
of all of the L i , and define r by the condition [L : k] = 2r . Note, we are not
assuming here that r is the total number of L i . For each i , let χ̃i be the character
of Gal(L/k) whose kernel is the subgroup fixing L i . For there to be infinitely
many quaternion algebras B/k into which all of the L i embed, it is necessary
and sufficient that there is no finite odd order subset of the χ̃i which multiply to
the identity. If this condition holds, then the number of B/k with |disc(B)| ≤ x

into which all of the L i embed is again asymptotic to δx1/2/(log x)1− 1
2r for

some positive δ > 0. This can be established by slight modifications to the
proof of Theorem 1.7.

4 Main tools: geometric counting results

In this section, we derive the geometric counting results from the introduction
using the tools from the previous section.

4.1 Proof of Corollaries 1.8 and 1.9

As an application of Theorem 1.5 we consider the problem of counting com-
mensurability classes of arithmetic hyperbolic 2- and 3-manifolds with a fixed
trace field k. As Selberg’s lemma ensures every complete, finite volume hyper-
bolic n-orbifold has a finite manifold cover, counting commensurability classes
of arithmetic orbifolds is the same as counting commensurability classes of
arithmetic manifolds. Consequently, we will not fret about whether our rep-
resentatives are manifolds or orbifolds. It is well-known [54, Chapter 11] that
given such a commensurability class C , there is a real number VC > 0 which
occurs as the smallest volume achieved by an orbifold belonging to this class.
A consequence of Borel’s classification of maximal arithmetic Fuchsian and
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Kleinian groups and their volumes [7] is that we can derive a precise formula
for VC in terms of the number theoretic invariants of C . The proofs of Corol-
lary 1.8 and Corollary 1.9 will rely crucially on Theorem 2.6. Namely, every
commensurability class of arithmetic hyperbolic 2- or 3-manifolds both deter-
mines and is determined by the associated trace field and quaternion algebra.

We begin by proving a lemma which bounds the norm of the discriminant
of the quaternion algebra of a compact arithmetic hyperbolic 2- or 3-manifold
as a function of the volume V of the manifold.

Lemma 4.1 Let M be a compact arithmetic hyperbolic 2-manifold (resp., 3-

manifold) of volume V with trace field k and quaternion algebra B. Then

|disc(B)| ≤ [1093V 13]10 (resp., |disc(B)| ≤ 1057V 7).

Proof We establish the lemma for 3-manifolds as the case of hyperbolic sur-
faces is similar. Towards that goal, set V ′ to be the covolume of a minimal
covolume maximal arithmetic subgroup in the commensurability class asso-
ciated to B and k. It is known by Chinburg–Friedman [17, p. 8] that

V ′ =
2π2ζk(2)d

3
2
k �(disc(B))

(4π2)nk [kB : k]
, (18)

where

�(disc(B)) =
∏

p|disc(B)

( |p| − 1

2

)

and kB is the maximal abelian extension of k which has 2-elementary Galois
group, is unramified at all finite primes of k and in which all (finite) prime
divisors of disc(B) split completely. As kB is contained in the strict class field
of k,

[kB : k] ≤ 2r1(k)hk = 2nk−2hk .

Let ω2(B) denote the number of prime divisors of disc(B) which have norm 2.
From the Euler product expansion of ζk(s), we deduce that ζk(2) ≥ (4

3)ω2(B).
In combination with (18), we conclude that

V ′ ≥
(4

3)ω2(B)d
3
2
k |disc(B)|

(4π2)nk 4ω2(B)2nk−2hk

≥
d

3
2
k |disc(B)|

(8π2)nk 3ω2(B)hk

. (19)
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736 B. Linowitz et al.

Now, we have the trivial bound ω2(B) ≤ nk and the inequality hk ≤ 242d
3
4
k

found in [45, Lemma 3.1]. Coupling these two inequalities with (19) produces

V ′ ≥
d

3
2
k |disc(B)|

242(24π2)nk d
3
4
k

≥
|disc(B)|

242(24π2)nk
. (20)

Our proof is now complete upon applying [15, Lemma 4.3], which implies
that nk ≤ 23 + log(V ′), to (20) in tandem with the fact that V ≥ V ′. ⊓⊔

Proof of Corollary 1.8 Let k be a totally real number field and B be a quater-
nion division algebra over k which is ramified at all but one real places of
k. If ρ : B → M(2, R) is a representation and O is an order of B, then it
is easy to see that the trace field of ŴO is k; recall that ŴO is defined to be
Pρ(O1). It is similarly clear that the quaternion algebra of ŴO is B. Namely,
since this algebra is a quaternion algebra over k that is visibly contained in B,
the asserted isomorphism follows from comparing dimensions. By definition,
a Fuchsian group is arithmetic if it is commensurable with a group of the form
ŴO , hence by Lemma 4.1 and the preceding discussion, to prove Corollary 1.8
it suffices to bound the number of quaternion division algebras B over k which
are ramified at all real places of k and satisfy |disc(B)| ≤ [1093V 13]10. The
corollary now follows from Theorem 1.5. ⊓⊔

The proof of Corollary 1.9 is similar and is left to the reader.

4.2 Lengths of geodesics arising from quadratic extensions

We begin this subsection with a result that will permit us to work with Kleinian
groups derived from a quaternion algebra.

Proposition 4.2 Let Ŵ be a Kleinian group with covolume V and let Ŵ(2) be the

subgroup of Ŵ generated by squares. Then there exists an absolute, effectively

computable constant C such that the covolume of Ŵ(2) is at most eCV .

Proof It is well-known that as Ŵ has finite covolume it is finitely generated.
Let d(Ŵ) denote the minimal number of generators of Ŵ. By Theorem 2.5,
there exists an absolute constant C such that d(Ŵ) < C0V . Now Ŵ/Ŵ(2) is a
finite elementary abelian 2-group of order at most 2d(Ŵ). As the covolume of
Ŵ(2) is [Ŵ : Ŵ(2)] · V , the result follows. ⊓⊔

Lemma 4.3 Let Ŵ′ be an arithmetic Fuchsian or Kleinian group derived from

a quaternion algebra B/k which has covolume V ′ and is contained in ŴO ,

where O is a maximal order of B. Then [ŴO : Ŵ] ≤ V ′.
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Proof We prove the lemma in the case that Ŵ′ is an arithmetic Kleinian group.
The proof in the Fuchsian case is virtually identical. By Borel [7] (see also
[54, Chapter 11]), the covolume VO of ŴO is equal to

d
3/2
k ζk(2)

∏
p|disc(B)(|p| − 1)

(4π2)nk−1 . (21)

As VO · [ŴO : Ŵ′] = V ′ we see that

[ŴO : Ŵ] =
V ′(4π2)nk−1

d
3/2
k ζk(2)

∏
p|disc(B)(|p| − 1)

≤
V ′(4π2)nk−1

d
3/2
k

. (22)

The discriminant bounds of Odlyzko [64] and Poitou [68] (see also [10, The-
orem 2.4]) show that log(dk) ≥ 4r1 + 6r2 where r1 is the number of real
places of k and r2 is the number of complex places of k. It is well-known that
in our situation it must be the case that k has a unique complex place, hence
r1 = nk − 2 and r2 = 1. We conclude that d

3/2
k ≥ e6(nk−2)e9. Applying this

bound to Eq. (22) and simplifying finishes the proof. ⊓⊔

Remark It is implicit in the statement of Lemma 4.3 and in any event follows
from the ideas of the lemma’s proof that if O is a maximal order of B then ŴO

has covolume at least 1.

We next need a simple lemma that provides a bound for the regulator of a
maximal subfield.

Lemma 4.4 Let k be a number field with a unique complex place, B/k a

quaternion algebra which is ramified at all real places of k and L a maximal

subfield of B. Then RegL ≤ d
nk

L .

Proof Let r1(L) (resp., r2(L)) be the number of real (resp., complex) places of
L . As L embeds into B, the Albert–Brauer–Hasse–Noether theorem implies
that r1(L) = 0, r2(L) = nk . The class number formula [41, p. 300] yields

RegL = ωL d
1
2
L κL

(2π)nk hL
, where ωL is the number of roots of unity lying in L , κL is

the residue at s = 1 of the Dedekind zeta function ζL(s) and hL is the class
number of L . As hL ≥ 1, ωL ≤ 2n2

L = 8n2
k and 8n2 ≤ (2π)n for all n ≥ 2,

we see that

RegL ≤ d
1
2
L κL ≤ d

1
2
L log(d

1
2
L )nL−1 ≤ d

1
2
L d

nk− 1
2

L = d
nk

L ,

where the second inequality follows from [48, Proposition 2]. ⊓⊔

We will also need the following analog of Lemma 4.4, whose proof is
virtually identical to that of Lemma 4.4.
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Lemma 4.5 Let k be a totally real number field, B/k a quaternion algebra

which is ramified at all but one real places of k and L a maximal subfield of

B which is not totally complex. Then RegL ≤ d
nk

L .

We briefly survey some basic results about logarithmic heights of algebraic
numbers. For a number field k and p ∈ Pk , we normalize the associated val-
uation |·|p in the usual way so that for each α in k, we have

∏

p|∞
|α|p =

∣∣Normk/Q(α)
∣∣

and
∏

p∈Pk
|α|p = 1. We define the logarithmic height of α relative to k to be

hk(α) =
∑

p∈Pk

log
(
max

{
1, |α|p

})
.

The absolute height of α is H(α) = [k : Q]−1hk(α) and is independent of
the field k. We remark that the height of α relative to Q(α) is the logarithm
of the Mahler measure of the minimal polynomial of α. We also remark the
the height of α can be computed using only infinite places. The proof of the
following lemma is straightforward.

Lemma 4.6 Let the notation be as above.

(i) For all nonzero n ∈ Z, H(αn) = |n| · H(α).

(ii) For all algebraic numbers β, H(αβ) ≤ H(α) + H(β).

(iii) If α and β are Galois conjugates then H(α) = H(β).

Proposition 4.7 Let Ŵ be an arithmetic Fuchsian or Kleinian group which

has covolume V and with trace field k and quaternion algebra B. Let L/k

be a quadratic extension which embeds into B and suppose further that L is

not totally complex if k is totally real. Then there exist absolute, effectively

computable constants C1, C2 such that L = kγ for some hyperbolic γ ∈ Ŵ

with length at most eC1V d
C2+log(V )

L .

Proof We prove the proposition in the case that k has a unique complex place.
The case in which k is totally real has an identical proof. As every real place
of k is ramified in B, we see that L embeds into B implies, by the Albert–
Brauer–Hasse–Noether theorem, that L is totally complex. By Dirichlet’s unit
theorem, the Z-rank of O∗

L is strictly greater than that of O∗
k . From this we

conclude that every system of fundamental units of O∗
L contains a fundamental

unit u0 ∈ O∗
L such that un

0 /∈ k for any n ≥ 1. Hence, we have L = k(un) for
all n 	= 0. Let σ denote the non-trivial automorphism of Gal(L/k) and define
u = u0/σ(u0). It is clear that NormL/k(u) = 1 and that un /∈ O∗

k for any n ≥ 1.
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By [37] (see also [9]) we may take u0 to have logarithmic height (relative to L)
hL(u0) ≤ n

11nk

k RegL . It follows from Lemma 4.6 that hL(u) ≤ 2n
11nk

k RegL ,

and since [L : Q] = 2nk we see as well that H(u) ≤ n
11nk−1
k RegL .

As Ŵ(2) is derived from the quaternion algebra B [54, Chapter 3], there
exists a maximal order O of B such that Ŵ(2) ⊂ Ŵ1

O
. Recall that kB is the

maximal abelian extension of k of exponent 2 in which all prime divisors
of disc(B) split completely. We have two cases. Suppose first that L 	⊂ kB .
Then every maximal order of B admits an embedding of Ok[u] ([16, Theorem
3.3]; see also [44, Proposition 5.4]), hence we may assume that u ∈ O . Let
γ ′ be the image in Ŵ1

O
of u. Proposition 4.2 and Lemma 4.3 show that γ =

γ ′n ∈ Ŵ(2) ⊂ Ŵ for some n ≤ eC0V and constant C0. By Lemma 4.6 we have
H(γ ) ≤ eC0V n

11nk−1
k RegL . As the logarithm of the Mahler measure of the

minimal polynomial of γ is less than 2nk H(γ ), by [54, Lemma 12.3.3] we have
ℓ0(γ ) ≤ 4eC0V n

11nk

k RegL . By Lemma 4.4, we have ℓ0(γ ) ≤ 4eC0V n
11nk

k d
nk

L .
By [15, Lemma 4.3], we have nk ≤ 23+ log(V ). Hence there exists a constant
C1 such that ℓ0(γ ) ≤ eC1V d

23+log(V )

L .
Suppose now that L ⊂ kB and E is a maximal order of B containing u.

By Proposition 2.3 there exists an absolute constant C2 > 0 and an integer
n ≤ d

C2
L such that un ∈ O1. The arguments of the previous paragraph show

that there exists γ ∈ Ŵ(2) ⊂ Ŵ with length at most eC1V d
C2+log(V )

L , finishing
our proof. ⊓⊔
Remark Proposition 4.7 is an effective version of Theorem 12.2.6 of [54].

4.3 Proof of Corollary 1.10

Theorem 4.8 Let k be a number field of degree nk , discriminant dk that is

totally real (resp., has a unique complex place). Let B/k be a quaternion

algebra which is ramified at all but one real places of k (resp., at all real

places of k) and let O be a maximal order of B. Then for all sufficiently

large x, the orbifold H
2/ŴO (resp., H

3/ŴO ) contains at least
[

κk

2

(
3
π2

)nk
]

x

rationally inequivalent geodesics of length at most
[
2n

11nk−1
k d

2nk

k

]
xnk .

Proof By Theorem 1.6 and the well-known fact that ζk(s) ≤ ζ(s)nk , for all

sufficiently large real x > 0 there are at least
[
2κk

(
3
π2

)nk
]

x quadratic exten-

sions L/k which embed into B and satisfy
∣∣�L/k

∣∣ < x . When k is totally
real, if an extension L/k embeds into B then L is either totally complex or
else has 2 real places and nk − 2 complex places. Combining Theorem 1.6
with Proposition 3.3(iii) now shows that when k is totally real there are at

least
[
κk

(
3
π2

)nk
]

x quadratic extensions L/k which embed into B, satisfy
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∣∣�L/k

∣∣ < x , and are not totally complex. The proof of Proposition 4.7 shows
that with at most finitely many exceptions, the extensions described above are
all of the form L = kγ , where γ ∈ ŴO is hyperbolic with length at most

2n
11nk−1
k RegL . By [18, Lemma 6.3], if λ1, λ2 are eigenvalues of hyperbol-

ics γ1, γ2 ∈ ŴO whose complex lengths are rationally equivalent then either
k(λ1) = k(λ2) or k(λ1) = k(λ2). It follows that for x sufficiently large, at

least
[

κk

2

(
3
π2

)nk
]

x of the geodesics associated to the hyperbolic γ are ratio-

nally inequivalent. The theorem now follows from Lemma 4.4 and dL =∣∣�L/k

∣∣ d2
k . ⊓⊔

Proof of Corollary 1.10 By Proposition 4.2 (which follows from Gauss–
Bonnet when Ŵ is a Fuchsian group) the covolume of Ŵ(2) is at most eCV

for some absolute, effectively computable constant C . It is well-known [54,
Corollary 8.3.5] that there is a maximal order O of B such that Ŵ(2) ≤ ŴO ,
and it was shown in Lemma 4.3 that the index of Ŵ(2) in ŴO is at most eCV . It
follows immediately from Theorem 4.8 that for x sufficiently large, the orb-

ifold H3/Ŵ contains at least
[

κk

2

(
3
π2

)nk
]

x rationally inequivalent geodesics

of length at most eCV (2n
11nk−1
k d

2nk

k )xnk . The corollary now follows from
nk ≤ 23 + log(V ) [15, Lemma 4.3], dk ≤ V 22 [45, proof of Thm 4.1], and
logarithm inequalities. ⊓⊔

4.4 Counting manifolds with prescribed geodesic lengths

Let M be an arithmetic hyperbolic 2-orbifold (resp., 3-orbifold) with π1(M) =
Ŵ that has geodesics with lengths (resp., complex length) ℓ1, . . . , ℓN . For
V > 0, N 2

ℓ1,...,ℓN
(V ) (resp., N 3

ℓ1,...,ℓN
(V )) is the maximum cardinality of

a family of arithmetic, pairwise non-commensurable, hyperbolic 2-orbifolds
(resp., 3-orbifolds) all of which have geodesics with lengths (resp., complex
lengths) ℓ1, . . . , ℓN and volume at most V . By Borel [7, Theorem 8.2], both
N 2

ℓ1,...,ℓN
(V ), N 3

ℓ1,...,ℓN
(V ) finite. As an application of Theorem 1.7 we pro-

vide lower and upper bounds for these functions. [47] establish estimates for
similarly defined counting functions.

Before proceeding, we fix some notation which we will use for the remainder
of this section. With ℓ1, . . . , ℓN as above, let γi ∈ Ŵ be hyperbolic with
associated geodesic of length ℓi and let λi denote the eigenvalue of a pre-
image of γi in SL(2, R), SL(2, C) satisfying |λi | > 1.

We now state our bounds for N 2
ℓ1,...,ℓN

(V ) and N 3
ℓ1,...,ℓN

(V ). Theorem 4.9
deals with the case in which {λ1, . . . , λN } 	⊂ R and Theorem 4.10 deals with
the case in which {λ1, . . . , λN } ⊂ R.
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Theorem 4.9 Let M be an arithmetic hyperbolic 3-manifold which is derived

from a quaternion algebra and has geodesics with complex lengths ℓ1, . . . , ℓN .

If λi is not real for some i , then exactly one of the following is true:

(i) There are only finitely many quaternion algebras defined over the trace

field k of Ŵ which are ramified at all real places of k and admit embeddings

of k(λi ) for all i . In this case there are positive real numbers c and V0
such that N 3

ℓ1,...,ℓN
(V ) = c for all V > V0.

(ii) There are infinitely many commensurability classes of hyperbolic 3-

orbifolds that contain an orbifold that has geodesics with complex lengths

ℓ1, . . . , ℓN . In this case there exist integers 1 ≤ r, s ≤ N such that

V/ log(V )1− 1
2s ≪ N 3

ℓ1,...,ℓN
(V ) ≪ V/ log(V )1− 1

2r ,

where the implicit constants depend only on k and ℓ1, . . . , ℓN .

Remark We remark that [18, Lemma 2.3] shows that if k is not a quadratic
extension of k+ then Ŵ will have no hyperbolics with real eigenvalue. In this
situation the hypotheses of Theorem 4.9 will always be satisfied.

The techniques used to prove Theorem 4.9 can be applied, in much the same
manner, to prove the following result.

Theorem 4.10 Let M be an arithmetic hyperbolic 2-manifold (resp., 3-

manifold) which is derived from a quaternion algebra and contains geodesics

with lengths (resp., complex lengths) ℓ1, . . . , ℓN . If λi is real for all i , then

exactly one of the following is true:

(i) There are only finitely many quaternion algebras defined over the trace

field k of Ŵ which are ramified at all but one real places of k (resp., at all

real places of k) and admit embeddings of k(λi ) for all i .

(ii) There are infinitely many commensurability classes of hyperbolic 2-

orbifolds (resp., 3-orbifolds) that contain an orbifold that has geodesics

with lengths (resp., complex lengths) ℓ1, . . . , ℓN and trace field k. In this

case there exist integers 1 ≤ r, s, t ≤ N such that

V/ log(V )1− 1
2r ≫ N 2

ℓ1,...,ℓN
(V ) ≫ V/ log(V )1− 1

2s

(resp., N 3
ℓ1,...,ℓN

(V ) ≫ V/ log(V )
1− 1

2t ).

Note that Theorems 4.9 and 4.10 both deal with geodesics on arithmetic
hyperbolic 2- and 3-manifolds which are derived from quaternion algebras,
as opposed to arbitrary arithmetic hyperbolic 2- and 3-manifolds. The reason
for this restriction amounts to the following observation (which will be made
more precise and proven as part of the proof of Theorem 4.9). Let M be as
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in Theorem 4.9. The commensurability classes of arithmetic hyperbolic 3-
orbifolds that contain an orbifold that has geodesics with complex lengths
ℓ1, . . . , ℓN are in one-to-one correspondence with quaternion algebras over k

which ramify at all real places of k and admit embeddings of k(λ1), . . . , k(λN ).
This correspondence breaks down however, when the manifold M is arithmetic
but not necessarily derived from a quaternion algebra. In this more general
setting however, we are able to prove the following.

Theorem 4.11 Let M be an arithmetic hyperbolic 2-manifold (resp., 3-

manifold) that has geodesics with lengths (resp., complex lengths) ℓ1, . . . , ℓN .

If there are infinitely many primes of k which do not split in any of the extensions

k(λi )/k then there are infinitely many commensurability classes of hyperbolic

2-orbifolds (resp., 3-orbifolds) that contain an orbifold that has geodesics with

lengths (resp., complex lengths) ℓ1, . . . , ℓN .

Remark If there are only finitely many primes of k which do not split in
any of the extensions k(λi )/k, then there are at most finitely many com-
mensurability classes of hyperbolic 2- or 3-orbifolds that contain an orbifold
that has geodesics with (complex) lengths ℓ1, . . . , ℓN and trace field k. In
many situations however (for instance if M is a 2- or 3-manifold such that
{λ1, . . . , λN } 	⊂ R), any arithmetic hyperbolic 2-orbifold (resp., 3-orbifold)
that has geodesics with lengths (resp., complex lengths) ℓ1, . . . , ℓN must have
trace field k. See for instance Proposition 4.13 and [18, Lemma 2.3]. In these
situations the hypothesis in Theorem 4.11 is necessary and sufficient.

4.4.1 Proof of Theorem 4.9

We begin with a proposition that will be needed in the proof of Theorem 4.9.

Proposition 4.12 Let B/k be a quaternion algebra which admits embeddings

of k(λ1), . . . , k(λN ) and O ⊂ B be a maximal order. If Ram f (B) 	= ∅,

then the orbifold associated to ŴO has geodesics with (complex) lengths

ℓ1, . . . , ℓN .

Proof For each i = 1, . . . , N , fix a quadratic Ok-order �i ⊂ k(λi ) which
contains a pre-image in k(λi ) of γi . As B ramifies at a finite prime of k, by [16,
Theorem 3.3], every maximal order of B, in particular O , contains a conjugate
of all of the quadratic orders �i . The proposition now follows from the fact
that the (complex) length of the geodesic associated to γi coincides with the
(complex) length of the geodesic associated to any conjugate of γi . ⊓⊔

Proof of Theorem 4.9 Let k, B denote the trace field and quaternion algebra
of Ŵ and for i = 1, . . . , N , let L i denote the quadratic extension k(λi ) of
k. By hypothesis there exists an i such that λi /∈ R. By [18, Lemma 2.3],
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the image in C of k is Q(tr(γi )) = Q(λi + λ−1
i ). Throughout the remainder

of this proof we will identify k with its image in C. Suppose that Ŵ′ is an
arithmetic Kleinian group such that the quotient orbifold has geodesics with
complex lengths ℓ1, . . . , ℓN . Taking powers of the elements γi as needed, we
may assume that Ŵ′ is derived from a quaternion algebra. Let k′, B ′ denote
the trace field and quaternion algebra of Ŵ′. By (3), if γ ′

i ∈ Ŵ′is hyperbolic
with associated geodesic of complex length ℓi , then tr(γi ) = ± tr(γ ′

i ). In
particular, up to complex conjugation, we have k = Q(tr(γi )) = Q(tr(γ ′

i )) =
k′. We may therefore suppose that B ′ is defined over k. The results of [54,
Chapter 12] now imply that B ′ admits embeddings of L1, . . . , L N . Conversely,
suppose that B ′/k is a quaternion algebra which satisfies the following two
conditions:

(i) B ′ is ramified at all real places and at at least one finite prime of k,
(ii) B ′ admits embeddings of L1, . . . , L N .

Proposition 4.12 then shows that if O ′ is a maximal order of B ′ then ŴO ′

is an arithmetic Kleinian group whose quotient orbifold has geodesics with
complex lengths ℓ1, . . . , ℓN . Putting these together, we see that Nℓ1,...,ℓN

(V )

is asymptotic to the number of isomorphism classes of quaternion algebras
over k which are ramified at all real places of k and which admit embeddings
of L1, . . . , L N . (Note that all but finitely many quaternion algebras over k

ramify at a finite prime of k.) The first assertion is an immediate consequence
of this.

In order to prove the second assertion we first show that N 3
ℓ1,...,ℓN

(V ) ≪
V/ log(V )1− 1

2r for some 1 ≤ r ≤ N . Suppose that Ŵ′ is an arithmetic Kleinian
group whose quotient orbifold has geodesics with complex lengths ℓ1, . . . , ℓN

and let V ′ denote the covolume of Ŵ′. If we let VC denote the volume of a
minimal volume orbifold in the commensurability class C of Ŵ, then V ′ ≥ VC .
Borel’s formula [7] for VC makes it clear that there exists a constant c, which
depends on k, such that VC ≥ c|disc(B ′)| where B ′ is the quaternion algebra of
Ŵ′ and |disc(B ′)| the norm of its discriminant. It follows from the discussion
above that B ′ is defined over k and it is clear that B ′ admits embeddings
of L1, . . . , L N . Hence, the number of commensurability classes of arithmetic
hyperbolic 3-orbifolds that contain an orbifold that has geodesics with complex
lengths ℓ1, . . . , ℓN is at most a constant multiple of the number of quaternion
algebras over k which admit embeddings of L1, . . . , L N . As |disc(B ′)| ≤ cV ′,

that N 3
ℓ1,...,ℓN

(V ) ≪ V 1/2/ log(V )1− 1
2r for some 1 ≤ r ≤ N now follows

from Theorem 1.7. The proof that N 3
ℓ1,...,ℓN

(V ) ≫ V/ log(V )1− 1
2s for some

1 ≤ s ≤ N follows from the same ideas though applied to orbifolds of the
form considered in Proposition 4.12. ⊓⊔
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4.4.2 Remarks about the proof of Theorem 4.10

The proof of Theorem 4.10 follows from the same arguments that were used
to prove the analogous statements in Theorem 4.9, hence we omit it. We do,
however, record the following proposition which serves as a substitute for
Lemma 2.3 of [18] in the Fuchsian case.

Proposition 4.13 Let Ŵ be an arithmetic Fuchsian group derived from a

quaternion algebra B/k. If γ ∈ Ŵ is a hyperbolic with eigenvalue λγ then

k = Q(tr(γ )).

Proof Let Ŵ0 be an arithmetic Kleinian group derived from a quaternion alge-
bra which contains Ŵ and whose trace field k0 is a quadratic extension of k.
Note, the existence of such a group Ŵ0 follows from the results in [54, Chapter
9]. Set F = Q(tr(γ )). Since γ ∈ Ŵ0 and λγ ∈ R, [18, Lemma 2.3] shows that
[k0 : F] = 2 and that F is the maximal totally real subfield of k0. It is now
clear that F = k, completing the proof. ⊓⊔

We now make a few comments about why the techniques used to prove The-
orem 4.9 do not suffice to prove an upper bound for N 3

ℓ1,...,ℓN
(V ). The upper

bound for N 3
ℓ1,...,ℓN

(V ) in Theorem 4.9 relied upon the fact that any arithmetic
hyperbolic 3-orbifold that has geodesics with complex lengths ℓ1, . . . , ℓN nec-
essarily has k as its trace field. Hence, it is obtained from counting quaternion
algebras over k admitting embeddings of k(λ1), . . . , k(λN ). Whereas this is
the case for arithmetic Fuchsian groups by Proposition 4.13, it is not neces-
sarily the case for 3-orbifolds in the context of Theorem 4.10. Indeed, let k+

denote the maximal totally real subfield of k and assume that k is a quadratic
extension of k+. Lemma 2.3 of [18] shows that k = Q(tr(γi )) if λi is not
real and k+ = Q(tr(γi )) if λi is real. As a consequence the trace field of
an arithmetic hyperbolic 3-orbifold that has geodesics with complex lengths
ℓ1, . . . , ℓN is a quadratic extension of k+. This does not imply that this trace
field is equal to k. In theory one could obtain an upper bound for N 3

ℓ1,...,ℓN
(V )

by counting the number of quadratic extensions of k+ with norm of relative
discriminant less than some bound and having a unique complex place and
then multiplying this count by the number of quaternion algebras defined over
each field. The former count has been computed by Cohen–Diaz–Olivier [20,
Corollary 3.14]. The latter count is given by Theorem 1.7 and contains a con-
stant which depends on the invariants of the particular quadratic extension of
k+ chosen. It is not clear how one could bound this constant with invariants
of only k+ due to the complexity of this constant. Those invariants also need
to be directly related to the volume of the 3-orbifold. Another difficulty is the
complexity of the error terms implicit in Theorem 1.7. Specifically, Theorem
1.7 requires that x → ∞, and the rate at which x → ∞ that is needed could
vary along with the quadratic extension of k+.
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4.4.3 Proof of Theorem 4.11

We prove the theorem in the case in which M is a 3-manifold. The surface case
has a proof which is virtually identical and thus left to the reader. Let Ŵ be the
fundamental group of M and B the associated quaternion algebra. We may
assume without loss of generality that Ŵ is a maximal arithmetic subgroup of
B×/k× and hence is of the form Ŵ = ŴS,D (in the notation of [16, Section 4]),
where S is a finite set of primes of k and D is a maximal order of B. For i =
1, . . . , N , let yi ∈ ŴS,D be a pre-image of γi in B×/k× and yi ∈ k(λi ) be a pre-
image of γi in B×. In order to prove the existence of infinitely many pairwise
non-commensurable arithmetic hyperbolic 3-orbifolds that contain geodesics
with complex lengths ℓ1, . . . , ℓN , we first construct an infinite number of
quaternion algebras B j/k (each of which ramifies at all real places of k) with
the property that for every j , the finite part of disc(B) is a proper divisor of
the finite part of disc(B j ). We will then construct, for every j , a maximal
arithmetic subgroup Ŵ j of B×

j /k× such that Ŵ j contains, for i = 1, . . . , N , an
element with the same trace and norm as yi . It will follow that the associated
orbifold will have geodesics with complex lengths ℓ1, . . . , ℓN .

Our construction of the algebras B j is straightforward. Let p1, p2, . . .

be an infinite sequence of primes of k which do not split in any of the
extensions k(λi )/k. Pruning this sequence as needed, we may assume that
none of the primes pi lie in the finite set S of primes mentioned in the
previous paragraph nor do they divide disc(B). Consider the sequence of
moduli {disc(B)p1p j } j>1. As disc(B) must have an even number of divi-
sors, as do the discriminants of all quaternion algebras over number fields,
each of these moduli has an even number of divisors. Hence, there exist
quaternion algebras B1, B2, B3 . . . having these as their discriminants and
these algebras are pairwise non-isomorphic. Also note that by the Albert–
Brauer–Hasse–Noether theorem, the quadratic extension k(λi )/k will embed
into B j if and only if no prime which ramifies in B j splits in k(λi )/k.
As the extension k(λi )/k embeds into B, none of the divisors of disc(B)

split in any of the extensions k(λi )/k. Further, by hypothesis no prime in
the sequence p1, p2, . . . splits in any of the extensions k(λi )/k. We con-
clude that all of the algebras B j admit embeddings of all of the extensions
k(λi )/k.

To construct the maximal arithmetic subgroups Ŵ j of B×
j /k×, we need the

following result from [16, Theorem 4.4]:

Theorem 4.14 (Chinburg–Friedman) Let k be a number field and B/k be a

quaternion algebra in which at least one archimedean place of k is unramified.

Suppose that y ∈ B× and consider the maximal arithmetic subgroup ŴS,D of

B×/k×. If a conjugate of the image y ∈ B×/k× of y is contained in ŴS,D

then the following three conditions hold:
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(i) disc(y)/ Norm(y) ∈ Ok ,

(ii) If an odd power of p appears in the prime factorization of n(y) (y is odd

at p), then p ∈ S ∪ Ram f (B),

(iii) For each p ∈ S at least one of the following four conditions hold:

(a) y ∈ k;

(b) y is odd at p;

(c) k(y) ⊗k kp is not a field;

(d) p divides disc(y)/ Norm(y).

Conversely, if conditions (1), (2) and (3) hold, then a conjugate of y is

contained in ŴS,D except possibly when the following three conditions hold:

(iv) k(y) ⊂ B is a quadratic field extension of k.

(v) The extension k(y)/k and the algebra B are both unramified at all finite

primes of k and ramify at precisely the same (possibly empty) set of real

places of k. Further, all primes p ∈ S split in k(y)/k.

(vi) All primes p dividing disc(y)/ Norm(y) split in k(y)/k.

Suppose now that (1)–(6)hold. In this case the number of S-types of maximal

orders D of B is even and the D for which a conjugate y belongs to ŴS,D

comprise exactly half of the S-types.

We now return to the proof of Theorem 4.11. Fix an integer j ≥ 1 and
consider the quaternion algebra B j defined above. Let O ⊂ B j be a maximal
order and consider the maximal arithmetic subgroup Ŵ j = ŴS,O of B×

j /k×. As
B j admits embeddings of k(λi )/k for all i , we abuse notation and identify these
extensions with their images in B j . We view the yi above (in the context of the
algebra B) as being contained in B j . As the yi were all contained in ŴS,D ⊂
B×/k×, we see by Theorem 4.14 (and because B j ramifies at a finite prime
of k, hence condition (5) of Theorem 4.14 is not satisfied, and Ram f (B) ⊂
Ram f (B j )) that conjugates of the yi lie in Ŵ j ⊂ B×

j /k×. Theorem 4.11
follows.

5 Proof of Theorem 1.1

5.1 A technical lemma

Let k be a number field of degree nk with integral basis � = {ω1, . . . , ωnk
}.

We endow Ok with the T2-norm by setting T2(x) =
∑

σ :k →֒C |σ(x)|2. An
immediate consequence of the arithmetic-geometric mean inequality is that
T2(x) ≥ nk for all x 	= 0. Define

B(�) =
∏

σ :k →֒C

nk∑

i=1

|σ(ωi )|.
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Lemma 5.1 Let k be a number field of degree nk ≥ 2. Then B(�) ≤ 2n3
k d

nk

k .

Proof The proof follows from the following inequalities:

B(�) =
∏

σ :k →֒C

nk∑

i=1

|σ(ωi )| ≤
∏

σ :k →֒C

nk∑

i=1

T2(ωi ) ≤
∏

σ :k →֒C

nk∏

i=1

T2(ωi )

≤
∏

σ :k →֒C

(
2n2

k dk

)
≤ 2n3

k d
nk

k ,

where the second to last inequality follows from [66, Theorem 3]. ⊓⊔

5.2 Geodesics of bounded length arising from maximal subfields

Proposition 5.2 Let Ŵ be an arithmetic Kleinian group with trace field k,

quaternion algebra B, and covolume V . Then there exists a hyperbolic γ ∈ Ŵ

with eigenvalue λ = λγ such that λn is not real for any n ≥ 1 and γ has length

at most K e
(
log(V )log(V )

)
for some absolute constant K .

Proof To begin, we make effective an argument from [18, p. 10]. We start
by proving the existence of a hyperbolic γ ∈ Ŵ with eigenvalue λ such that
λn is not real for any n > 1 and has length at most eC1V d

C2+log(V )

L . We first
consider the case in which k/k+ is a quadratic extension. By the Chebotarev
density theorem, there are infinitely many rational primes p which split com-
pletely in k/Q and do not divide |disc(B)|. To obtain an upper bound we use
a modification [81, Theorem 2-C] of the bound on the least prime ideal in the
Chebotarev density theorem in [40]:

Theorem 5.3 (Wang) Let L/k be a finite Galois extension of number fields of

degree n, S a finite set of primes of K and [θ ] a conjugacy class in Gal(L/k).

Then there is a prime ideal p of K such that

(i) p is unramified in L and is of degree 1 over Q;

(ii) p /∈ S;

(iii)
(

L/k
p

)
= [θ ], and

(iv) |p| ≤ dC
L (n log(NS))

2,

where C is an absolute, effectively computable constant and NS =
∏

q∈S |q|.

We would like to apply Theorem 5.3 to the extension k/Q but cannot as
k/Q need not be Galois. Let k̂ be the Galois closure of k. The extension k̂/Q

is by definition Galois, has degree at most nk !, and has the property that a
prime p of Q splits completely in (resp. ramifies in) k if and only if p splits
completely in (resp. ramifies in) k̂. Moreover, Serre [75, Proposition 6] shows
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that dk̂ ≤ d
nk !−1
k nk !nk !. Let p be a fixed rational prime which splits completely

in k and does not lie below any prime ramifying in B. By Theorem 5.3 (applied
with K = Q and L = k̂), we may assume that

p ≤
[
d

nk !−1
k nk !nk !

]A

·
[
nk ! log |disc(B)|

]2
.

Let q+ be a fixed prime of k+ lying above p and q1, q2 be distinct primes
of k lying above q+. Let L/k be a quadratic extension which is ramified at
every prime divisor of disc(B) and furthermore satisfies that q1 ramifies in
L/k and q2 splits in L/k. Then there exist primes q′

1, q
′
2, q

′
3 of L such that

q1OL = (q′
1)

2 and q2OL = q′
2q

′
3. By Proposition 4.7 there exist absolute,

effectively computable constants C1, C2 such that L = k(λ(γ )) for some
hyperbolic γ ∈ Ŵ with length at most eC1V d

C2+log(V )

L . As the primes q′
1 and

q′
2 both lie above q+ and have different ramification degrees, we can infer that

the extension L/k+ is not Galois, hence λ(γ ) is not real by [18, Lemma 2.3].
As k(λ(γ )) = k(λ(γ )n) for all n ≥ 1, our assertion that no power of λ(γ ) is
real follows from an identical argument.

If k/k+ is not quadratic, then [18, Lemma 2.3] implies that every hyperbolic
γ ∈ Ŵ has a non-real eigenvalue. Therefore, the existence of the needed
hyperbolic γ ∈ Ŵ follows directly from Proposition 4.7.

In light of the above it remains only to bound dL in terms of V and put all of
our estimates together. By [81, Theorem 4-A] (see also [82]) we may assume
that the conductor fL/k of the extension L/k satisfies

∣∣fL/k

∣∣ ≤ 64nk B(�k) |disc(B)|2nk ·
[
d

nk !−1
k nk !nk !

]2A

·
[
nk ! log |disc(B)|

]4

≤ 64nk 2n3
k d

nk

k |disc(B)|2nk ·
[
d

nk !−1
k nk !nk !

]2A

·
[
nk ! log |disc(B)|

]4
,

where the latter inequality follows from Lemma 5.1. The conductor-
discriminant formula [63, Chapter VII, (11.9)] and the fact that dL =

∣∣�L/k

∣∣ d2
k

implies that

dL ≤ 64nk 2n3
k d

nk+2
k |disc(B)|2nk ·

[
d

nk !−1
k nk !nk !

]2A

·
[
nk ! log |disc(B)|

]4
.

It now follows that

ℓ(γ ) ≤ eC1V

[
64nk 2n3

k d
nk+2
k |disc(B)|2nk ·

[
d

nk !−1
k nk !nk !

]2A

·
[
nk ! log |disc(B)|

]4]C2+log(V )

.
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In order to bound this expression from above we will make use of the following
three inequalities:

(i) nk ≤ 23 + log(V ) (proven in [15, Lemma 4.3]),
(ii) dk ≤ V 22 (proven as a part of [45, Theorem 4.1]),

(iii) |disc(B)| ≤ 1057V 7 (proven in Lemma 4.1).

Substituting in these upper bounds, an elementary computation shows that
ℓ0(γ ) ≤ Ce

(
log(V )log(V )

)
for some absolute constant C . We use here that the

term nk !nk ! essentially dominates over all of the others and that its size can be
estimated using Stirling’s formula. The proposition follows. ⊓⊔

5.3 Proof of Theorem 1.3

We begin with a lemma which is needed in the proof of Theorem 1.3.

Lemma 5.4 For all x > 2 we have
∏

p≤x p ≤ e
21x

log3(x)
+x

.

Setting P(x) =
∏

p≤x p, log(P(x)) is the Chebyshev theta function and
the lemma follows from [27, Theorem 5.2]. We now prove Theorem 1.3 from
the introduction.

Proof of Theorem 1.3 If B ≇ B ′, interchanging B, B ′ if necessary, we may
assume that there exists a prime p of k which ramifies in B but not in B ′. By
hypothesis if p is not real archimedean then |p| < x . Let L/k be a quadratic
extension such that:

(i) [LQ : kq] = 2 for all primes q of k with |q| < x , q 	= p and all primes Q

of L lying above q;
(ii) [LP : kp] = 1 for all primes P of L lying above p; and

(iii) all real places of k not equal to p ramify in L/k.

The existence of such an extension L/k follows from the Grunwald–Wang
theorem. Using [81, Chapter 4] (see also [82]), we can find such an extension
L/k whose conductor fL/k satisfies

∣∣fL/k

∣∣ ≤ (32)n2
k B(�)

(∏

p≤x

p

)2nk

. (23)

Lemmas 5.1, 5.4, and the conductor-discriminant formula imply that the rel-
ative discriminant �L/k has norm less than the bound given in the theorem’s
statement. The proof of the theorem now follows from the Albert–Brauer–
Hasse–Noether theorem, which implies that B ′ admits an embedding of L/k

whereas B does not. ⊓⊔
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5.4 Proof of Theorem 1.1

In this subsection, we prove Theorem 1.1. We start with a proposition.

Proposition 5.5 Let Ŵ be an arithmetic Fuchsian or Kleinian group with

trace field k, quaternion algebra B, and covolume less than V . Let L/k be a

quadratic extension which embeds into B. We additionally suppose that L is

not totally complex in the case that Ŵ is a Fuchsian group. If
∣∣�L/k

∣∣ is less

than the bound in the statement of Theorem 1.3 (applied with X = 10930V 130

if Ŵ is a Fuchsian group and X = 1057V 7 if Ŵ is a Kleinian group), then there

exists a hyperbolic γ ∈ Ŵ and absolute, effectively computable constants c1, c2
such that L = k(λ(γ )) and ℓ0(γ ) ≤ c1ec2 log(V )V α

, where α = 130 if Ŵ is a

Fuchsian group and is equal to 7 otherwise.

Proof By Proposition 4.7, there exists a hyperbolic γ ∈ Ŵ such that L = k(λγ )

and with length at most eC1V d
C2+log(V )

L for absolute, effectively computable
constants C1, C2. The result now follows from our hypothesis about

∣∣�L/k

∣∣,
the formula dL =

∣∣�L/k

∣∣ d2
k and the fact that dk ≤ V 22. ⊓⊔

We are now ready to prove Theorem 1.1. In what follows, c1, c2 are the con-
stants appearing in Proposition 5.5, C is the constant appearing in Proposition
5.2 and c ≥ C is such that c1ec2 log(V )V 7 ≤ ce

(
log(V )log(V )

)
for all V ≥ 0.9.

Note that by Chinburg–Friedman–Jones–Reid [17], every arithmetic hyper-
bolic 3-manifold has volume V > 0.94.

Proof of Theorem 1.1 We prove Theorem 1.1 in the case that the manifolds
Mi are 3-manifolds and then make a few remarks regarding the (minor) mod-
ifications needed for the 2-manifold case. Let Ŵ j = π1(M j ) for j = 1, 2.
As in Reid’s proof that isospectral arithmetic 3-manifolds are commensu-
rable [72], it suffices to show that the quaternion algebras from which Ŵ1, Ŵ2
arise are isomorphic. To that end, let (k1, B1) and (k2, B2) be the number
fields and quaternion algebras associated to Ŵ1, Ŵ2. By Proposition 5.2 there
are hyperbolic γ1 ∈ Ŵ1, γ2 ∈ Ŵ2 with non-real eigenvalues λγ1 and λγ2

whose associated geodesics have the same complex length. Taking powers
of γ1, γ2 if necessary, we may assume that γ1 ∈ Ŵ

(2)
1 , γ2 ∈ Ŵ

(2)
2 . By (3),

we have tr(γ1) = ± tr(γ2) and consequently that the images in C of k1, k2
coincide [18, Lemma 2.3]. Hence, B1, B2/k are defined over a common num-
ber field k. To prove that B1, B2 are isomorphic, by Lemma 4.1 we have
|disc(B)|, |disc(B ′)| < 1057V 7. Let L/k be a quadratic extension which
embeds into B1 and with |�L/k | less than the bound given in Theorem 1.3; we
take x = 1057V 7. By Proposition 5.5, there exists u1 ∈ B such that L = k(u1)

with the property that the image γ1 ∈ Ŵ1 of u1 in M(2, C) is a hyperbolic and
satisfies
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ℓ0(γ1) ≤ c1ec2 log(V )V 7 ≤ ce
(
log(V )log(V )

)
.

By hypothesis, there exists γ2 ∈ Ŵ2 such that ℓ(γ1) = ℓ(γ2). Let u2 be a
preimage of γ2 in B2. By (3), we see that tr(γ1) = ± tr(γ2). Since the fields
k(u1) and k(u2) are both isomorphic to L , we see that B2 admits an embedding
of L . The same argument shows that if L ′/k is a quadratic extension which
embeds into B2 and has |�L ′/k | less than the bound given in Theorem 1.3 with
x = 1057V 7, then B1 admits an embedding of L ′. Theorem 1.3 now shows
that B1

∼= B2, finishing our proof. ⊓⊔

Remark We briefly comment on the modifications needed for the 2-
dimensional case of Theorem 1.1.

As was noted in the 3-dimensional case, it suffices to show that the quater-
nion algebras associated to Ŵ1, Ŵ2 are isomorphic. By Proposition 5.5 there
exists a hyperbolic γ ∈ Ŵ1 such that ℓ(γ ) ≤ c1ec2 log(V )V 130

. Proposition 4.13
shows that we further have k1 = Q(tr(γ )). By hypothesis there exists γ ′ ∈ Ŵ2
such that ℓ(γ ) = ℓ(γ ′), hence tr(γ ) = ± tr(γ ′). Since Q(tr(γ )) = Q(tr(γ ′)),
we may assume, as above, that k1 = k2. The remainder of the proof is analo-
gous to the proof of the 3-dimensional case; here, we can show that B1

∼= B2
by proving that all maximal subfields L of these algebras that are not totally
complex and have |�L/k | less than the bound in Theorem 1.3 coincide.

We conclude this section by proving the following strengthening of Theorem
1.1 in the case that the groups Ŵi are derived from orders in quaternion algebras.

Theorem 5.6 Let k1, k2 be totally real number fields (resp., number fields

with a unique complex place), B1, B2 be quaternion division algebras

over k1, k2 which are ramified at all but one real place (resp., all real

places) of k1, k2, O1, O2 be maximal orders in B1, B2, and V be such

that covol(ŴO1), covol(ŴO2) ≤ V . There exist absolute effectively com-

putable constants c1, c2, c3 such that if the length sets (resp., complex length

sets) of H2/ŴO1, H2/ŴO2 (resp., H3/ŴO1, H3/ŴO2) agrees for all lengths

less than c1ec2 log(V )V 130
(resp., c3e

(
log(V )log(V )

)
) then H2/ŴO1 and H2/ŴO2

(resp., H3/ŴO1 and H3/ŴO2) are length-isospectral (resp., complex length-

isospectral).

Proof Theorem 1.1 and its proof show that k1
∼= k2, B1

∼= B2, hence O2 is
isomorphic to a maximal order O ⊂ B1. If O ∼= O1, then H2/ŴO1, H2/ŴO2 (or
H3/ŴO1, H3/ŴO2) will be isometric, hence isospectral. Suppose that O ≇ O1
and H2/ŴO1, H2/ŴO2 (or H3/ŴO1 and H3/ŴO2) are not isospectral. By [16,
Theorem 3.3] and [54, Theorem 12.4.5], there exists a quadratic extension
L/k which is unramified at all finite places (and which is not totally complex
if the field k1 is totally real) and a quadratic order � = Ok[γ ] ⊂ L such that �
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embeds into exactly one of {O1, O}. By Proposition 4.7, there exist absolute
constants C1, C2 and a length (resp., complex length)

ℓ0(γ ) ≤ eC1V d
2C2+2 log(V )

k ≤ eC1V V 44(C2+2 log(V )), (24)

which lies in the length set (resp., complex length set) of exactly one
of
{
H2/ŴO , H2/ŴO1

}
(resp.,

{
H3/ŴO , H3/ŴO1

}
). We note that the latter

inequality (24) follows from the proof of [45, Theorem 4.1]. By choosing con-
stants appropriately, we contradict our hypothesis that the length set (resp.,
complex length sets) of H2/ŴO1 and H2/ŴO2 (or H3/ŴO1 and H3/ŴO2) coin-
cide for all sufficiently small lengths. ⊓⊔

6 Geometric submanifolds: effective rigidity and asymptotic growth of
surfaces

We now turn our attention to an effective version of [59, Theorem 1.1]
which stated that two arithmetic hyperbolic 3-manifolds with the same totally
geodesic surfaces are commensurable provided they have a totally geodesic
surface.

6.1 Proof of Theorem 1.4

To prove Theorem 1.4, we require the following easy extension of [54, Theorem
9.55].

Theorem 6.1 Let L be a number field and let B/L be a quaternion algebra

which is ramified precisely at the real places ν1, . . . , νs of L, let k < L such

that [L : k] = 2, and B0/k be a quaternion algebra which is ramified at

ν1 |k, . . . , νs |k and at no other real places of k. Then B ∼= B0 ⊗k L if and

only if Ram f (B) consists of the 2r distinct places {P1, P
′
1, . . . , Pr , P

′
r },

where Pi ∩ Ok = P′
i ∩ Ok = pi and Ram f (B0) ⊃ {p1, . . . , pr } with

Ram f (B)\{p1, . . . , pr } consisting of primes in Ok which are either ramified

or inert in the extension L/k.

Proof of Theorem 1.4 Let R1 denote the set of places of L1 which ramify in
B1, R2 denote the set of places of L2 which ramify in B2 and R′

i (for i = 1, 2)
denote the set of places of k lying below a place in Ri . As B0 ⊗k L1

∼= B1
and B0 ⊗k L2

∼= B2, it suffices to show that L1
∼= L2. To that end, suppose

that L1 ≇ L2 and let L = L1L2, which is Galois over k with Galois group
(Z/2Z) × (Z/2Z). Elementary properties of Frobenius elements [41, Chapter
10] show that if pk is a prime of k which is unramified in L/k and whose
Frobenius element (pk, L/k) corresponds to the element (1, 1) of Gal(L/k)

then pk is inert in both L1/k and L2/k. Similarly, if the Frobenius element
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(pk, L/k) corresponds to the element (1, 0) of Gal(L/k) then pk is inert in
L1/k and splits in L2/k. It now follows from the bound on the least prime
ideal in the Chebotarev density theorem [40] (see also Theorem 5.3) that there
exist primes ω1, ω2 of k such that

(i) ω1 is inert in L1/k and splits in L2/k,
(ii) ω2 is inert in both L1/k and L2/k,

(iii) Neither ω1 nor ω2 lie in R′
1 ∪ R′

2,
(iv) |ω1| , |ω2| ≤ dC

k (2 log(|disc(B1)| |disc(B2)|))2.

Let B ′/k be a quaternion algebra such that Ram∞(B ′) = {ν|k : ν ∈
Ram∞(B1)} and which ramifies at all primes lying in R′

1 ∪ {ω1} (and pos-
sibly at ω2 as well if needed for parity reasons). As B0 ⊗k L1

∼= B1, we
deduce from Theorem 6.1 that B ′ ⊗k L1

∼= B1. Recall that ω1 splits in L2/k.
We can therefore write ω1 = ν1ν2 for primes ν1, ν2 of L2. Then (L2)ν1

∼= kω1 ,
which implies that B2 ⊗L2 (L2)ν1

∼= B ′ ⊗k kω1 , as by assumption we have
B ′ ⊗k L2

∼= B2. As ω1 ramifies in B ′ we deduce that ν1 ramifies in B2, hence
ω1 ∈ R′

2. This is a contradiction and so L1
∼= L2. ⊓⊔

6.2 Proof of Theorem 1.2

We begin with lemma about the coarea of certain arithmetic Fuchsian groups.

Lemma 6.2 Let k be totally real, B/k be a quaternion algebra, and O ⊂ B

be a maximal order. Then coarea(ŴO) ≤ 2π2 |disc(B)|.

Proof Borel’s volume formula [7] (see also [54, Chapter 11]) shows that

coarea(ŴO) =
8π2ζk(2)

∏
p|disc(B)(|p| − 1)

(4π2)nk
.

The lemma now follows from the well-known inequality ζk(s) ≤ ζ(s)nk . ⊓⊔

Proposition 6.3 Let M = H3/Ŵ be an arithmetic hyperbolic 3-manifold with

trace field L, quaternion algebra B, and volume V . Suppose that k = L+ is the

maximal totally real subfield of L and that [L : k] = 2. Let B0 be a quaternion

algebra over k such that B0⊗k L ∼= B. Then there exists an absolute effectively

computable constant C such that M contains a totally geodesic surface with

area at most 2π2 |disc(B0)| eCV .

Proof Let O0 ⊂ B0 be a maximal order, O ⊂ B a maximal order such that
ŴO0 ⊂ ŴO , and define � = ŴO0 ∩Ŵ(2). Then � is a Fuchsian group contained
in Ŵ and we have [ŴO0 : �] ≤ [Ŵ : Ŵ(2)]. By Lemma 4.3, [Ŵ : Ŵ(2)] ≤ eCV ,
where C is an absolute effectively computable constant. The proposition now
follows from Lemma 6.2. ⊓⊔
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For a hyperbolic 3-manifold M , we denote by GS(M) the collection of
isometry types of totally geodesic surfaces. We can prove our main result of
this section, an effective version of [59, Theorem 1.1].

Proof of Theorem 1.2 Let M1 = H3/Ŵ1, M2 = H3/Ŵ2 and B1/L1, B2/L2
be the quaternion algebras and trace fields of M1, M2. Since GS(M1) 	= ∅,
Ŵ1 contains a non-elementary Fuchsian group. By considering the quaternion
algebra and trace field of this Fuchsian group we see that the maximal totally
real subfield k of L1 satisfies [L1 : k] = 2. As GS(M1) ∩ GS(M2) is non-
empty, we see that [L2 : k] = 2 and also that there exists a quaternion algebra
B0 over k such that B0 ⊗k L1

∼= B1 and B0 ⊗k L2
∼= B2. Let C be the

constant appearing in the bound on the least prime ideal in the Chebotarev
density theorem [40] (see also Theorem 5.3). By combining the estimates
dk ≤ dL1 ≤ V 22 and |disc(B1)| , |disc(B2)| ≤ 1057V 7 with an elementary
computation, there exists an absolute constant C1 such that

V C1 ≥ d2C
k (2 log(|disc(B1)| |disc(B2)|))4 |disc(B1)| |disc(B2)| .

Let C2 be the constant appearing in Proposition 6.3 and choose C3 so that
2π2V C1eC2V ≤ eC3V ; note that C3 may be chosen independently of M1, M2
and V . We will now show that if a finite type hyperbolic surface X lies in
GS(M1) if and only it lies in GS(M2) whenever the area of X is less than
eC3V , then M1 and M2 are commensurable. Let B ′ be a quaternion algebra
over k which is ramified at all real places of k except the identity and satisfies

∣∣disc(B ′)
∣∣ ≤ d2C

k (2 log(|disc(B1)| |disc(B2)|))4 |disc(B1)| |disc(B2)|

as well as B ′ ⊗k L1
∼= B1. Proposition 6.3 and the discussion above show

that M1 contains a totally geodesic surface X (arising from the quaternion
algebra B) with area at most eC3V . Our assumption implies that M2 contains
a totally geodesic surface isometric to X as well. Consequently we must have
B ′⊗k L2

∼= B2. Interchanging the roles of B1, B2, we see that by Theorem 1.4,
L1

∼= L2 and B1
∼= B2. Hence by Theorem 2.6, M1, M2 are commensurable.

⊓⊔

6.3 Proof of Theorem 1.11

We conclude this section with a proof of Theorem 1.11.

Proof of Theorem 1.11 Setting k = L+, as M contains a totally geodesic
surface, we have [L : k] = 2. Theorem 2.7, along with a slight modification
to the proof of Theorem 1.7 in the case that r = 1, shows that there exists a
constant c(L) depending only on L (the constant only depends on k) such that
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for sufficiently large x the number of quaternion algebras B ′/k satisfying B ′⊗k

L ∼= B and |disc(B ′)| ≤ x is asymptotic to [c(L)disc(B)1/2]x/ log(x)1/2. The
theorem now follows from Proposition 6.3. ⊓⊔
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