
FACTS: Automated Black-Box Testing of FinTech Systems
Qingshun Wang

1
, Lintao Gu

1
, Minhui Xue

2
, Lihua Xu

1,3∗
, Wenyu Niu

4
, Liang Dou

1∗
, Liang He

1
, Tao Xie

5

1
East China Normal University, China

2
Optus Macquarie University Cyber Security Hub, Australia

3
New York University Shanghai, China

4
CFETS Information Technology Co. Ltd., China

5
University of Illinois at Urbana-Champaign, USA

ABSTRACT

FinTech, short for “financial technology,” has advanced the pro-

cess of transforming financial business from a traditional manual-

process-driven to an automation-driven model by providing var-

ious software platforms. However, the current FinTech-industry

still heavily depends on manual testing, which becomes the bot-

tleneck of FinTech industry development. To automate the testing

process, we propose an approach of black-box testing for a Fin-

Tech system with effective tool support for both test generation

and test oracles. For test generation, we first extract input cat-

egories from business-logic specifications, and then mutate real

data collected from system logs with values randomly picked from

each extracted input category. For test oracles, we propose a new

technique of priority differential testing where we evaluate execu-

tion results of system-test inputs on the system’s head (i.e., latest)
version in the version repository (1) against the last legacy ver-

sion in the version repository (only when the executed test inputs

are on new, not-yet-deployed services) and (2) against both the

currently-deployed version and the last legacy version (only when

the test inputs are on existing, deployed services). When we rank

the behavior-inconsistency results for developers to inspect, for

the latter case, we give the currently-deployed version as a higher-

priority source of behavior to check. We apply our approach to the

CSTP subsystem, one of the largest data processing and forwarding

modules of the China Foreign Exchange Trade System (CFETS) plat-
form, whose annual total transaction volume reaches 150 trillion US

dollars. Extensive experimental results show that our approach can

substantially boost the branch coverage by approximately 40%, and

is also efficient to identify common faults in the FinTech system.

CCS CONCEPTS

• Software and its engineering → Software testing and de-

bugging;

KEYWORDS

FinTech; Black-box testing; Automated test generation

∗
Lihua Xu is the corresponding author. Email: lihua.xu@nyu.edu.

∗
Liang Dou is the corresponding author. Email: ldou@cs.ecnu.edu.cn.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5573-5/18/11. . . $15.00

https://doi.org/10.1145/3236024.3275533

ACM Reference Format:

Qingshun Wang, Lintao Gu, Minhui Xue, Lihua Xu, Wenyu Niu, Liang Dou,

Liang He, and Tao Xie. FACTS: Automated Black-Box Testing of FinTech

Systems. In Proceedings of the 26th ACM Joint European Software Engineer-
ing Conference and Symposium on the Foundations of Software Engineering
(ESEC/FSE ’18), November 4–9, 2018, Lake Buena Vista, FL, USA. ACM, New

York, NY, USA, 6 pages. https://doi.org/10.1145/3236024.3275533

1 INTRODUCTION

FinTech, short for “financial technology,” refers to a set of new

information technologies to innovate financial services. These lat-

est innovations not only benefit consumers but also push busi-

nesses to transform from a manual-processing-driven model to

an automation-driven model by creating robust and high-quality

software systems. According to Citigroup, an estimated $19 billion

of investment poured into FinTech in 2015 [1].

China Foreign Exchange Trade System (CFETS) Information Tech-
nology Co. Ltd., as a subsidiary of China’s Central Bank, provides a
trading platform for exchange rate swaps as well as currency swaps

and forwards for more than 21,000 active clients. The annual total

transaction volume reaches 150 trillion US dollars, for which any

unexpected failures on trading services could result in huge losses.

Therefore, it is critical to conduct sufficient testing on such FinTech

software systems to ensure system robustness and correctness.

Unfortunately, according to our field observation, despite its

increasing needs, the current state of the practice in the FinTech in-

dustry still heavily relies on manual testing, due to high complexity

of such FinTech systems. We have made attempts to apply exist-

ing testing tools to the Foreign Exchange Platform developed and

owned by CFETS. We name such platform as the CFETS platform,

which consists of multiple CFETS subsystems, and each subsystem

provides a set of services to the users. Based on our such attempts,

we identify three main challenges that hinder direct adoption or

adaptation of existing testing techniques and tools.

First, a CFETS subsystem takes high-dimensional inputs, each

of which contains a group of fields with drastically different data

types. Such high-dimensional inputs are beyond the capabilities

of most constraint solvers, which are the underlying engine for

dynamic symbolic execution tools, such as KLEE [3], EXE [4], and

Pex [11], posing challenges to apply these white-box testing tools.

Second, each input dimension is defined as various data types and

formats, typically of complex user-defined data structures. Most au-

tomated test generation tools, such as Randoop [9] and EvoSuite [5],
fail to obtain the input type, and let alone generate valid input

values.

Third, although specification-based robustness testing tools, such

as Ballista [7], can be applied to a CFETS subsystem, testing the sys-

tem requires manually defined exceptional input values, which are

missed by such tools due to the high complexity of the subsystems.

839

https://doi.org/10.1145/3236024.3275533
https://doi.org/10.1145/3236024.3275533

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA Q. Wang, L. Gu, M. Xue, L. Xu, W. Niu, L. Dou, L. He, and T. Xie

Moreover, to ensure its intended functionalities, testing the system

needs not only a set of exceptional input values, but also normal

input values in the huge value space of system inputs.

Even worse, due to a CFETS subsystem’s complex behavior and

various formats of output, it is practically impossible to completely

portray the system behavior as assertions, and hence executable

test scripts with assertions are impractical for the system. Addition-

ally, we observe that it is a central business requirement for CFETS
(as a service provider to serve more than 21,000 active clients) to

render the existing deployed services unchanged by users’ per-

spective during the services’ constant system upgrades. As client

population grows drastically by day, new services are constantly

added to the deployed system to supplement the existing deployed

services during these system upgrades. Even before these new ser-

vices’ deployment, they undergo substantial evolution during the

development process. Before deployment, these new services do

not have their counterpart services in the deployed system as the

reference version required in traditional differential testing. As a

result, CFETS still primarily relies on domain experts to manually

examine the execution results for every test input, being very time

consuming and error prone.

In the end, we reach a consensus with the domain experts and

developers at CFETS that what we need is not only an automated

testing generation technique, but also a means to evaluate the

execution results for these generated inputs. Additionally, both the

normal and exceptional inputs are equally important to test the

system.

In this paper, we aim at studying the aforementioned challenges

of automatically testing such FinTech systems. To achieve this goal,

we propose Facts, Automated BlaCk-box Testing for FinTech

Systems.

To address the challenges of high-dimensional inputs, we lever-

age the input data collected from system logs as seeds. Messages

collected from real execution runs serve as the basis of these high-

dimensional inputs. To handle the user-defined data type for each

input dimension, we leverage the business-logic specification to

retrieve their data types. To tackle the challenges of exploring the

huge input space, we extract input categories from business-logic

specifications, and randomly sample from each input category to

produce both normal and exceptional inputs.

Finally, to tackle the challenges of the oracle-lacking problem for

new services before deployment, we propose a new technique of

priority differential testing where we evaluate execution results of

system-test inputs on the system’s head (i.e., latest) version in the

version repository (1) against the last legacy version in the version

repository (only when the executed test inputs are on new, not-

yet-deployed services) and (2) against both the currently-deployed

version and the last legacy version (only when the test inputs are

on existing, deployed services). For the head version of existing

services, the behavior of the currently-deployed version (already

experienced by many users) represents a higher-priority reference

behavior to check against, than the last legacy version in the version

repository. However, for the head version of new, not-yet-deployed

services, given that there exists no currently-deployed version,

we leverage the last legacy version in the version repository to

check against. Note that any new service added to the system could

potentially affect the behavior of the existing services (with their

earlier version deployed already). Despite stable, the last legacy

version may still include unintended behaviors for the existing

services due to the addition of new services. Hence we consider the

currently-deployed version to have higher priority to check against

than the last legacy version when both versions are available for

existing services under test.

Applying Facts to a major subsystem of the CFETS platform

helps achieve a substantial increase on branch coverage, by more

than 40% in comparison to the original manual tests. Such benefit

comes from our generation of both normal and exception inputs,

while the record of manual testing shows that testers mainly focus

on normal inputs. The improvements over manual testing effort

are not only statistically significant but also practically substantial,

given that the number of active CFETS clients is daily increasing. It

is not unusual to have exceptional inputs from such a large-scale

input space and any failure behavior caused by exceptional inputs

may lead to great financial losses.

Furthermore, the priority differential testing built in Facts is able

to quickly prioritize problematic services, greatly reducing human

effort. Selectively using both the currently-deployed version and

the legacy version, the execution of most generated test inputs

can be checked automatically. In our current implementation, in

addition to commonly used CRASHmetrics [8], we raise concerns to

different types of inconsistent behaviors between different versions.

The top of the prioritized list is the inputs that trigger the currently-

deployed version and the legacy version to produce the same result

while the head version shows a different result, which we consider

has the highest probability of containing failures due to faults. The

second top to the list is the inputs that trigger all three versions to

produce different results, which need to be checked manually. The

full ranked list is described in Section 4.2. All these inconsistent

behaviors are recorded, but records with low priority can be filtered

by developers first so that they can focus on those inputs whose

executions are likely to trigger failures due to faults. In our empirical

study, we find that only a very small portion of test inputs need to

be examined manually instead of the whole set of test inputs.

In summary, this paper makes the following main contributions:

• The first industrial case study of testing a FinTech software sys-

tem with over 21,000 active clients including banks, investment

funds, etc.

• A new technique to automatically test a software system with

high-dimensional inputs including various data types.

• A new technique of priority differential testing to automatically

evaluate and rank test results.

2 BACKGROUND

To illustrate the challenges faced in testing a FinTech system, we

take as an illustrative example the CSTP subsystem, owned and

developed internally by CFETS as one of the subsystems of the

CFETS platform for data processing and forwarding.
1
We choose to

target on CSTP because (1) it belongs to the fundamental part of the

CFETS platform, which is responsible for processing all data gen-

erated in each transaction, transforming them into correct format,

and forwarding to appropriate targets; (2) its main functionality

1
We have access to all source code and previous system logs under a non-disclosure

agreement.

840

FACTS: Automated Black-Box Testing of FinTech Systems ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA

Figure 1: CFETS platform

Table 1: Data field for input messages

FieldName DataType Length Format/Accuracy Range

ValueDate Date 10 YYYY/MM/DD -

LendingAmount Number 15 2 -

ClearingMethod Enum - - A,B,C

TraderCode Text - TraderID@InstitueID -

QuoteID Text - a.b.ccccccc -

....

includes parsing messages and manipulating on data, making it

possible to observe its behavior through outputs and logs.

During the operation of the CFETS platform, whose interface

is shown as Figure 1, the CSTP subsystem receives from upstream

subsystems message data generated for every transaction, applies

proper transformation to the data, translates to the IMIX format,

which is a standard electronic communication protocol for real-

time transmission of financial information in the inter-bank market

trading activities.
2
The resulting IMIX message is then forwarded

to appropriate institutions subscribed in the system and gives the

corresponding permissions to access the data.

The message data, i.e., the input data of the CSTP subsystem, is

shown in key-value pairs. Each input message consists of two parts:

a Header represents the message type, followed by a sequence of

key-value pairs. Each key-value pair corresponds to a field, which
describes a part of information about the transaction related to the

message. The key corresponds to the Field Name, and the value can
be one of the various data types, with some specific requirements.

Table 1 shows the data-field requirement for each message type.

Some fields have additional domain-specific regulations, such as

the QuoteID field. We do not include details here due to space limit.

A valid value of a field should meet its requirement.

Our goal is that invalid values, such as date values not matching

the format, or numbers out of range, should be properly detected by

the system, thus avoiding crashing the whole system. In the mean-

time, valid values should be properly handled, and their execution

results should be checked against expected results.

3 CHALLENGES

Software testing is the process of generating and executing test in-

puts to cause failures for the system under test. It has been shown to

be an effective way to ensure the robustness and correctness of the

system under test. However, manually writing test cases (i.e., test
inputs and test oracles) for a large and complex system under test,

such as the CSTP subsystem, can be highly expensive [10]. Thus,

2
http://imix.chinamoney.com.cn/

Figure 2: A subset of fields in an ExecutionReport message

there exist many automated testing techniques and tools, such as

Randoop [9] and EvoSuite [5], which automatically generate test in-

puts and execute them to reduce human effort. Unfortunately, such

existing automated testing techniques and tools cannot be effec-

tively applied to test a FinTech system due to four main challenges

as listed below.

High-dimensional input. The CSTP subsystem processes trans-

action data as messages. The messages are stored and transmitted

as different types, each of which contains hundreds of different

fields. Figure 2 shows a small subset of fields contained in a message

of type ExecutionReport. Test-input generation for such subsystems

requires constructing such a complex message structure, which can

be very challenging for state-of-the-art testing tools, as well as time

consuming and error prone for current manual testing.

Various data types and formats. Each input dimension, i.e., the
fields of eachmessage, has again drastically different data structures,

many of which are user-defined and domain-specific (see Table 1). It

is difficult to extract such data types and generate meaningful data

accordingly. As a result, existing tools, such as Randoop and EvoSuite,
generate plenty of trivial exceptional inputs, which typically trigger

an exception and then are blocked at the beginning of the system

execution. These generated inputs are inefficient to test the system,

and let alone cause faults located deep in the system to be exposed

as failures.

Huge value space. To explore the input space of the CSTP subsys-

tem, one needs to explore the Cartesian product of input dimensions.

Thus it is difficult for fuzzing to effectively expose failures in the

CSTP subsystem, especially for those that can be triggered by only

specific corner cases of related input dimensions. Specification-

based testing tools, such as Ballista [7], can be applied to eliminate

the pressure by constructing inputs using values drawn from a pre-

defined dictionary. It typically requires to manually define the input

values that are likely to trigger failures; such manual process is

very time consuming given the complexity of CSTP’s input domain.

Additionally, it is highly challenging to produce a complete set of

values. If a failure is triggered by a specific value not included in the

dictionary, such tool then would fail to expose the corresponding

failure.

Lack of testing oracles. Faults that lead to certain generic failures,

such as system crashes and hangs, can be detected without strong

test oracles. However, the functional correctness of the system un-

der test is also of great value, and faults that lead to functional

incorrectness on system outputs cannot be detected without strong

test oracles. For large-scale FinTech systems, incorrect system out-

puts may lead to a huge loss. Manually verifying the output of

every generated test input is too expensive and infeasible. Similarly,

specifying an oracle for black-box testing requires huge amount of

work, and a comprehensive oracle for the CSTP subsystem is not

yet available due to its complexity.

841

http://imix.chinamoney.com.cn/

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA Q. Wang, L. Gu, M. Xue, L. Xu, W. Niu, L. Dou, L. He, and T. Xie

System Log

Priority Differential Testing

Business Logic

Mutation Operators

01010
00101
00100

Input Seeds

Category Set

Test Inputs

Test Generator Execution Engine

Head Version

Currently-Deployed

Legacy Version

Prioritized List

name : …
date : …

Phase I: Test Generation Phase II: Execution

Figure 3: Overview of Facts

ALGORITHM 1: Equivalent-Category Partitioning

Input: spec, the message business-logic document for the message type.

Output: eqvCatMap, a map message structure that contains the equivalent

category information for each field.

dataFormatMap = parseDocument(spec);

eqvCatMap = new EmptyMap;

for dataFormat ∈ dataFormatMap do

fieldName = dataFormat.getFieldName();

formatInfo = dataFormat.getFormatInfo();

eqvCatList = partitionEqvCat(formatInfo);

eqvCatMap.put(fieldName, eqvCatList);

end

return eqvCatMap

4 OUR APPROACH

As discussed in Section 2, at a high level, each input data to the

CSTP subsystem is represented as a message that contains a set

of fields, each of which further represents different types of data.

Each field has its own requirements and definitions for possible

values, and in turn each message is of different type based on its

data fields. The CSTP subsystem processes many different types

of transactions at the same time, each of which has its own set of

related data fields. In theory, verifying the robustness and correct-

ness of the CSTP subsystem needs to feed it with all possible valid

and exceptional messages and check whether the system returns an

expected output. In practice, doing so is infeasible. A more practical

approach is to craft a set of representative test inputs instead, and

cover the system behavior as much as possible. As shown in Fig-

ure 3, Facts generates input as objects recognized and processed

by the subsystem, and then evaluates the execution results with

proposed priority differential testing.

(1) Facts collects system logs from real transactions and retrieves

passingmessages as input seeds, to construct the high-dimensional

test messages; in the meantime, Facts also identifies the input

category of each data field for each corresponding test message,

and mutates over the seed messages, to cover all possible field

categories.

(2) Facts then compares execution results from three versions of

the CSTP subsystem to determine failure-triggering inputs and

outputs a prioritized input list.

Table 2: Mutation operators

Operator Description

RPL(f , c) Replacement. Replace the value of a field f with a value randomly picked from a category c .
DEL(f) Deletion. Delete a field f appearing in the message.

INS(f , c) Insertion. Insert a field f with a value randomly picked from a category c .

4.1 Test Generation

We first construct the input categories used for deriving test inputs.

We take as input the business-logic specification that defines re-

quirements for each data field, and output a map that contains all

the equivalent categories of each field (see Algorithm 1). An equiv-

alent category of a field is hereby defined as a set of all possible

values, where each element in the same category is equivalent to

revealing the system’s behavior. For example, for a field of data type

“Date,” all the valid and invalid values can be classified into different

categories, respectively. Each category can be further subdivided

accordingly. Different types of incorrectness may involve different

parts of code in the system. A date value in a wrong format may

be blocked by the first check in a method of the system, while an

input in a correct format, however representing a nonexistent date,

e.g., Feb 30th, may pass through and crash the whole system. Valid

inputs can also be divided into smaller pieces, such as a field of data

type “Enum,” which has a finite set of possible values. Different

choices from a set can lead the system execution to execute different

branches, each of which belongs to a unique category.

In theory, a category is a set of values with some properties in

common. However, it is infeasible to enumerate every element in

the set in real-world applications. In Facts , an equivalent category

is characterized with a finite set of rules. “Pick an element from the

category” is realized with generating a value that satisfies a rule

for the equivalent category. For example, a category that contains

all strings with a specific format can be described as a regular-

expression pattern (such as strings representing a date). We can

construct an automata for the corresponding pattern that walks

through from the start state to the accept state. The composition of

symbols used in the transition is the value that we expect.

Once the equivalent categories are obtained, Facts generates test

messages based on real messages collected from actual transactions

taking place on the platform. Test inputs are created by mutating

the collected real messages and transformed to corresponding ob-

jects to the subsystem. We define three types of mutation operators

in Table 2. Each operator takes at least one parameter that points

to the target field. Randomly picking a value from a given cate-

gory is equivalent to constructing a value that satisfies the rule

characterizing the category, as mentioned earlier.

842

FACTS: Automated Black-Box Testing of FinTech Systems ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA

ALGORITHM 2: Input Generation

Input: eqvCatMap, the output of the Phase 1.
Input: initMessageSet, a set of real test messages extracted from the system log.

Output: testMessageSet, the test messages generated.

testMessageSet = new EmptySet;

for Messagem ∈ initDataSet do
fieldList = getFields(m);

for Field f ∈ fieldList do
Generate a new messagemD by applying DEL(f) onm;

testMessageSet.add(mD);

categoryList = eqvCatMap.getCategories(f);

for Category c ∈ categoryList do
Generate new messagesmR by applying RPL(f , c) onm;

testMessageSet.add(mR);

end

end

missingFieldList = getMissingFields(m);

for Field fm ∈ missingFieldList do
categoryList = eqvCatMap.getCategories(fm);

for Category c ∈ categoryList do
Generate new messagesmI by applying INS(f , c) onm.;

testMessageSet.add(mI);

end

end

end

return inputSet

Table 3: An example of a generated test message

Name ValueDate LendingAmount Clearingmethod QuoteID ...

Value “2017/12/21” “666000.00” “A” “6.4.2556816” ...

Algorithm 2 describes how we generate test messages. Due to

space limit, we show here a partial example of a generated test

message in Table 3. The algorithm takes as input initially-computed

eqvCatMap and initMessageSet. initMessageSet is a set of messages

collected from real transactions.We iteratively apply threemutation

operators to an original message to create a new message with

entirely valid or partially invalid values. The mutation is applied

to a single field of a newly-created message. Although applying

mutation operators to multiple fields may be more comprehensive,

the combinatorial explosion could lead to a very large set of test

cases that require unaffordable time and computational resources

to execute. Thus we choose to apply mutation to a single field, and

according to a recent study [6], doing so can help detect most of

faults in the system under test.

4.2 Test Oracles

We feed the generated test inputs into the system under test, and

record the inputs that cause potential failures. To determine po-

tential failures based on the observed system outputs, we propose

the technique of priority differential testing. In particular, we test

the system under test with two previous versions in parallel: the

currently-deployed version, denoted as Sc , and the last legacy ver-

sion in the version repository, denoted as Sl . We assume that the

currently-deployed version represents the correct existing system

behavior, because it has been stably running for a long time, in

a platform with a large number of clients, which send countless

messages to the system. Such currently-deployed version can be

regarded as fully tested. We define that the last legacy version refers

to the latest stable version in the version repository; note that the

last legacy version includes new services, which do not exist in

the currently-deployed version. The version under test is named

the head version, denoted as Sh , which typically contains all the

services from the last legacy version with additional updates. The

currently-deployed version is considered as the primary reference

version for the existing system behavior because despite stable,

the legacy version may still include uncertain behavior due to the

addition of new services. In the meantime, the legacy version is

utilized as the reference version for new services, which do not

exist in the currently-deployed version. If a test input involves new

features, e.g., a test message contains newly defined fields, at least

the two newer versions (legacy and head versions) should have the

same behavior. We consider any inconsistent output as a potential

failure and record the corresponding input.

We prioritize recorded inputs along with their triggered potential

failures for developers to inspect. Table 4 lists details of different

priorities of different system behaviors, where Rank 1 represents

the highest priority, and 4 is the lowest. We assign inputs that

cause system crashes or hangs with the top priority, followed by

inputs that trigger Sc and Sl to produce the same results while Sh
produces a different result. Sh is the most likely to contain faults

that break an existing service in this situation. Inputs that trigger all

three versions to produce different results may involve new services

added in Sh , but another possibility is this situation reveals that Sh
breaks some services added in Sl . Both situations need additional

manual checking, so we assign such situations with the third top

priority. If Sc and Sh produce the same results different from Sl ,
it may be related to a bug fix. If two newer versions produce the

same output but different from Sc , the input may involve some new

services in Sl . Although these two situations are very likely to be

correct, we still recommend them for developers to further inspect,

in the lowest priority.

5 EVALUATION

In this section, we apply our approach to test the CSTP subsystem

and intend to answer the following two research questions:

• RQ1: How effective is our approach to comprehensively test the

system?

• RQ2: Can our approach effectively expose faults as failures in

the system?

To answer RQ1, we use branch coverage (measured by using

Jacoco [2]) to evaluate the effectiveness of our approach after exe-

cuting the generated test cases. Full branch coverage requires that

each branch in the system under test has been executed at least

once during testing.

To construct a comparison baseline, we first tried existing auto-

mated test generation tools, such as EvoSuite and Randoop. Unfor-
tunately, as discussed earlier in Section 3, these tools were not able

to generate meaningful inputs. Thus we resort to the manually-

designed test cases stored at the development repository. Due to the

space limit, we show branch coverage for five important classes in

the system under test (Table 5), achieved by the manually-written

test cases and our approach, respectively.

As shown in Table 5, nearly half of the branches are not covered

by manually-written test cases, indicating that many situations,

especially exceptional situations of test messages, have never been

tested, unable to offer high confidence on the system’s robustness.

843

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA Q. Wang, L. Gu, M. Xue, L. Xu, W. Niu, L. Dou, L. He, and T. Xie

Table 4: Priority rank

System Behavior Rank

System crashes or hangs 1

Sc and Sl get same output, different from Sh 2

Three different outputs 3

Sc and Sh get same output, different from Sl 4

Sl and Sh get same output, different from Sc 4

Table 5: Branch-coverage comparison

Class Name Manually-written Test Our Approach

FxclDealLogParser 47.56% 91.46%

FxOptionDealLogParser 53.54% 95.79%

FxDealLogparser 51.76% 85.27%

FirdvDealLogParser 56.42% 81.96%

CSTPMemberConfirmInfoParser 54.33% 97.26%

Table 6: Fault cases for the CSTP subsystem

Faulty Version Description

Faulty-1 Remove code involving field TradingModeCode.
Faulty-2 Remove code handling a certain value of enum field ExerciseStatus.
Faulty-3 Remove code for setting field value of output IMIX message

when processing field QuoteInstitutionTraderCode.
Faulty-4 Remove code for checking value formats when processing field DealTime.
Faulty-5 Set value to wrong field in the output IMIX message when processing field Period.

In contrast, our approach can generate test cases that cover most

of the branches in the classes under test, offering much higher

confidence on the system’s robustness.

To answer RQ2, we have approached the developers of the CSTP
subsystem for understanding the system’s common faults intro-

duced during past development. It turns out that many faults were

introduced because a careless developer neglected to deal with

some rarely used data fields or conditions. These faults were not

exposed by manually-written test cases, and consequently were

uncovered during real transactions upon deployed services.

To investigate whether our approach is able to expose such com-

mon faults, we construct real faulty versions to reflect those pre-

viously exposed faults during system deployment, and also create

additional synthetic faulty versions following the observed com-

mon fault patterns, by manually removing code blocks related to

a field, or some conditional branches (Table 6 shows the five fault

cases). Our experimental results show that our approach is able to

identify all of these five fault cases, demonstrating that applying

mutation on a single field can effectively expose faults in the system

under test as failures.

6 DISCUSSION AND LESSONS LEARNED

In this section, we discuss multiple lessons learned in our collabo-

ration with the developers of the CSTP subsystem.

Generic tools are not effective for complex systems. Typically,

generic automated test generation tools are not effective in the con-

text of testing a FinTech system. Methods in a FinTech system

accept high-dimensional data as parameters, each of which may

contain a group of fields with drastically different data types, mak-

ing it difficult for generic tools to generate effective test cases — in

our preliminary studies, state-of-the-art tools, such as Randoop and

Evosuite, cannot even construct a valid argument.

Exceptional inputs should receive more attention. A FinTech

system usually serves as an application platform for millions of

clients, and a large amount of data is fed into the system each day.

Such situation implies that most of the regular execution paths

have been fully exercised. If a valid message can trigger a failure,

this failure has a great chance of being discovered in a previous

system version. In contrast, those invalid messages that contain

some exceptional values are less likely to appear in real execution

environments. If there exists any fault remaining unrevealed in

the system, the fault is more likely to be triggered by exceptional

inputs. In our approach, we mutate real data not only with valid

values, but also with different types of exceptional values, to check

whether there is any fault hidden in irregular execution paths.

Universal oracles do not exist. It is hard to find a universal test

oracle for large-scale, complex, and domain-specific systems, such

as FinTech systems. CFETS still relies on domain experts to examine

the execution results for test inputs. We propose priority differen-

tial testing to reduce human effort by checking the consistency

among multiple versions, but it still takes much time for experts to

determine whether an inconsistency reveals a fault in the system.

7 CONCLUSION

In this paper, we have presented our work on testing FinTech sys-

tems, in collaboration with China Foreign Exchange Trade System
Information Technology Co. Ltd, a subsidiary of China’s Central
Bank. To address challenges faced when testing a FinTech system,

we have proposed Facts, an approach of black-box testing for a

FinTech system with effective tool support for both test genera-

tion and test oracles. We have applied our approach to the CSTP
subsystem, and the evaluation results show that our approach can

achieve much higher branch coverage than the system’s existing

manually-written test cases, and our approach is effective to expose

common faults introduced during system development.

ACKNOWLEDGMENTS

This workwas supported in part by the Science and Technology Commission

of Shanghai Municipality under grant No. 18511103802, and in part by NSFC

under grant No. 61502170, NSF under grants No. CNS-1513939, CNS-1564274,

and CCF-1816615, and in part by the ECNU travel grant.

REFERENCES

[1] 2017. Global Fintech Investment Growth Continues in 2016. https:

//www.accenture.com/t20170411T170619Z__w__/id-en/_acnmedia/PDF-

15/Accenture-Fintech-Report-London-Lab-News-Release.pdf.

[2] 2018. JaCoCo Java Code Coverage Library. https://www.eclemma.org/jacoco/.

[3] Cristian Cadar, Daniel Dunbar, and Dawson Engler. 2008. KLEE: Unassisted and

Automatic Generation of High-coverage Tests for Complex Systems Programs.

In Proc. OSDI. 209–224.
[4] Cristian Cadar, Vijay Ganesh, Peter Pawlowski, David Dill, and Dawson Engler.

2006. EXE: A System for Automatically Generating Inputs of Death Using

Symbolic Execution. In Proc. CCS. 322–335.
[5] Gordon Fraser and Andrea Arcuri. 2011. EvoSuite: Automatic Test Suite Genera-

tion for Object-oriented Software. In Proc. ESEC/FSE. 416–419.
[6] Casidhe Hutchison, Milda Zizyte, Patrick E Lanigan, David Guttendorf, Michael

Wagner, Claire Le Goues, and Philip Koopman. 2018. Robustness Testing of

Autonomy Software. In Proc. ICSE SEIP. 276–285.
[7] Philip Koopman. 1998. Toward a Scalable Method for Quantifying Aspects of

Fault Tolerance, Software Assurance, and Computer Security. In Proc., CSDA.
103–131.

[8] Philip Koopman, John Sung, Christopher Dingman, Daniel Siewiorek, and Ted

Marz. 1997. Comparing Operating Systems Using Robustness Benchmarks. In

Proc. SRDS. 72–79.
[9] Carlos Pacheco and Michael D Ernst. 2007. Randoop: Feedback-directed Random

Testing for Java. In Companion to OOPSLA. 815–816.
[10] Ossi Taipale, Jussi Kasurinen, Katja Karhu, and Kari Smolander. 2011. Trade-

off between Automated and Manual Software Testing. International Journal of
System Assurance Engineering and Management 2, 2 (2011), 114–125.

[11] Tao Xie, Nikolai Tillmann, Jonathan de Halleux, and Wolfram Schulte. 2009.

Fitness-Guided Path Exploration in Dynamic Symbolic Execution. In Proc. DSN.
359–368.

844

https://www.accenture.com/t20170411T170619Z__w__/id-en/_acnmedia/PDF-15/Accenture-Fintech-Report-London-Lab-News-Release.pdf
https://www.accenture.com/t20170411T170619Z__w__/id-en/_acnmedia/PDF-15/Accenture-Fintech-Report-London-Lab-News-Release.pdf
https://www.accenture.com/t20170411T170619Z__w__/id-en/_acnmedia/PDF-15/Accenture-Fintech-Report-London-Lab-News-Release.pdf
https://www.eclemma.org/jacoco/

	Abstract
	1 Introduction
	2 Background
	3 Challenges
	4 Our Approach
	4.1 Test Generation
	4.2 Test Oracles

	5 Evaluation
	6 Discussion and Lessons Learned
	7 Conclusion
	References

