
FinExpert: Domain-Specific Test Generation for FinTech Systems

Tiancheng Jin∗
East China Normal University, China

51184506019@stu.ecnu.edu.cn

Qingshun Wang∗
East China Normal University, China

wqseleven@gmail.com

Lihua Xu†
New York University Shanghai,

China
lihua.xu@nyu.edu

Chunmei Pan
CFETS Information Technology Co.

Ltd., China
panchunmei_zh@chinamoney.com

Liang Dou†
East China Normal University, China

ldou@cs.ecnu.edu.cn

Haifeng Qian
East China Normal University, China

hfqian@cs.ecnu.edu.cn

Liang He
East China Normal University, China

lhe@cs.ecnu.edu.cn

Tao Xie
University of Illinois at

Urbana-Champaign, USA
taoxie@illinois.edu

ABSTRACT
To assure high quality of software systems, the comprehensiveness
of the created test suite and efficiency of the adopted testing pro-
cess are highly crucial, especially in the FinTech industry, due to
a FinTech system’s complicated system logic, mission-critical na-
ture, and large test suite. However, the state of the testing practice
in the FinTech industry still heavily relies on manual efforts. Our
recent research efforts contributed our previous approach as the
first attempt to automate the testing process in China Foreign Ex-
change Trade System (CFETS) Information Technology Co. Ltd., a
subsidiary of China’s Central Bank that provides China’s foreign
exchange transactions, and revealed that automating test genera-
tion for such complex trading platform could help alleviate some
of these manual efforts. In this paper, we investigate further the
dilemmas faced in testing the CFETS trading platform, identify the
importance of domain knowledge in its testing process, and pro-
pose a new approach of domain-specific test generation to further
improve the effectiveness and efficiency of our previous approach
in industrial settings. We also present findings of our empirical
studies of conducting domain-specific testing on subsystems of the
CFETS trading platform.

CCS CONCEPTS
• Software and its engineering → Software testing and de-
bugging.

∗Both authors contributed equally to this work.
†Both authors are corresponding authors.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACMmust be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-5572-8/19/08…$15.00
https://doi.org/10.1145/3338906.3340441

KEYWORDS
FinTech; automated test generation; domain knowledge

ACM Reference Format:
Tiancheng Jin, Qingshun Wang, Lihua Xu, Chunmei Pan, Liang Dou,
Haifeng Qian, Liang He, and Tao Xie. 2019. FinExpert: Domain-Specific
Test Generation for FinTech Systems. In Proceedings of the 27th ACM Joint
European Software Engineering Conference and Symposium on the Founda-
tions of Software Engineering (ESEC/FSE ’19), August 26–30, 2019, Tallinn, Es-
tonia. ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/3338906.
3340441

1 INTRODUCTION
Financial Technology, or FinTech for short, is becoming increas-
ingly widespread in financial institutions. According to Klynveld
Peat Marwick Goerdeler, global FinTech funding rose to $111.8 bil-
lion in 2018, up 120 percent from $50.8 billion in 2017 [6]. Various
software systems are specially designed and utilized nowadays to
automate and accelerate financial services. Such systems are of-
ten mission critical: any unexpected failures or wrong-doing may
lead to huge financial losses. However, their complicated underly-
ing business logic and numerous domain-specific inputs pose great
challenges for creating tests that can sufficiently exercise these sys-
tems, let alone automating the testing process.

To ensure high quality of their services, many financial institu-
tions have employed groups of testers to manually test their Fin-
Tech systems with high manual efforts. One example of such fi-
nancial institutions is our industrial collaborator, China Foreign
Exchange Trade System (CFETS) Information Technology Co. Ltd..
As a subsidiary of China’s Central Bank, CFETS provides services
of currency swap and exchange rate swap for tens of thousands of
active clients, and involves 150 trillion US dollars of transactions
per year. For this complicated yet mission-critical trading platform,
even a simple change in one of its subsystems can lead to months
of manual testing of the whole system, not to mention the huge
financial losses that it may suffer from due to even a small wrong-
doing in the system.

853

https://doi.org/10.1145/3338906.3340441
https://doi.org/10.1145/3338906.3340441
https://doi.org/10.1145/3338906.3340441

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia T. Jin, Q. Wang, L. Xu, C. Pan, L. Dou, H. Qian, L. He, and T. Xie

To reduce the burden of testers, our recent efforts [14] have im-
proved the comprehensiveness of the created test suite and the ef-
ficiency of the adopted testing process by delivering automated
testingmechanisms toCFETS in two important ways. First, we con-
duct automatic test-data generation for subsystems in the trading
platform, and demonstrate how our approach accomplishes sub-
stantial branch-coverage improvements over manual testing. Sec-
ond, we propose an improved differential testing technique that
addresses the problem of lacking testing oracle.

Our such recent efforts have been just the beginning of a jour-
ney started by the academia-industry partnership formed by the
authors of this paper. The goal of this partnership is to bridge the
gap between the FinTech industry and the research community in
software testing, improve the state of the practice in the area of
automated test generation for FinTech systems, and produce high
industry impact alongside impact on the research community. Ac-
complishing this goal requires continuous dedicated efforts to gain
further understanding on “what did not work and why”, and de-
velop practical solutions to tackle these identified challenges when
transferring techniques into industrial practices.

To further investigate the current testing practices in the Fin-
Tech industry, we consult with the testing department of CFETS
to learn that manual efforts especially those from domain ex-
perts (who have valuable domain knowledge) are still heavily re-
lied upon for testing service-intensive subsystems because of their
complex underlying logic. The testers of CFETS have to work side-
by-side with the domain experts. The domain experts, who under-
stand deeply the whole trading platform and financial logic, design
test scenarios and data constraints; the testers then generate test
data accordingly. In other words, the whole testing process is often
inefficient, heavily relying on the domain experts and their matu-
rity. Even worse, the business logic, especially most of the under-
lying financial logic, is implicit and un-documented, and is passed
down as informal experiences. It is not unusual for the domain
experts to spend months, even longer, in understanding the trad-
ing services and their complex logic. It is also very likely for the
entire testing process to be stalled when current domain experts
leave. Furthermore, the collaboration between the domain experts
and their corresponding testers may not work well and can elon-
gate the testing process, e.g., the testers understand the data con-
straints differently from the domain experts; the domain experts
miss corner cases when designing the testing scenarios.

After confirming the importance of domain knowledge in test-
ing FinTech systems, we closely investigate the situations where
our previous approach [14] falls short, e.g., about 20% of the
branches from certain subsystems of the trading platform have
never been covered. With the help of our industrial partners,
we identify two main sources of ineffectiveness: lacking domain
knowledge of data-field dependencies and lacking domain knowl-
edge of exceptional cases of input data to guide automatic test gen-
eration.

Lacking domain knowledge of data-field dependencies.
Many not-covered branches in the certain subsystems of the trad-
ing platform are related to special business logic that can be trig-
gered only when the input data meets certain special conditions
that reflect implicit dependencies between different data fields. For
instance, only when input data contains data fields representing a

RMB-gold transaction and completion time as a specific time pe-
riod, the corresponding code branches can be triggered. These im-
plicit data dependencies have high probability of being missed by
a brute-force generation technique such as the one in our previous
approach [14].

Lacking domain knowledge of exceptional cases of in-
put data. Our previous approach [14] creates exceptional data by
specifically identifying the category of unacceptable input data,
and generating input data falling into this category. However, fur-
ther investigation reveals that only “meaningful exceptional data”
is worth being generated. Meaningful exceptional data is excep-
tional data that is valid but not-expected input to the systems, such
as a wrong institution code for a transaction party. Such valid but
not-expected data is more likely to trigger failures. Unfortunately,
defining such “meaningful exceptional data” is part of the domain
knowledge, not available to our previous approach [14] during au-
tomatic test generation.

To tackle the aforementioned limitations, in this paper, we
propose FinExpert, a new test generation approach based on a
Domain-Specific Language (DSL), to specifically document and uti-
lize FinTech domain knowledge to guide the testing process. Ac-
cording to our study, most of the domain knowledge in a FinTech
system can be concretized as data type, range, and format for
each input field, as well as dependencies among its different in-
put fields. By introducing our DSL to describe such constraints as
rules, our test generation approach categorizes the data range of
the input and its different fields, and generates data accordingly.
With much accurate categorization of the input data and depen-
dencies among data fields, our approach is able to generate a com-
prehensive test suite. Even better, although domain experts are still
needed for writing the constraint rules, the business logic and its
underlying implicit financial rules, once documented, can now be
passed down, and from these rules test cases can be automatically
generated directly. In contrast to the current practice, where do-
main experts learn from their precedents and testers manually gen-
erate test inputs accordingly, FinExpert is able to not only save the
manual efforts during the phase of test generation, but also pre-
serve the underlying financial rules.

Additionally, test oracles can also be specified as domain
knowledge. From our industrial partners’ experiences, many Fin-
Tech subsystems expect simple predefined return codes as their ex-
ecution result, denoting either a successful transaction or an error
code that indicates unexpected input or exceptional behavior. For
such subsystems, the data constraints for the expected result and
the dependencies among input data and its corresponding result
can be described in the same way as input data using our DSL, so
that the expected result can be generated alongside with the input
data and serve as the test oracle when evaluating the test result.

To evaluate whether introducing and documenting domain
knowledge in the testing process can reduce burden on manual
efforts and is able to effectively and comprehensively test a Fin-
Tech system, we apply FinExpert to multiple subsystems of the
CFETS trading platform, including two major subsystems and one
middleware. We compare the manual efforts in terms of time spent
in testing the subsystems before and after utilizing FinExpert, and
FinExpert’s ability to reduce the size of the test suite yet preserve
high code coverage of the system.The results from our comparison

854

FinExpert: Domain-Specific Test Generation for FinTech Systems ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

show that FinExpert can save about 70% manual efforts, as well as
achieving increased code coverage with less test data.

In summary, this paper makes the following main contribution:
• A case study in the FinTech industry for confirming the im-

portance of domain knowledge in the testing process.
• Adomain-specific testing approach to utilize domain knowl-

edge for test generation.
• A Domain-Specific Language designed for concretizing Fin-

Tech domain knowledge as constraint rules.
• Empirical studies of conducting domain-specific test gener-

ation on subsystems of the CFETS trading platform.
In the rest of this paper, we present background information in

Section II. We illustrate our motivating example in Section III, and
present the overview information as well as the detailed approach
in Sections IV and V, respectively. We show and discuss our evalu-
ation results in Section VI. We present related work in Section VII.
We discuss conclusion and future work in Section VIII.

2 BACKGROUND
2.1 China Foreign Exchange Trade System
China Foreign Exchange Trade System (CFETS) Information Tech-
nology Co., Ltd. is a wholly-owned subsidiary of the China Foreign
Exchange Trading Center. Its parent company is directly under the
head office of the People’s Bank of China. As the specific organizer
and operator of the Chinese inter-bank foreign exchange market,
money market, bond market, and exchange rate and interest rate
derivatives markets, the trading center provides an internationally
advanced trading platform. In the whole year of 2018, the cumu-
lative turnover of the market was 1,262.8 trillion, a year-on-year
increase of 26.6%. By the end of 2018, there were 24,804 members
in the inter-bank local currency market and 678 members in the
inter-bank foreign exchange market. The CFETS company itself is
committed to providing technology development, operation and
maintenance, and information services for the main trading plat-
form of the trading center.

2.2 Facts
To obtain a more comprehensive collection of test cases, our pre-
vious research efforts have contributed Facts [14], an automated
black-box testing approach for FinTech systems. FinTech systems
usually take high-dimensional inputs that contain a group of fields
and each of which belongs to one of various data types or user-
defined complex data structures. These characteristics bring high
difficulties for test generation. Furthermore, due to the complex
and diverse behavior of different systems, it is hard to find a uni-
versal test oracle for testing FinTech systems. To tackle these prob-
lems, Facts includes three main techniques as listed below.

First, Facts collects system logs from real transactions and
retrieves passing messages as input seeds, to construct high-
dimensional test messages; in the meantime, Facts also identifies
the input category of each data field for each corresponding test
message to cover all possible field categories.

Second, according to the formats of data fields in the system logs,
Facts is able to partition the input domain of the system under test,
and select test cases from each class of the partition. For example,

for a field of data type “Date”, all the valid and invalid values can
be classified into different categories, respectively. Each category
can be further subdivided accordingly.

Third, to derive the test oracles, Facts tests the system under
test with two previous versions in parallel: the currently-deployed
version and the last legacy version in the version repository, as-
signing different priorities with the two system versions, and con-
structs the test oracles based on their outputs.

3 MOTIVATING EXAMPLE
To further understand the bottleneck of the testing process in Fin-
Tech industry sectors, such as CFETS, we conduct a case study
on the Independent Software Vendors Protocol Translation (ISVPT)
subsystem, a middleware used by CFETS to convert different data
formats during data exchange between different subsystems. We
choose this particular subsystem for our case study because it re-
sembles a typical FinTech system, with numerous system-defined
data types and underlying financial logic. As illustrated in our pre-
vious efforts [14], FinTech systems expect high-dimensional input
data, with each field/dimension a system-defined data type, and
hence a randomly generated test suite without knowing these data
types would not be able to include acceptable input data.

Our consultation with testers in CFETS reveals that domain ex-
perts are heavily relied on during the testing process. Hence, in
this case study, we intend to specifically understand (1) how im-
portant the domain knowledge is in testing FinTech systems; and
(2) what domain knowledge helps with automated testing of Fin-
Tech systems. With help from our industrial partners, we are able
to acquire three different data sets of input data: one representing
the current testing practices (manually written by domain experts
and testers), one randomly generated (with only type information),
and one generated by our previous approach [14] (test generation
based on data constraints). We further describe each data set as
follows.

Manually written. The first data set resembles the current
state of practice in CFETS. Manually writing the input data is joint
work done by domain experts and testers, and the data set is very
small and contains only 4 inputs. Since it is the actual test data be-
ing used, this data set serves as a comparison baseline, labeled as
“Set 1”.

Randomly generated. The second data set is randomly gener-
ated with additional information on input data types, such as the
data type of each input field. The resulting data set is generated
by randomly generating a value for each input field with its cor-
responding type, e.g., a random number for an input field of type
integer. This data set contains 1,000 data, labeled as “Set 2”.

Previous approach.We would like to directly apply our previ-
ous approach [14] on the subsystem to generate test data. Unfortu-
nately, the subsystem is newly developed and yet-to-be deployed,
and thus there are no system logs available. Since the size of the
manually written test cases is too small, we resort to a “compro-
mised” version of our previous approach. In particular, our previ-
ous approach utilizes system logs to retrieve the accurate system-
defined data type and range of each input field, such as the right for-
mat of date and time for each transaction. In contrast, the “compro-
mised” version of our previous approach requires manually spec-
ified system-defined data type and range of each input field. For

855

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia T. Jin, Q. Wang, L. Xu, C. Pan, L. Dou, H. Qian, L. He, and T. Xie

Table 1: Code coverage achieved by different data sets

Set 1 Set 2 Set 3
Code coverage 44.8% 24.3% 32.6%
Number of cases 4 1000 100

example, the three fields shown in Table 2 are required to contain
an integer that is a timestamp within year 2018. Data in this data
set can meet the input requirement, whereas data in “Set 2” are not
guaranteed to satisfy the input requirement. This data set includes
100 data, labeled as “Set 3”.

We then execute the subsystem with each data set and collect
its corresponding code coverage. The result is shown in Table 1. It
is not surprising to see that although the manually written data
set is the smallest, its achieved code coverage is almost twice that
of the second data set. The last data set is much smaller than the
second data set but still outperforms the second one.

After consulting with testers in CFETS and conducting in-depth
analysis of the data sets, we confirm that the biggest difference be-
tween these data sets is on how much domain knowledge (specif-
ically in this case, the data type and range for each input field)
is reflected in the test generation. The first data set can be con-
sidered to be generated under the guidance of comprehensive do-
main knowledge, while the second data set is generated using a
pure brute-force approach without any guidance. Therefore, the
first data set satisfies all constraints and dependency relationships
required by the subsystem, because the first data set is designed
by domain experts who clearly understand the domain knowledge.
But the second data set is filledwith random values, and it is almost
impossible for the data to coincidentally satisfy all the constraints
and relationships. Thus the data cannot pass the validation to trig-
ger further behaviors thereafter. The last data set achieves better
results with smaller size because it incorporates part of the domain
knowledge: the specific data format and its range during the gen-
eration. But information about constraint relationships between
different fields, such as dependency and transitive dependency, is
missing; therefore, it is still outperformed by the manually written
data set. For example, there are three fields in the input data of
the ISVPT subsystem named “DateDash”, “DateTime”, and “Date-
TimeMilliSecond”. Each of the three fields contains a Unix times-
tamp for representing the same timestamp but with unit accuracy
as day, second, and millisecond, respectively. In other words, all
three timestamps should point to a time in the same day, and the
last two timestamps should point to the same second.

The results from this case study, as well as confirmation from
our industrial partners, demonstrate that domain knowledge is
crucial to generate a comprehensive test suite; and such domain
knowledge in FinTech systems mainly includes the input data type
and format for each input field, and the constraints and dependen-
cies among the input fields.

4 OVERVIEW
4.1 Problem Statement
With deep understanding that domain knowledge is crucial in ef-
fectively testing FinTech systems, we identify two issues with the
current human-centered testing process.

Deep learning curve. As described in Section 2.1, CFETS devel-
ops and provides a trading platform that requires to handle a large
number of market members and huge trading volume.The require-
ments on the capacity, performance, and reliability are extremely
high, resulting in a highly complex trading system. The entire sys-
tem consists of hundreds of subsystems, and in order to respond
to market efficiently, CFETS has to continuously update its system.
Consequently it takes tremendous efforts to fully understand such
system, not only functionality or business logic, but also enormous
implicit financial logic. Domain experts need to be proficient in
testing, and have at least 2 years of testing experience in relevant
FinTech fields to derive effective test cases. Unfortunately, the cur-
rent loss rate of domain experts is around 20%, and it is increasingly
difficult to recruit such experienced personnel.
Quality of test data. Domain experts define test scenarios for
each subsystem. Each test scenario describes a specific use case,
as shown in the left side of Figure 2. Both concrete data and de-
tailed business situations are to be included in the scenario set
so that testers can prepare test data accordingly. Testers need to
communicate often with their domain experts to understand the
test scenarios and corresponding data constraints, in order to gen-
erate a meaningful data set. The communication process is often
error-prone and greatly increases the manual efforts. Even worse,
it is very common for domain experts to miss some corner cases in
their test scenarios, especially the combinations of different busi-
ness scenarios, due to complex financial rules.

Therefore, it is necessary to improve the current testing prac-
tice to tackle the aforementioned problems. More specifically, we
investigate techniques to transform the current human-centered
testing process to a knowledge-centered process, where the do-
main knowledge can be well structured and utilized throughout
the entire testing process.

4.2 Extension of Facts
Our previous efforts [14] have proposed Facts to automatically
test FinTech systems. Facts is able to improve testing effective-
ness compared to the original manual tests. Motivated by the case
study described in Section 3, we extend Facts to propose FinEx-
pert by specifying the domain knowledge to guide test generation.
In our work, domain knowledge specifically refers to the data type,
range, and format for each input field, and dependencies among
different fields of the input data, as well as the expected return
codes as test oracles. Besides reducing manual efforts, FinExpert
is able to optimize Facts in the following dimensions.
Eliminate the need of test seeds. To address the challenges of
high-dimensional inputs, Facts leverages the input data collected
from system logs as seeds and mutates them to generate valid data.
But for a newly developed system, logs are unavailable, so Facts
is not applicable. As a more applicable solution with the domain
knowledge being directly specified, FinExpert collects data format
and constraints of each input field and their dependencies from the
specified domain knowledge, so FinExpert is able to generate test
data directly without requiring any test seed.
More comprehensive yet smaller test suite. A test suite gen-
erated by Facts is always very large. However, many of the test
cases in the test suite are redundant or unnecessary, and have no

856

FinExpert: Domain-Specific Test Generation for FinTech Systems ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

Table 2: Examples of data field value in different data sets

Field Set1 Set 2 Set 3

DateDash 1543161600000
(2018/11/26 00:00:00)

38111886081466
(3177/09/20 03:01:21)

1523377875809
(2018/4/11 00:31:15)

DateTime 1543246332000
(2018/11/26 23:32:12)

19573242030453
(2590/04/02 11:40:30)

1520882677818
(2018/03/13 03:24:37)

DateTimeMilliSecond 1543246332011
(2018/11/26 23:32:12)

44963693695
(1971/6/5 17:54:53)

1544437792249
(2018/12/10 18:29:52)

Figure 1: Domain-specific Test Generation Process

contribution to the code coverage. The reason of the redundancy
is that many logs represent the same scenario with slightly differ-
ent data, but Facts cannot easily identify these same-scenario logs
and conducts the generation step on each of them. Even worse, our
previous approach mutates each data field in isolation to generate
the test data, which may break some implicit constraint among
data fields. With data constraints and their dependencies explic-
itly specified and utilized to generate the test data, we expect to
have a more comprehensive yet smaller data set.
Meaningful exceptional data. Our previous efforts [14] have
shown that exceptional inputs should receive more attention in
testing to assure the robustness of the FinTech system under test.
However, not all invalid data are worth testing. One of the interest-
ing “experiences passed down by domain experts” in the FinTech
industry is that meaningful exceptional data is likely to trigger fail-
ures. Meaningful exceptional data refers to inputs that the FinTech
system under test is likely to accept and process, but lead to excep-
tional behaviors, such as an input with data fields satisfying its for-
mat. An example of meaningful exceptional data is an input with
a data field as a string of code (representing a client institution)
that satisfies the data format but belongs to a wrong institution.
But this kind of errant data cannot be generated by simply generat-
ing values that do not match the corresponding input-format rules.
Therefore, we design FinExpert to provide additional mechanisms
for domain experts to specifically describe such errant scenarios,
to generate meaningful exceptional inputs.
Easier test-result evaluation. Facts uses an enhanced differen-
tial testing to evaluate the test results. It requires to concurrently
execute the same test inputs over different subsystem versions and

compare their results. Despite useful, it typically elongates the test-
ing process. We observe that there exist quite a few subsystems
whose expected return codes are simple codes, e.g., ones denoting
transaction completion or error codes.

5 OUR APPROACH
Motivated by our field observation and the case study shown in
Section 3, we propose FinExpert to introduce domain knowledge
into the process of generating test data automatically. Our goal
is to generate test cases that are effective and efficient, in order
to produce a comprehensive yet small collection of test cases. Be-
ing comprehensive yet small indicates that the generated test cases
should cover as much code as possible, while the size of the result-
ing test cases should be as small as possible [12, 15].

The overall testing process using FinExpert can be approxi-
mately divided into three steps as shown in Figure 1:

(1) Domain experts document the domain knowledge, mainly
the data formats and constraints of each input field and their
dependencies via the Domain Editor.

(2) Domain parser collects the documented information and
parses it into constraint rules of each input field.

(3) Test Generator accepts the constraint rules and generates
input data, as well as expected outputs, accordingly.

5.1 Domain-Specific Language (DSL)
According to our observation, from the perspective of efficient
testing, domain knowledge can be concretized as data constraints
of the system inputs, such as inputs “DateDash”, “DateTime” and
“DateTimeMilliSecond”, as well as their dependencies, as described

857

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia T. Jin, Q. Wang, L. Xu, C. Pan, L. Dou, H. Qian, L. He, and T. Xie

Figure 2: Comparison between test scenarios with domain constraints

in Section 3. We believe that by formally defining these data con-
straints, such domain knowledge can be used to generate test data
automatically and in turn improve the quality of the generated test
cases.

Hence, we design a domain-specific language (DSL), as de-
scribed in Section 5.2, to specify such domain knowledge. Domain
experts determine and define the data constraints with our spe-
cific format, so that FinExpert is able to parse these constraints
as rules and generate test cases accordingly. We also notice that
subsystems from the same business domain tend to share certain
common constraints, so an extra benefit of such approach is that
formalized and documented rules can be easily reused or adapted
for testing other (sub)systems. As a result, the domain experts do
not need to restart from scratch for testing every subsystem from
the same domain.

In summary, as shown in Figure 2, by using the DSL, themassive
piles of manually-written test scenarios can be abstracted into one
simple file that contains multiple lines of constraint rules, and at
the same time, the resulting test suite is comprehensive yet small.

5.2 DSL Design
Based on the common patterns that we observe in our case study
as well as consulting with our industrial partners in CFETS, we
design a DSL specifically to represent the domain knowledge: the
data types, constraints, and dependencies of each data field; such
domain knowledge is used to guide the test generation. An exam-
ple of using the DSL is shown in the right part of Figure 2. The

DSL has the ability to express common domain requirements of
FinTech properly and concisely.

5.2.1 Variable Definition. Rules defined by our DSL are a set of
variable definitions and descriptions. Each data field is defined as
a variable using the following form:

[variable name] is [type] [keyword] [description]
where the “variable name” is an unique identifier for each field, and
the word followed by “is” declares the data type of the field, which
can be chosen from “String”, “Integer”, and “Float” to represent a
basic data type, or “Dictionary” and “List” to represent a composite
data structure. “:” is a special character to split outer and inner data
fields’ name or index of a list. For example, in Figure 2, “input”
is defined as a list, and “input:0 is Dictionary” describes the data
type of the first element of list “input”, which is a dictionary. Then,
“input:0:userID format ”bsid(\d){3}”” is used to describe the data
field named “userID” in that dictionary. The purpose of “keyword”
and “description” is explained in the following section.

5.2.2 Keyword and Description. There are five predefined key-
words in our DSL, and below are explanations of each keyword:

in. “in” is always followed by a list, and the elements in the list
are the range of the valid values for this variable. For example, “in-
put:0:payWay in [”01”,”02”,”03”]” denotes that the range of variable
“payWay” in the first dictionary of the list “input” is “01”’, “02”, and
“03”.

format. “format” is always followed by a regular expression,
and can be used in combination with only a variable of type
“String”. The regular expression is used to specify the format of

858

FinExpert: Domain-Specific Test Generation for FinTech Systems ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

Algorithm 1: Domain-specific Test Generation
Input: rule_file, the file that contains constraint rules of

the input data.
Input: required_num, the required number of test data.
Output: data_set, a set of test data.
original_rules, all_errant_conditions = readRules(rule_file);
data_set = �;
generated_num = 0;
while generated_num < required_num do

data_set.addData(generateData(original_rules));
generated_num = generated_num + 1;

end
for errant_condition ∈ all_errant_conditions do

generated_num = 0;
while generated_num < required_num do

data_set.addData(generateData(combineRules(original
_rules, errant_condition)));

generated_num = generated_num + 1;
end

end
return data_set;

this variable. For example, “userID format ”bsid(\d){3}”” indicates
that the value of the variable “userID” should begin with “bsid”
followed by three digits.

daterange. Dates are often used in FinTech systems, so we
design keyword “daterange” to generate strings for representing
dates within the specified range. “daterange” is always followed
by a tuple of two dates, and the generated dates should be later
than the first date and earlier than the second date. This keyword
can be used in combination with only a variable of type “String”.

range. “range” can be used in combination with only a variable
of type “Integer” or “Float”. “range” is always followed by a tuple of
two values, and represents the range of randomly generated values
for the corresponding variable. The two values in the tuple repre-
sent the minimum value and the maximum value of this variable,
respectively.

switch. “switch” is always followed by an expression and a dic-
tionary. The test generator calculates the value of the expression,
and uses the resulting value as a key to find the corresponding
value in the dictionary, and then assigns that value to the corre-
sponding variable.

The most important ability of the DSL is that it can express the
dependency between fields. Each variable definition can refer to
other fields’ values by including a string of another field’s name
wrapped by “<%” and “%>”. These strings will be replaced by the
generated values of the corresponding fields during test genera-
tion, and the value generation for fields that refer to other fields
will be delayed until all the references are replaced by a concrete
value.

5.2.3 Errant Condition. To test the system robustness, it is com-
mon to generate exceptional inputs, i.e., inputs that are not ex-
pected by system. We focus on “meaningful exceptional data”,

Algorithm 2:Generate input data from constraint rule set
Input: rules, the specified constraint rule set.
Output: data, the generated input data that satisfies rules.
data = constructDataStructure(rules);
unassigned_variables = rules.getAllVaraibles();
assigned_variables = �;
while unassigned_variables , � do

for variable ∈ unassigned_variables do
rule = getRuleForVariable(rules);
for reference ∈ rule.getReferences() do

refVariable = reference.getReferencedVariable();
if refVariable ∈ assigned_variables then

replaceReference(rule, reference,
refVariable.getValue());

end
end

end
abort_flag = true;
for variable ∈ unassigned_variables do

rule = getRuleForVariable(rules);
if rule.getReferences() == � then

variable = rule.getVariable();
value = generateRandomValueForRule(rule);
assignValue(variable, value);
unassigned_variables.removeVariable(variable);
assigned_variables.addVariable(variable);
abort_flag = false;

end
end
if abort_flag == true then

abort;
end

end
fillDataWithValue(data, assigned_variables);
return data;

which is exceptional data that is valid in data type but not expected
by the system under test, such as a wrong institution code for a
transaction party. Our previous work [14] reveals that such data
is more likely to trigger failures, hence worth being generated. We
design an additional mechanism to specifically support this need.

After defining valid data types and constraints of each field,
the users can choose to define “Errant Conditions”. Each of
these errant conditions starts with “-ErrorStart-” and ends with “-
ErrorEnd-”, with one or more lines of rules in between to describe
the exceptional input constraints. These rules use the same syntax
as described in Section 5.2.With the same format, the users are able
to construct an errant condition by simply modifying the previous
constraints.

The test-generation engine processes and generates valid data
and exceptional data separately. When processing an errant con-
dition, the engine first reads all rules for valid data in the same
file, and then replaces the corresponding variable value with the

859

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia T. Jin, Q. Wang, L. Xu, C. Pan, L. Dou, H. Qian, L. He, and T. Xie

Algorithm 3: Combine the original constraint rules and
exceptional data specification
Input: original_rules, the original rule set.
Input: errant_condition
Output: result_rules, the combination of original_rules and

errant_condition.
result_rules = original_rules;
for rule ∈ errant_condition do

variable = targetVariableOfRule(rule);
original_rule = getRuleForVariable(result_rules,
variable);
if original_rule , null then

result_rules.removeRule(original_rule);
end
result_rules.addRule(rule);

end
return result_rules;

errant condition. For instance, as shown in Figure 2, both the last
line in the first part of the specification (ret:retCode is string in
[”200”]), and the first line in the errant condition (ret:retCode is
string in [”201”]) define constraints for variable “ret:retCode”; thus,
the latter rule is used to generate corresponding exceptional data.
As such, both valid data “ret:retCode=”200”” and exceptional data
“ret:retCode=”201”” are generated.

5.3 Data Generation
Once the domain knowledge, i.e., the input data constraints, is doc-
umented and parsed, FinExpert can generate test data accordingly.
The data generation algorithm is shown in Algorithm 1. Defini-
tions of functions generateData and combineRules are shown in
Algorithms 2 and 3, respectively. To simplify the description, we
assume to require the same number of valid input data and excep-
tional data. At the beginning of the data generation process, all
variables are not assigned. In each iteration, the generation engine
checks all variables that have not been assigned a value. For each
of such variables, if there is no reference in the corresponding con-
straint rule, the engine produces a random input that satisfies the
rule, and then assigns that value to the variable. At the end of the
iteration, the generation engine checks the rest of the unassigned
variables, each of which should contain at least one reference to an-
other variable. If any of the referenced variables has been assigned
a value, the reference is replaced by that value. The generation en-
gine continues iterating until every variable has an assigned value,
or aborts if none of the remaining variables can be assigned. The
generation procedure is applied on the original rule set for valid
data and each errant condition.

6 EVALUATION
Our goal is to generate a comprehensive yet small test suite by
specifying domain knowledge and utilizing the specification to
guide the test data generation. In our evaluation, we aim to answer
the following two research questions:

• RQ1. Effective Testing Process: Compared to the current
testing process, is our approach able to save substantial man-
ual efforts and result with a more effective testing process?

• RQ2. Efficient Test Suite: Can our approach lead to amore
comprehensive yet smaller test suite, compared to our pre-
vious approach [14]?

RQ1: Effective Testing Process. The CFETS trading platform
includes more than 100 subsystems, each of which is a complicated
system by itself. It could take anywhere from one month to even
a year for just testing a subsystem itself, almost impractical to col-
lect and measure the testing process of the whole trading platform.
Hence, we evaluate FinExpert with the Trading Matching (TM)
subsystem, one of the latest-tested subsystems.The TM subsystem
is a core component of the trading platform and is responsible for
matching suitable orders between sellers and buyers to seal a trans-
action. Specifically, the testing group along with its corresponding
domain experts spent about one and half months in testing the
subsystem, with detailed breakdown shown in Table 3. For a fair
comparison, we employ a different group of testers and domain ex-
perts but with a similar background as the previous group. More
specifically, the two groups have similar backgrounds in the Fin-
Tech industry and same years of experiences in testing. We find
that 69.5% of the manual efforts of current practice can be
saved by using FinExpert, especially the phase of Test-Data Gen-
eration that heavily relies on manual efforts, changing from 256
man-hours down to 0 man-hour. Additionally, since the domain
knowledge is documented as specification, some of the data con-
straints can be referenced and reused, saving two-third of the man
power in the phase of Test Suite Management where testers need
to update the test suite according to test results. It is also worth to
mention that the current practice requires 40 domain experts’ man-
hours and 32 testers’ man-hours for designing the test scenarios,
and FinExpert is able to cut down to 24 domain experts’ man-hours
with help from only 8 testers’ man-hours. Instead of concerning
detailed data values and exploring their correlations, domain ex-
perts now need to concentrate on only the data constraints. Fur-
thermore, thanks to the structured domain-specific language pro-
vided by FinExpert, the size of the resulting specification is much
smaller than the original test scenario set defined in natural lan-
guage. For the phase of Test Execution and Evaluation, about half
of the man-power are saved because some of the expected return
codes are able to be documented in the specification, and the re-
maining half of the man-power are mainly for evaluating the test
outputs.

RQ2: Efficient Test Suite. We also investigate whether the re-
sulting test suite is a comprehensive set with not too many redun-
dancies. We first apply FinExpert on our motivating example, the
ISVPT subsystem. The comparison results are shown in Table 5.
Recall that three different approaches generate three data sets as
described in Section 3. FinExpert is able to outperform the three
data sets with a relatively small number of cases. Unfortunately,
for security reasons, we have no access to the source code of the
ISVPT subsystem, and thus we cannot collect information regard-
ing branch coverage and cannot conduct a more in-depth analysis.
But it is clear that FinExpert is able to test the subsystem more
comprehensively, with a much smaller test suite.

860

FinExpert: Domain-Specific Test Generation for FinTech Systems ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

Table 3: Time spent in different approaches

Time spent (man hour) Current Practice FinExpert
Domain Expert Tester Total Domain Expert Tester Total

Requirements Analysis 40 (Test Scenarios Design) 32 72 24 (Domain Specification) 8 32
Test Data Generation 0 256 256 0 0 0

Test Execution & Evaluation 32 216 248 16 104 120
Test Results & Aggregation 0 32 32 0 32 32
Test Suite Management 0 48 48 0 16 16

Total 72 584 656 40 160 200

Table 4: Code and branch coverage achieved by Facts and FinExpert on CSTP

Code coverage Branch coverage Number of cases
Facts FinExpert Facts FinExpert Facts FinExpert

FxclDealLogParser 95.9% 99.7% 91.5% 97.0% 2322 100
FxDealLogParser 89.1% 99.1% 85.3% 97.4% 10855 1000

FirdvDealLogParser 91.9% 98.9% 82.0% 98.0% 4500 200

Table 5: Code coverage achieved by different data sets and
FinExpert

Set 1 Set 2 Set 3 FinExpert
Code coverage 44.8% 24.3% 32.6% 56.6%
Number of cases 4 1000 100 100

We then extend our previous evaluation of the CSTP subsys-
tem [14] with applying both approaches. We have already shown
that automated test generation can generate a more comprehen-
sive test suite [14]. Here we compare FinExpert with our previous
efforts to understand whether the resulting test suite is compre-
hensive yet small.

The results are shown in Table 4. We choose three important
classes in CSTP used to handle three types of input data, respec-
tively. We observe that for each class, FinExpert is able to achieve
higher branch coverage with a much smaller test suite.

We further manually analyze the not-covered portion of both
the CSTP and ISVPT subsystems, and summarize the findings as
follows.
Unreachable code. We have found several conditional expres-
sions that will never be true; as a result, the corresponding code
blocks will never be executed. After we report these cases back
to the developers, it is confirmed that these conditions are either
mistakes made due to complex logic expressions or directly copy-
pasted conditions that will never be satisfied in the current context.
Unused functions. There also exist functions and methods that
are defined but never used. These cases include deprecated func-
tions that are no longer used but are retained for backward-
compatibility, as well as template code generated by IDE but not
actually used, such as getters and setters of a Java class. There are
also residual functions and methods used for temporarily testing
the module, such as “main” functions in different Java classes.
Incomplete constraints.The comprehensiveness of the test suite
depends on the completeness of the constraint rules for the input

data. The coverage of the ISVPT subsystem is relatively low be-
cause the requirements document is insufficient to start with, and
it is difficult to write a complete set of constraint rules without
sufficient requirements.

7 RELATEDWORK
Although it is crucial to comprehensively test FinTech systems to
ensure their robustness and correctness, to the best of our knowl-
edge, Facts is so far the only tool for automated testing of a Fin-
Tech system. Other state-of-the-art test generation tools, such as
Randoop [9], EvoSuite [4], KLEE [2], EXE [3], Pex [16], and Bal-
lista [5] fail to generate valid input values for the system under
test in our evaluation.

In this paper, we have proposed a specification-based test-
generation approach. Specification-based testing is the technology
to generate test cases based on specification documents.

Richardson et al. [11] proposed approaches to specification-
based testing by extending awide variety of implementation-based
testing techniques to be applicable to formal specification lan-
guages. They presented an algorithm for automatically deriving
efficient test oracles from Graphical Interval Logic (GIL), which
is a graphical temporal logic easier for non-experts to understand
than many formal languages [8].

Rutherford et al. [13] developed a test-generation tool formodel-
driven systems. Antonio et al. [1] developed a prototype test gener-
ator that is able to provide a test collection automatically with for-
mal semantics. The generator works by parsing Object Constraint
Language (OCL) specifications to extract constraints and then gen-
erating test cases that satisfy the constraints.

Nilsson et al. [7] proposed a model-based approach for gener-
ating test cases to test timeliness by a genetic algorithm. This ap-
proach is suitable for generating test cases for small real-time sys-
tems. Rayadurgam et al. [10] proposed an approach for generating
test cases to satisfy structural coverage criteria. They abstract the
software as a finite state model, and use a model checker to gener-
ate test cases.

861

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia T. Jin, Q. Wang, L. Xu, C. Pan, L. Dou, H. Qian, L. He, and T. Xie

However, none of the preceding related approaches can tackle
the problems faced in testing FinTech systems, such as high-
dimensional input data and various data types and formats, and
thus cannot be applied to test FinTech systems, the focus of our
work.

8 CONCLUSION AND FUTURE WORK
To address the problem of lacking domain knowledge faced in the
current testing practice, we have proposed a new approach named
FinExpert that enables to specify and utilize domain knowledge to
guide automatic test generation. FinExpert improves the effective-
ness and efficiency of our previous approach named Facts [14]
in industrial settings. We have applied our approach on three im-
portant subsystems of the CFETS trading platform, and the re-
sults show that FinExpert is able to achieve higher code coverage
than Facts with a much smaller number of test cases, and much
fewer manual efforts compared with the current testing practice
in CFETS.

We also identify three main directions for future work.
Reusable constraint rules. Subsystems from the same domain
may share common business logic. Thus, we expect that some
of the constraint rules that represent underlying financial logic
may be able to be reused at other subsystems from the same do-
main. We plan to investigate further how to efficiently reuse these
previously-written constraint rules, as well as mechanisms for do-
main experts or testers to easily reuse these rules.
Manually defined specification. Manual efforts are error prone.
Rules defined by domain experts may contain errors, e.g., circular
references with which no data can be generated. We plan to inves-
tigate mechanisms to check the conflicts between rules to prevent
such errors. Furthermore, it is commonly understood that domain
specification itself needs to be verified as well. We plan to inves-
tigate ways to verify the specification against the system require-
ments.
Complex oracles. Subsystems may expect different outputs. Fin-
Expert allows domain experts to define simple expected outputs,
such as pre-defined return codes, or can be easily derived from
inputs. For subsystems whose expected outputs are beyond this
simple description, we plan to investigate various other ways to
define complex oracles.

ACKNOWLEDGMENTS
This work was supported in part by the National Natural Science Founda-
tion of China (No. 61571191 and No. 61632012), the ’Shuguang Program’
supported by Shanghai Education Development Foundation and Shang-
hai Municipal Education Commission (No.16SG21), the Science and Tech-
nology Commission of Shanghai Municipality Grant (No.18511103802 and

No.18511106202) and the key teaching reform project for undergraduates in
Shanghai Universities (Project name: Innovative Education in the Era of Ar-
tificial Intelligence and Big Data), and NSF under grants no. CNS-1513939,
CNS-1564274, CCF-1816615, and a grant from Futurewei.

REFERENCES
[1] Percy Antonio, Pari Salas, and Bernhard K. Aichernig. 2006. Automatic test

case generation for OCL: A mutation approach. In Proceeding of International
Conference onQuality Software. 64–71.

[2] Cristian Cadar, Daniel Dunbar, and Dawson Engler. 2008. KLEE: Unassisted and
automatic generation of high-coverage tests for complex systems programs. In
Proceedings of USENIX Conference on Operating Systems Design and Implementa-
tion. 209–224.

[3] Cristian Cadar, Vijay Ganesh, Peter Pawlowski, David Dill, and Dawson Engler.
2006. EXE: A system for automatically generating inputs of death using symbolic
execution. In Proceedings of ACM Conference on Computer and Communications
Security. 322–335.

[4] Gordon Fraser and Andrea Arcuri. 2011. EvoSuite: Automatic test suite gener-
ation for object-oriented software. In Proceedings of ACM Joint Meeting on Eu-
ropean Software Engineering Conference and Symposium on the Foundations of
Software Engineering. 416–419.

[5] Philip Koopman. 1998. Toward a scalable method for quantifying aspects of
fault tolerance, software assurance, and computer security. In Proceedings of the
Conference on Computer Security, Dependability, and Assurance: From Needs to
Solutions. 103–131.

[6] Kent Miller. 2019. Global fintech investment rockets to a record $111.8B
in 2018, driven by mega deals: KPMG Pulse of Fintech. Retrieved
April 2, 2019 from https://home.kpmg/xx/en/home/media/press-releases/2019/
02/global-fintech-investment-hits-record-in-2018.html

[7] Robert Nilsson, Jeff Offutt, and Jonas Mellin. 2006. Test case generation for
mutation-based testing of timeliness. Electronic Notes in Theoretical Computer
Science 164, 4 (2006), 97–114.

[8] T. Owen O’Malley, Debra J. Richardson, and Laura K. Dillon. 1996. Efficient
specification-based oracles for critical systems. In Proceedings of California Soft-
ware Symposium. 50–59.

[9] Carlos Pacheco, Shuvendu K. Lahiri, Michael D. Ernst, and Thomas Ball. 2007.
Feedback-directed random test generation. In Proceedings of International Con-
ference on Software Engineering. 75–84.

[10] Sanjai Rayadurgam and Mats Heimdahl. 2001. Coverage based test-case gener-
ation using model checkers. In Proceedings of Annual IEEE International Confer-
ence and Workshop on the Engineering of Computer-Based Systems. 83–91.

[11] Debra Richardson, Owen O’Malley, and Cindy Tittle. 1989. Approaches to
specification-based testing. In Proceedings of ACM SIGSOFT Symposium on Soft-
ware Testing, Analysis, and Verification. 86–96.

[12] Gregg Rothermel and Mary Jean Harrold. 1993. A safe, efficient algorithm for
regression test selection. In Proceedings of International Conference on Software
Maintenance. 358–367.

[13] Matthew J Rutherford and Alexander L Wolf. 2003. A case for test-code gen-
eration in model-driven systems. In Proceedings of International Conference on
Generative Programming and Component Engineering. 377–396.

[14] Qingshun Wang, Lintao Gu, Minhui Xue, Lihua Xu, Wenyu Niu, Liang Dou,
Liang He, and Tao Xie. 2018. FACTS: Automated black-box testing of FinTech
systems. In Proceedings of ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering. 839–844.

[15] W Eric Wong, Joseph R Horgan, Saul London, and Aditya P Mathur. 1998. Effect
of test set minimization on fault detection effectiveness. Software: Practice and
Experience 28, 4 (1998), 347–369.

[16] Tao Xie, Nikolai Tillmann, Jonathan de Halleux, and Wolfram Schulte. 2009.
Fitness-guided path exploration in dynamic symbolic execution. In Proceedings
of IEEE/IFIP International Conference on Dependable Systems & Networks. 359–
368.

862

https://home.kpmg/xx/en/home/media/press-releases/2019/02/global-fintech-investment-hits-record-in-2018.html
https://home.kpmg/xx/en/home/media/press-releases/2019/02/global-fintech-investment-hits-record-in-2018.html

	Abstract
	1 Introduction
	2 Background
	2.1 China Foreign Exchange Trade System
	2.2 Facts

	3 Motivating Example
	4 Overview
	4.1 Problem Statement
	4.2 Extension of Facts

	5 Our Approach
	5.1 Domain-Specific Language (DSL)
	5.2 DSL Design
	5.3 Data Generation

	6 Evaluation
	7 Related Work
	8 Conclusion and Future Work
	References

