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Abstract—Code clones are similar code fragments that share
the same semantics but may differ syntactically to various
degrees. Detecting code clones helps reduce the cost of software
maintenance and prevent faults. Various approaches of detecting
code clones have been proposed over the last two decades, but
few of them can detect semantic clones, i.e., code clones with
dissimilar syntax. Recent research has attempted to adopt deep
learning for detecting code clones, such as using tree-based LSTM
over Abstract Syntax Tree (AST). However, it does not fully
leverage the structural information of code fragments, thereby
limiting its clone-detection capability.

To fully unleash the power of deep learning for detecting code
clones, we propose a new approach that uses tree-based convolu-
tion to detect semantic clones, by capturing both the structural
information of a code fragment from its AST and lexical infor-
mation from code tokens. Additionally, our approach addresses
the limitation that source code has an unlimited vocabulary of
tokens and models, and thus exploiting lexical information from
code tokens is often ineffective when dealing with unseen tokens.
Particularly, we propose a new embedding technique called
position-aware character embedding (PACE), which essentially
treats any token as a position-weighted combination of character
one-hot embeddings. Our experimental results show that our
approach substantially outperforms an existing state-of-the-art
approach with an increase of 0.42 and 0.15 in F1-score on two
popular code-clone benchmarks (OJClone and BigCloneBench),
respectively, while being more computationally efficient. Our
experimental results also show that PACE enables our approach
to be substantially more effective when code clones contain
unseen tokens.

Index Terms—source code, semantic clone, clone detection,
tree-based convolution, structural information, lexical informa-
tion, embedding, token, AST, generalization

I. INTRODUCTION

Clones of program source code (i.e., code clones) are a

pair of similar code fragments that share the same semantics

in terms of functionality but differ syntactically. Code clones

generally result from developers’ copy-and-paste behaviors, or

by different developers implementing the same functionality.

The existence of code clones is problematic for three main

reasons. (1) Code clones unnecessarily increase program size.

As a system increases in size, more software maintenance

*Corresponding author.

efforts are needed. (2) Changes to a code segment, such as

fault fixing, need to be made to its clones as well, thereby

increasing maintenance efforts. Also, if changes are performed

inconsistently, faults could be introduced. (3) Duplicating a

code fragment that contains faults leads to fault propagation.

Although some may argue that code clones enable faster

software development (i.e., developers are less reliant on the

same piece of code), there is also common agreement that

code clones should be detected and managed [1, 2].

One common taxonomy among researchers is to group code

clones into four types [3, 4, 5]. The first three types (Type-

1, Type-2, and Type-3) are largely concerned with textual

similarities, while the remaining type (Type-4) is largely

concerned with functional similarities. Type-4 clones are the

most difficult to detect as they include clones that are highly

dissimilar syntactically but still perform the same function. An

example of a Type-4 clone is a code fragment implementing

bubble sort and another implementing quick sort. To clarify

the differences between Type-3 and Type-4 clones, researchers

divide these two types into the following four categories

based on their syntactical similarity (sorted from the easiest

to most difficult to detect): Very-Strong Type-3, Strong Type-

3, Moderately Type-3, and Weak Type-3/Type-4. In the rest

of this paper, we refer to the two most-difficult-to-detect

categories of clones as semantic clones.

Since the emergence of code clones as a research field,

substantial efforts have focused on detecting and analyzing

Type-1 to Type-3 clones, but they have had limited success

with semantic clones such as Moderately Type-3 and Type-4

clones. For example, despite numerous research tools devel-

oped for detecting Type-3 clones, previous studies [6, 7] found

that most Type-3-clone detectors do not perform as well as

expected. Their findings of applying Type-3-clone detectors

on a popular, public code-clone dataset, BigCloneBench [8],

found that the existing state-of-the-art clone detectors achieved

low recall on code clones with minor syntactic similarity.

In recent years, growing research efforts have adopted deep

learning models to address various problems of programming

languages and software engineering, such as code-clone de-

tection. For example, Wei and Li [9] proposed to treat clone
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detection as a supervised-learning problem in their CDLH

approach. The CDLH approach uses a Word2Vec [10] model

to learn token embeddings to capture lexical information,

and then trains an LSTM [11] model based on an Abstract

Syntax Tree (AST) to combine these embeddings into a binary

vector to represent a code fragment. The CDLH approach

substantially surpasses previous approaches and is able to

detect clones that are beyond the scope of traditional clone

detectors.

However, the CDLH approach [9] does not make sufficient

use of the structural information in an AST, despite such in-

formation being crucial to the semantics of the corresponding

code. The CDLH approach neglects the information of AST

node types and it only implicitly uses the structural informa-

tion of the AST. We find that the clone-detection capability

can be further improved by leveraging the information of the

AST node types and using the structural information explicitly.

To fully unleash the power of deep learning for detecting

code clones, we propose a new approach that uses tree-

based convolution to detect semantic clones, by explicitly

capturing both the structural information of a code fragment

from its AST and lexical information from code tokens. In

our approach, the tree-based convolution can capture subtree

features in an AST. We further enhance the AST with code

tokens by appending each token to the corresponding AST

node as a new child node. In this way, we are able to make

use of lexical information in addition to structural information.

Both our preceding basic approach and CDLH, along with

some other studies [12], face a limitation of lacking generaliza-

tion when training a clone detection model with code fragment

pairs that are highly dissimilar to the code fragment pairs used

to test the model. We refer to these highly dissimilar code

fragment pairs as unseen data. These dissimilarities can be

in the form of the vocabulary of the tokens and the semantic

meaning of the pairs (e.g., all pairs used in training are related

to list objects while all pairs used in testing are related to tree

objects). To address the issue of unseen data, our approach

includes a novel embedding technique called position-aware

character embedding (PACE). Our PACE technique leverages

and improves one-hot embedding [13] (previously proposed to

embed words in natural language), which essentially converts

every string to a number. The advantage of one-hot embedding

is that words can be stored efficiently (since all it takes to store

a word is one number). However, one major disadvantage of

one-hot embedding is that it does not capture any information

about similarity of words. To address this disadvantage, our

PACE technique treats a token as a position-weighted com-

bination of character one-hot embeddings. Compared to other

embedding techniques such as Word2Vec [10], PACE does not

use the semantic meaning of the word to detect similarity;

instead, PACE relies on only the position and ordering of

characters.

This paper makes the following main contributions:

Effective and efficient deep learning approach to detect se-
mantic code clones. We propose to use tree-based convolution

on token-enhanced ASTs to detect semantic code clones. Our

1 public void CopyFile(File source, File destination) {
2 fis = new FileInputStream(source);
3 fos = new FileOutputStream(destination);
4 byte[] buffer = new byte[4096];
5 int read;
6 while ((read = fis.read(buffer)) != -1) {
7 fos.write(buffer, 0, read);
8 }
9 }

10

11 public static void main(String[] args) {
12 InputStream in = null;
13 in = new URL(args[0]).openStream();
14 IOUtils.copyBytes(in, System.out, 4096, false);
15 IOUtils.closeStream(in);
16 }

Fig. 1. Example of a Type-4 clone.

approach does not need to transform an AST into a full binary

tree, and can achieve higher effectiveness and efficiency than

an existing state-of-the-art approach (CDLH) [9].

Novel technique to exploit lexical information in source
code tokens. In our approach, we propose a novel embedding

technique, PACE, to exploit lexical information in source code

tokens and mitigate the threat that the unlimited vocabulary of

tokens poses to generalization.

Experiments. We conduct experiments on two public code-

clone datasets, and the experimental results show that our

deep learning approach can substantially outperform CDLH

by an increase of 0.42 and 0.15 in F1-score on two pop-

ular code-clone benchmarks (OJClone and BigCloneBench),

respectively, while being more computationally efficient. Our

experimental results also show that our PACE technique can

make our approach more effective on unseen data while

maintaining its effectiveness on seen data. Lastly, our ex-

perimental results on comparing multiple variations of our

approach provide insights into how much structural or lexical

information contributes to capturing the semantics of source

code.

II. BACKGROUND

Code clones may differ syntactically to various degrees. One

common taxonomy is to group code clones into the following

four types [3, 4]:

• Type-1 (T1): syntactically identical code fragments, ex-

cept for differences in white space and comments.

• Type-2 (T2): in addition to Type-1 clone differences, syn-

tactically identical code fragments, except for differences

in identifier names and literal values.

• Type-3 (T3): in addition to Type-2 clone differences,

syntactically similar code fragments that differ at the

statement level. These fragments can have statements

added, modified, or removed with respect to each other.

• Type-4 (T4): syntactically dissimilar code fragments that

are still the same semantically. For example, one code

fragment implementing bubble sort and another code

fragment implementing quick sort are considered a pair

of Type-4 clones.

Figure 1 shows an example of a Type-4 clone from Big-

CloneBench [8]. The two methods in the figure are both
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used to copy a file. We can see that the code fragments that

implement the same functionality have great differences in

their structures and tokens. In this case, SourcererCC [7],

which uses only token information, and Deckard [14], which

uses only structural information, fail to detect this code clone.

However, deep learning approaches can help learn the nec-

essary information to detect this code clone. During training,

deep learning approaches can learn different implementations

of file copying. For example, CDLH [9] may be able to

learn the semantic information of file copying from many

code fragments during training, and therefore can detect this

code clone during testing. However, one major limitation of

CDLH is the information loss when the code fragments are too

large. Section IV provides detailed explanations for why our

approach can detect code clones such as the one in Figure 1

and even larger ones that can be challenging for CDLH.

III. PROBLEM DEFINITION

Given two code fragments Ci and Cj , we set their label

yi,j to 1 if (Ci, Cj) is a clone pair or -1 otherwise. Then a

set of training data of n code fragments {C1, ..., Cn} can be

represented as D = {(Ci, Cj , yi,j)|i, j ∈ n, i < j}. Our goal

is to train a deep learning model to learn a function φ that maps

any code fragment C to a feature vector v so that for any pair

of code fragments (Ci, Cj), the cosine similarity si,j of the

two feature vectors vi and vj is as close to the corresponding

label yi,j . We use Equation 1 to calculate the cosine similarity

of two vectors of the same dimension:

Cosin Similarity(u, v) =
u · v

‖u‖‖v‖ (1)

Thus, we have the following equation (Equation 2):

si,j =
φ(Ci) · φ(Cj)

‖φ(Ci)‖‖φ(Cj)‖ (2)

where si,j ∈ [−1, 1].
To determine whether a pair of code fragments (Ci, Cj) is a

clone pair or not during inference, we need to set a threshold

value σ such that (Ci, Cj) is a clone pair if si,j ≥ σ. We

choose σ empirically based on the validation set.

IV. PROPOSED APPROACH

In this section, we first introduce the overview of our

proposed approach based on tree-based convolution, originally

proposed to solve a program-classification problem [15, 16]

for clone detection. We next explain the technical details of

tree-based convolution and “continuous binary tree.” We then

use an example to illustrate how we enhance an AST with

tokens in the corresponding code fragment. Finally, we explain

the motivation and implementation detail of our novel token

embedding technique, PACE.

A. Approach Overview

Figure 2 shows the overview of our approach named Tree-

Based Convolution for Clone Detection (TBCCD). To process

a code fragment, we first parse it into its AST. We then produce

an additional AST, denoted as AST+, resulted from enhancing

Fig. 2. The overview of TBCCD (AST+ denotes token-enhanced AST).

the AST with tokens in the code fragment. The users of our

approach can configure it to use either AST or AST+ to con-

duct clone detection. Section VI describes experimental results

using variants of our approach with different configurations.

Then we initialize the embeddings of each type of AST

nodes (and tokens in the case of AST+), before feeding

the vectorized AST/AST+ into tree-based CNNs with a max

pooling layer and a fully connected layer. To detect code

clones, we use two neural networks in parallel to process

a pair of code fragments at the same time. The two neural

networks share the same set of parameters. We take the output

of the fully connected layer as the feature vector of a code

fragment and calculate the cosine similarity of the two vectors.

Then we train the neural networks through gradient descent

backpropagation to minimize the following loss function:
∑
i

∑
j

(si,j − yi,j)
2 (3)

In summary, TBCCD learns to make the cosine similarity

of non-clone pairs as close to −1 as possible and the cosine

similarity of clone pairs as close to 1 as possible.

B. Tree-Based Convolution and Max Pooling

The most common convolution kernels have the shape of

a square, whereas in tree-based convolution, each kernel (i.e.,

feature detector) takes the shape of a triangle, as illustrated in

Figure 3. A set of fixed-depth feature detectors (d ≥ 2, where

d denotes the depth) are used to slide over the entire tree to

capture subtree features. Each node in the AST/AST+ is the

uppermost node in the sliding window for exactly once. When
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Fig. 3. Illustration of tree-based convolution with max pooling. In this case,
there are four feature detectors, each with a fixed depth of two. The step of
tree-based convolution is illustrated with only one feature detector using the
red color. The tree structure maintains the same shape before and after the
convolution, while the dimension of each node’s vector has changed from the
original three to four, which is the number of feature detectors. After tree-
based convolution, max pooling is applied to each dimension of the vectors.

there are not enough layers of nodes in the sliding window,

we add vectors of all zeros to represent the missing nodes.

After tree-based convolution, max pooling is applied to each

dimension in the output vectors; each dimension corresponds

to one feature detector, thereby reducing an AST/AST+ of any

depth to a fixed-length vector.

Formally, in a fixed-depth window of d, if there are n nodes

with vector representations x1, ..., xn, where xi ∈ R
Nf , Nf

is the dimension of the vector representations, then the output

of tree-based convolution is

y = tanh(

n∑
i=1

Wconv,i · xi + bconv) (4)

where y, bconv ∈ R
Nf ,Wconv,i ∈ R

Nc×Nf (Nc is the number

of feature detectors).

C. Continuous Binary Tree

One problem of the tree-based convolution is that unlike

the nodes in a parse tree of natural languages whose number

of children is limited to two, an AST node theoretically

could have an unlimited number of children (e.g., the case

statement in a switch expression). Such unlimited number

is problematic because the number of weight matrices, i.e.,

Wconv,i in Equation 4, cannot be determined. A commonly

used workaround [12, 9] is to convert an AST into a full

Fig. 4. Illustration of adopting “continuous binary tree” in tree-based
convolution.

binary tree according to a pre-defined set of rules. However,

some structural information could be lost during the process.

We propose a different technique where any subtree in an

AST is viewed as a “binary” tree, regardless of its size and

shape. Such an AST is referred to as a “continuous binary

tree” [15, 16].

As demonstrated in Figure 4, there are only three weight

matrices in tree-based convolution: W t
conv,W

l
conv , and W r

conv

where superscripts t, l, r refer to “top”, “left”, and “right”,

respectively. For node xi in a sliding window, its weight

matrix for convolution Wconv,i is a linear combination of

W t
conv,W

l
conv, and W r

conv , whose coefficients are computed

according to the relative position of a node in the sliding

window. dti denotes the number of layers above, dbi denotes

the number of layers below, nl
i denotes the number of nodes

to the left (on the same layer), and nr
i denotes the number of

nodes to the right. Thus we can define Wconv,i as

Wconv,i =
dbi

dbi + dti
W t

conv +
dti

dbi + dti
W b

conv,i (5)

where dbi + dti = d, and we have defined an intermediate

variable W b
conv,i, which is written as:

W b
conv,i =

⎧⎪⎪⎨
⎪⎪⎩

nr
i

nr
i+nl

i

W l
conv +

nl
i

nr
i+nl

i

W r
conv nl

i ≥ 1 or nr
i ≥ 1,

1
2W

l
conv +

1
2W

r
conv nl

i = nr
i = 0.

(6)

In our experiments, we choose d = 2 , which we find to be

sufficient.

D. Token-Enhanced AST (AST+)

Tokens in source code generally include keywords, con-

stants, identifiers, strings, special symbols, and operators.

Statistics show that the majority of code tokens are user-

defined identifiers. The names of these identifiers would carry

a lot of semantic information if developers follow certain nam-

ing conventions; such semantic information could supplement

the structural information in an AST.
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Fig. 5. Illustration of a token-enhanced AST for the Java code snippet int
a = b + 3.

Previous approaches [12, 9] have also used the lexical

information in tokens in their models, using variants of RNN.

In our approach, we design a novel way to incorporate lexical

information into tree-based CNN to further improve the ability

of our approach to detect semantic clones. Specifically, we

add each token in the code fragment as a child node to the

corresponding AST node in the original AST and assign to

the child node a vector of the same dimension as the AST

node’s vector. Then we apply the same tree-based convolution

over the token-enhanced AST. Each token embedding and AST

node embedding is randomly initialized and learned during

training.

Figure 5 shows an example of turning a Java code snippet

into a token-enhanced AST. The tokens that we add to the AST

is identified with dashed-line boxes, and the AST (in solid

lines) represents a simple line of Java code, int a = b + 3.

As shown in Section VI, the additional lexical information

from tokens substantially improves the F1-score for clone

detection, especially on BigCloneBench.

E. Position-Aware Character Embedding (PACE)

The vocabulary size of tokens is a special challenge to

modeling source code [17]. In natural language processing

(NLP), approaches usually limit vocabulary to the most com-

mon words, e.g., top 30,000 words during data processing. The

out-of-vocabulary tokens are replaced by a special “〈UNK〉”
token. Doing so would not always work well since there is an

unlimited number of code tokens (e.g., developers can name

identifiers in arbitrary ways). If we keep a regular vocabulary

size for source code, there would be too many “〈UNK〉”
tokens. Hellendoorn and Devanbu [17] have shown that it is

unreasonable for source code models to use such a vocabulary.

This challenge poses a dilemma where one has to increase

the vocabulary size of tokens to avoid too many “〈UNK〉”
tokens for the model to perform well, but doing so makes it

more difficult to train the deep neural networks. Even with a

very large vocabulary size of tokens, a model still may not

generalize to source code that uses out-of-vocabulary tokens.

To address this problem, we propose a novel embedding

technique called position-aware character embedding (PACE),

which essentially treats each token in source code as a

position-weighted combination of character one-hot embed-

dings. First, we gather all possible characters in the source

code tokens (except strings) and determine the total number n,

which is the dimension of token embeddings. Then we trans-

form the set of unique characters into one-hot embeddings.

For a token that has k characters denoted as c1, c2, ..., ck, its

embeddings can be obtained with the following equation:

k∑
i=1

k − i+ 1

k
× emb[ci] (7)

where emb[ci] is the one-hot embedding of ci.
The motivation for PACE stems from our observation that

the names of similar identifiers often appear to be similar.

For example, in the Java JDK, there are classes such as

LinkedList and ArrayList, which are ordered collections that

allow duplicates. One does not need to train a language model

to determine that these names share similar semantics; one can

simply tell that they are similar because they share common

characters and the characters appear in a similar order. There

is good chance that the names of the instances of these classes

may appear to be similar as well. Thus, our proposed PACE

technique essentially encodes a token as a position-weighted

sum of its character one-hot embeddings.

V. EXPERIMENTAL SETUP

We evaluate the effectiveness of our approach by addressing

the following research questions:

RQ1: How effective are the different variants of our approach

at detecting code clones?

RQ2: How does the use of structural and lexical information of

source code affect the effectiveness of detecting code clones?

RQ3: How does our approach’s TBCCD+token variant com-

pare to existing state-of-the-art approaches at detecting code

clones?

RQ4: How effective is our approach at detecting code clones

when the training set and test set consist of code fragment

pairs with different semantic meanings?

We address RQ1 to understand which variants of our

approach are most effective at detecting code clones, where

each variant uses more or less information (e.g., type of the

AST nodes). We then address RQ2 to provide insights into

why certain variants can be more or less effective, and RQ3

to evaluate how effective and efficient our approach is when

compared to the existing state-of-the-art approaches. Lastly,

we evaluate our approach’s clone detection ability when the

training set and test set consist of code fragments with different

semantic meanings.

A. Datasets

Our experiments use BigCloneBench [8] and OJClone [15],

two public datasets commonly used to evaluate approaches of

detecting code clones.

BigCloneBench, released by Svajlenko et al. [8], is the first

big-data-curated benchmark of real clones to evaluate modern

tools of detecting code clones. It was built by mining clones

of frequently implemented functionalities from 25,000 Java

systems (totaling 365 million lines of code), and the clones
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TABLE I
PERCENTAGE OF CLONE TYPES IN BIGCLONEBENCH (T1: TYPE-1; T2:
TYPE 2; VST3: VERY-STRONG TYPE-3; ST3: STRONG TYPE-3; MT3:

MODERATELY TYPE-3; WT3/T4: WEAK TYPE-3/TYPE-4).

Clone Type T1 T2 VST3 ST3 MT3 WT3/T4

Percent (%) 0.455 0.058 0.053 0.19 1.014 98.23

are verified by three domain experts. The current version

of BigCloneBench has about 8 million tagged true clone

pairs covering 43 functionalities [6]. The authors of some

recent approaches, e.g., [18, 9], still chose to use the first

version of BigCloneBench [8], which contains only 6 million

tagged true clone pairs and 260,000 tagged false clone pairs,

covering 10 functionalities. To compare our approach with

these approaches, we also use that version of BigCloneBench.

Due to the ambiguity between the definitions of Type-3

and Type-4 clones, the creators of BigCloneBench further

divided these two types of clones into four categories based on

their syntactical similarity: Very-Strong Type-3 with [0.9, 1)

similarity, Strong Type-3 with [0.7, 0.9) similarity, Moderately

Type-3 with [0.5, 0.7) similarity, and Weak Type-3/Type-4

with [0, 0.5) similarity. The syntactical similarity is measured

as the ratio of lines or tokens that a code fragment shares with

another after Type-1 and Type-2 normalization, identified by

the Linux tool “diff”. Table I summarizes the data distribution

in the first version of BigCloneBench in terms of clone types.

Since the majority of code clone pairs are Weak Type-3/Type-

4 clones, BigCloneBench is quite appropriate to be used for

evaluating the detection of semantic clones.

OJClone, released by Mou et al. [15], is another public

dataset used to evaluate code-clone detection. Originally the

dataset was used for program classification but it has since

been used by others [9] for code-clone detection as well.

The dataset consists of solutions submitted by students to 104

programming questions on OpenJudge [19], written in C. For

each question, there are 500 corresponding solutions, each of

which is verified to be correct by OpenJudge. Solutions for

the same question are considered clones.

B. Experimental Setting

1) RQ1 and RQ2: We conduct experiments on both datasets

using the 1:1:8 experimental setting for validation, test, and

training sets, respectively. We evaluate our approach in this

experimental setting since it is commonly used in other related

work [20, 21, 22]. For the BigCloneBench dataset, we use the

same 9,134 code fragments from related work [9]. For the

OJClone dataset, we select 500 solutions for each of the first

15 questions (question IDs 1-15), amounting to 15 × 500 =
7, 500 code fragments.

2) RQ3: Our goal is to evaluate our proposed approach

against CDLH [9], the existing state-of-the-art approach that

uses AST-based LSTM to detect semantic clones. Thus, we

strive to replicate CDLH’s experimental setting as closely as

possible for both datasets.

For the BigCloneBench dataset, the code fragments that

we use in RQ1 are the same as the ones used by the

CDLH authors [9]. Just as the authors of CDLH do for their

experiments, we randomly select 500 code fragments for the

validation set, 500 code fragments for the test set, and used

the remaining 8,134 code fragments for the training set. We

have 124,750 pairs of code fragments in the validation set

and test set where true clone pairs account for 13.9% and

14.0%, respectively, and 33,068,778 pairs of code fragments

in the training set. Lastly, we randomly sample about one

million pairs from these pairs where true clone pairs account

for 14.2%.

For the OJClone dataset, the 7,500 code fragments that we

use in RQ1 are the same as the ones used by the CDLH

authors in their experiments. Just as the authors of CDLH do

for their experiments, we randomly select 500 code fragments

for the validation set, 500 code fragments for the test set, and

used the remaining 6,500 code fragments for the training set.

To construct clone pairs, we pair every two code fragments

together in the validation, test, and training sets. Thus, we

have 124,750 pairs of code fragments in the validation set and

test set where true clone pairs account for 6.7% and 6.8%,

respectively, and 21,121,750 pairs of code fragments in the

training set. Due to the vast number of pairs in the training

set, we randomly sample about one million pairs from these

pairs where true clone pairs account for 6.6%.

Our correspondence with the CDLH authors inform us of

only the proportion that they use for the validation, test,

and training sets. Therefore, due to the randomness in their

selection of code fragments, we are unable to use the exact

same set of code fragments in our experiments. To mitigate any

bias from randomly selecting our validation, test, and training

sets, we report the medians of results (precision, recall, and

F1-score) with the median F1-score from randomly generating

the sets ten times in Section VI-C. We also report the averages

for precision, recall, and F1-score individually.

3) RQ4: Our goal is to evaluate our approach’s generaliza-

tion ability by using code fragment pairs that are substantially

different semantically when conducting training and testing

with our approach. In contrast to the 1:1:8 experimental setting

used for RQ1, which at times have pairs in the training

set that are semantically similar to pairs in the test set, our

experimental setting for RQ4 ensures that all pairs in the

training set are semantically different than the pairs in the

test sets.

To accomplish this goal, we use the OJClone dataset, which

contains 104 questions. Similar to RQ1, we use the first

15 questions (question IDs 1-15) and the 500 solutions per

question to obtain 7,500 code fragments. From these code

fragments, we then use the same 6,000 as what we use for

the training set in RQ1. For the test sets, we create in total

six sets each composed of the solution code fragments from

the 15 questions. The first test set uses question IDs 16-30,

the second test set uses question IDs 31-45, and so on. The

last test set uses question IDs 90-104 and question ID 16. For

each test set, we randomly select 750 code fragments from the

possible 7,500 solutions. We do not use any code fragments
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TABLE II
EFFECTIVENESS OF OUR APPROACH’S VARIANTS.

BigCloneBench OJClone

Approach P R F1 P R F1

TBCCD 0.78 0.73 0.76 0.97 0.95 0.96
TBCCD+token 0.95 0.95 0.95 0.99 0.99 0.99
TBCCD+token−type 0.94 0.95 0.95 0.92 0.85 0.88
TBCCD+token+PACE 0.94 0.96 0.95 0.99 0.99 0.99

TABLE III
INFORMATION SOURCES USED BY DIFFERENT APPROACHES.

Approach AST AST Node Type Code Token

CDLH � × �
TBCCD � � ×
TBCCD+token � � �
TBCCD+token−type � × �
TBCCD+token+PACE � � �

for validation and instead simply use the same threshold as

the one from RQ1’s validation set.

4) All RQs: We choose the other hyper-parameters for

training our approach as follows: the number of convolution

kernels is 600 and the depth of sliding window is 2; the

dimension of the fully connected layer is 50. We train the

model for ten epochs and use the SGD optimizer with batch

size 1 to train the hyper-parameters. The threshold of our

approach for prediction is determined with the validation set of

RQ1-RQ3. The threshold for RQ4 is the same as the one that

we use for RQ1. Lastly, we use TensorFlow [23] to implement

our models and our code is publicly available. The datasets that

we use for each RQ are also publicly available [24].

VI. EXPERIMENTAL RESULTS

A. RQ1: Effectiveness of our approach’s different variants

Our approach evaluated in the experiments includes four

variants:

• TBCCD: tree-based convolution over AST. The dimen-

sion of AST node embedding is 100. We randomly

initialize the embedding for each AST node type and

jointly learn the embeddings of AST node and subtree

features at the same time during the training.

• TBCCD+token: tree-based convolution over token-

enhanced AST (AST+). The dimension of both AST

node embedding and token embedding is 100. Token

embeddings and AST node embeddings are randomly

initialized and learned during training.

• TBCCD+token−type: tree-based convolution over AST+

but information regarding the AST nodes’ type is omit-

ted, where each AST node type has the same embed-

ding. The token embeddings are the same as those in

TBCCD+token.

• TBCCD+token+PACE: tree-based convolution over

AST+, using our PACE embedding technique for both

AST nodes and tokens. The dimension of the embeddings

is dependent on the number of unique characters in

the dataset (being 78 for BigCloneBench and 79 for

Fig. 6. The PR-curve of our approach’s four variants on the validation set of
OJClone.

Fig. 7. The PR-curve of our approach’s four variants on the validation set of
BigCloneBench.

OJClone). We treat the lower case and upper case of the

same letter as two different characters, since capitaliza-

tion may convey additional meaning.

For each variant of our approach, we choose the set of

parameters that yield the best F1-score on the validation set to

evaluate its performance on the test set. Table II summarizes

the experimental results and Table III lists the information

sources of each variant along with related work CDLH [9].

As shown in Table II, after we incorporate our PACE

technique with TBCCD+token, its F1-score barely changes.

It seems that PACE, our new embedding technique, does

not affect the effectiveness much. Yet as discussed in Sec-

tion VI-D, TBCCD+token+PACE has been shown to be the

most effective variant when the semantic meaning of the

training and test sets dramatically differ.

We further draw the PR-curve of our approach’s each variant

to compare their AUCs, as shown in Figures 6 and 7. We

vary the threshold σ defined in Section III and record the

precision and recall of each variant on the validation set.

Similar to Table II, these two figures show that TBCCD+token
and TBCCD+token+PACE are the best variants on the two

benchmark datasets. TBCCD+token−type has a drop in AUC

on OJClone compared to the others, while TBCCD has the

worst AUC on BigCloneBench.
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TABLE IV
TOTAL AND AVERAGE OCCURRENCES OF THE MOST FREQUENT AST

NODE TYPES IN BIGCLONEBENCH.

Rank AST Node Type Total Average

1 MethodInvocation 182,011 19.9
2 MemberReference 168,330 18.4
3 Literal 130,885 14.3
4 ReferenceType 115,807 12.7
5 StatementExpression 107,205 11.7
6 BinaryOperation 68,019 7.4
7 VariableDeclarator 63,947 7.0
8 LocalVariableDeclaration 59,732 6.5
9 ClassCreator 35,966 3.9

10 Assignment 32,160 3.5
11 BlockStatement 29,902 3.3
12 IfStatement 24,878 2.7

TABLE V
TOTAL AND AVERAGE OCCURRENCES OF THE MOST FREQUENT AST

NODE TYPES IN OJCLONE.

Rank AST Node Type Total Average

1 ID 421,381 56.2
2 Constant 159,853 21.3
3 BinaryOp 129,421 17.3
4 TypeDecl 84,896 11.3
5 Decl 82,736 11.0
6 IdentifierType 79,422 10.6
7 ArrayRef 68,035 9.1
8 Assignment 67,163 9.0
9 UnaryOp 54,689 7.3

10 Compound 49,471 6.6
11 FuncCall 35,301 4.7
12 ExprList 35,152 4.7

B. RQ2: Effectiveness of structural and lexical information

Comparing the effectiveness of TBCCD+token,

TBCCD+token−type, and TBCCD as shown in Table II,

we have the following findings. (1) Structural information

(AST Node Type) and lexical information (Code Token)

are complementary to each other. When combined together,

TBCCD+token achieves the highest F1-score compared to

TBCCD+token−type and TBCCD. (2) Structural information

matters more in OJClone than BigCloneBench, since without

the information of AST node type, TBCCD+token−type

drops dramatically from 0.99 to 0.88 in F1-score on OJClone

compared to TBCCD+token, but remains the same 0.95 in

F1-score on BigCloneBench. (3) Lexical information matters

more in BigCloneBench, since without the information

from source code tokens, TBCCD drops dramatically from

0.95 to 0.76 in F1-score on BigCloneBench compared to

TBCCD+token, but only slightly from 0.99 to 0.96 in

F1-score on OJClone. To better understand the dramatic drop

in F1-score on BigCloneBench but not on OJClone, we study

the the frequency of each AST node type. Tables IV and V

summarize the frequent AST node types in the two datasets.

In BigCloneBench, the most frequent AST node type

is “MethodInvocation,” which appears 182,011 times across

9,134 code fragments, yielding an average of 19.9 per code

fragment. On the other hand, OJClone’s “FuncCall” node type

ranks the 11th in terms of frequency, appearing 35,301 times

across 7,500 solutions, an average of 4.7 per solution. One

drawback of TBCCD is that the vanilla AST that it uses

regards every method invocation as the same. The semantics

of the functionality of the called method is lost. We believe

that this loss of semantics and the discrepancy of method

invocation frequencies between the two datasets cause the

dramatic drop in effectiveness of TBCCD on BigCloneBench

yet only a slight drop on OJClone. We suspect that the

difference in the distribution of AST node types may be

attributed to the programming environment for the dataset. The

data from OJClone come from a programming environment

where the users write up solutions from scratch, whereas

BigCloneBench is mined from large open-source repositories

where the usage of libraries is much more frequent.

C. RQ3: Effectiveness of our approach compared to state-of-
the-art approaches

Apart from CDLH, we also compare our approach against

three other related approaches in Table VI (as evaluated by

the CDLH authors [9]):

• Deckard [14]: a popular AST-based approach that also

uses a feature vector to represent an AST and its subtrees.

• Deep Learning for Code Clones (DLC) [12]: a recent

approach that explores the use of deep learning for

detecting code clones. It uses a recursive autoencoder to

extract unsupervised deep features.

• SourcererCC [7]: a state-of-the-art token-based approach.

It can detect some Type-3 clones despite using a bag-of-

tokens representation.

Note that the preceding three related approaches do not need

to be trained in a supervised manner, and thus their results

should not vary much on different test sets from the same

dataset.

We use the same experimental settings as what the CDLH

authors use for their experiments to evaluate our approach

against the other related approaches in terms of precision (P),

recall (R), and F1-score (F1). As shown in Table VI, our

approach outperforms CDLH in terms of F1-score on both

datasets. By exploiting both the structural information in the

AST and lexical information in code tokens, TBCCD+token

achieves an increase of 0.42 in F1-score on OJClone and an

increase of 0.15 in F1-score on BigCloneBench, compared to

CDLH.

CDLH neglects the information of AST node types and uses

only the structure of ASTs as a guidance for the order to

encode each token in a sequence into one vector at the root;

therefore, it does not fully utilize the structural information in

source code. On the contrary, tree-based CNN is specifically

designed to capture the structural information of program-

ming languages; the structural information is essential to the

semantics of the code. While CDLH is intended to capture

both lexical and syntactical information, as suggested by the

title of the paper [9], our approach outperforms CDLH on

OJClone using only syntactical information, as shown in Table

VI. Our results show that CDLH does not sufficiently capture
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TABLE VI
EFFECTIVENESS OF OUR APPROACH AND OTHER RELATED APPROACHES

USING THE SAME EXPERIMENTAL SETTINGS AS THOSE USED BY [9].
RESULTS OF APPROACHES MARKED WITH ‡ ARE TAKEN DIRECTLY

FROM [9].

BigCloneBench OJClone

Approach P R F1 P R F1

Deckard‡ 0.93 0.02 0.03 0.99 0.05 0.10

DLC‡ 0.95 0.01 0.01 0.71 0.00 0.00

SourcererCC‡ 0.88 0.02 0.03 0.07 0.74 0.14

CDLH‡ 0.92 0.74 0.82 0.47 0.73 0.57
TBCCD+token(median) 0.97 0.96 0.97 0.99 0.99 0.99
TBCCD+token(average) 0.97 0.96 0.96 0.99 0.99 0.99

syntactical information, and it is best to capture syntactical

information of source code explicitly rather than implicitly.

Our results indicate that tree-based CNN is more effective

than tree-based LSTM in capturing code semantics. One

reason for our results may be that there are a lot of layers

of nodes in an AST (being a typical case), and the large depth

makes even LSTM (designed to improve RNN regarding long-

range dependency) unable to remember information that is a

long distance away, whereas our approach does not suffer from

this issue. We plan to conduct additional experiments to further

understand this issue in our future work.

In addition to comparing the effectiveness of our approach

with CDLH, we also compare the efficiency. Due to their

recurrent structure, RNNs cannot be computed in parallel. As

a result, training RNNs takes quite some time, limiting its

applications. Compared to RNNs, CNNs generally take much

less time to train, since the convolution steps can be carried

out in parallel. LSTM is one type of RNN, so our approach

using tree-based CNN is likely more computationally efficient

than CDLH, which uses tree-based LSTM.

Wei and Li [9] do not report the training time of CDLH in

their paper. Due to insufficient details in their paper, we have

not been able to completely replicate CDLH. Nevertheless,

using our partially replicated version of CDLH, we are not

able to finish training on the datasets in two days, whereas we

are able to finish training for our approach in several hours.

D. RQ4: Effectiveness of our approach when using training
and test sets with different semantic meanings

To test the generalization ability of our approach and to

measure the effectiveness of our novel PACE embedding

technique, we use the OJClone dataset as described in Sec-

tion V-B3, and compare the effectiveness of TBCCD+token

and TBCCD+token+PACE.

As shown in Table VII, TBCCD+token is the worst per-

former in the generalization test, in contrast to the finding

that it is one of the best performers in RQ1 (Section VI-A).

This result is what we expect since TBCCD+token exploits

token information with language models and thus likely does

not generalize well to code fragments that have substantially

different semantic meanings as the code fragments from the

training set. Aside from the code fragments with different

TABLE VII
USING TBCCD+TOKEN AND TBCCD+TOKEN+PACE TO DETECT

CLONES IN UNSEEN DATA FROM OJCLONE.

TBCCD+token TBCCD+token+PACE
Question IDs P R F1 P R F1

16 ∼ 30 0.17 0.42 0.25 0.35 0.46 0.40
31 ∼ 45 0.26 0.58 0.36 0.51 0.62 0.56
46 ∼ 60 0.21 0.54 0.31 0.59 0.48 0.53
61 ∼ 75 0.27 0.52 0.36 0.58 0.49 0.53
76 ∼ 90 0.25 0.50 0.34 0.61 0.44 0.51
91 ∼ 104 + 16 0.23 0.49 0.31 0.45 0.41 0.43

semantic meanings, we also find that the code fragments

in the test sets contain a lot of out-of-vocabulary tokens:

there are 3,820 tokens in the training set vocabulary, while

there are 9,251 tokens in total that are out-of-vocabulary in

the 6 test sets. This poor performance is precisely why we

propose PACE. TBCCD+token+PACE consistently outper-

forms TBCCD+token across the 6 test sets, demonstrating

the effectiveness of PACE.

According to the way that we construct a test set, only
50×49×15
750×749 = 6.54% are true clone pairs, indicating that

guessing all pairs to be true clone pairs should yield a F1-

score of 0.12. Another baseline is 0.14 of SourcererCC, the

best F1-score that a traditional approach can get on OJClone,

as shown in Table VI. Compared to these baselines, the

two variants of our approach both have learned semantic

patterns to various degrees and are much better than traditional

approaches. Yet, we cannot overlook the fact that even the

best performer (TBCCD+token+PACE) drops about 50% in

F1-score compared to its stellar performance in RQ1 (from

0.99 to around 0.50). Our finding indicates that the first 15

programming questions in OJClone are quite different than the

others, and the 15 programming questions simply may not be

enough for neural networks to learn enough patterns in source

code. In future work, we plan to conduct more experiments

to further investigate this issue and more research efforts to

develop a more generalizable and practical approach.

VII. RELATED WORK

A. Traditional Approaches

Most traditional approaches of detecting code clones are

targeted at Type-3 clones.

Deckard [14] is a popular AST-based approach that com-

pares two code fragments over a vector representation rather

than subtree. Similar to their approach, our approach also

converts ASTs into vectors. However, unlike Deckard, which

generates vectors using pre-defined rules (each dimension

represents the occurrences of a specific tree pattern in the

subtree), our vector representations of code fragments are

learned in a supervised fashion.

SourcererCC [7] is a token-based approach for detecting

code clones. Similar to our approach, SourcererCC detects

code clones at the lexical level by comparing subsequences

but it does not use the structural information of the code.
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Various researchers have proposed other approaches be-

sides AST-based or token-based approaches to detect Type-

4 clones. Komondoor and Horwitz [25] use Program De-

pendency Graphs (PDGs) to detect clones. They represent a

program as a dependency graph, and transform the problem

of clone detection into finding isomorphic subgraphs over

PDGs. PDGs contain a program’s control-flow and data-flow

information, which carries more semantic information than an

AST. However, identifying isomorphic subgraphs is an NP-

hard problem, and such PDG-based approach is difficult to

scale. Other approaches to detecting semantic clones include

using static analysis to extract the memory states for each pro-

cedure exit point [26] and using random tests to compare the

outputs of two code fragments [27]. Both of these approaches

need to compile and run the code, while our approach can be

applied statically to uncompilable code.

B. Deep Learning Approaches

With advances in deep learning, the use of deep learning to

detect code clones has emerged in recent years.

White et al. [12] propose to first use RNN to learn “term

embeddings” of source code and then train a recursive autoen-

coder to learn the vector representation of an entire AST (after

transforming an AST to a full binary tree), thus combing both

lexical and syntactical information for detecting code clones.

However, as the authors point out in their paper [12], their

work is still preliminary and is largely meant to demonstrate

the feasibility of using deep learning to detect code clones

rather than showing its practicality.

CCLearner [18] is another approach of clone detection

based on deep learning. It categorizes tokens into eight cate-

gories. For a pair of code fragments (methods), it calculates

eight similarity scores in terms of token frequency in each

category to form a feature vector, which is then fed to a deep

neural network. The feature vector is manually calculated,

and the neural network can be replaced by other classifiers.

CCLearner is mainly a token-based approach of clone detec-

tion based on deep learning.

In order to effectively detect Type-4 clones, Wei and Li

[9] formulate code-clone detection as a supervised learning-

to-hash problem and propose an end-to-end deep learning

approach named CDLH. They use an AST-based LSTM to

structurally encode lexical information of a code fragment into

a vector and add a hash layer to learn binary embedding for

better efficiency when comparing two vectors. In their follow-

up work [28], they propose to use unlabeled data to further

improve effectiveness and use adversarial training to make the

learned model more robust. CDLH well surpasses previous

related approaches in detecting Type-3 and Type-4 clones in

terms of their F1-scores. As confirmed by our experiments,

tree-base convolution can capture code structural information

in ASTs more effectively than tree-based LSTM. In fact, our

work achieves even better results than CDLH on the two

datasets based on what Wei and Li [9] report in their paper.

C. Unlimited-token vocabulary

Unlimited vocabulary size of tokens in source code poses

a major challenge to modeling source code [17]. A common

technique that can mitigate the challenge is to separate a token

into a sequence of tokens according to camel case [29]. Hu

et al. [21] propose a new technique to represent the out-of-

vocabulary tokens for source code: this technique essentially

uses the corresponding AST node type embedding to represent

the out-of-vocabulary token instead of the “〈UNK〉” token

commonly used in NLP. They also use a pair of AST node

type and token to represent in-vocabulary tokens. One can

find some resemblance in the way that we enhance ASTs

with tokens. However, we also propose PACE, an embedding

technique that solves the problem of out-of-vocabulary tokens,

and have shown its effectiveness in a generalization test.

VIII. CONCLUSION

Numerous approaches for detecting code clones have been

proposed over the last two decades, but few of them are

able to effectively detect semantic clones (i.e., clones that are

very different syntactically). A recent advance is CDLH [9],

which uses AST-based LSTM to learn supervised semantic

features to outperform existing related approaches in detecting

semantic clones. To fully unleash the power of deep learning

for detecting code clones, in this paper, we have presented

a novel approach of applying tree-based convolution over a

token-enhanced AST to detect semantic clones. Our approach

is able to directly capture subtree features to make full use of

the structural information in an AST. We have also enhanced

an AST by appending tokens to corresponding AST nodes

as a way of incorporating lexical information in source code

tokens. We have evaluated our approach on two public datasets

(BigCloneBench and OJClone), and our experimental results

show that our approach can outperform CDLH by a large

margin, while being more computationally efficient. To further

improve the generalization ability of our approach, we propose

a novel technique of token embedding named position-aware

character embedding (PACE), which can help alleviate the

problem of unseen data in clone detection. PACE enables

our approach to be substantially more effective than existing

related approaches when detecting code clones in unseen data.
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