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Abstract—Code clones are similar code fragments that share
the same semantics but may differ syntactically to various
degrees. Detecting code clones helps reduce the cost of software
maintenance and prevent faults. Various approaches of detecting
code clones have been proposed over the last two decades, but
few of them can detect semantic clones, i.e., code clones with
dissimilar syntax. Recent research has attempted to adopt deep
learning for detecting code clones, such as using tree-based LSTM
over Abstract Syntax Tree (AST). However, it does not fully
leverage the structural information of code fragments, thereby
limiting its clone-detection capability.

To fully unleash the power of deep learning for detecting code
clones, we propose a new approach that uses tree-based convolu-
tion to detect semantic clones, by capturing both the structural
information of a code fragment from its AST and lexical infor-
mation from code tokens. Additionally, our approach addresses
the limitation that source code has an unlimited vocabulary of
tokens and models, and thus exploiting lexical information from
code tokens is often ineffective when dealing with unseen tokens.
Particularly, we propose a new embedding technique called
position-aware character embedding (PACE), which essentially
treats any token as a position-weighted combination of character
one-hot embeddings. Our experimental results show that our
approach substantially outperforms an existing state-of-the-art
approach with an increase of 0.42 and 0.15 in F1-score on two
popular code-clone benchmarks (OJClone and BigCloneBench),
respectively, while being more computationally efficient. Our
experimental results also show that PACE enables our approach
to be substantially more effective when code clones contain
unseen tokens.

Index Terms—source code, semantic clone, clone detection,
tree-based convolution, structural information, lexical informa-
tion, embedding, token, AST, generalization

I. INTRODUCTION

Clones of program source code (i.e., code clones) are a
pair of similar code fragments that share the same semantics
in terms of functionality but differ syntactically. Code clones
generally result from developers’ copy-and-paste behaviors, or
by different developers implementing the same functionality.
The existence of code clones is problematic for three main
reasons. (1) Code clones unnecessarily increase program size.
As a system increases in size, more software maintenance
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efforts are needed. (2) Changes to a code segment, such as
fault fixing, need to be made to its clones as well, thereby
increasing maintenance efforts. Also, if changes are performed
inconsistently, faults could be introduced. (3) Duplicating a
code fragment that contains faults leads to fault propagation.
Although some may argue that code clones enable faster
software development (i.e., developers are less reliant on the
same piece of code), there is also common agreement that
code clones should be detected and managed [1, 2].

One common taxonomy among researchers is to group code
clones into four types [3, 4, 5]. The first three types (Type-
1, Type-2, and Type-3) are largely concerned with textual
similarities, while the remaining type (Type-4) is largely
concerned with functional similarities. Type-4 clones are the
most difficult to detect as they include clones that are highly
dissimilar syntactically but still perform the same function. An
example of a Type-4 clone is a code fragment implementing
bubble sort and another implementing quick sort. To clarify
the differences between Type-3 and Type-4 clones, researchers
divide these two types into the following four categories
based on their syntactical similarity (sorted from the easiest
to most difficult to detect): Very-Strong Type-3, Strong Type-
3, Moderately Type-3, and Weak Type-3/Type-4. In the rest
of this paper, we refer to the two most-difficult-to-detect
categories of clones as semantic clones.

Since the emergence of code clones as a research field,
substantial efforts have focused on detecting and analyzing
Type-1 to Type-3 clones, but they have had limited success
with semantic clones such as Moderately Type-3 and Type-4
clones. For example, despite numerous research tools devel-
oped for detecting Type-3 clones, previous studies [6, 7] found
that most Type-3-clone detectors do not perform as well as
expected. Their findings of applying Type-3-clone detectors
on a popular, public code-clone dataset, BigCloneBench [8],
found that the existing state-of-the-art clone detectors achieved
low recall on code clones with minor syntactic similarity.

In recent years, growing research efforts have adopted deep
learning models to address various problems of programming
languages and software engineering, such as code-clone de-
tection. For example, Wei and Li [9] proposed to treat clone
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detection as a supervised-learning problem in their CDLH
approach. The CDLH approach uses a Word2Vec [10] model
to learn token embeddings to capture lexical information,
and then trains an LSTM [11] model based on an Abstract
Syntax Tree (AST) to combine these embeddings into a binary
vector to represent a code fragment. The CDLH approach
substantially surpasses previous approaches and is able to
detect clones that are beyond the scope of traditional clone
detectors.

However, the CDLH approach [9] does not make sufficient
use of the structural information in an AST, despite such in-
formation being crucial to the semantics of the corresponding
code. The CDLH approach neglects the information of AST
node types and it only implicitly uses the structural informa-
tion of the AST. We find that the clone-detection capability
can be further improved by leveraging the information of the
AST node types and using the structural information explicitly.

To fully unleash the power of deep learning for detecting
code clones, we propose a new approach that uses tree-
based convolution to detect semantic clones, by explicitly
capturing both the structural information of a code fragment
from its AST and lexical information from code tokens. In
our approach, the tree-based convolution can capture subtree
features in an AST. We further enhance the AST with code
tokens by appending each token to the corresponding AST
node as a new child node. In this way, we are able to make
use of lexical information in addition to structural information.

Both our preceding basic approach and CDLH, along with
some other studies [12], face a limitation of lacking generaliza-
tion when training a clone detection model with code fragment
pairs that are highly dissimilar to the code fragment pairs used
to test the model. We refer to these highly dissimilar code
fragment pairs as unseen data. These dissimilarities can be
in the form of the vocabulary of the tokens and the semantic
meaning of the pairs (e.g., all pairs used in training are related
to list objects while all pairs used in testing are related to tree
objects). To address the issue of unseen data, our approach
includes a novel embedding technique called position-aware
character embedding (PACE). Our PACE technique leverages
and improves one-hot embedding [13] (previously proposed to
embed words in natural language), which essentially converts
every string to a number. The advantage of one-hot embedding
is that words can be stored efficiently (since all it takes to store
a word is one number). However, one major disadvantage of
one-hot embedding is that it does not capture any information
about similarity of words. To address this disadvantage, our
PACE technique treats a token as a position-weighted com-
bination of character one-hot embeddings. Compared to other
embedding techniques such as Word2Vec [10], PACE does not
use the semantic meaning of the word to detect similarity;
instead, PACE relies on only the position and ordering of
characters.

This paper makes the following main contributions:
Effective and efficient deep learning approach to detect se-
mantic code clones. We propose to use tree-based convolution
on token-enhanced ASTs to detect semantic code clones. Our
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id CopyFile(File source, File destination) {

fis = w FileInputStream(source);

fos = new FileOutputStream(destination);
byte[] buffer = new byte[4096];

r read;

((read = fis.read(buffer)) != -1) {

1
2
3
4
5
6 while
7
8
9

fos.write (buffer, 0, read);
}
}
10
11 public static void main(String[] args) {
12 InputStream in = null;
13 in = new URL(args[0]) .openStream();

14 IOUtils.copyBytes (in, System.out,
15 IOUtils.closeStream(in);

4096, false);

Fig. 1. Example of a Type-4 clone.

approach does not need to transform an AST into a full binary
tree, and can achieve higher effectiveness and efficiency than
an existing state-of-the-art approach (CDLH) [9].

Novel technique to exploit lexical information in source
code tokens. In our approach, we propose a novel embedding
technique, PACE, to exploit lexical information in source code
tokens and mitigate the threat that the unlimited vocabulary of
tokens poses to generalization.

Experiments. We conduct experiments on two public code-
clone datasets, and the experimental results show that our
deep learning approach can substantially outperform CDLH
by an increase of 0.42 and 0.15 in Fl-score on two pop-
ular code-clone benchmarks (OJClone and BigCloneBench),
respectively, while being more computationally efficient. Our
experimental results also show that our PACE technique can
make our approach more effective on unseen data while
maintaining its effectiveness on seen data. Lastly, our ex-
perimental results on comparing multiple variations of our
approach provide insights into how much structural or lexical
information contributes to capturing the semantics of source
code.

II. BACKGROUND

Code clones may differ syntactically to various degrees. One
common taxonomy is to group code clones into the following
four types [3, 4]:

o Type-1 (T1): syntactically identical code fragments, ex-

cept for differences in white space and comments.

o Type-2 (T2): in addition to Type-1 clone differences, syn-
tactically identical code fragments, except for differences
in identifier names and literal values.

o Type-3 (T3): in addition to Type-2 clone differences,
syntactically similar code fragments that differ at the
statement level. These fragments can have statements
added, modified, or removed with respect to each other.

o Type-4 (T4): syntactically dissimilar code fragments that
are still the same semantically. For example, one code
fragment implementing bubble sort and another code
fragment implementing quick sort are considered a pair
of Type-4 clones.

Figure 1 shows an example of a Type-4 clone from Big-

CloneBench [8]. The two methods in the figure are both
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used to copy a file. We can see that the code fragments that
implement the same functionality have great differences in
their structures and tokens. In this case, SourcererCC [7],
which uses only token information, and Deckard [14], which
uses only structural information, fail to detect this code clone.
However, deep learning approaches can help learn the nec-
essary information to detect this code clone. During training,
deep learning approaches can learn different implementations
of file copying. For example, CDLH [9] may be able to
learn the semantic information of file copying from many
code fragments during training, and therefore can detect this
code clone during testing. However, one major limitation of
CDLH is the information loss when the code fragments are too
large. Section IV provides detailed explanations for why our
approach can detect code clones such as the one in Figure 1
and even larger ones that can be challenging for CDLH.

III. PROBLEM DEFINITION

Given two code fragments C; and C;, we set their label
yi,; to 1 if (C;,C;) is a clone pair or -1 otherwise. Then a
set of training data of n code fragments {C4,...,C,,} can be
represented as D = {(C;,Cj,y; ;)|i,j € n,i < j}. Our goal
is to train a deep learning model to learn a function ¢ that maps
any code fragment C' to a feature vector v so that for any pair
of code fragments (C;, C}), the cosine similarity s; ; of the
two feature vectors v; and v; is as close to the corresponding
label y; ;. We use Equation 1 to calculate the cosine similarity
of two vectors of the same dimension:

u-v

Cosin Similarity(u,v) = ———- 1
[ullllv]
Thus, we have the following equation (Equation 2):
) - d(Cs

" eI C
where s; ; € [-1,1].

To determine whether a pair of code fragments (C;, C}) is a
clone pair or not during inference, we need to set a threshold
value o such that (C;,C}) is a clone pair if s, ; > 0. We
choose o empirically based on the validation set.

IV. PROPOSED APPROACH

In this section, we first introduce the overview of our
proposed approach based on tree-based convolution, originally
proposed to solve a program-classification problem [15, 16]
for clone detection. We next explain the technical details of
tree-based convolution and “continuous binary tree.” We then
use an example to illustrate how we enhance an AST with
tokens in the corresponding code fragment. Finally, we explain
the motivation and implementation detail of our novel token
embedding technique, PACE.

A. Approach Overview

Figure 2 shows the overview of our approach named Tree-
Based Convolution for Clone Detection (TBCCD). To process
a code fragment, we first parse it into its AST. We then produce
an additional AST, denoted as AST+, resulted from enhancing
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Fig. 2. The overview of TBCCD (AST+ denotes token-enhanced AST).

the AST with tokens in the code fragment. The users of our
approach can configure it to use either AST or AST+ to con-
duct clone detection. Section VI describes experimental results
using variants of our approach with different configurations.
Then we initialize the embeddings of each type of AST
nodes (and tokens in the case of AST+), before feeding
the vectorized AST/AST+ into tree-based CNNs with a max
pooling layer and a fully connected layer. To detect code
clones, we use two neural networks in parallel to process
a pair of code fragments at the same time. The two neural
networks share the same set of parameters. We take the output
of the fully connected layer as the feature vector of a code
fragment and calculate the cosine similarity of the two vectors.
Then we train the neural networks through gradient descent
backpropagation to minimize the following loss function:

Z Z(Sm‘ —Yiy)”

In summary, TBCCD learns to make the cosine similarity
of non-clone pairs as close to —1 as possible and the cosine
similarity of clone pairs as close to 1 as possible.

3

B. Tree-Based Convolution and Max Pooling

The most common convolution kernels have the shape of
a square, whereas in tree-based convolution, each kernel (i.e.,
feature detector) takes the shape of a triangle, as illustrated in
Figure 3. A set of fixed-depth feature detectors (d > 2, where
d denotes the depth) are used to slide over the entire tree to
capture subtree features. Each node in the AST/AST+ is the
uppermost node in the sliding window for exactly once. When
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Fig. 3. Tllustration of tree-based convolution with max pooling. In this case,
there are four feature detectors, each with a fixed depth of two. The step of
tree-based convolution is illustrated with only one feature detector using the
red color. The tree structure maintains the same shape before and after the
convolution, while the dimension of each node’s vector has changed from the
original three to four, which is the number of feature detectors. After tree-
based convolution, max pooling is applied to each dimension of the vectors.

there are not enough layers of nodes in the sliding window,
we add vectors of all zeros to represent the missing nodes.
After tree-based convolution, max pooling is applied to each
dimension in the output vectors; each dimension corresponds
to one feature detector, thereby reducing an AST/AST+ of any
depth to a fixed-length vector.

Formally, in a fixed-depth window of d, if there are n nodes
with vector representations 1, ..., z,, where x; € RY7, N 7
is the dimension of the vector representations, then the output
of tree-based convolution is

n
y= tanh(z Wconv,i * L + bconv)
i=1
where ¥, beony € RN, Weonw,i € RNexNs (N, is the number
of feature detectors).

“

C. Continuous Binary Tree

One problem of the tree-based convolution is that unlike
the nodes in a parse tree of natural languages whose number
of children is limited to two, an AST node theoretically
could have an unlimited number of children (e.g., the case
statement in a switch expression). Such unlimited number
is problematic because the number of weight matrices, i.e.,
Weonw,i in Equation 4, cannot be determined. A commonly
used workaround [12, 9] is to convert an AST into a full
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Fig. 4. [Illustration of adopting “continuous binary tree” in tree-based
convolution.

binary tree according to a pre-defined set of rules. However,
some structural information could be lost during the process.
We propose a different technique where any subtree in an
AST is viewed as a “binary” tree, regardless of its size and
shape. Such an AST is referred to as a “continuous binary
tree” [15, 16].

As demonstrated in Figure 4, there are only three weight
matrices in tree-based convolution: W, - W!  —and W)
where superscripts ¢,[,r refer to “top”, “left”, and “right”,
respectively. For node z; in a sliding window, its weight
matrix for convolution Weyy,,,; is a linear combination of
W s Whw, and W whose coefficients are computed
according to the relative position of a node in the sliding
window. d¢ denotes the number of layers above, d° denotes
the number of layers below, ni denotes the number of nodes
to the left (on the same layer), and n] denotes the number of
nodes to the right. Thus we can define Weopno s as

df+d§ df+d§ conuv,t

d, and we have defined an intermediate
which is written as:

t
Wconv,i = Wcon'u +

)
where d? + d! =
variable W?

conv,i’

b —
Wconv,i -
n; l n} r l r
n:-;nli W.onw + nﬁ—lni Wi n;>lornl >1,
(6)
11171 lypr I r
§Wconv =+ §Wcorw n; =n; = 0.

In our experiments, we choose d = 2 , which we find to be
sufficient.

D. Token-Enhanced AST (AST+)

Tokens in source code generally include keywords, con-
stants, identifiers, strings, special symbols, and operators.
Statistics show that the majority of code tokens are user-
defined identifiers. The names of these identifiers would carry
a lot of semantic information if developers follow certain nam-
ing conventions; such semantic information could supplement
the structural information in an AST.
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| LocalVariableDeclaration |

| BasicType | | VariableDeclarator |
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Fig. 5. Tllustration of a token-enhanced AST for the Java code snippet int
a =Db + 3.

Previous approaches [12, 9] have also used the lexical
information in tokens in their models, using variants of RNN.
In our approach, we design a novel way to incorporate lexical
information into tree-based CNN to further improve the ability
of our approach to detect semantic clones. Specifically, we
add each token in the code fragment as a child node to the
corresponding AST node in the original AST and assign to
the child node a vector of the same dimension as the AST
node’s vector. Then we apply the same tree-based convolution
over the token-enhanced AST. Each token embedding and AST
node embedding is randomly initialized and learned during
training.

Figure 5 shows an example of turning a Java code snippet
into a token-enhanced AST. The tokens that we add to the AST
is identified with dashed-line boxes, and the AST (in solid
lines) represents a simple line of Java code, int a = b + 3.
As shown in Section VI, the additional lexical information
from tokens substantially improves the Fl-score for clone
detection, especially on BigCloneBench.

E. Position-Aware Character Embedding (PACE)

The vocabulary size of tokens is a special challenge to
modeling source code [17]. In natural language processing
(NLP), approaches usually limit vocabulary to the most com-
mon words, e.g., top 30,000 words during data processing. The
out-of-vocabulary tokens are replaced by a special “(UNK)”
token. Doing so would not always work well since there is an
unlimited number of code tokens (e.g., developers can name
identifiers in arbitrary ways). If we keep a regular vocabulary
size for source code, there would be too many “(UNK)”
tokens. Hellendoorn and Devanbu [17] have shown that it is
unreasonable for source code models to use such a vocabulary.

This challenge poses a dilemma where one has to increase
the vocabulary size of tokens to avoid too many “(UNK)”
tokens for the model to perform well, but doing so makes it
more difficult to train the deep neural networks. Even with a
very large vocabulary size of tokens, a model still may not
generalize to source code that uses out-of-vocabulary tokens.

To address this problem, we propose a novel embedding
technique called position-aware character embedding (PACE),
which essentially treats each token in source code as a
position-weighted combination of character one-hot embed-
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dings. First, we gather all possible characters in the source
code tokens (except strings) and determine the total number n,
which is the dimension of token embeddings. Then we trans-
form the set of unique characters into one-hot embeddings.
For a token that has &k characters denoted as ¢y, co, ..., Ck, its
embeddings can be obtained with the following equation:

P k—i+1
Z ———— X embl¢]
i=1 k
where emb|c;] is the one-hot embedding of ¢;.
The motivation for PACE stems from our observation that
the names of similar identifiers often appear to be similar.
For example, in the Java JDK, there are classes such as
LinkedList and ArrayList, which are ordered collections that
allow duplicates. One does not need to train a language model
to determine that these names share similar semantics; one can
simply tell that they are similar because they share common
characters and the characters appear in a similar order. There
is good chance that the names of the instances of these classes
may appear to be similar as well. Thus, our proposed PACE
technique essentially encodes a token as a position-weighted
sum of its character one-hot embeddings.

)

V. EXPERIMENTAL SETUP

We evaluate the effectiveness of our approach by addressing
the following research questions:

RQ1: How effective are the different variants of our approach
at detecting code clones?

RQ2: How does the use of structural and lexical information of
source code affect the effectiveness of detecting code clones?
RQ3: How does our approach’s TBCCD+token variant com-
pare to existing state-of-the-art approaches at detecting code
clones?

RQ4: How effective is our approach at detecting code clones
when the training set and test set consist of code fragment
pairs with different semantic meanings?

We address RQI to understand which variants of our
approach are most effective at detecting code clones, where
each variant uses more or less information (e.g., type of the
AST nodes). We then address RQ2 to provide insights into
why certain variants can be more or less effective, and RQ3
to evaluate how effective and efficient our approach is when
compared to the existing state-of-the-art approaches. Lastly,
we evaluate our approach’s clone detection ability when the
training set and test set consist of code fragments with different
semantic meanings.

A. Datasets

Our experiments use BigCloneBench [8] and OJClone [15],
two public datasets commonly used to evaluate approaches of
detecting code clones.

BigCloneBench, released by Svajlenko et al. [8], is the first
big-data-curated benchmark of real clones to evaluate modern
tools of detecting code clones. It was built by mining clones
of frequently implemented functionalities from 25,000 Java
systems (totaling 365 million lines of code), and the clones
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TABLE I
PERCENTAGE OF CLONE TYPES IN BIGCLONEBENCH (T1: TYPE-1; T2:
TYPE 2; VST3: VERY-STRONG TYPE-3; ST3: STRONG TYPE-3; MT3:
MODERATELY TYPE-3; WT3/T4: WEAK TYPE-3/TYPE-4).

VST3 ST3 MT3 WT3/T4
0.053 0.19 1.014 98.23

T1
0.455

T2
0.058

Clone Type

Percent (%)

are verified by three domain experts. The current version
of BigCloneBench has about 8 million tagged true clone
pairs covering 43 functionalities [6]. The authors of some
recent approaches, e.g., [18, 9], still chose to use the first
version of BigCloneBench [8], which contains only 6 million
tagged true clone pairs and 260,000 tagged false clone pairs,
covering 10 functionalities. To compare our approach with
these approaches, we also use that version of BigCloneBench.

Due to the ambiguity between the definitions of Type-3
and Type-4 clones, the creators of BigCloneBench further
divided these two types of clones into four categories based on
their syntactical similarity: Very-Strong Type-3 with [0.9, 1)
similarity, Strong Type-3 with [0.7, 0.9) similarity, Moderately
Type-3 with [0.5, 0.7) similarity, and Weak Type-3/Type-4
with [0, 0.5) similarity. The syntactical similarity is measured
as the ratio of lines or tokens that a code fragment shares with
another after Type-1 and Type-2 normalization, identified by
the Linux tool “diff”. Table I summarizes the data distribution
in the first version of BigCloneBench in terms of clone types.
Since the majority of code clone pairs are Weak Type-3/Type-
4 clones, BigCloneBench is quite appropriate to be used for
evaluating the detection of semantic clones.

OJClone, released by Mou et al. [15], is another public
dataset used to evaluate code-clone detection. Originally the
dataset was used for program classification but it has since
been used by others [9] for code-clone detection as well.
The dataset consists of solutions submitted by students to 104
programming questions on OpenJudge [19], written in C. For
each question, there are 500 corresponding solutions, each of
which is verified to be correct by OpenJudge. Solutions for
the same question are considered clones.

B. Experimental Setting

1) RQI and RQ2: We conduct experiments on both datasets
using the 1:1:8 experimental setting for validation, test, and
training sets, respectively. We evaluate our approach in this
experimental setting since it is commonly used in other related
work [20, 21, 22]. For the BigCloneBench dataset, we use the
same 9,134 code fragments from related work [9]. For the
OlJClone dataset, we select 500 solutions for each of the first
15 questions (question IDs 1-15), amounting to 15 x 500 =
7,500 code fragments.

2) RQ3: Our goal is to evaluate our proposed approach
against CDLH [9], the existing state-of-the-art approach that
uses AST-based LSTM to detect semantic clones. Thus, we
strive to replicate CDLH’s experimental setting as closely as
possible for both datasets.

For the BigCloneBench dataset, the code fragments that
we use in RQl are the same as the ones used by the
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CDLH authors [9]. Just as the authors of CDLH do for their
experiments, we randomly select 500 code fragments for the
validation set, 500 code fragments for the test set, and used
the remaining 8,134 code fragments for the training set. We
have 124,750 pairs of code fragments in the validation set
and test set where true clone pairs account for 13.9% and
14.0%, respectively, and 33,068,778 pairs of code fragments
in the training set. Lastly, we randomly sample about one
million pairs from these pairs where true clone pairs account
for 14.2%.

For the OJClone dataset, the 7,500 code fragments that we
use in RQ1 are the same as the ones used by the CDLH
authors in their experiments. Just as the authors of CDLH do
for their experiments, we randomly select 500 code fragments
for the validation set, 500 code fragments for the test set, and
used the remaining 6,500 code fragments for the training set.
To construct clone pairs, we pair every two code fragments
together in the validation, test, and training sets. Thus, we
have 124,750 pairs of code fragments in the validation set and
test set where true clone pairs account for 6.7% and 6.8%,
respectively, and 21,121,750 pairs of code fragments in the
training set. Due to the vast number of pairs in the training
set, we randomly sample about one million pairs from these
pairs where true clone pairs account for 6.6%.

Our correspondence with the CDLH authors inform us of
only the proportion that they use for the validation, test,
and training sets. Therefore, due to the randomness in their
selection of code fragments, we are unable to use the exact
same set of code fragments in our experiments. To mitigate any
bias from randomly selecting our validation, test, and training
sets, we report the medians of results (precision, recall, and
Fl1-score) with the median F1-score from randomly generating
the sets ten times in Section VI-C. We also report the averages
for precision, recall, and F1-score individually.

3) RQ4: Our goal is to evaluate our approach’s generaliza-
tion ability by using code fragment pairs that are substantially
different semantically when conducting training and testing
with our approach. In contrast to the 1:1:8 experimental setting
used for RQI1, which at times have pairs in the training
set that are semantically similar to pairs in the test set, our
experimental setting for RQ4 ensures that all pairs in the
training set are semantically different than the pairs in the
test sets.

To accomplish this goal, we use the OJClone dataset, which
contains 104 questions. Similar to RQI1, we use the first
15 questions (question IDs 1-15) and the 500 solutions per
question to obtain 7,500 code fragments. From these code
fragments, we then use the same 6,000 as what we use for
the training set in RQI1. For the test sets, we create in total
six sets each composed of the solution code fragments from
the 15 questions. The first test set uses question IDs 16-30,
the second test set uses question IDs 31-45, and so on. The
last test set uses question IDs 90-104 and question ID 16. For
each test set, we randomly select 750 code fragments from the
possible 7,500 solutions. We do not use any code fragments
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TABLE 1I
EFFECTIVENESS OF OUR APPROACH’S VARIANTS.

BigCloneBench OJClone
Approach P R Fl1 P R F1
TBCCD 078 073 076 097 095 0.96
TBCCD+-token 095 095 095 099 099 0.99
TBCCD+-token—type 094 095 095 092 085 0.88
TBCCD+token+PACE 094 096 095 0.99 099 0.99

TABLE III

INFORMATION SOURCES USED BY DIFFERENT APPROACHES.

Approach AST AST Node Type Code Token
CDLH v X v
TBCCD v v X
TBCCD+-token v v v
TBCCD+token—type v X v
TBCCD+-token+PACE v v v

for validation and instead simply use the same threshold as
the one from RQ1’s validation set.

4) All RQs: We choose the other hyper-parameters for
training our approach as follows: the number of convolution
kernels is 600 and the depth of sliding window is 2; the
dimension of the fully connected layer is 50. We train the
model for ten epochs and use the SGD optimizer with batch
size 1 to train the hyper-parameters. The threshold of our
approach for prediction is determined with the validation set of
RQ1-RQ3. The threshold for RQ4 is the same as the one that
we use for RQ1. Lastly, we use TensorFlow [23] to implement
our models and our code is publicly available. The datasets that
we use for each RQ are also publicly available [24].

VI. EXPERIMENTAL RESULTS
A. RQI: Effectiveness of our approach’s different variants

Our approach evaluated in the experiments includes four
variants:

o TBCCD: tree-based convolution over AST. The dimen-
sion of AST node embedding is 100. We randomly
initialize the embedding for each AST node type and
jointly learn the embeddings of AST node and subtree
features at the same time during the training.

o« TBCCD+token: tree-based convolution over token-
enhanced AST (AST+). The dimension of both AST
node embedding and token embedding is 100. Token
embeddings and AST node embeddings are randomly
initialized and learned during training.

« TBCCD+token—type: tree-based convolution over AST+
but information regarding the AST nodes’ type is omit-
ted, where each AST node type has the same embed-
ding. The token embeddings are the same as those in
TBCCD+-token.

o TBCCD+token+PACE: tree-based convolution over
AST+, using our PACE embedding technique for both
AST nodes and tokens. The dimension of the embeddings
is dependent on the number of unique characters in
the dataset (being 78 for BigCloneBench and 79 for
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Fig. 6. The PR-curve of our approach’s four variants on the validation set of
OIClone.
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Fig. 7. The PR-curve of our approach’s four variants on the validation set of
BigCloneBench.

OJClone). We treat the lower case and upper case of the
same letter as two different characters, since capitaliza-
tion may convey additional meaning.

For each variant of our approach, we choose the set of
parameters that yield the best F1-score on the validation set to
evaluate its performance on the test set. Table II summarizes
the experimental results and Table III lists the information
sources of each variant along with related work CDLH [9].

As shown in Table II, after we incorporate our PACE
technique with TBCCD+-token, its Fl-score barely changes.
It seems that PACE, our new embedding technique, does
not affect the effectiveness much. Yet as discussed in Sec-
tion VI-D, TBCCD+token+PACE has been shown to be the
most effective variant when the semantic meaning of the
training and test sets dramatically differ.

We further draw the PR-curve of our approach’s each variant
to compare their AUCs, as shown in Figures 6 and 7. We
vary the threshold o defined in Section III and record the
precision and recall of each variant on the validation set.
Similar to Table II, these two figures show that TBCCD+token
and TBCCD+-token+PACE are the best variants on the two
benchmark datasets. TBCCD+token—type has a drop in AUC
on OJClone compared to the others, while TBCCD has the
worst AUC on BigCloneBench.
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TABLE IV
TOTAL AND AVERAGE OCCURRENCES OF THE MOST FREQUENT AST
NODE TYPES IN BIGCLONEBENCH.

Rank AST Node Type Total Average
1  MethodInvocation 182,011 19.9
2 MemberReference 168,330 18.4
3 Literal 130,885 14.3
4 ReferenceType 115,807 12.7
5  StatementExpression 107,205 11.7
6  BinaryOperation 68,019 7.4
7  VariableDeclarator 63,947 7.0
8  LocalVariableDeclaration 59,732 6.5
9  ClassCreator 35,966 3.9
10 Assignment 32,160 3.5
11 BlockStatement 29,902 3.3
12 IfStatement 24,878 2.7
TABLE V

TOTAL AND AVERAGE OCCURRENCES OF THE MOST FREQUENT AST
NODE TYPES IN OJCLONE.

Rank  AST Node Type Total Average
1 ID 421,381 56.2
2 Constant 159,853 21.3
3 BinaryOp 129,421 17.3
4 TypeDecl 84,896 11.3
5 Decl 82,736 11.0
6 IdentifierType 79,422 10.6
7  ArrayRef 68,035 9.1
8  Assignment 67,163 9.0
9  UnaryOp 54,689 7.3

10 Compound 49,471 6.6
11 FuncCall 35,301 4.7
12 ExprList 35,152 4.7

B. RQ2: Effectiveness of structural and lexical information

Comparing the effectiveness of TBCCD+token,
TBCCD+token—type, and TBCCD as shown in Table II,
we have the following findings. (1) Structural information
(AST Node Type) and lexical information (Code Token)
are complementary to each other. When combined together,
TBCCD+token achieves the highest Fl-score compared to
TBCCD+token—type and TBCCD. (2) Structural information
matters more in OJClone than BigCloneBench, since without
the information of AST node type, TBCCD+token—type
drops dramatically from 0.99 to 0.88 in Fl-score on OJClone
compared to TBCCD+token, but remains the same 0.95 in
F1-score on BigCloneBench. (3) Lexical information matters
more in BigCloneBench, since without the information
from source code tokens, TBCCD drops dramatically from
0.95 to 0.76 in Fl-score on BigCloneBench compared to
TBCCD+token, but only slightly from 0.99 to 0.96 in
F1-score on OJClone. To better understand the dramatic drop
in Fl-score on BigCloneBench but not on OJClone, we study
the the frequency of each AST node type. Tables IV and V
summarize the frequent AST node types in the two datasets.

In BigCloneBench, the most frequent AST node type
is “MethodInvocation,” which appears 182,011 times across
9,134 code fragments, yielding an average of 19.9 per code
fragment. On the other hand, OJClone’s “FuncCall” node type
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ranks the 11th in terms of frequency, appearing 35,301 times
across 7,500 solutions, an average of 4.7 per solution. One
drawback of TBCCD is that the vanilla AST that it uses
regards every method invocation as the same. The semantics
of the functionality of the called method is lost. We believe
that this loss of semantics and the discrepancy of method
invocation frequencies between the two datasets cause the
dramatic drop in effectiveness of TBCCD on BigCloneBench
yet only a slight drop on OJClone. We suspect that the
difference in the distribution of AST node types may be
attributed to the programming environment for the dataset. The
data from OJClone come from a programming environment
where the users write up solutions from scratch, whereas
BigCloneBench is mined from large open-source repositories
where the usage of libraries is much more frequent.

C. RQ3: Effectiveness of our approach compared to state-of-
the-art approaches

Apart from CDLH, we also compare our approach against
three other related approaches in Table VI (as evaluated by
the CDLH authors [9]):

e Deckard [14]: a popular AST-based approach that also

uses a feature vector to represent an AST and its subtrees.

e Deep Learning for Code Clones (DLC) [12]: a recent

approach that explores the use of deep learning for
detecting code clones. It uses a recursive autoencoder to
extract unsupervised deep features.

o SourcererCC [7]: a state-of-the-art token-based approach.

It can detect some Type-3 clones despite using a bag-of-
tokens representation.
Note that the preceding three related approaches do not need
to be trained in a supervised manner, and thus their results
should not vary much on different test sets from the same
dataset.

We use the same experimental settings as what the CDLH
authors use for their experiments to evaluate our approach
against the other related approaches in terms of precision (P),
recall (R), and Fl-score (F1). As shown in Table VI, our
approach outperforms CDLH in terms of Fl-score on both
datasets. By exploiting both the structural information in the
AST and lexical information in code tokens, TBCCD-+token
achieves an increase of 0.42 in Fl-score on OJClone and an
increase of 0.15 in Fl-score on BigCloneBench, compared to
CDLH.

CDLH neglects the information of AST node types and uses
only the structure of ASTs as a guidance for the order to
encode each token in a sequence into one vector at the root;
therefore, it does not fully utilize the structural information in
source code. On the contrary, tree-based CNN is specifically
designed to capture the structural information of program-
ming languages; the structural information is essential to the
semantics of the code. While CDLH is intended to capture
both lexical and syntactical information, as suggested by the
title of the paper [9], our approach outperforms CDLH on
OJClone using only syntactical information, as shown in Table
VI. Our results show that CDLH does not sufficiently capture
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TABLE VI
EFFECTIVENESS OF OUR APPROACH AND OTHER RELATED APPROACHES
USING THE SAME EXPERIMENTAL SETTINGS AS THOSE USED BY [9].
RESULTS OF APPROACHES MARKED WITH ¥ ARE TAKEN DIRECTLY

FROM [9].

BigCloneBench OJClone
Approach P R Fl1 P R Fl1
Deckard? 093 002 0.03 099 005 0.10
DLC* 095 001 001 071 0.00 0.00
SourcelrerCC"t 0.88 0.02 0.03 0.07 074 0.14
CDLH* 092 074 082 047 073 057
TBCCD+token(median) 097 096 0.97 0.99 099 0.99
TBCCD+token(average) 097 096 096 099 099 0.99

syntactical information, and it is best to capture syntactical
information of source code explicitly rather than implicitly.

Our results indicate that tree-based CNN is more effective
than tree-based LSTM in capturing code semantics. One
reason for our results may be that there are a lot of layers
of nodes in an AST (being a typical case), and the large depth
makes even LSTM (designed to improve RNN regarding long-
range dependency) unable to remember information that is a
long distance away, whereas our approach does not suffer from
this issue. We plan to conduct additional experiments to further
understand this issue in our future work.

In addition to comparing the effectiveness of our approach
with CDLH, we also compare the efficiency. Due to their
recurrent structure, RNNs cannot be computed in parallel. As
a result, training RNNs takes quite some time, limiting its
applications. Compared to RNNs, CNNs generally take much
less time to train, since the convolution steps can be carried
out in parallel. LSTM is one type of RNN, so our approach
using tree-based CNN is likely more computationally efficient
than CDLH, which uses tree-based LSTM.

Wei and Li [9] do not report the training time of CDLH in
their paper. Due to insufficient details in their paper, we have
not been able to completely replicate CDLH. Nevertheless,
using our partially replicated version of CDLH, we are not
able to finish training on the datasets in two days, whereas we
are able to finish training for our approach in several hours.

D. RQA4: Effectiveness of our approach when using training
and test sets with different semantic meanings

To test the generalization ability of our approach and to
measure the effectiveness of our novel PACE embedding
technique, we use the OJClone dataset as described in Sec-
tion V-B3, and compare the effectiveness of TBCCD+-token
and TBCCD+token+PACE.

As shown in Table VII, TBCCD+token is the worst per-
former in the generalization test, in contrast to the finding
that it is one of the best performers in RQ1 (Section VI-A).
This result is what we expect since TBCCD+token exploits
token information with language models and thus likely does
not generalize well to code fragments that have substantially
different semantic meanings as the code fragments from the
training set. Aside from the code fragments with different
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TABLE VII
USING TBCCD+TOKEN AND TBCCD+TOKEN+PACE TO DETECT
CLONES IN UNSEEN DATA FROM OJCLONE.

TBCCD+-token TBCCD+token+PACE
Question IDs P R F1 P R F1
16 ~ 30 0.17 042 025 | 035 046 0.40
31 ~ 45 026 058 036 | 0.51 0.62 0.56
46 ~ 60 0.21 054 031 ] 059 048 0.53
61 ~ 75 0.27 052 036 | 058 0.49 0.53
76 ~ 90 0.25 050 034 | 0.61 044 0.51
91 ~ 104 +16 | 0.23 049 031 | 045 041 0.43

semantic meanings, we also find that the code fragments
in the test sets contain a lot of out-of-vocabulary tokens:
there are 3,820 tokens in the training set vocabulary, while
there are 9,251 tokens in total that are out-of-vocabulary in
the 6 test sets. This poor performance is precisely why we
propose PACE. TBCCD+token+PACE consistently outper-
forms TBCCD+token across the 6 test sets, demonstrating
the effectiveness of PACE.

According to the way that we construct a test set, only
S0x49%i5 = 6.54% are true clone pairs, indicating that
guessing all pairs to be true clone pairs should yield a F1-
score of 0.12. Another baseline is 0.14 of SourcererCC, the
best Fl-score that a traditional approach can get on OJClone,
as shown in Table VI. Compared to these baselines, the
two variants of our approach both have learned semantic
patterns to various degrees and are much better than traditional
approaches. Yet, we cannot overlook the fact that even the
best performer (TBCCD+token+PACE) drops about 50% in
Fl-score compared to its stellar performance in RQ1 (from
0.99 to around 0.50). Our finding indicates that the first 15
programming questions in OJClone are quite different than the
others, and the 15 programming questions simply may not be
enough for neural networks to learn enough patterns in source
code. In future work, we plan to conduct more experiments
to further investigate this issue and more research efforts to
develop a more generalizable and practical approach.

VII. RELATED WORK

A. Traditional Approaches

Most traditional approaches of detecting code clones are
targeted at Type-3 clones.

Deckard [14] is a popular AST-based approach that com-
pares two code fragments over a vector representation rather
than subtree. Similar to their approach, our approach also
converts ASTs into vectors. However, unlike Deckard, which
generates vectors using pre-defined rules (each dimension
represents the occurrences of a specific tree pattern in the
subtree), our vector representations of code fragments are
learned in a supervised fashion.

SourcererCC [7] is a token-based approach for detecting
code clones. Similar to our approach, SourcererCC detects
code clones at the lexical level by comparing subsequences
but it does not use the structural information of the code.
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Various researchers have proposed other approaches be-
sides AST-based or token-based approaches to detect Type-
4 clones. Komondoor and Horwitz [25] use Program De-
pendency Graphs (PDGs) to detect clones. They represent a
program as a dependency graph, and transform the problem
of clone detection into finding isomorphic subgraphs over
PDGs. PDGs contain a program’s control-flow and data-flow
information, which carries more semantic information than an
AST. However, identifying isomorphic subgraphs is an NP-
hard problem, and such PDG-based approach is difficult to
scale. Other approaches to detecting semantic clones include
using static analysis to extract the memory states for each pro-
cedure exit point [26] and using random tests to compare the
outputs of two code fragments [27]. Both of these approaches
need to compile and run the code, while our approach can be
applied statically to uncompilable code.

B. Deep Learning Approaches

With advances in deep learning, the use of deep learning to
detect code clones has emerged in recent years.

White et al. [12] propose to first use RNN to learn “term
embeddings” of source code and then train a recursive autoen-
coder to learn the vector representation of an entire AST (after
transforming an AST to a full binary tree), thus combing both
lexical and syntactical information for detecting code clones.
However, as the authors point out in their paper [12], their
work is still preliminary and is largely meant to demonstrate
the feasibility of using deep learning to detect code clones
rather than showing its practicality.

CCLearner [18] is another approach of clone detection
based on deep learning. It categorizes tokens into eight cate-
gories. For a pair of code fragments (methods), it calculates
eight similarity scores in terms of token frequency in each
category to form a feature vector, which is then fed to a deep
neural network. The feature vector is manually calculated,
and the neural network can be replaced by other classifiers.
CCLearner is mainly a token-based approach of clone detec-
tion based on deep learning.

In order to effectively detect Type-4 clones, Wei and Li
[9] formulate code-clone detection as a supervised learning-
to-hash problem and propose an end-to-end deep learning
approach named CDLH. They use an AST-based LSTM to
structurally encode lexical information of a code fragment into
a vector and add a hash layer to learn binary embedding for
better efficiency when comparing two vectors. In their follow-
up work [28], they propose to use unlabeled data to further
improve effectiveness and use adversarial training to make the
learned model more robust. CDLH well surpasses previous
related approaches in detecting Type-3 and Type-4 clones in
terms of their Fl-scores. As confirmed by our experiments,
tree-base convolution can capture code structural information
in ASTs more effectively than tree-based LSTM. In fact, our
work achieves even better results than CDLH on the two
datasets based on what Wei and Li [9] report in their paper.
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C. Unlimited-token vocabulary

Unlimited vocabulary size of tokens in source code poses
a major challenge to modeling source code [17]. A common
technique that can mitigate the challenge is to separate a token
into a sequence of tokens according to camel case [29]. Hu
et al. [21] propose a new technique to represent the out-of-
vocabulary tokens for source code: this technique essentially
uses the corresponding AST node type embedding to represent
the out-of-vocabulary token instead of the “(UNK)” token
commonly used in NLP. They also use a pair of AST node
type and token to represent in-vocabulary tokens. One can
find some resemblance in the way that we enhance ASTS
with tokens. However, we also propose PACE, an embedding
technique that solves the problem of out-of-vocabulary tokens,
and have shown its effectiveness in a generalization test.

VIII. CONCLUSION

Numerous approaches for detecting code clones have been
proposed over the last two decades, but few of them are
able to effectively detect semantic clones (i.e., clones that are
very different syntactically). A recent advance is CDLH [9],
which uses AST-based LSTM to learn supervised semantic
features to outperform existing related approaches in detecting
semantic clones. To fully unleash the power of deep learning
for detecting code clones, in this paper, we have presented
a novel approach of applying tree-based convolution over a
token-enhanced AST to detect semantic clones. Our approach
is able to directly capture subtree features to make full use of
the structural information in an AST. We have also enhanced
an AST by appending tokens to corresponding AST nodes
as a way of incorporating lexical information in source code
tokens. We have evaluated our approach on two public datasets
(BigCloneBench and OJClone), and our experimental results
show that our approach can outperform CDLH by a large
margin, while being more computationally efficient. To further
improve the generalization ability of our approach, we propose
a novel technique of token embedding named position-aware
character embedding (PACE), which can help alleviate the
problem of unseen data in clone detection. PACE enables
our approach to be substantially more effective than existing
related approaches when detecting code clones in unseen data.
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