
Architectural Implications of Function-as-a-Service Computing
Mohammad Shahrad
Princeton University

Princeton, USA
mshahrad@princeton.edu

Jonathan Balkind
Princeton University

Princeton, USA
jbalkind@princeton.edu

David Wentzlaff
Princeton University

Princeton, USA
wentzlaf@princeton.edu

ABSTRACT
Serverless computing is a rapidly growing cloud application model,
popularized by Amazon’s Lambda platform. Serverless cloud ser-
vices provide fine-grained provisioning of resources, which scale
automatically with user demand. Function-as-a-Service (FaaS) appli-
cations follow this serverless model, with the developer providing
their application as a set of functionswhich are executed in response
to a user- or system-generated event. Functions are designed to
be short-lived and execute inside containers or virtual machines,
introducing a range of system-level overheads. This paper studies
the architectural implications of this emerging paradigm. Using
the commercial-grade Apache OpenWhisk FaaS platform on real
servers, this work investigates and identifies the architectural im-
plications of FaaS serverless computing. The workloads, along with
the way that FaaS inherently interleaves short functions from many
tenants frustrates many of the locality-preserving architectural
structures common in modern processors. In particular, we find
that: FaaS containerization brings up to 20x slowdown compared
to native execution, cold-start can be over 10x a short function’s
execution time, branch mispredictions per kilo-instruction are 20x
higher for short functions, memory bandwidth increases by 6x due
to the invocation pattern, and IPC decreases by as much as 35%
due to inter-function interference. We open-source FaaSProfiler,
the FaaS testing and profiling platform that we developed for this
work.

CCS CONCEPTS
• Information systems→Enterprise resource planning;Com-
puting platforms; • Computer systems organization → Ar-
chitectures.

KEYWORDS
serverless, function-as-a-service, faas, cloud, OpenWhisk, architec-
ture
ACM Reference Format:
Mohammad Shahrad, Jonathan Balkind, and David Wentzlaff. 2019. Ar-
chitectural Implications of Function-as-a-Service Computing. In The 52nd
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO-
52), October 12–16, 2019, Columbus, OH, USA. ACM, New York, NY, USA,
13 pages. https://doi.org/10.1145/3352460.3358296

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MICRO-52, October 12–16, 2019, Columbus, OH, USA
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6938-1/19/10. . . $15.00
https://doi.org/10.1145/3352460.3358296

Native
Execution

Container

Cold Start

Branch MPKI

Queueing

Scheduling

Network

Memory BW

Interference

Up to 20x
slowdown

>10x exec time
for short functions
(500ms cold start)

20x MPKI for
short functions

6x variation due to
invocation pattern

35% decrease in IPC
due to interference

Se
rv

er
(th

is
pa

pe
r)

Pl
at

fo
rm

M
an

ag
em

en
t

(p
rio

r w
or

k)

Figure 1: We characterize the server-level overheads of
Function-as-a-Service applications, compared to native exe-
cution. This contrasts with prior work [2–5] which focused
on platform-level or end-to-end issues, relying heavily on
reverse engineering of commercial services’ behavior.

1 INTRODUCTION
Serverless computing is a relatively new paradigm in cloud com-
puting, first launched by Amazon’s AWS Lambda [1] in November
2014. In serverless, the cloud provider manages the provisioning
of resources for a service in a transparent, auto-scaling manner,
without the developer in the loop. The developer is charged in a fine-
grained way, proportional to the resources provisioned and used
per request, with no cost levied when the service is idle (receiving
no requests).

Function-as-a-Service (FaaS) is a key enabler of serverless com-
puting. FaaS gets its name as it is a way to scale the execution
of simple, standalone, developer-written functions, where state is
not kept across function invocations. Functions in FaaS are event-
driven, invoked by a user’s HTTP request or another type of event
created within the provider’s platform. To match the rate of func-
tion invocations, the platform automatically scales the resources
available to execute more instances of the developer’s function in
parallel.

The majority of serverless research has targeted mapping ap-
plications to this model, or has focused on scheduling policies or
mechanisms for orchestrating FaaS setups. However, we are inter-
ested to know if the computational building blocks of FaaS, namely,
commodity servers used in modern cloud data centers are suitable
for such workloads. FaaS applications differ from traditional
cloud workloads in ways that may jeopardize common ar-
chitectural wisdom.

Firstly, FaaS functions are typically short-lived and priced in
multiples of a 1ms, 10ms, or 100ms time quantum. Function ex-
ecution time is usually also capped. Providers must rely on the

https://doi.org/10.1145/3352460.3358296
https://doi.org/10.1145/3352460.3358296

MICRO-52, October 12–16, 2019, Columbus, OH, USA Mohammad Shahrad, Jonathan Balkind, and David Wentzlaff

fine-grained interleaving of many short functions to achieve high
throughput. This fine-grained interleaving causes temporal
locality-exploiting structures like branch predictors to un-
derperform, raising questions about present-day computer
architectures’ ability to execute FaaS efficiently. For instance,
we observe a 20x increase in branchmispredictions per kilo-instruction
(MPKI) when comparing our shortest functions to longer functions.
This finding and others are shown in Figure 1.

Secondly, functions often run in a deeply virtualized manner:
inside containers which might run within virtual machines. This
causes a number of OS-level overheads. We find that flat overheads
like the cold start latency of 500ms or more have an outsized impact
on short functions.

Lastly, FaaS developers can write their functions in almost any
language. Each platform has preferred languages, but developers
may upload their own container to run a chosen application in
the FaaS environment. Together, these features make for a highly
dynamic system, with many, fast-changing components, which we
have found bring new, unforeseen overheads and challenges for
architectural optimization.

We provide the first server-level characterization of a Function-
as-a-Service platform by carefully investigating a compute node of
an open-source FaaS platform, Apache OpenWhisk (sold commer-
cially as IBM Cloud Functions [6]). This contrasts with previous
work solely focusing on black-box reverse-engineering of commer-
cial FaaS systems [2–5]. With full control of our deployment, we
precisely induce function co-location and access hardware perfor-
mance counters, something impossible for an external black-box
analysis. Our bottom-up approach enables us to decouple overheads
in managing the cloud platform from the overheads caused in the
server context. This reveals the architectural implications of FaaS
computing.

We identify a range of new overheads that affect FaaS execution
with short functions affected most acutely. Figure 1 summarizes
these overheads in the context of the full stack of overheads.

Our contributions are as follows:

• Weperform the first server-level characterization of a Function-
as-a-Service platform to determine architectural andmicroar-
chitectural impacts.

• We develop and open-source FaaSProfiler, a new FaaS test-
ing platform. This enables other researchers to conduct their
own profiling with OpenWhisk. We also open-source bench-
marks, measurement data, and scripts used in this paper.

• We characterize and attribute the individual contributions
to server-level overheads, including containerization (20x
slowdown), cold-start (>10x duration), and interference (35%
IPC reduction) overheads.

• We discover that FaaS workloads can cause certain architec-
tural components to underperform. This includes 20x more
MPKI for branch predictors and 6x higher memory band-
width under some invocation patterns.

• We identify amismatch in demands between the FaaS provider,
developer, and service end user, with respect to the present
pricing model. This motivates further research into pricing,
Service-Level Agreements (SLAs), and architectural methods
to alleviate the mismatch.

2 BACKGROUND
The ideas behind serverless and FaaS have developed over a long
period [7], but only formed into commercial services within the
last few years. FaaS takes lessons from Infrastructure-as-a-Service
(IaaS), Platform-as-a-Service (PaaS), and microservices, but brings
with it completely new pricing, development, and provisioning
models.

2.1 Differences with Other Cloud Models
FaaS is unlike traditional cloud models like IaaS and PaaS, and has
significant differences with newer models such as microservices
which have recently been thoroughly studied [8–10]. Differences
of FaaS from prior models include:

• The FaaS developer does not provision or manage the servers
that functions run on. This means there is no management
of compute bottlenecks by developers.

• Functions are abstracted from machine type. Most providers
do not guarantee a machine type, nor do they price differen-
tially based on them.

• Functions are used to increase server utilization. As such,
functions are often in contention with traditional applica-
tions using the same server.

• FaaS is priced at a fine granularity, based on resource utiliza-
tion, not per API call. FaaS brings cloud computing closer to
a compute-as-utility model.

• The developer is only charged for their function’s execution
time based on memory usage. This ignores platform (e.g.
network, cluster-level scheduling, queuing) and system-level
details (e.g. container management and OS scheduling) and
motivates the provider to minimize these overheads.

• Similar to microservices, functions are typically very short
(O(100ms)). This is in contrast to common cloud and pro-
cessor architectures that expect long-running applications.
The overheads of handling these short functions can further
worsen the problem of low utilization in cloud servers [11–
13]. Moreover, due to high parallelism, performance inter-
ference effects can be amplified.

• FaaS providers give SLAs only for availability.
The Cloud Native Computing Foundation (CNCF) divides server-

less into FaaS and Backend-as-a-Service (BaaS) [14]. They define
BaaS as “third-party API-based services that replace core subsets
of functionality in an application. Because those APIs are provided
as a service that auto-scales and operates transparently, this ap-
pears to the developer to be serverless." Many storage platforms,
microservices, and traditional, more monolithic, cloud platforms
are as such considered BaaS, because scaling, resource-provisioning,
and operation are transparent to the API end-user. However, today
they likely are not implemented using or priced like FaaS.

Isolation. FaaS generally makes use of containers provided by
the developer (usually via a Docker [15] file) to run and handle each
request. The provider may hide this for simple use cases, providing a
portal to upload source files. Containers lack typical cloud isolation
therefore many platforms run containers inside virtual machines,
leading to higher overheads.

Metrics. The FaaS provider is unaware of functions’ application-
level performance metrics beyond throughput and execution time.
As such, they do not guarantee metrics like 99th-percentile latency

Architectural Implications of Function-as-a-Service Computing MICRO-52, October 12–16, 2019, Columbus, OH, USA

Latency
End User

Throughput
FaaS Provider

Execution Time & Price
Developer

!

Figure 2: In FaaS, the stakeholders’ demands directly com-
pete. The end user desires low latency, the developer desires
low execution time and thus cost, and the FaaS provider de-
sires high throughput across their services.

as in more controlled settings like PaaS or microservices. This
exposes the developer to platform-level behavior like high cold start
times. This has motivated previous studies of the internals of FaaS
platforms, invoking large numbers of different functions in different
settings, in order to reverse-engineer the underlying system [3–5].
We go beyond this prior work, looking inside OpenWhisk as the
provider to further break down the causes of variance in throughput,
latency, and execution time.

Providers have just begun to give SLAs for FaaS [16]. These only
cover uptime, falling in line with broader cloud SLAs at 99.95%.
Beyond this, providers are making few guarantees to developers.

Pricing. FaaS is priced differently to existing cloud services, de-
pending only on each function invocation’s execution time and the
function’s memory limit (most often statically set by the developer).
Charging only for compute time enables new applications that rely
on massive parallelism to produce results at a high speed and low
cost [17–19].

FaaS is priced in gigabyte-seconds (GB-s), with some providers
having modifiers of gigahertz-seconds (GHz-s) or total invocations.
A gigabyte-second is one second of execution, where the func-
tion is provided 1 gigabyte of memory. Usually a function has a
static memory limit set in advance (of at least its true demand). In
some cases, an increased memory limit entails a faster processor
allocation (hence the additional gigahertz-seconds). With Apache
OpenWhisk, a higher memory limit allocates more CPU time. The
developer is charged for the time their functions execute, ignoring
system-level processing, and container/VM setup or teardown.

Demands. In FaaS, the system’s three stakeholders have differ-
ent demands, as shown in Figure 2. For return on investment, the
provider prefers high throughput, raising revenue per unit time and
the utilization of their cloud infrastructure. The developer values
low execution time most, reducing their compute cost. The end user,
who makes the function invocations, wants low latency to run their
application smoothly. We find that in our FaaS deployment, these
three metrics are in competition, raising an economic quandary for
the FaaS provider and questions about the effects of the present
FaaS pricing model on the developer and end user.

2.2 Apache OpenWhisk
To analyze FaaS in depth, we need the visibility to understand
system components and decouple software from architectural over-
heads. An open-source FaaS platform enables us to do this. To

Synthetic Workload
Invoker

Workload Analyzer

Comparative
Analyzer

FaaS Platform

OpenWhisk

CouchDB

Post

Rich AnalyticsQuick
Insights

Data
Archives

{;}

JSON

Post

Get

NGINX

Controller

Kafka

Invoker

FaaSProfiler

Config
File

Figure 3: We build FaaSProfiler which interacts with Open-
Whisk to run controlled tests and to profile various metrics.

maximize our results’ relevance, we seek to study commercial sys-
tems. These requirements led us to Apache OpenWhisk [20], the
basis of IBM Cloud Functions. It is the only complete FaaS platform
open-sourced by a major provider and is straightforward to deploy.
Finally, as OpenWhisk has been used in many recent studies [21–
23], using it can help the reader to better relate the findings of this
work to broader system trade-offs.

OpenWhisk uses Docker containers [15] without virtual ma-
chines to deploy functions, to reduce overhead. Practitioners are
evaluating the differences and trade-offs between containerization
and virtualization [24]. New virtual machines have been developed
to better match the low startup latencies of containers. Examples in-
clude the production-grade Amazon Firecracker microVM [25, 26]
and LightVM [27]. On the other hand, new containers have been
introduced to decrease the overhead of containerization [28, 29].

The components of OpenWhisk are shown in Figure 3. HTTP
requests intended to invoke a function (called an action in Open-
Whisk) enter via an NGINX [30] reverse proxy. They are then for-
warded to the Controller, which handles API requests like function
invocations. The Controller checks the CouchDB database for au-
thentication before loading action information from CouchDB. The
Controller’s Load Balancer then chooses a healthy and available
Invoker to initiate the action and passes it the information via the
Kafka publish-subscribe messaging component. The Invoker then
invokes the action in a Docker container, taken from its pool. This
container either comes from the developer, or is a language-specific
container that the developer’s code is injected into. On comple-
tion of the function invocation, the results and statistics about the
execution are logged to CouchDB, and for blocking API calls, the
results are returned to the end user.

OpenWhisk supports running functions in languages including
Python, Node.js, Scala, Java, Go, Ruby, Swift, and PHP. Developers
may provide their own Docker file to run function(s) of their choice.

3 METHODOLOGY
We use a server with an 8-core, 16-thread Intel Xeon E5-2620 v4
CPU which has 20MB of L3 cache. The server has 16GB of 2133MHz
DDR4 RAM connected to a single channel, which we show has been
sufficient for our experiments both regarding capacity and available
bandwidth.

MICRO-52, October 12–16, 2019, Columbus, OH, USA Mohammad Shahrad, Jonathan Balkind, and David Wentzlaff

Listing 1: Example Workload Configuration JSON.
{

"test_name": "sample_test",

"test_duration_in_seconds": 25,

"random_seed": 110,

"blocking_cli": false ,

"instances":{

"instance0":{

"application": "function0",

"distribution": "Poisson",

"rate": 20,

"activity_window": [5, 20]

},

"instance1":{

"application": "function0",

"distribution": "Uniform",

"rate": 100,

"activity_window": [10, 15]

},

"instance2":{

"application": "function1",

"data_file": "~/image.jpg",

"distribution": "Poisson",

"rate": 15,

"activity_window": [1, 24]

}

},

"perf_monitoring":{

"runtime_script": "MonitoringScript.sh"

}

}

Weuse the public OpenWhisk source code, as released onGitHub1
and built from Git commit 084e5d3. Our only changes from the
default settings were to increase the limits on the number of con-
current invocations and invocations per minute, and to increase
the memory allocated to the invoker, as discussed in Section 6.2.
Finally, the test server’s OS is Ubuntu 16.04.04 LTS.

3.1 FaaSProfiler
In this work, we introduce FaaSProfiler2, a tool for testing and
profiling FaaS platforms. We built FaaSProfiler based on the real
needs and limitations we faced early on conducting our studies:

• Arbitrary mix of functions and invocation patterns.
FaaSProfiler enables the description of various invocation
patterns, function mixes, and activity windows in a clean,
user-friendly format.

• FaaS-testing not plug-and-play. Each function should be
invoked independently at the right time. Precisely invok-
ing hundreds or thousands of functions per second needs a
reliable, automated tool. We achieve this with FaaSProfiler.

• Large amount of performance andprofiling data. FaaSPro-
filer enables fast analysis of performance profiling data (e.g.,
latency, execution time, wait time, etc.) together with re-
source profiling data (e.g L1-D MPKI, LLC misses, block I/O,
etc.). The user can specify which parameters to profile and
make use of the rich feature sets of open-source data analysis
libraries like Python pandas [31].

Figure 3 shows FaaSProfiler and how it interacts with Open-
Whisk via HTTP get/post. The user specifies the mix of function

1https://github.com/apache/incubator-openwhisk
2http://parallel.princeton.edu/FaaSProfiler.html

Application Description Runtime
autocomplete Autocomplete a user string from a corpus NodeJS
markdown Renders Markdown text to HTML Python
img-resize Resizes an image to several icons NodeJS
sentiment Sentiment analysis of given text Python
ocr-img Find text in user image using Tesseract OCR NodeJS + binary

Table 1: The list and description of FaaS applications we
wrote or repurposed to use as benchmarks.

invocations in JSON format. Listing 1 shows an example JSON con-
figuration. Here, the test is set to run for 25 seconds with a fixed
random seed (110). Function invocations are non-blocking, where
function0 is invoked at 20 invocations per second (ips) between
seconds 5 to 20 of the test with a Poisson distribution. This function
is also invoked as instance1 with 100ips between seconds 10 to 15
with a uniform distribution. Between seconds 1 to 24, function1
is invoked at 15ips with a Poisson distribution. Note the image
data file for function1. The binary data from the file is sent along-
side the invocations. The example configuration also specifies an
optional runtime profiling script (MonitoringScript.sh) to run
concurrently at test start. This approach provides high flexibility
and modularity for profiling. We utilize these runtime profiling
scripts to use tools such as perf (Linux performance counters pro-
filing), pqos-msr (Intel RDT Utility [32]), and blktrace (Linux
block I/O tracing).

After specifying the config file, the user runs their experiments
using the Synthetic Workload Invoker. Once complete, the Work-
load Analyzer can plot the results and archive them in standard
Pandas data frames for later analysis and comparison of multiple
tests using the Comparative Analyzer.

FaaSProfiler will provide researchers the ability to quickly and
precisely profile FaaS platforms on real servers. It not only provides
the entire testing and profiling environment, but also accelerates
testing early-stage research ideas. After cloning, FaaSProfiler is set
up with a single script. It is then ready to profile the user’s functions.
We also include a number of microbenchmarks and applications
(discussed in Section 3.2).

3.2 Benchmarks
Microbenchmarks. To investigate the overhead of FaaS function

execution compared to native execution, we used a subset of the
Python Performance Benchmark Suite [33]. We created OpenWhisk
actions (functions) from the microbenchmarks, ignoring very sim-
ilar microbenchmarks and those with a number of library depen-
dencies, leaving us with a final set of 28. The same Python version
was used throughout. For functions requiring libraries, we built
unique minimal container images. The OpenWhisk action container
includes code to receive and process the incoming HTTP requests
to pass any arguments to the function that is being invoked, and to
retrieve any results to send back to the caller.

Benchmark Applications. We have also written or repurposed
five FaaS functions (detailed in Table 1) to use as representative
FaaS benchmark applications. The functions are written in Python
and NodeJS, and ocr-img calls the open-source Tesseract OCR [34]
from NodeJS as an external binary. The containers are built either
by injecting into the existing OpenWhisk containers for Python
and NodeJS, or by creating a new container based on them when
additional libraries or binaries are needed.

https://github.com/apache/incubator-openwhisk

Architectural Implications of Function-as-a-Service Computing MICRO-52, October 12–16, 2019, Columbus, OH, USA

0 2 4 6 8 10
Invocation Time (s)

0

1

2

3

4

5

To
ta

l F
un

ct
io

n
La

te
nc

y
(s

)

Over-invoked (100ips)
Capacity= 66ips
Balanced (50ips)
Under-invoked (8ips)

3.6 3.8 4.0 4.2
0.0

0.1

0.2

Figure 4: The invocation rate of a function (json_dumps here)
determines its latency behavior. (Lower latency is better)

4 SYSTEM-LEVEL BEHAVIOR
Running functions natively is inherently different from provision-
ing functions in FaaS. For instance, the user directly starts a native
function execution. However, function invocation in FaaS entails
additional steps such as traversing load balancers and messaging
layers. Even the very notion of performance is different. Runtime
is a broadly accepted metric for functions running natively, but
it is less clear what should contribute to a function performance
metric for FaaS. This section aims to establish a common ground
for the reader to better understand FaaS and to contextualize our
later results.

4.1 Latency Modes and Server Capacity
Here, we show how the latency of function completions depend on
invocation frequency in an interesting way. We demonstrate this
with json_dumps, though we observe this behavior for all functions.
Figure 4 shows the latency for four different ips rates, invoked in a
uniform distribution for 10 seconds. Each rate has different latency
variation behaviors which we call latency modes:

(1) Over-invoked: If no container is available for the invoker
to provision to a function, the invocation is queued. When
more functions are invoked than the server can execute (the
red 100ips test in Figure 4), latency keeps increasing, due to
the backlog of this internal queue. An active load balancer
can avoid sending new invocations to over-invoked servers.

(2) Under-invoked: OpenWhisk pauses idle containers after a
50ms grace period to save memory. On the other hand, if in-
vocations are queued and the server has available resources,
new containers are started. Now, if a server is under-invoked
(the blue 8ips test in Figure 4), containers become idle for
long enough to be paused. This causes a latency ripple effect
as invocations must wait periodically for container(s) for
functions to be unpaused.

(3) Balanced: If the invocation rate is high enough to avoid
pauses and low enough to stay within the server capacity,
function invocation latency converges. For the green 50ips
test in Figure 4, the latency converges to the execution time
of roughly 55ms after about 3.75 seconds.

0

500

1000

In
iti

al
iza

tio
n

Ti
m

e
(m

s) Under-invoked Balanced Over-invoked

(A) Cold Starts

0

2000

W
ai

t T
im

e
(m

s)

(B) Emptying
Queue (C) Increasing

Queue

100

200

300

Ex
ec

ut
io

n
Ti

m
e

(m
s)

(D) Large
Variations

0 10 20 30 40 50 60
Time (s)

0

1

2

3

Cy
cle

s p
er

 S
ec

on
d

×1010

Kernel Mode
User Mode

Figure 5: Function json_dumps invoked with different rates
to study the latencymodes. The breakdownof latency (made
of initialization time, wait time, and execution time) is
shown, as are the cycles per second spent in user and ker-
nel modes. Kernel overhead is especially high for the under-
invoked case.

As shown in orange in Figure 4, the invocation rate can be set
to match the server processing capacity, keeping the latency on
the boundary of balanced and over-invoked modes. We use this
number as a measure to capture the capacity of the server for a
function; in this case for json_dumps it is 66ips.

4.2 Performance Breakdown
In Section 4.1, we showed how the latency of a function depends
on the invocation rate. This latency comprises different compo-
nents which we study here. We invoke json_dumps at 8ips (under-
invoked), 50ips (balanced), and 100ips (over-invoked), each for a
five-second phase. Between phases, there is a five-second idle pe-
riod (no invocations). Figure 5 depicts the breakdown of latency
components alongside CPU cycles spent in user and kernel modes.

Breakdown of function latency. The latency of a function invo-
cation on a server (excluding network latency, and cluster-level
scheduling and queueing) comprises of different components: (1)
Initialization time or cold start time is spent preparing a func-
tion container. Warm functions skip initialization. (2)Wait time is
spent waiting inside OpenWhisk before execution. (3) Execution
time is the time taken for a container to run the function. All of
these affect the end-to-end latency for the users. Therefore, deliv-
ering suitable FaaS offerings requires reducing cold starts or their
cost, minimizing the queueing time for invocations, and keeping
the function execution times low.

Cold starts are costly. We observe cold start time of at least 500ms
and as high as 1000ms (marker A in Figure 5). This overhead occurs
for the invocations that spin up new containers or un-pause paused
containers. If containers remain live, there is no cold start.

MICRO-52, October 12–16, 2019, Columbus, OH, USA Mohammad Shahrad, Jonathan Balkind, and David Wentzlaff

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Time (s)

0

5

10

15

20

25

Br
an

ch
 M

PK
I

json_dumps (capacity=160)
Invocation Rate
120.0
135.0
150.0
165.0

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Time (s)

0

5

10

15

20

25

Br
an

ch
 M

PK
I

Different Functions
Function
sentiment
deltablue
markdown
json_dumps
mako
regex_v8
pidigits

Figure 6: As long as function containers are alive, the invoca-
tion rate does not affect the branchMPKI (left). However, dif-
ferent functions consistently experienced different branch
MPKI (right).

101 102 103

Live Container Execution Time (ms)

10−1

100

101

Br
an

ch
 M

PK
I

sentiment
deltablue
markdown
json_dumps
mako
regex_v8
pidigits

Figure 7: Functions with longer execution time have lower
branch MPKI.

Wait time follows a queueing model. Function invocations are
queued at the server-level to be run by worker container(s). While
this local queue is different from cluster-level queues managed
by load balancers, it still follows similar queuing principles that
directly affect the QoS [35]. If the processing rate is higher than
the invocation rate, the queue wait time decreases (balanced mode)
as shown by marker B in Figure 5, and eventually flattens out (not
pictured). However, if the invocation rate exceeds the processing
capacity, there will be an accumulation of queueing delay and thus
increasing wait time (over-invoked mode), as shown by marker C
in Figure 5. When under-invoked, containers are paused/unpaused.
Due to this varying processing capacity, the queue wait time varies.

Execution Time is variable. Marker D in Figure 5 shows high
variability in execution time in the balanced and over-invoked
modes when they reach the steady-state (once all containers have
started). Such variations are mainly caused by involuntary context
switches and get worsened by increased concurrency.

The OS kernel overhead is non-trivial. The kernel can consume
a significant portion of active CPU cycles; especially when under-
invoked, where containers are paused and unpaused regularly. The
proportion of cycles spent in kernelmode, as compared to usermode
is considerably higher when under-invoked. As the OS overhead
is much less for native execution of functions, lowering the OS-
related costs of virtualization for functions remains an active area
of research [29, 36–38].

104 106 108 1010

Instructions Executed

10−1

100

101

102

Br
an

ch
 M

PK
I

Py
th

on
3

St
ar

tu
p

4KB GShare Predictor

sentiment
deltablue

markdown
json_dumps

mako
regex_v8

pidigits
json_loads

null

104 106 108 1010

Instructions Executed

Py
th

on
3

St
ar

tu
p

32KB GShare Predictor

Figure 8: Simulated branch misprediction per kilo-
instruction (MPKI) rates for 4KB and 32KB GShare
predictors compared to execution time. Python startup
overhead is significant for short functions, and MPKI
is 16.18x (32KB) and 18.8x (4KB) higher for the shortest
function compared to the longest.

5 COMPUTE AND MEMORY
To understand the architectural implications of FaaS, we examine
which architectural components are affected the most by the fine-
grained interleaving of many short functions. Here, we focus on
the processor’s primary locality-preserving mechanisms: branch
predictors and caches. We find unique mismatches in the present-
day design of branch prediction, LLC sizing, andmemory bandwidth
availability when they are used to run a FaaS environment. We
then recommend how to improve the servers and broader cloud
environment to better afford FaaS.

5.1 Branch Prediction
In this section, we explain how our series of experiments reveal
insights into the branch prediction behavior of FaaS workloads.
Specifically, we want to know to what extent branch predictors can
handle short containerized function executions.

We started by invoking the json_dumps function with a high
enough rate to ensure it remained in the balanced latency mode to
keep all worker containers alive (i.e. at its capacity). This way, the
container cold start code execution is eliminated from our profiling
data. We observe that in the balanced mode, regardless of the invo-
cation rate, the branch mis-predictions per kilo-instruction (MPKI)
converges to the same value. This is shown in the left sub-figure of
Figure 6.

After ensuring that the invocation rate within the balanced mode
does not affect the branch MPKI values for a few functions, we
compared the MPKI for different functions. To avoid the added
complexity of a cross-language comparison, we chose from our
python microbenchmarks and python applications. We observed
that they have distinct branch MPKI convergence values, shown in
the right sub-figure of Figure 6. At first look, one might think that
these different MPKI values are due to different code for various
functions. However, plotting the branchMPKI against the execution
time, we came across the trend shown in Figure 7. Longer functions
appear to have noticeably lower branch MPKI.

Observing this trend and the lack of more detailed visibility in
our test machine motivated us to look deeper into understanding

Architectural Implications of Function-as-a-Service Computing MICRO-52, October 12–16, 2019, Columbus, OH, USA

this behavior.Wewanted to understand the role of the language run-
time’s startup time for cold containers, and whether there is a clear
loss in branch MPKI for shorter functions as compared to longer
functions. We wrote a custom Pintool [39] to generate branch traces
for some of our functions running outside of the containerized FaaS
environment. Due to the limitations of Intel Pin, these traces do
not include any branch information for execution inside the kernel.
Additionally, these traces include the Python 3 language runtime
startup. Using the simulation infrastructure provided as part of the
Championship Branch Prediction 2016 (CBP-5), we simulated two
GShare branch predictors [40] with Pattern History Tables of 4KB
and 32KB in size.

The simulation results are shown in Figure 8. During Python 3
startup (indicated by the empty function, null, but expressed al-
most identically by all of our functions), MPKI is relatively high
but decreases quickly. While the relationship of shorter functions
having higher MPKI is intuitive, it is important to note that the
traditional expectation is that programs will run for long enough to
train the branch predictor (possibly across multiple OS scheduling
quanta). In the FaaS environment, functions are short enough for
MPKI to be noticeably affected by their length. This causes a differ-
ence in final MPKI between the shortest (json_loads) and longest
(pidigits) functions of 18.8x for 32KB GShare and of 16.18x for
4KB GShare. Looking just at the data points for pidigits, we also
see that it has a similarly high MPKI when it has executed the same
number of instructions as json_loads, so this is not simply a mat-
ter of the shorter functions being harder to predict. Additionally,
when a short function is infrequently invoked (so the predictor
will not stay trained), the language runtime startup will make up
a significant amount of the execution time. For a longer function
like pidigits which takes over 300ms to execute, only 3% of the
instructions are in the startup code. However, for the shortest func-
tion, json_loads, 60.9% of the instructions executed are from the
startup code.

Implications. Our observation that present branch predictors
experience higher MPKI for short functions motivates an inves-
tigation of branch predictor modifications to better target short-
lived functions like FaaS. For instance, branch predictors that train
quickly, or that retain state on a per-application basis. It also makes
clear that FaaS function lifetime is short enough to harm temporal
locality-related microarchitectural features.

5.2 Last-level Cache
To explore the impact of Last-level Cache (LLC) size on function
cold start and execution time, we limited the amount of LLC accessi-
ble to CPU cores in hardware. This was feasible as our test server’s
CPU supports Intel Cache Allocation Technology (CAT) [41]. We
controlled the LLC allocations using the Intel RDT Software Pack-
age [32]. We conducted experiments for each of our benchmark
applications, during which we invoked each function with a low
enough rate to experience cold start for every invocation.

As seen in Figure 9, LLC is not the performance bottleneck for
these functions since reducing its size by almost 80% has no sig-
nificant impact on their cold start or execution time. However, all
of these functions experience significant slowdown with less than
2MB of LLC. As a reminder, a non-trivial amount of kernel code

5 10 15 20
LLC Size (MB)

0

200

400

600

800

1000

1200

1400

1600

Co
ld

 S
ta

rt
Ti

m
e

(m
s)

5 10 15 20
LLC Size (MB)

101

102

103

Ex
ec

ut
io

n
Ti

m
e

(m
s)

autocomplete img-resize markdown ocr-img sentiment

Figure 9: When invoked to cause cold starts, increasing LLC
size beyond around 2MB does not significantly change the
cold start latency and execution time of five functions.

executes on the server to enable OpenWhisk (Figure 5), thereby
congesting the cache. As a side note, we observed that all Python 3
functions have the same cold start which is 3-5x higher than the
NodeJS cold start.

Our observation regarding the low LLC requirement of FaaS
workloads resonates well with the trend reported by prior stud-
ies on emerging cloud workloads [10, 42–44]. CloudSuite authors
have shown that scale-out and server workloads have minimal per-
formance sensitivity to LLC sizes beyond 4-6MB [43]. Analyzing
modern latency-critical cloud workloads, Chen et al. [42] character-
ized them as “not highly sensitive to LLC allocations especially at low
load.” Additionally, in the context of microservices, Gan et al. [10]
have reported considerably lower LLC misses compared to tradi-
tional cloud applications. Considering that LLC takes a significant
area on modern processors [44–46], our observation confirms the
need to overcome this source of inefficiency in yet another class of
cloud services.

Implications. Using current servers and in the short-term, cloud
providers can utilize this ample LLC by partitioning the LLC gener-
ously to different system components, in an effort to mitigate LLC
interference effects. However, in the long-term, providers might
benefit from deploying processors with smaller LLCs or providing
more processor cores, as has recently become popular for proces-
sors specifically designed for the cloud [47–49]. This would directly
translate into lower TCO for providers, and thus cheaper services
for clients.

5.3 Memory Bandwidth
We used Intel’s Cache Monitoring Technology (CMT) and Memory
Bandwidth Monitoring (MBM) [41] to monitor potential memory
bandwidth contention. We invoked five different functions sepa-
rately with their capacity rates on this server, under different cache
sizes. The result is shown in Figure 10. Depending on the function
and whether it uses the entire LLC, the memory bandwidth utiliza-
tion can vary significantly – from 3.5% to 88% of the bandwidth
limit of 17.07GB/s for our setup. Also, functions differed in their
sensitivity to LLC size. But, under LLC scarcity, memory bandwidth
was affected for all functions as the system started to thrash.

Values presented in Figure 10 correspond to invocation at capac-
ity rates. We observed that although the total memory bandwidth
usage at capacity is higher than balanced or under-invoked latency

MICRO-52, October 12–16, 2019, Columbus, OH, USA Mohammad Shahrad, Jonathan Balkind, and David Wentzlaff

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
LLC Size (MB)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

M
em

or
y

Ba
nd

wi
dt

h
(G

B/
s)

Memory BW Limit

autocomplete img-resize markdown ocr-img sentiment

Figure 10: Memory bandwidth consumption varies a lot be-
tween functions. img-resize consumes the highest band-
width (up to 88%) under default LLC size (20MB). Smaller
LLC sizes translate into higher bandwidth usage. We run
each function separately at its capacity.

128 256 384 512
Container Memory Limit (MB)

0

20

40

60

80

100

120

140

160

180

M
em

or
y

Ba
nd

wi
dt

h
Us

ag
e

pe
r I

nv
oc

at
io

n
(M

B)

16-thread Native Baseline
20% Capacity
80% Capacity
Capacity

Figure 11: Under-invocation leads to cold starts, increas-
ing the normalized memory bandwidth consumption per
invocation. This behavior is independent of memory limit.
We invoked different variants of markdown with their corre-
sponding capacities to show this.

modes, per invocation bandwidth consumption follows the oppo-
site trend. This is shown in Figure 11. We invoked four variants of
markdownwith 128MB, 256MB, 384MB, and 512MB of memory limit.
These variants have capacities of 166ips, 160ips, 122ips, and 104ips,
respectively. Each variant was invoked with a Poisson distribution
at 20%, 80%, and 100% of its capacity. At 20% capacity, all variants
experience many cold starts, and this significantly increases their
normalized memory bandwidth usage.

Figure 11 also depicts the average per-invocation memory band-
width usage for native execution of the markdown function. It is 3.8x
lower than the lowest memory bandwidth usage of the correspond-
ing OpenWhisk action. We measured this baseline by executing the
function in sixteen concurrent processes, fully utilizing the sixteen
hardware threads available on the server’s CPU.

Implications. Knowing that memory bandwidth increases at cold-
start time, memory bandwidth provisioning could be used to isolate
newly starting containers. This would help to keep containers for
other functions in their balanced mode. Additionally, prefetcher
algorithms could be developed specifically for container cold-start

2 4 8 16
Invoker Memory Size (GB)

0

25

50

75

100

125

150

175

200

Se
rv

er
 C

ap
ac

ity
 (i

ps
)

Container Memory
Limit (MB)

128
256
384
512

Figure 12: Invoker memory size determines the num-
ber of parallel containers, affecting the server capacity
(json_dumps here). However, this parallelism has overheads
which limit the capacity gains.

to ensure that the bandwidth is used most efficiently and that the
function is able to move into its balanced mode as soon as possible.

6 PLACEMENT AND SCHEDULING
In this section, we take a step back, to see the implications of FaaS
at a higher level. We explain how functions are scheduled inside a
server and what it means for the ideal server size. We then present
the consequences of this scheduling and how it can enable a FaaS
provider to unfairly overcharge users mapped to an over-capacity
server. Finally, we demonstrate intense interference effects in a
busy FaaS server.

6.1 Invoker Scheduling
The Invoker is at the heart of OpenWhisk and is responsible for
running containers. In OpenWhisk, the number of containers that
can run at once (and their share of CPU time) is determined by the
amount of memory allocated to the Invoker (known as its memory
size) combined with each container’s chosen memory limit.

To show this interplay, we determined the capacity of json_dumps
under various container memory limits and Invoker memory sizes.
The results are shown in Figure 12 – smaller function memory
limits and larger Invoker memory sizes lead to higher capacity. We
can see that the number of running containers is the primary factor
affecting capacity, as doubling both the container memory limit
and the Invoker memory size together results in the same capacity.

The interesting observation here is that for a fixed container
memory limit, the gains of moving to larger invoker memory sizes
quickly vanish. This is because other factors such as limitations
on the available CPU time for a given function start to kick in.
From another experiment we ran on the same function, we saw
that doubling the Invoker memory size from 4GB to 8GB resulted in
an average increase of 42.9% in latency and 70.5% in execution time.
This is likely due to the overhead of managing and scheduling twice
as many containers. We investigate this more in Section 6.2. Know-
ing this trade-off, we picked 4GB of Invoker memory to conduct
our experiments in this work.

Implications. The behavior of the system as we varied Invoker
memory size raises questions about OS scheduling for FaaS. In-
creasing the number of containers can improve server capacity, but

Architectural Implications of Function-as-a-Service Computing MICRO-52, October 12–16, 2019, Columbus, OH, USA

deltablue
json_dumpspidigits mako

regex_v8

Function

0

50

100

150

200

250

Se
rv

er
 C

ap
ac

ity
 (i

ps
)

Container Memory
Limit (MB)

128
256
384
512

deltablue
json_dumpspidigits mako

regex_v8

Function

0

500

1000

1500

2000

2500

3000

3500

4000

La
te

nc
y

(m
s)

deltablue
json_dumpspidigits mako

regex_v8

Function

0

200

400

600

800

1000

1200

Ex
ec

ut
io

n
Ti

m
e

(m
s)

Figure 13: When invoked at capacity, reducing each function’s memory limit from 512MB to 384MB and 256MB increases the
latency and execution time roughly proportionally. However, decreasing the memory limit to 128MB increases capacity only
slightly, while costing much more in latency and execution time.

is accompanied by significant increases in latency and execution
time. Given that execution time for short functions is on the same
order as the OS scheduling quantum, this motivates a FaaS-aware
scheduler that would aim to complete the execution of a given
function before invoking the scheduler again.

6.2 Balancing Demands
To ascertain the correct memory limit (and thus scheduling share)
for several of our microbenchmark functions, we swept the space
of function memory limits. Figure 13 shows the average measured
capacity as well as latency and execution time at capacity for each
sweep. While each metric increases when moving to smaller mem-
ory limits, the difference in magnitude of the increases raises a
concerning imbalance between the demands of the FaaS provider
(who values increasing capacity/throughput, but also profits from
increasing execution time), the developer (who values decreasing
execution time), and a potential individual end user (who values
decreasing latency).

Looking deeper, we divided the increase in latency or execution
time by the increase in capacity at the same step. This is the mar-
ginal increase in latency/execution time over the marginal increase
in capacity for a step in memory limit. We see in Figure 13 that
when stepping from 512MB to 384MB, and from 384MB to 256MB,
the marginal capacity increase is close to proportional. However,
when stepping to 128MB, the marginal capacity increase is only
69.4%-81.3% of the marginal latency increase and only 54.9%-64.5%
of the marginal execution time increase. We chose a memory limit
of 256MB as it remains within the reasonable regime of marginal
increases of capacity compared to latency and execution time.

The imbalance comes as execution time (and thus price) and
latency (the end user’s experience) are lost in favor of the FaaS
provider’s preferred capacity maximization, while the provider
guarantees the developer no QoS via the SLA. The provider has
the incentive to go over capacity, selling more function in-
vocations per unit time on the same hardware, while also
increasing functions’ execution time, making the provider
more money. The execution time increase may not proportion-
ally show in the latency, but it directly increases the cost of the
service. Additionally, the extra wall-clock time charged to the de-
veloper may not actually be useful cycles. Our experiments show

5

10

La
te

nc
y

(m
s)

[js
on

_d
um

ps
] deltablue invoked 20

times in 4 seconds

0.5

1.0
Se

rv
er

 IP
C

35% Reduction

0

2

4

Pa
ge

 F
au

lts
pe

r K
ilo

 In
st

ru
ct

io
ns

×10−5

1

2

Co
nt

ex
t S

wi
tc

he
s

pe
r K

ilo
 In

st
ru

ct
io

ns

×10−5

0 5 10 15 20 25 30
Time (s)

0

2

4

LL
C

M
PK

I

Figure 14: Interference effects are severe in FaaS. While
json_dumps is invoked at 80% of its capacity (128ips), just 20
deltablue invocations in 4 seconds cause lingering effects
that reduce IPC and increase page faults, context switches,
and cache misses per kilo-instruction.

that those cycles are likely spent in OS scheduling, container man-
agement, page fault handling, or pipeline flushes due to branch
mis-predictions.

Implications. Solving this pricing incentive phenomenon is be-
yond the scope of this paper. However, our findings motivate a
search for solutions. Some possibilities are 1) pricing model changes,
such as excluding system-level overheads or deploying incentive-
compatible pricing schemes [50], 2) architectural changes, such as
better isolation, and 3) SLA changes, structural guarantees made to
the developer by the FaaS provider.

MICRO-52, October 12–16, 2019, Columbus, OH, USA Mohammad Shahrad, Jonathan Balkind, and David Wentzlaff

chameleon
chaos

crypto_pyaes
deltablue

fannkuch float

genshi_te
xt

genshi_xml go

json_dumps
hexiom

meteor_co
ntest

pathlib
pidigitsmako

nbody
nqueens

raytrace

regex_effbot
regex_v8

rich
ards

scim
ark_fft

scim
ark_monte_carlo

scim
ark_sparse_mat_m

ult

spectra
l_norm

sqlalchemy_declarative

sqlalchemy_im
perative

tornado_http
100

101

102

Sl
ow

do
wn

 C
om

pa
re

d
to

Na
tiv

e
Ex

ec
ut

io
n

Live Container
Paused Container

Figure 15: All functions experience a containerization overhead compared to native execution. These overheads are signifi-
cantly higher for paused containers than for live containers. (Slowdown plotted as log, lower is better)

101 102 103

Native Execution Time (ms)

100

101

102

Co
nt

ai
ne

r E
xe

cu
tio

n
Sl

ow
do

wn

R2 ≈ 0.96 Paused Container
Live Container

Figure 16: Shorter functions experience relatively higher
slowdown. (Log-log plot, lower is better)

6.3 Interference
To characterize the interference effects within our system, we set
up the function json_dumps to be invoked at 80% of its capacity
(128 ips) for a 29 second period, putting it in what would normally
be its balanced mode. At the 10th second, deltablue is invoked at
a rate of 5 invocations per second for 4 seconds. Figure 14 shows
this experiment, with json_dumps starting at the 1st second and
deltablue starting at the 11th second. The figure shows latency
for json_dumps, and the instructions per cycle (IPC), page faults
per kilo-instruction, context switches per kilo-instruction, and LLC
MPKI of the system. Looking at the latency, we can see that when
deltablue begins to be invoked, json_dumps moves into its over-
invoked mode, and takes some time to recover back to a balanced
mode once deltablue is no longer being invoked. During this time
window, we observe that IPC drops by 35% versus the balanced
mode, and this correlates with significant increases in page faults,
context switches, and LLC misses per kilo-instruction, which are
all the overheads of bringing up new containers for deltablue.

Implications. A deeper architectural investigation of the interfer-
ence phenomenon would shine light on the behavior we observe
here. The increase in page faults per kilo-instruction canlikely be
ameliorated by changes to the processor’s TLBs. FaaS-specific LLC
prefetching algorithms could also reduce LLC misses. Higher level
isolation changes may also have positive impacts on all of the met-
rics we measured.

7 DISCUSSIONS
In this section, we discuss a few remaining aspects that should be
taken into account when reasoning about the architectural implica-
tions of FaaS holistically. These include the overhead of container-
ization, broader differences of functions running natively versus in
FaaS settings, and the impact of programming languages.
7.1 Overhead of Containers
While there have been numerous studies on the impact of container-
ization [51–53], we also characterize it in our setting to provide
a complete view to the reader. Figure 15 shows the average slow-
down experienced by different functions when running in Docker
containers under OpenWhisk, compared to native execution (error
bars indicate standard deviation). This slowdown is noticeable and
depends on whether the action container is alive (green bars on
left) or paused (orange bars on right). A paused container incurs
considerably higher slowdown, as seen.

By default, OpenWhisk pauses idle containers after a 50ms grace
period. While this number or the exact policy might vary from
vendor to vendor, the issue is universal: containers cannot be kept
alive forever and should be paused to release memory. In our exper-
iments, we have observed that the additional latency due to paused
containers is the dominant factor for performance variations. Fast
container un-pausing, denser packing of live containers, and redef-
inition of the memory hierarchy to suit this setup are some of the
potential architectural opportunities to tackle this issue.

We have observed a strong correlation between slowdown and
function duration. In particular, there is a power-law relation be-
tween slowdown for paused action containers and the native ex-
ecution time, as shown in Figure 16. The shorter the function,
the higher the slowdown. This is due in part to fixed overheads
being proportionally larger compared to the length of short func-
tions. These slowdowns may necessitate consolidation of short
functions by developers, or perhaps under the hood by the FaaS
provider. Indeed, Akkus et al. [54] recently showed the advantages
of application-level sandboxing for improving latency.

7.2 Native vs. in-FaaS Function Execution
Experiencing performance overheads due to containerization is not
the only differences functions experience running on FaaS com-
pared to native execution. We addressed many such differences

Architectural Implications of Function-as-a-Service Computing MICRO-52, October 12–16, 2019, Columbus, OH, USA

in the paper. As mentioned in Section 4.2, performance variability
due to cold starts, orchestration, and queuing can contribute to
QoS in FaaS. These overheads can become more problematic when
function durations are shorter or when invocation patterns are
burstier. Note that a fast burst can incur creating new containers
and thus additional cold starts. Aside from the QoS aspects, con-
tainerized functions also consume more resources in FaaS settings.
One example is the higher memory bandwidth usage, as shown
in Section 5.3. In addition, provisioning additional isolation for se-
curity in FaaS further ramps up the resource usage [55]. Finally,
the common practice of enforcing memory limits on FaaS func-
tions makes them different from native functions. Memory limits
in FaaS can be much lower than typical memory sizes of IaaS VMs.
Therefore, a developer now needs to be more cautious about their
function’s maximum memory consumption.

7.3 The Role of Programming Language
We primarily used Python (and some NodeJS) functions to demon-
strate system-level behavior. This is due to their wide support across
every major platform. While we do not draw conclusions about the
performance of different languages, we believe that our primary
conclusions regarding overheads, latency modes, prediction perfor-
mance, etc will hold, regardless of language. Other work has found
variance in the cost of FaaS functions across different languages
and FaaS platforms [4]. Going forward, providers will feel competi-
tive pressure to improve the performance of the most heavily-used
languages in order to lure customers to their platforms.

8 RELATEDWORK
Studies demystifying serverless and FaaS. The majority of the
related work on characterization of serverless/FaaS have been con-
ducted from outside FaaS platforms [2–5, 56]. This means through
careful testing, those researchers reverse-engineered what could
be happening inside the black-box of commercial serverless sys-
tems. Despite providing valuable insights about FaaS offerings of
providers such as AWS Lambda, Google Cloud Functions, Microsoft
Azure Functions, and IBM Cloud Functions, those studies are bound
by many practical restrictions. Lack of control over co-location [3],
low visibility due to virtualization, and having no access to hard-
ware performance counters are just a few such limitations. We are
the first to take a bottom-up approach and conduct a server-level
analysis of the FaaS model. This is vital, as we wanted to not only
decouple network and server overheads, but also carefully under-
stand overheads within a server. This enabled us to, for the first
time, provide data about the architectural implications of FaaS.

Studies on architectural implications of emerging cloud
models. Prior work has characterized emerging cloud models and
workloads to understand inefficiencies in state-of-the-art server
architectures. CloudSuite was introduced and has been used to
study the architectural implications of scale-out workloads [43, 57].
It has influenced the design of new processor [58, 59] and acceler-
ator [60] architectures for the cloud. A number of related works
tackle characterizing resource consumption and performance break-
downs inside modern cloud data centers [61–65]. These studies are
conducted at larger scale and have made valuable data publicly
available to the research community. As microservices have gained

interest recently, there have been studies discovering architectural
implications [8] and proposing benchmark suites [10, 66] to enable
further research. This paper is the first study to describe the archi-
tectural implications of FaaS applications and platforms. We also
open source the testing and profiling tool we developed. FaaSPro-
filer will accelerate testing new ideas for other researchers and
provide ground truth for architectural simulations by enabling the
fast testing of a commercial-grade FaaS platform on local servers.

Profiling tools for the cloud. Researchers have developed nu-
merous tools to profile and analyze cloud systems and workloads.
One can classify those works based on their goal. There have been
manyworks regarding tracing and diagnostics of cloud systems [67–
71]. Another group of tools have been developed to conduct stress
testing of cloud infrastructure [72, 73]. Profiling tools can be much
more fine-grained in scope in order to conduct instruction-level
introspection [39, 74–76]. Our tool, FaaSProfiler, is unique in that it
is the first open testing and profiling tool to target a FaaS platform.
Moreover, it flexibly enables the use of a wide range of available
system profiling/tracing tools.

9 CONCLUSION
Function-as-a-Service (FaaS) serverless computing is an emerging
service model in the cloud. The main body of FaaS research centers
around cluster-level system management or building new applica-
tions using FaaS. However, serverless (while a nice name) is not
server-less and functions still run on providers’ servers. Understand-
ing the implications of this new service model at the server-level is
necessary for building next-generation cloud servers.

We provide the first server-level characterization of a Function-
as-a-Service deployment on a commercial-grade platform. We find
many new system-level and architectural insights on how short-
lived deeply-virtualized functions can act against the common wis-
dom. In particular, architectural features that exploit temoporal
locality and reuse are thwarted by the short function runtimes in
FaaS. We see significant opportunity for computer architecture re-
searchers to develop new mechanisms to address these challenges.
Alongside this study, we open source a tool we developed, FaaSPro-
filer, which can accelerate testing and profiling FaaS platforms.

ACKNOWLEDGEMENTS
We thank Rodric Rabbah, Maria Gorlatova, Katie Lim, and Berkin
Ilbeyi for constructive early-stage discussions.We also thankAlexey
Lavrov, Amit Levy, Akshitha Sriraman, and anonymous reviewers
for their valuable feedback on this work. This material is based on
research sponsored by the NSF under Grants No. CCF-1822949 and
CCF-1453112, Air Force Research Laboratory (AFRL) and Defense
Advanced Research Projects Agency (DARPA) under agreement
No. FA8650-18-2-7846, FA8650-18-2-7852, and FA8650-18-2-7862.
The U.S. Government is authorized to reproduce and distribute
reprints for Governmental purposes notwithstanding any copyright
notation thereon. The views and conclusions contained herein are
those of the authors and should not be interpreted as necessarily
representing the official policies or endorsements, either expressed
or implied, of Air Force Research Laboratory (AFRL) and Defense
Advanced Research Projects Agency (DARPA), the NSF, or the U.S.
Government. This work was partially supported by the AWS Cloud
Credits for Research program.

MICRO-52, October 12–16, 2019, Columbus, OH, USA Mohammad Shahrad, Jonathan Balkind, and David Wentzlaff

REFERENCES
[1] “AWS Lambda.” https://aws.amazon.com/lambda/. Accessed: 2019-8-27.
[2] G. McGrath and P. R. Brenner, “Serverless computing: Design, implementation,

and performance,” in 2017 IEEE 37th International Conference on Distributed Com-
puting Systems Workshops (ICDCSW), pp. 405–410, June 2017.

[3] L.Wang, M. Li, Y. Zhang, T. Ristenpart, andM. Swift, “Peeking behind the curtains
of serverless platforms,” in 2018 USENIX Annual Technical Conference (ATC 18),
(Boston, MA), pp. 133–146, USENIX Association, 2018.

[4] H. Lee, K. Satyam, and G. Fox, “Evaluation of production serverless computing
environments,” in 2018 IEEE 11th International Conference on Cloud Computing
(CLOUD), vol. 00, pp. 442–450, Jul 2018.

[5] K. Figiela, A. Gajek, A. Zima, B. Obrok, andM.Malawski, “Performance evaluation
of heterogeneous cloud functions,” Concurrency and Computation: Practice and
Experience, vol. 30, no. 23, p. e4792.

[6] IBM, “IBM Cloud Functions.” https://www.ibm.com/cloud/functions. Accessed:
2019-08-30.

[7] E. van Eyk, L. Toader, S. Talluri, L. Versluis, A. Uta, and A. Iosup, “Serverless is
more: From PaaS to present cloud computing,” IEEE Internet Computing, vol. 22,
pp. 8–17, Sep 2018.

[8] Y. Gan and C. Delimitrou, “The architectural implications of cloud microservices,”
IEEE Computer Architecture Letters, vol. 17, no. 2, pp. 155–158, 2018.

[9] A. Sriraman and T. F. Wenisch, “uTune: Auto-tuned threading for OLDI microser-
vices,” in 13th USENIX Symposium on Operating Systems Design and Implementa-
tion (OSDI 18), (Carlsbad, CA), pp. 177–194, USENIX Association, 2018.

[10] Y. Gan, Y. Zhang, D. Cheng, A. Shetty, P. Rathi, N. Katarki, A. Bruno, J. Hu,
B. Ritchken, B. Jackson, K. Hu, M. Pancholi, B. Clancy, C. Colen, F. Wen, C. Leung,
S. Wang, L. Zaruvinsky, M. Espinosa, Y. He, and C. Delimitrou, “An open-source
benchmark suite for microservices and their hardware-software implications
for cloud and edge systems,” in Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and Operating
Systems, ASPLOS ’19, (New York, NY, USA), ACM, 2019.

[11] E. Cortez, A. Bonde, A. Muzio, M. Russinovich, M. Fontoura, and R. Bianchini,
“Resource central: Understanding and predictingworkloads for improved resource
management in large cloud platforms,” in Proceedings of the 26th Symposium on
Operating Systems Principles, SOSP ’17, (New York, NY, USA), pp. 153–167, ACM,
2017.

[12] M. Shahrad, C. Klein, L. Zheng, M. Chiang, E. Elmroth, and D. Wentzlaff, “In-
centivizing self-capping to increase cloud utilization,” in Proceedings of the 2017
Symposium on Cloud Computing, SoCC ’17, (New York, NY, USA), pp. 52–65,
ACM, 2017.

[13] Q. Liu and Z. Yu, “The elasticity and plasticity in semi-containerized co-locating
cloud workload: A view fromAlibaba trace,” in Proceedings of the ACM Symposium
on Cloud Computing, SoCC ’18, (New York, NY, USA), pp. 347–360, ACM, 2018.

[14] CNCF Serverless Working Group, “Serverless whitepaper v1.0,” tech. rep., Cloud
Native Computing Foundation, March 2018.

[15] D. Merkel, “Docker: Lightweight linux containers for consistent development
and deployment,” Linux J., vol. 2014, Mar. 2014.

[16] “AWS lambda announces service level agreement,” tech. rep., Amazon Web Ser-
vices, October 2018.

[17] S. Fouladi, R. S. Wahby, B. Shacklett, K. Balasubramaniam, W. Zeng, R. Bhalerao,
A. Sivaraman, G. Porter, and K. Winstein, “Encoding, fast and slow: Low-latency
video processing using thousands of tiny threads.,” in NSDI, pp. 363–376, 2017.

[18] L. Ao, L. Izhikevich, G. M. Voelker, and G. Porter, “Sprocket: A serverless video
processing framework,” in Proceedings of the ACM Symposium on Cloud Comput-
ing, SoCC ’18, (New York, NY, USA), pp. 263–274, ACM, 2018.

[19] L. Feng, P. Kudva, D. Da Silva, and J. Hu, “Exploring serverless computing for
neural network training,” in 2018 IEEE 11th International Conference on Cloud
Computing (CLOUD), pp. 334–341, July 2018.

[20] Apache Software Foundation, “Apache OpenWhisk.” https://openwhisk.apache.
org. Accessed: 2019-08-30.

[21] I. Baldini, P. Cheng, S. J. Fink, N. Mitchell, V. Muthusamy, R. Rabbah, P. Suter,
and O. Tardieu, “The serverless trilemma: Function composition for serverless
computing,” in Proceedings of the 2017 ACM SIGPLAN International Symposium
on New Ideas, New Paradigms, and Reflections on Programming and Software,
Onward! 2017, (New York, NY, USA), pp. 89–103, ACM, 2017.

[22] A. Mohan, H. Sane, K. Doshi, S. Edupuganti, N. Nayak, and V. Sukhomlinov,
“Agile cold starts for scalable serverless,” in 11th USENIX Workshop on Hot Topics
in Cloud Computing (HotCloud 19), (Renton, WA), USENIX Association, July 2019.

[23] B. Trach, O. Oleksenko, F. Gregor, P. Bhatotia, and C. Fetzer, “Clemmys: Towards
secure remote execution in FaaS,” in Proceedings of the 12th ACM International
Conference on Systems and Storage, SYSTOR ’19, (New York, NY, USA), pp. 44–54,
ACM, 2019.

[24] B. Ruan, H. Huang, S. Wu, and H. Jin, “A performance study of containers in
cloud environment,” in Asia-Pacific Services Computing Conference, pp. 343–356,
Springer, 2016.

[25] J. Barr, “Firecracker - lightweight virtualization for serverless comput-
ing.” https://aws.amazon.com/blogs/aws/firecracker-lightweight-virtualization-

for-serverless-computing, November 2018.
[26] “Secure and fast microVMs for serverless computing.” https://firecracker-

microvm.github.io/. Accessed: 2019-8-27.
[27] F. Manco, C. Lupu, F. Schmidt, J. Mendes, S. Kuenzer, S. Sati, K. Yasukata, C. Raiciu,

and F. Huici, “My VM is lighter (and safer) than your container,” in Proceedings
of the 26th Symposium on Operating Systems Principles, SOSP ’17, (New York, NY,
USA), pp. 218–233, ACM, 2017.

[28] J. Thalheim, P. Bhatotia, P. Fonseca, and B. Kasikci, “CNTR: Lightweight OS
containers,” in 2018 USENIX Annual Technical Conference (ATC 18), pp. 199–212,
2018.

[29] Z. Shen, Z. Sun, G.-E. Sela, E. Bagdasaryan, C. Delimitrou, R. Van Renesse, and
H. Weatherspoon, “X-Containers: Breaking down barriers to improve perfor-
mance and isolation of cloud-native containers,” in Proceedings of the Twenty-
Fourth International Conference on Architectural Support for Programming Lan-
guages and Operating Systems, ASPLOS ’19, (New York, NY, USA), pp. 121–135,
ACM, 2019.

[30] W. Reese, “Nginx: the high-performance web server and reverse proxy,” Linux
Journal, vol. 2008, no. 173, p. 2, 2008.

[31] “pandas python data analysis library.” https://pandas.pydata.org. Accessed: 2019-
08-30.

[32] “Intel® RDT Software Package.” https://github.com/intel/intel-cmt-cat. Accessed:
2019-8-27.

[33] V. Stinner, “The Python Performance Benchmark Suite, Version 0.7.0.” https:
//pyperformance.readthedocs.io. Accessed: 2019-8-27.

[34] “Tesseract Open Source OCR Engine.” https://github.com/tesseract-ocr/tesseract.
Accessed: 2019-8-27.

[35] A. Mirhosseini and T. F. Wenisch, “The queuing-first approach for tail manage-
ment of interactive services,” IEEE Micro, vol. 39, pp. 55–64, July 2019.

[36] R. Koller and D. Williams, “Will serverless end the dominance of Linux in the
cloud?,” in Proceedings of the 16th Workshop on Hot Topics in Operating Systems,
HotOS ’17, (New York, NY, USA), pp. 169–173, ACM, 2017.

[37] H. Fingler, A. Akshintala, and C. J. Rossbach, “USETL: Unikernels for serverless
extract transform and load why should you settle for less?,” in Proceedings of the
10th ACM SIGOPS Asia-Pacific Workshop on Systems, APSys ’19, (New York, NY,
USA), pp. 23–30, ACM, 2019.

[38] E. G. Young, P. Zhu, T. Caraza-Harter, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau, “The true cost of containing: A gVisor case study,” in 11th USENIX
Workshop on Hot Topics in Cloud Computing (HotCloud 19), (Renton, WA), USENIX
Association, July 2019.

[39] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J.
Reddi, and K. Hazelwood, “Pin: Building customized program analysis tools with
dynamic instrumentation,” in Proceedings of the 2005 ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI ’05, (New York, NY,
USA), pp. 190–200, ACM, 2005.

[40] S. McFarling, “Combining branch predictors,” Tech. Rep. TN-36, Digital Western
Research Laboratory, June 1993.

[41] A. Herdrich, E. Verplanke, P. Autee, R. Illikkal, C. Gianos, R. Singhal, and R. Iyer,
“Cache QoS: From concept to reality in the Intel® Xeon® processor E5-2600 v3
product family,” in High Performance Computer Architecture (HPCA), 2016 IEEE
International Symposium on, pp. 657–668, IEEE, 2016.

[42] S. Chen, C. Delimitrou, and J. F. Martínez, “PARTIES: QoS-aware resource par-
titioning for multiple interactive services,” in Proceedings of the Twenty-Fourth
International Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS ’19, (New York, NY, USA), ACM, 2019.

[43] M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee, D. Jevdjic, C. Kaynak,
A. D. Popescu, A. Ailamaki, and B. Falsafi, “Clearing the clouds: A study of emerg-
ing scale-out workloads on modern hardware,” in Proceedings of the Seventeenth
International Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS XVII, (New York, NY, USA), pp. 37–48, ACM, 2012.

[44] A. Shahab, M. Zhu, A. Margaritov, and B. Grot, “Farewell my shared LLC! a case
for private die-stacked DRAM caches for servers,” in 2018 51st Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), pp. 559–572, Oct 2018.

[45] A. Jaleel, J. Nuzman, A. Moga, S. C. Steely, and J. Emer, “High performing cache
hierarchies for server workloads: Relaxing inclusion to capture the latency bene-
fits of exclusive caches,” in High Performance Computer Architecture (HPCA), 2015
IEEE 21st International Symposium on, pp. 343–353, IEEE, 2015.

[46] J. Zhan, O. Kayiran, G. H. Loh, C. R. Das, and Y. Xie, “OSCAR: Orchestrating
STT-RAM cache traffic for heterogeneous CPU-GPU architectures,” in 2016 49th
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), pp. 1–
13, Oct 2016.

[47] M. McKeown, Y. Fu, T. Nguyen, Y. Zhou, J. Balkind, A. Lavrov, M. Shahrad,
S. Payne, and D. Wentzlaff, “Piton: A manycore processor for multitenant clouds,”
IEEE Micro, vol. 37, pp. 70–80, Mar 2017.

[48] M. McKeown, A. Lavrov, M. Shahrad, P. J. Jackson, Y. Fu, J. Balkind, T. M. Nguyen,
K. Lim, Y. Zhou, and D. Wentzlaff, “Power and energy characterization of an
open source 25-core manycore processor,” in 2018 IEEE International Symposium
on High Performance Computer Architecture (HPCA), pp. 762–775, Feb 2018.

https://aws.amazon.com/lambda/
https://www.ibm.com/cloud/functions
https://openwhisk.apache.org
https://openwhisk.apache.org
https://aws.amazon.com/blogs/aws/firecracker-lightweight-virtualization-for-serverless-computing
https://aws.amazon.com/blogs/aws/firecracker-lightweight-virtualization-for-serverless-computing
https://firecracker-microvm.github.io/
https://firecracker-microvm.github.io/
https://pandas.pydata.org
https://github.com/intel/intel-cmt-cat
https://pyperformance.readthedocs.io
https://pyperformance.readthedocs.io
https://github.com/tesseract-ocr/tesseract

Architectural Implications of Function-as-a-Service Computing MICRO-52, October 12–16, 2019, Columbus, OH, USA

[49] J. Balkind, M. McKeown, Y. Fu, T. Nguyen, Y. Zhou, A. Lavrov, M. Shahrad,
A. Fuchs, S. Payne, X. Liang, M. Matl, and D. Wentzlaff, “OpenPiton: An open
source manycore research framework,” in Proceedings of the Twenty-First Inter-
national Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS ’16, (New York, NY, USA), pp. 217–232, ACM, 2016.

[50] M. Shahrad and D.Wentzlaff, “Availability Knob: Flexible user-defined availability
in the cloud,” in Proceedings of the Seventh ACM Symposium on Cloud Computing,
SoCC ’16, (New York, NY, USA), pp. 42–56, ACM, 2016.

[51] W. Felter, A. Ferreira, R. Rajamony, and J. Rubio, “An updated performance
comparison of virtual machines and Linux containers,” in 2015 IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS), pp. 171–172,
March 2015.

[52] E. Casalicchio and V. Perciballi, “Measuring docker performance: What a mess!!!,”
in Proceedings of the 8th ACM/SPEC on International Conference on Performance
Engineering Companion, ICPE ’17 Companion, (New York, NY, USA), pp. 11–16,
ACM, 2017.

[53] Z. Li, M. Kihl, Q. Lu, and J. A. Andersson, “Performance overhead comparison
between hypervisor and container based virtualization,” in 2017 IEEE 31st Interna-
tional Conference on Advanced Information Networking and Applications (AINA),
pp. 955–962, March 2017.

[54] I. E. Akkus, R. Chen, I. Rimac, M. Stein, K. Satzke, A. Beck, P. Aditya, and V. Hilt,
“SAND: towards high-performance serverless computing,” in Proceedings of the
USENIX Annual Technical Conference (ATC 18), 2018.

[55] S. Brenner and R. Kapitza, “Trust more, serverless,” in Proceedings of the 12th
ACM International Conference on Systems and Storage, pp. 33–43, ACM, 2019.

[56] M. Gorlatova, H. Inaltekin, and M. Chiang, “Characterizing task completion
latencies in fog computing,” arXiv preprint arXiv:1811.02638, 2018.

[57] M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee, D. Jevdic, C. Kaynak,
A. D. Popescu, A. Ailamaki, and B. Falsafi, “Quantifying the mismatch between
emerging scale-out applications and modern processors,” ACM Transactions on
Computer Systems, vol. 30, no. 4, p. 24, 2012.

[58] P. Lotfi-Kamran, B. Grot, M. Ferdman, S. Volos, O. Kocberber, J. Picorel, A. Adileh,
D. Jevdjic, S. Idgunji, E. Ozer, and B. Falsafi, “Scale-out processors,” Proceedings of
the 39th Annual International Symposium on Computer Architecture, p. 12, 2012.

[59] J. Kim, E. Teran, P. V. Gratz, D. A. Jiménez, S. H. Pugsley, and C. Wilkerson,
“Kill the program counter: Reconstructing program behavior in the processor
cache hierarchy,” in Proceedings of the Twenty-Second International Conference on
Architectural Support for Programming Languages and Operating Systems, ASPLOS
’17, (New York, NY, USA), pp. 737–749, ACM, 2017.

[60] J. Ahn, S. Hong, S. Yoo, O. Mutlu, and K. Choi, “A scalable processing-in-memory
accelerator for parallel graph processing,” in Proceedings of the 42nd Annual
International Symposium on Computer Architecture, ISCA ’15, (New York, NY,
USA), pp. 105–117, ACM, 2015.

[61] K. Lim, P. Ranganathan, J. Chang, C. Patel, T. Mudge, and S. Reinhardt, “Un-
derstanding and designing new server architectures for emerging warehouse-
computing environments,” in Proceedings of the 35th Annual International Sympo-
sium on Computer Architecture, ISCA ’08, pp. 315–326, 2008.

[62] Z. Jia, L. Wang, J. Zhan, L. Zhang, and C. Luo, “Characterizing data analysis
workloads in data centers,” in 2013 IEEE International Symposium on Workload
Characterization (IISWC), pp. 66–76, Sept 2013.

[63] S. Kanev, J. P. Darago, K. Hazelwood, P. Ranganathan, T. Moseley, G.-Y. Wei, and
D. Brooks, “Profiling a warehouse-scale computer,” in Proceedings of the 42Nd
Annual International Symposium on Computer Architecture, ISCA ’15, pp. 158–169,
2015.

[64] L. A. Barroso, M. Marty, D. A. Patterson, and P. Ranganathan, “Attack of the killer
microseconds.,” Commun. ACM, vol. 60, no. 4, pp. 48–54, 2017.

[65] K. Hazelwood, S. Bird, D. Brooks, S. Chintala, U. Diril, D. Dzhulgakov, M. Fawzy,
B. Jia, Y. Jia, A. Kalro, J. Law, K. Lee, J. Lu, P. Noordhuis, M. Smelyanskiy, L. Xiong,
and X.Wang, “Applied machine learning at Facebook: A datacenter infrastructure
perspective,” in 2018 IEEE International Symposium on High Performance Computer
Architecture (HPCA), pp. 620–629, Feb 2018.

[66] A. Sriraman and T. F. Wenisch, “uSuite: A benchmark suite for microservices,” in
2018 IEEE International Symposium on Workload Characterization (IISWC), 2018.

[67] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M. A. Kozuch, “Heterogeneity
and dynamicity of clouds at scale: Google trace analysis,” in Proceedings of the
Third ACM Symposium on Cloud Computing, SoCC ’12, (New York, NY, USA),
pp. 7:1–7:13, ACM, 2012.

[68] M. Chow, D. Meisner, J. Flinn, D. Peek, and T. F. Wenisch, “The mystery machine:
End-to-end performance analysis of large-scale internet services,” in 11th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 14), pp. 217–
231, 2014.

[69] T. Xu, X. Jin, P. Huang, Y. Zhou, S. Lu, L. Jin, and S. Pasupathy, “Early detection
of configuration errors to reduce failure damage,” in 12th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 16), pp. 619–634, 2016.

[70] H. Baek, A. Srivastava, and J. Van der Merwe, “CloudSight: A tenant-oriented
transparency framework for cross-layer cloud troubleshooting,” in Proceedings of
the 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing,
CCGrid ’17, (Piscataway, NJ, USA), pp. 268–273, IEEE Press, 2017.

[71] Y. Gan, Y. Zhang, K. Hu, Y. He, M. Pancholi, D. Cheng, and C. Delimitrou, “Seer:
Leveraging big data to navigate the complexity of performance debugging in
cloud microservices,” in Proceedings of the Twenty-Fourth International Conference
on Architectural Support for Programming Languages and Operating Systems,
ASPLOS ’19, (New York, NY, USA), ACM, 2019.

[72] F. Chen, J. Grundy, J. Schneider, Y. Yang, and Q. He, “StressCloud: A tool for
analysing performance and energy consumption of cloud applications,” in 2015
IEEE/ACM 37th IEEE International Conference on Software Engineering, vol. 2,
pp. 721–724, May 2015.

[73] A. Alourani, M. A. N. Bikas, and M. Grechanik, “Search-based stress testing
the elastic resource provisioning for cloud-based applications,” in International
Symposium on Search Based Software Engineering, pp. 149–165, Springer, 2018.

[74] N. Nethercote and J. Seward, “Valgrind: A framework for heavyweight dynamic
binary instrumentation,” in Proceedings of the 28th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI ’07, (New York, NY,
USA), pp. 89–100, ACM, 2007.

[75] X. Tong, J. Luo, and A. Moshovos, “QTrace: An interface for customizable full
system instrumentation,” in 2013 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS), pp. 132–133, IEEE, 2013.

[76] N. Chachmon, D. Richins, R. Cohn, M. Christensson, W. Cui, and V. J. Reddi,
“Simulation and analysis engine for scale-out workloads,” in Proceedings of the
2016 International Conference on Supercomputing, ICS ’16, (New York, NY, USA),
pp. 22:1–22:13, ACM, 2016.

	Abstract
	1 Introduction
	2 Background
	2.1 Differences with Other Cloud Models
	2.2 Apache OpenWhisk

	3 Methodology
	3.1 FaaSProfiler
	3.2 Benchmarks

	4 System-level Behavior
	4.1 Latency Modes and Server Capacity
	4.2 Performance Breakdown

	5 Compute and Memory
	5.1 Branch Prediction
	5.2 Last-level Cache
	5.3 Memory Bandwidth

	6 Placement and Scheduling
	6.1 Invoker Scheduling
	6.2 Balancing Demands
	6.3 Interference

	7 Discussions
	7.1 Overhead of Containers
	7.2 Native vs. in-FaaS Function Execution
	7.3 The Role of Programming Language

	8 Related Work
	9 Conclusion
	References

