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Abstract—In this paper, we present a system for fast approx-
imate score computation, a fundamental task for score-based
structure learning of multinomial Bayesian networks. Our work
is motivated by the fact that exact score computation on large
datasets is very time consuming. Our system enables approximate
score computation on large datasets in an efficient and scalable
manner with probabilistic error bounds on the statistics required
for score computation. Our system has several novel features
including gossip-based decentralized computation of statistics,
lower resource consumption via a probabilistic approach of
maintaining statistics, and effective distribution of tasks for score
computation using hashing techniques. The demo will provide a
real-time and interactive experience to a user on how our system
employs the principle of gossiping and hashing techniques in a
novel way for fast approximate score computation. The user will
be able to control different aspects of our system’s execution on
a cluster with up to 32 nodes. The approximate scores output by
our system can be then used by existing score-based structure
learning algorithms.

I. INTRODUCTION

Scalable machine learning (ML) systems are becoming in-
dispensable for data-driven decision making on large datasets
and are key drivers of business for companies like Ama-
zon, Baidu, Google, Facebook, Microsoft, and others. Sev-
eral new frameworks have emerged for scalable ML tasks
(e.g., GraphLab [11], MLIib [12], Parameter Server [10],
Petuum [16], SystemML [3]). Although statistical models
provide an elegant framework to gain knowledge from data [5],
the volume and variety of big data demands a paradigm
shift due to the prevalence of massive heterogeneous datasets,
which are popularly stored and analyzed using large-scale
commodity clusters.

In this work, we focus on Bayesian networks (BNs) [14],
which provide a natural way for knowledge representation
and reasoning over heterogeneous data under uncertainty.
BNs have been successfully used in many areas including
medical/fault diagnosis, bioinformatics and computational bi-
ology, automated reasoning systems, and data clustering. A
BN compactly encodes the joint probability distribution of a
set of random variables/features of a dataset using a set of
conditional probabilities of these variables given their parents
in a directed acyclic graph (DAG). To learn a BN from a
dataset, we need to learn its structure and the parameters of the
conditional probability distributions that best fit the observed
data. Then probabilistic inference queries can be posed on the
BN to gain meaningful insights from the dataset.
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Score-based structure learning [9] is one class of approxi-
mate structure learning algorithms wherein a search space of
possible structures is searched by applying a scoring function.
However, when a dataset is large and stored in a cluster, if is
essential to first compute the scoring function on the dataset in
a scalable and efficient manner for efficient structure learning.
Our system called DiSC (Distributed Score Computation) is
precisely designed for this purpose and enables fast approxi-
mate score computation over large-scale distributed data. The
novel features of DiSC include: (a) gossip-based, decentral-
ized computation of statistics required for score computation;
(b) lower resource consumption via a probabilistic approach of
maintaining statistics for score computation; and (c) effective
distribution of tasks for score computation (on large datasets)
by synergistically combining consistent hashing [15] and lo-
cality sensitive hashing (LSH) [7]. The approximate scores
computed by DiSC can then be used for score-based structure
learning in tools like R. Complete details about the design,
implementation, and evaluation of DiSC can be found in a
recent publication [8].

II. BACKGROUND AND MOTIVATION
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Fig. 1. (a) Example of a BN (b) Data records distributed across 2 nodes

Consider a coronary heart disease dataset' consisting of 6
binary random variables, namely, Smoking (S), Physical
Work (PW), Mental Work (MW), Pressure (Pre),
Proteins (Pro), and Family (F). Let Figure 1(a) denote
the BN learned on these variables using a score-based structure
learning algorithm. The algorithm uses a scoring function (e.g.,
Bayesian Dirichlet equivalence (BDe) score) to compute the
posterior probability distribution of a possible BN given the
data. At each step in the search, it attempts to improve the
overall score of the BN by modifying the DAG structure via
local steps such as edge deletion, addition, reversal, etc., and

U https://rdrr.io/cran/bnlearn/man/coronary.html
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compute a score difference of the affected variables. Different
search strategies can be used by the algorithm (e.g., greedy
hill-climbing), and when the network score does not improve
further, it terminates.

To compute the score of a BN using a decomposable scoring
function [4], we must first compute the score of each variable
given its parents, a fundamental task during structure learning.
Given a variable X with a set of parent variables denoted by
Payx, X|Pax is called a family. To compute a family’s score,
sufficient statistics of the family are needed [9]. Suppose the
dataset is distributed across two cluster nodes as shown in
Figure 1(b). The sufficient statistics of S|PW =y, Pre =n
is denoted by a pair of frequency counts (1, 2). This is because
there is one data record where S = n, PW =y, and Pre =n
(green box) and two data records where S =y, PW =y, and
Pre = n (blue boxes). The sufficient statistics of the family
S|PW, Pre is a 2D array with 8 frequency counts, considering
all possible assignments of PW and Pre. This example shows
that to efficiently compute the scoring function, the sufficient
statistics of every possible family required during score-based
learning must be computed in a scalable and efficient manner.
Therefore, we formulate this task on large-scale distributed
data as a scalable data aggregation problem.

Several technical challenges must be addressed to develop
an effective solution on large datasets. First, data blocks are
distributed across nodes in a cluster, and it is infeasible to
move all the blocks to one node for computing the sufficient
statistics. Second, the score computation should be efficient
and scalable, tolerate node failures/packet losses and changes
to the cluster topology, and provide provable guarantees on
the accuracy of the estimated sufficient statistics. This requires
fast computation of sums over distributed data, effective load
balancing of tasks, and redundancy to cope with failures. Al-
though a straightforward application of a gossip algorithm for
computing sums [13], hereinafter referred to as SUM, sounds
promising, it unfortunately does not yield an efficient solution
as all the families will be stored and processed by every
cluster node leading to high network bandwidth consumption
especially when number of families is very large [8]. This
can arise when an input dataset has large number of random
variables. A good load balancing approach is needed. Thus,
one must rethink how this gossip algorithm can be adapted
for sufficient statistics computation. Third, when new data are
produced, efficient recomputation of family scores is required
for faster relearning on large datasets.

Note that every data record in a dataset/table contributes
to the sufficient statistics of a family. Therefore, every node
will be involved in computing the sufficient statistics of a
family. Furthermore, horizontally partitioning the dataset/table
will avoid a family from being split across different partitions
and therefore, prevent data shuffling as an entire data record
will be on a single machine.

III. DESIGN OF DISC

We present the design of DiSC and its novel aspects to en-
able fast approximate score computation on large datasets. The

key ideas include effective load balancing by distributing fam-
ilies across cluster nodes using LSH and consistent hashing,
decentralized computation of sufficient statistics of families
using the principle of gossiping, and probabilistic dropping of
families at nodes to lower network bandwidth consumption.
Figure 2 shows the overall system architecture of DiSC and
its three core components: the Router, the Initializer, and the
Manager. Next, we describe each component and its benefit.
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Fig. 2. System overview of DiSC

The Router is key to achieving load balancing by distribut-
ing families across cluster nodes. Given a family X|Pax, it
synergistically combines LSH (for sets) and consistent hashing
to produce K hash IDs of 160 bits each [8]. 2 The 160-bit hash
address space is equally divided across cluster nodes similar to
systems like Dynamo [6]. Each family is assigned to K cluster
nodes, which provides redundancy to tolerate node failures.
We say that K nodes will be responsible for one family. Due
to LSH, similar families are highly likely to be assigned to the
same node, which can reduce the network lookup cost when
computing scores of similar families.

The Initializer at a node receives families that the node is
responsible for (based on hashing). The sufficient statistics of
the assigned families are computed using the local data par-
titions available at that node. The Initializer exploits multiple
cores to speed up the initialization process. For each family
X|Pax, a 2D array of size r’ x ¢’ is maintained, where
r’ denotes the number of values that can be assigned to X
and ¢’ denotes the number of possible assignments of values
to variables in Pax. This 2D array is called the sufficient
statistics array (SSA) of the family. Each element in this 2D
array has a list of 7 independent exponential random variables
initialized based on the frequency counts computed on the
local data partitions. (The value of r controls the accuracy of

2 A total of L x K random linear hash functions are used by LSH.



the estimates computed by DiSC.) That is, if the frequency
count corresponding to an element of the SSA (computed
on the local partitions) is some value «, then each of the r
independent exponential random variables is defined with rate
A = «. The Initializer initializes the family list on the node
containing all the families that the node is responsible for
along with their respective SSAs. During gossiping, wherein
a node picks another node at random and exchanges the SSAs,
the exponential random variables are updated. Over time, each
node’s SSA will become more accurate in estimating the
sufficient statistics.

The Manager is responsible for gossip-based decentralized
computation of sufficient statistics while ensuring that the
average family list size is a limited fraction of the total number
of families. We draw inspiration from SUM [13], a state-of-
the-art gossip algorithm to compute the sum of values stored
on a set of nodes. The Manager maintains a local clock that
ticks at the times of rate 1 Poisson process. At each clock
tick, the Manager say on node n;) picks another node n; at
random and exchanges the SSAs with n;. Suppose n; and n;
have a family f in their family list. They essentially exchange
the SSAs of f. Let [E;,...,E;] denote the exponential
random variables maintained by n; for an element in the
SSA of f. Let [Ej1,..., E,;,] denote the exponential random
variables maintained by n; for the corresponding element
in the SSA of f. After gossiping, n; and n; will update
each element in their SSAs for f. For example, the list of
exponential random variables for the aforementioned element
in the SSA is updated to [min(Eﬂ, Ej1)> e ,IIliIl(Eir7 Ejr)]
on both nodes. This is because SUM is based on a key
property: the minimum of g exponential random variables with
rate 1, ..., T4, respectively, is an exponential random variable
with rate 1 + ... + x,. When a family is received during
gossiping but not in the family list of a node, then it is added
to the family list along with its SSA.

Straightforward application of SUM causes the family list
of all nodes to maintain all the families, thereby increasing the
size of messages sent during gossiping and the total network
bandwidth consumption [8]. This also defeats the goal of
achieving load balancing. Therefore, the Manager employs
a probabilistic approach to drop families in the family list
that the node is not responsible for. The intuition is that if
n; picks n; to exchange SSAs where n; is responsible for a
family, then that family is dropped with a higher probability
after exchanging the SSAs. If a normal distribution is used
to define the probability of dropping a family at different
nodes, by using the property of Markov chains, probabilistic
bounds can be computed on the convergence speed of DiSC
and the expected family list size [8]. The exchange of gossip
messages is optimized: When a family list and the SSAs
cannot fit in a single UDP packet, they are broken into
multiple packets. In addition, the messages are compressed to
reduce the network bandwidth consumption. To compute the
sufficient statistics of a family f, the Manager must estimate
the frequency counts corresponding to the elements in the SSA
of f. Suppose [El,, ..., E!.] denote the  exponential random

variables maintained by n; for an element in the SSA of f
after DiSC completes gossiping. Then the estimated frequency
count for that element in the SSA is given by m [13].
Different decomposable scoring functions [4] can ‘be computed
once the sufficient statistics of families is available.

The Manager can incrementally update the sufficient statis-
tics of families given new data records without processing
the entire dataset again. To do so, the sufficient statistics are
computed for all the families using the new data records. The
exponential random variables are generated as before based on
the frequency counts obtained for the new records. For each
family, one of the nodes is chosen so that the minimum of
exponential random variables is computed with the existing
SSA for the family. The gossiping phase is restarted thereby
updating the sufficient statistics of the families.

IV. DEMONSTRATION SCENARIOS

DiSC was developed using Java, Scala, Python, and a
publicly available gossip package.® The user interface (UI) was
developed using Django and CanvasJS. (The code is available
at https://github.com/UMKC-BigDataLab/DiSC.) DiSC will
run on CloudLab [1], a testbed for cloud computing, using up
to 32 physical nodes in CloudLab’s Utah data center. Each
node is installed with Ubuntu 16.04.10 and has a 10-core
Intel processor, 480 GB SSD, and 64 GB RAM. As DiSC
outperformed the MapReduce-style computation of sufficient
statistics both in terms of speed and accuracy (when sampling
was used) [8], we will not execute the MapReduce-style
computation during the demo. The reader is referred to a recent
publication for detailed performance evaluation results [8].

Figures 3(a) and 3(b) show two screenshots of DiSC. Below
we present four interactive and engaging scenarios for a user.
e Scenario 1: The first scenario will enable the user to
configure DiSC to run on CloudLab. The user will select
the number of nodes to use, dataset name, list of families
for score computation, and execution parameters such as the
LSH parameters for load balancing and redundancy during
execution. In addition, he/she will choose 7, the accuracy
tuning parameter for sufficient statistics estimates, based on
how much network bandwidth should be consumed during
gossip. He/she can select a family X|Pax to analyze in real-
time during the execution of DiSC along with the score (e.g.,
BDeu, K2) to be estimated. Five datasets will be available:
HIGGS [2] with 176 million data instances, a dataset based
on 200 million Twitter tweets, and three synthetic datasets
generated using binomial distribution with 200 million data
instances. (For each dataset, 10,000 families will be used for
score computation.) The user will experience how DiSC is
robust to different underlying data distributions.

e Scenario 2: The second scenario enables the user to experi-
ence in real-time how DiSC estimates the sufficient statistics
of families with high accuracy. He/she will observe in real-
time the convergence speed of DiSC and how the sufficient
statistics of the selected family improves in accuracy over

3 https://code.google.com/archive/p/java- gossip
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Fig. 3. Two screenshots of DiSC

time on a node that is responsible for the family. The same
family can be tracked and visualized on other nodes as well. In
addition, the exchange of messages between CloudLab nodes
during gossiping can be visualized along with the number
of messages received by each node in real-time. Another
interesting aspect is how the family list size on each node
changes during execution due to the probabilistic dropping
approach in DiSC. This information is displayed at the bottom.
This real-time experience will unravel the sophistication and
merit of decentralized score computation in DiSC.
e Scenario 3: The third scenario enables the user to upload
new data records to an existing dataset and recompute the
family scores efficiently without processing the entire dataset
again. He/she will upload a file containing new data records
and observe how these records are quickly consumed by DiSC
to update the SSA of all the families. The time taken to update
the sufficient statistics and the number of messages exchanged
during gossiping will be reported.
e Scenario 4: The final scenario presents a summary of DiSC’s
overall performance and provides approximate family scores.
This includes the convergence speed of DiSC by plotting
the average relative error (%) of the estimated sufficient
statistics of the families that a node is responsible for over
time, the average family list size during the execution of
DiSC, total bandwidth consumption, packet loss rate, benefit
of compression, etc., will be displayed. The scores of all the
10,000 input families will be computed. The user will be
shown the approximate score of the selected family on the
UL A file containing approximate scores of the input families
can be downloaded. These scores can be used for score-based
structure learning in tools like R.

The user can go back to Scenario 1 and change the
execution parameters (e.g., no. of nodes, r) to observe the
impact on DiSC’s performance.
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