
A Gossip-Based System for Fast Approximate Score

Computation in Multinomial Bayesian Networks

Arun Zachariah, Praveen Rao, Anas Katib, Monica Senapati

University of Missouri-Kansas City
az2z7@mail.umkc.edu, raopr@umkc.edu, anaskatib@mail.umkc.edu, msenapati@mail.umkc.edu

Kobus Barnard

University of Arizona
kobus@cs.arizona.edu

Abstract—In this paper, we present a system for fast approx-
imate score computation, a fundamental task for score-based
structure learning of multinomial Bayesian networks. Our work
is motivated by the fact that exact score computation on large
datasets is very time consuming. Our system enables approximate
score computation on large datasets in an efficient and scalable
manner with probabilistic error bounds on the statistics required
for score computation. Our system has several novel features
including gossip-based decentralized computation of statistics,
lower resource consumption via a probabilistic approach of
maintaining statistics, and effective distribution of tasks for score
computation using hashing techniques. The demo will provide a
real-time and interactive experience to a user on how our system
employs the principle of gossiping and hashing techniques in a
novel way for fast approximate score computation. The user will
be able to control different aspects of our system’s execution on
a cluster with up to 32 nodes. The approximate scores output by
our system can be then used by existing score-based structure
learning algorithms.

I. INTRODUCTION

Scalable machine learning (ML) systems are becoming in-

dispensable for data-driven decision making on large datasets

and are key drivers of business for companies like Ama-

zon, Baidu, Google, Facebook, Microsoft, and others. Sev-

eral new frameworks have emerged for scalable ML tasks

(e.g., GraphLab [11], MLlib [12], Parameter Server [10],

Petuum [16], SystemML [3]). Although statistical models

provide an elegant framework to gain knowledge from data [5],

the volume and variety of big data demands a paradigm

shift due to the prevalence of massive heterogeneous datasets,

which are popularly stored and analyzed using large-scale

commodity clusters.

In this work, we focus on Bayesian networks (BNs) [14],

which provide a natural way for knowledge representation

and reasoning over heterogeneous data under uncertainty.

BNs have been successfully used in many areas including

medical/fault diagnosis, bioinformatics and computational bi-

ology, automated reasoning systems, and data clustering. A

BN compactly encodes the joint probability distribution of a

set of random variables/features of a dataset using a set of

conditional probabilities of these variables given their parents

in a directed acyclic graph (DAG). To learn a BN from a

dataset, we need to learn its structure and the parameters of the

conditional probability distributions that best fit the observed

data. Then probabilistic inference queries can be posed on the

BN to gain meaningful insights from the dataset.

Score-based structure learning [9] is one class of approxi-

mate structure learning algorithms wherein a search space of

possible structures is searched by applying a scoring function.

However, when a dataset is large and stored in a cluster, it is
essential to first compute the scoring function on the dataset in
a scalable and efficient manner for efficient structure learning.
Our system called DiSC (Distributed Score Computation) is

precisely designed for this purpose and enables fast approxi-

mate score computation over large-scale distributed data. The

novel features of DiSC include: (a) gossip-based, decentral-

ized computation of statistics required for score computation;

(b) lower resource consumption via a probabilistic approach of

maintaining statistics for score computation; and (c) effective

distribution of tasks for score computation (on large datasets)

by synergistically combining consistent hashing [15] and lo-

cality sensitive hashing (LSH) [7]. The approximate scores

computed by DiSC can then be used for score-based structure

learning in tools like R. Complete details about the design,

implementation, and evaluation of DiSC can be found in a

recent publication [8].

II. BACKGROUND AND MOTIVATION

(a) (b)

Fig. 1. (a) Example of a BN (b) Data records distributed across 2 nodes

Consider a coronary heart disease dataset

1

consisting of 6

binary random variables, namely, Smoking (S), Physical
Work (PW), Mental Work (MW), Pressure (Pre),
Proteins (Pro), and Family (F). Let Figure 1(a) denote

the BN learned on these variables using a score-based structure

learning algorithm. The algorithm uses a scoring function (e.g.,

Bayesian Dirichlet equivalence (BDe) score) to compute the

posterior probability distribution of a possible BN given the

data. At each step in the search, it attempts to improve the

overall score of the BN by modifying the DAG structure via

local steps such as edge deletion, addition, reversal, etc., and

1

https://rdrr.io/cran/bnlearn/man/coronary.html

Copyright held by IEEE



compute a score difference of the affected variables. Different

search strategies can be used by the algorithm (e.g., greedy

hill-climbing), and when the network score does not improve

further, it terminates.

To compute the score of a BN using a decomposable scoring

function [4], we must first compute the score of each variable

given its parents, a fundamental task during structure learning.

Given a variable X with a set of parent variables denoted by

PaX , X|PaX is called a family. To compute a family’s score,

sufficient statistics of the family are needed [9]. Suppose the

dataset is distributed across two cluster nodes as shown in

Figure 1(b). The sufficient statistics of S|PW = y, Pre = n

is denoted by a pair of frequency counts (1, 2). This is because

there is one data record where S = n, PW = y, and Pre = n

(green box) and two data records where S = y, PW = y, and

Pre = n (blue boxes). The sufficient statistics of the family

S|PW,Pre is a 2D array with 8 frequency counts, considering

all possible assignments of PW and Pre. This example shows

that to efficiently compute the scoring function, the sufficient

statistics of every possible family required during score-based

learning must be computed in a scalable and efficient manner.

Therefore, we formulate this task on large-scale distributed

data as a scalable data aggregation problem.
Several technical challenges must be addressed to develop

an effective solution on large datasets. First, data blocks are

distributed across nodes in a cluster, and it is infeasible to

move all the blocks to one node for computing the sufficient

statistics. Second, the score computation should be efficient

and scalable, tolerate node failures/packet losses and changes

to the cluster topology, and provide provable guarantees on

the accuracy of the estimated sufficient statistics. This requires

fast computation of sums over distributed data, effective load

balancing of tasks, and redundancy to cope with failures. Al-

though a straightforward application of a gossip algorithm for

computing sums [13], hereinafter referred to as SUM, sounds

promising, it unfortunately does not yield an efficient solution

as all the families will be stored and processed by every

cluster node leading to high network bandwidth consumption

especially when number of families is very large [8]. This

can arise when an input dataset has large number of random

variables. A good load balancing approach is needed. Thus,

one must rethink how this gossip algorithm can be adapted

for sufficient statistics computation. Third, when new data are

produced, efficient recomputation of family scores is required

for faster relearning on large datasets.

Note that every data record in a dataset/table contributes

to the sufficient statistics of a family. Therefore, every node

will be involved in computing the sufficient statistics of a

family. Furthermore, horizontally partitioning the dataset/table

will avoid a family from being split across different partitions

and therefore, prevent data shuffling as an entire data record

will be on a single machine.

III. DESIGN OF DISC

We present the design of DiSC and its novel aspects to en-

able fast approximate score computation on large datasets. The

key ideas include effective load balancing by distributing fam-

ilies across cluster nodes using LSH and consistent hashing,

decentralized computation of sufficient statistics of families

using the principle of gossiping, and probabilistic dropping of

families at nodes to lower network bandwidth consumption.

Figure 2 shows the overall system architecture of DiSC and

its three core components: the Router, the Initializer, and the
Manager. Next, we describe each component and its benefit.

Fig. 2. System overview of DiSC

The Router is key to achieving load balancing by distribut-

ing families across cluster nodes. Given a family X|PaX , it

synergistically combines LSH (for sets) and consistent hashing

to produce K hash IDs of 160 bits each [8].

2

The 160-bit hash

address space is equally divided across cluster nodes similar to

systems like Dynamo [6]. Each family is assigned to K cluster

nodes, which provides redundancy to tolerate node failures.

We say that K nodes will be responsible for one family. Due

to LSH, similar families are highly likely to be assigned to the

same node, which can reduce the network lookup cost when

computing scores of similar families.

The Initializer at a node receives families that the node is

responsible for (based on hashing). The sufficient statistics of

the assigned families are computed using the local data par-

titions available at that node. The Initializer exploits multiple

cores to speed up the initialization process. For each family

X|PaX , a 2D array of size r

0 ⇥ c

0
is maintained, where

r

0
denotes the number of values that can be assigned to X

and c

0
denotes the number of possible assignments of values

to variables in PaX . This 2D array is called the sufficient

statistics array (SSA) of the family. Each element in this 2D

array has a list of r independent exponential random variables

initialized based on the frequency counts computed on the

local data partitions. (The value of r controls the accuracy of

2

A total of L⇥K random linear hash functions are used by LSH.



the estimates computed by DiSC.) That is, if the frequency

count corresponding to an element of the SSA (computed

on the local partitions) is some value ↵, then each of the r

independent exponential random variables is defined with rate

� = ↵. The Initializer initializes the family list on the node

containing all the families that the node is responsible for

along with their respective SSAs. During gossiping, wherein

a node picks another node at random and exchanges the SSAs,

the exponential random variables are updated. Over time, each

node’s SSA will become more accurate in estimating the

sufficient statistics.

The Manager is responsible for gossip-based decentralized

computation of sufficient statistics while ensuring that the

average family list size is a limited fraction of the total number

of families. We draw inspiration from SUM [13], a state-of-

the-art gossip algorithm to compute the sum of values stored

on a set of nodes. The Manager maintains a local clock that

ticks at the times of rate 1 Poisson process. At each clock

tick, the Manager say on node ni) picks another node nj at

random and exchanges the SSAs with nj . Suppose ni and nj

have a family f in their family list. They essentially exchange

the SSAs of f . Let [Ei1, . . . , Eir] denote the exponential

random variables maintained by ni for an element in the

SSA of f . Let [Ej1, . . . , Ejr] denote the exponential random

variables maintained by nj for the corresponding element

in the SSA of f . After gossiping, ni and nj will update

each element in their SSAs for f . For example, the list of

exponential random variables for the aforementioned element

in the SSA is updated to [min(Ei1, Ej1), . . . ,min(Eir, Ejr)]
on both nodes. This is because SUM is based on a key

property: the minimum of q exponential random variables with

rate x1, . . . , xq , respectively, is an exponential random variable

with rate x1 + . . . + xq . When a family is received during

gossiping but not in the family list of a node, then it is added

to the family list along with its SSA.

Straightforward application of SUM causes the family list

of all nodes to maintain all the families, thereby increasing the

size of messages sent during gossiping and the total network

bandwidth consumption [8]. This also defeats the goal of

achieving load balancing. Therefore, the Manager employs

a probabilistic approach to drop families in the family list

that the node is not responsible for. The intuition is that if

ni picks nj to exchange SSAs where nj is responsible for a

family, then that family is dropped with a higher probability

after exchanging the SSAs. If a normal distribution is used

to define the probability of dropping a family at different

nodes, by using the property of Markov chains, probabilistic

bounds can be computed on the convergence speed of DiSC
and the expected family list size [8]. The exchange of gossip

messages is optimized: When a family list and the SSAs

cannot fit in a single UDP packet, they are broken into

multiple packets. In addition, the messages are compressed to

reduce the network bandwidth consumption. To compute the

sufficient statistics of a family f , the Manager must estimate

the frequency counts corresponding to the elements in the SSA

of f . Suppose [E0
i1, . . . , E

0
ir] denote the r exponential random

variables maintained by ni for an element in the SSA of f

after DiSC completes gossiping. Then the estimated frequency

count for that element in the SSA is given by

rPr
q=1 E0iq [13].

Different decomposable scoring functions [4] can be computed

once the sufficient statistics of families is available.

The Manager can incrementally update the sufficient statis-

tics of families given new data records without processing

the entire dataset again. To do so, the sufficient statistics are

computed for all the families using the new data records. The

exponential random variables are generated as before based on

the frequency counts obtained for the new records. For each

family, one of the nodes is chosen so that the minimum of

exponential random variables is computed with the existing

SSA for the family. The gossiping phase is restarted thereby

updating the sufficient statistics of the families.

IV. DEMONSTRATION SCENARIOS

DiSC was developed using Java, Scala, Python, and a

publicly available gossip package.

3

The user interface (UI) was

developed using Django and CanvasJS. (The code is available

at https://github.com/UMKC-BigDataLab/DiSC.) DiSC will

run on CloudLab [1], a testbed for cloud computing, using up

to 32 physical nodes in CloudLab’s Utah data center. Each

node is installed with Ubuntu 16.04.10 and has a 10-core

Intel processor, 480 GB SSD, and 64 GB RAM. As DiSC
outperformed the MapReduce-style computation of sufficient

statistics both in terms of speed and accuracy (when sampling

was used) [8], we will not execute the MapReduce-style

computation during the demo. The reader is referred to a recent

publication for detailed performance evaluation results [8].

Figures 3(a) and 3(b) show two screenshots of DiSC. Below
we present four interactive and engaging scenarios for a user.

• Scenario 1: The first scenario will enable the user to

configure DiSC to run on CloudLab. The user will select

the number of nodes to use, dataset name, list of families

for score computation, and execution parameters such as the

LSH parameters for load balancing and redundancy during

execution. In addition, he/she will choose r, the accuracy

tuning parameter for sufficient statistics estimates, based on

how much network bandwidth should be consumed during

gossip. He/she can select a family X|PaX to analyze in real-

time during the execution of DiSC along with the score (e.g.,

BDeu, K2) to be estimated. Five datasets will be available:

HIGGS [2] with 176 million data instances, a dataset based

on 200 million Twitter tweets, and three synthetic datasets

generated using binomial distribution with 200 million data

instances. (For each dataset, 10,000 families will be used for

score computation.) The user will experience how DiSC is

robust to different underlying data distributions.

• Scenario 2: The second scenario enables the user to experi-

ence in real-time how DiSC estimates the sufficient statistics

of families with high accuracy. He/she will observe in real-

time the convergence speed of DiSC and how the sufficient

statistics of the selected family improves in accuracy over

3

https://code.google.com/archive/p/java-gossip



Fig. 3. Two screenshots of DiSC

time on a node that is responsible for the family. The same

family can be tracked and visualized on other nodes as well. In

addition, the exchange of messages between CloudLab nodes

during gossiping can be visualized along with the number

of messages received by each node in real-time. Another

interesting aspect is how the family list size on each node

changes during execution due to the probabilistic dropping

approach in DiSC. This information is displayed at the bottom.

This real-time experience will unravel the sophistication and

merit of decentralized score computation in DiSC.
• Scenario 3: The third scenario enables the user to upload

new data records to an existing dataset and recompute the

family scores efficiently without processing the entire dataset

again. He/she will upload a file containing new data records

and observe how these records are quickly consumed by DiSC
to update the SSA of all the families. The time taken to update

the sufficient statistics and the number of messages exchanged

during gossiping will be reported.

• Scenario 4: The final scenario presents a summary of DiSC’s
overall performance and provides approximate family scores.

This includes the convergence speed of DiSC by plotting

the average relative error (%) of the estimated sufficient

statistics of the families that a node is responsible for over

time, the average family list size during the execution of

DiSC, total bandwidth consumption, packet loss rate, benefit

of compression, etc., will be displayed. The scores of all the

10,000 input families will be computed. The user will be

shown the approximate score of the selected family on the

UI. A file containing approximate scores of the input families

can be downloaded. These scores can be used for score-based

structure learning in tools like R.

The user can go back to Scenario 1 and change the

execution parameters (e.g., no. of nodes, r) to observe the

impact on DiSC’s performance.

ACKNOWLEDGMENTS

Praveen Rao would like to acknowledge the partial support

of NSF Grant No. 1747751.

REFERENCES

[1] CloudLab. https://www.cloudlab.us/, 2017.

[2] UCI Machine Learning Repository. https://archive.ics.uci.edu/ml/

datasets.html, 2017.

[3] M. Boehm, M. W. Dusenberry, D. Eriksson, A. V. Evfimievski, F. M.

Manshadi, N. Pansare, B. Reinwald, F. R. Reiss, P. Sen, A. C. Surve,

and S. Tatikonda. SystemML: Declarative Machine Learning on Spark.

Proc. VLDB Endow., 9(13):1425–1436, Sept. 2016.
[4] A. M. Carvalho. Scoring Functions for Learning Bayesian Networks.

Technical report, IST, TULisbon/INESC-ID Tech. Report 54/2009, 2009.

[5] N. R. Council. Frontiers in Massive Data Analysis. The National

Academies Press, Washington, DC, 2013.

[6] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,

A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels. Dynamo:

Amazon’s Highly Available Key-Value Store. In Proc. of 21st Symp. on
Operating Systems Principles, pages 205–220, 2007.

[7] T. H. Haveliwala, A. Gionis, D. Klein, and P. Indyk. Evaluating

Strategies for Similarity Search on the Web. In Proc. of the 11th WWW
Conference, pages 432–442, 2002.

[8] A. Katib, P. Rao, K. Barnard, and C. Kamhoua. Fast Approximate Score

Computation on Large-Scale Distributed Data for Learning Multinomial

Bayesian Networks. ACM Transactions on Knowledge Discovery from
Data, 13(2):1–40, 2019. https://doi.org/10.1145/3301304.

[9] D. Koller and N. Friedman. Probabilistic Graphical Models: Principles
and Techniques. The MIT Press, 2009.

[10] M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed, V. Josifovski,

J. Long, E. J. Shekita, and B.-Y. Su. Scaling Distributed Machine

Learning with the Parameter Server. In Proc. of the 11th OSDI
Conference, pages 583–598, Oct. 2014.

[11] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and J. M.

Hellerstein. Distributed GraphLab: A framework for machine learning

in the cloud. In Proc. of PVLDB Conference, pages 716–727, 2012.
[12] X. Meng, J. Bradley, B. Yavuz, E. Sparks, S. Venkataraman, D. Liu,

J. Freeman, D. Tsai, M. Amde, S. Owen, D. Xin, R. Xin, M. J. Franklin,

R. Zadeh, M. Zaharia, and A. Talwalkar. MLlib: Machine Learning in

Apache Spark. Jour. of Machine Learning Research, 17(34):1–7, 2016.
[13] D. Mosk-Aoyama and D. Shah. Fast Distributed Algorithms for

Computing Separable Functions. IEEE Transactions on Information
Theory, 54(7):2997–3007, 2008.

[14] J. Pearl. Causality: Models, Reasoning, and Inference. Cambridge

University Press, 2000.

[15] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan.

Chord: A Scalable Peer-to-peer Lookup Service for Internet Applica-

tions. In Proc. of the 2001 ACM SIGCOMM Conference, pages 149–160,
San Diego, CA, Aug. 2001.

[16] E. P. Xing, Q. Ho, W. Dai, J.-K. Kim, J. Wei, S. Lee, X. Zheng, P. Xie,

A. Kumar, and Y. Yu. Petuum: A New Platform for Distributed Machine

Learning on Big Data. In Proc. of the 21th ACM SIGKDD Conference,
pages 1335–1344, Sydney, Australia, 2015.




