Page 1 of 41 Transactions on Knowledge Discovery from Data

(Accepted for publication Nov. 9, 2018)

Fast Approximate Score Computation on Large-Scale
Distributed Data for Learning Multinomial Bayesian
Networks

ANAS KATIB, University of Missouri-Kansas City, USA
PRAVEEN RAOQ, University of Missouri-Kansas City, USA
KOBUS BARNARD, University of Arizona, USA
CHARLES KAMHOUA, Army Research Lab, USA

In this paper, we focus on the problem of learning a Bayesian network over distributed data stored in a
commodity cluster. Specifically, we address the challenge of computing the scoring function over distributed
data in an efficient and scalable manner, which is a fundamental task during learning. While exact score
computation can be done using the MapReduce-style computation, our goal is to compute approximate scores
much faster with probabilistic error bounds and in a scalable manner. We propose a novel approach which is
designed to achieve: (a) decentralized score computation using the principle of gossiping; (b) lower resource
consumption via a probabilistic approach for maintaining scores using the properties of a Markov chain; and
(c) effective distribution of tasks during score computation (on large datasets) by synergistically combining
well-known hashing techniques. We conduct theoretical analysis of our approach in terms of convergence
speed of the statistics required for score computation, and memory and network bandwidth consumption. We
also discuss how our approach is capable of efficiently recomputing scores when new data are available. We
conducted a comprehensive evaluation of our approach and compared with the MapReduce-style computation
using datasets of different characteristics on a 16-node cluster. When the MapReduce-style computation
provided exact statistics for score computation, it was nearly 10 times slower than our approach. Although it
ran faster on randomly sampled datasets than on the entire datasets, it performed worse than our approach in
terms of accuracy. Our approach achieved high accuracy (below 6% average relative error) in estimating the
statistics for approximate score computation on all the tested datasets. In conclusion, it provides a feasible
tradeoff between computation time and accuracy for fast approximate score computation on large-scale
distributed data.

ACM Reference Format:

Anas Katib, Praveen Rao, Kobus Barnard, and Charles Kamhoua. 2018. Fast Approximate Score Computation
on Large-Scale Distributed Data for Learning Multinomial Bayesian Networks. ACM Trans. Knowl. Discov.
Data. X, X, Article X (December 2018), 41 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Today, there is tremendous interest in designing new methodologies for gaining insights over big
data to enable timely and effective decision making. Big data technologies will be transformative in
many domains and will enable scientific and technological advances in national security, healthcare

Authors’ addresses: Anas Katib, University of Missouri-Kansas City, Kansas City, MO, 64110, USA, anaskatib@mail.umke.
edu; Praveen Rao, University of Missouri-Kansas City, Kansas City, MO, 64110, USA, raopr@umkc.edu; Kobus Barnard,
University of Arizona, Tucson, AZ, 85719, USA, kobus@cs.arizona.edu; Charles Kamhoua, Army Research Lab, Adelphi,
MD, 20783, USA, charles.a.kamhoua.civ@mail.mil.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2018 Association for Computing Machinery.

1556-4681/2018/12-ARTX $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

ACM Transactions on Knowledge Discovery from Data, Vol. X, No. X, Article X. Publication date: December 2018.
https://mc.manuscriptcentral.com/tkdd

Transactions on Knowledge Discovery from Data Page 2 of 41

X:2 A. Katib et al.

delivery, science and engineering, retail, education, and others [51]. While statistical models
provide an elegant framework to gain knowledge from data [18], the volume and variety of big data
demands a paradigm shift-datasets are heterogeneous, massive, and distributed in nature. Massive
datasets are being stored and processed in large-scale commodity clusters using frameworks like
Apache Hadoop [62] and Apache Spark [64]. Several new frameworks have emerged for scalable
machine learning problems (e.g., GraphLab [42, 43], MLlib [46], Parameter Server [40], Petuum [63],
SystemML [12, 25]).

Among the different statistical models, Bayesian networks (BNs) provide a natural way for
knowledge representation and reasoning over heterogeneous data under uncertainty [50]. BNs
have been successfully used in many areas including medical/fault diagnosis, bioinformatics and
computational biology, and others. They play a key role in automated reasoning systems and in data
clustering [26, 28]. More recently, researchers are employing BN for causal discovery of biomedical
knowledge from big data [17]. A BN can model causal relationships among features/attributes of
the data. It provides a way to assert the conditional independencies between different features of
the data, modeled as random variables. It compactly encodes the joint probability distribution of
the random variables by a set of conditional probabilities of these variables given their parents in a
directed acyclic graph (DAG).

To learn a BN from the data, we need to learn its structure and the parameters of the conditional
probability distributions that best fit the observed data. Because exact structure learning of BNs
is NP-complete [16], approximate structure learning techniques have been developed over the
years. We are particularly interested in score-based learning algorithms, which use heuristic search
for approximate structure learning, wherein a search space of possible structures is searched by
applying a scoring function. However, for efficient structure learning on large-scale distributed
data, it is essential to first compute the scoring function on the data in a scalable and efficient manner,
which is the focus of this work.

To motivate the problem at hand, let us consider tweets posted by users of Twitter. Tweets
exemplify massive, heterogeneous, loosely structured data on the Web. Twitter has more than 500
million users, and every day more than 400 million tweets are posted by users. Tweets are publicly
available, have 100+ attributes, and attribute values can be missing and noisy. New attributes may
appear in tweets, and not all attributes may be present in all of them. Hashtags (e.g., #baseball,
#uselection, #fashionpolice) are used frequently by users in tweets to indicate specific topics
or categories. There are thousands of hashtags in use today. A Bayesian approach to modeling
tweets [41, 61] has several use cases including automatic topic labeling, clustering, identifying
causality among tweets, predicting the popularity of tweets/hashtags, detecting latent events, and
so on. A BN can be learned on hashtags and other attributes such as users mentioned in a tweet,
timezone, geo-location, language, retweet status of a tweet, etc. Probabilistic reasoning queries can
also be posed on tweets using BNs for the above use cases.

Example 1.1. Consider a large dataset of tweets. Let us model the tweets using binary random
variables. Let t1, . . ., ¢, denote n hashtags of interest. We define n binary random variables, one for
each hashtag. For each tweet, if hashtag t; is present, then T; = 1, and T; = 0 otherwise. Now we
build a BN on Ti, ..., T,. Let Figure 1(a) denote the learned structure of the BN. (Only Ty, ..., Ty
are shown for simplicity.) Each node/variable in the BN has a conditional probability distribution.
An example is shown in Figure 1(a) for T;.

We can perform probabilistic reasoning queries on the BN. Suppose we wish to predict the
probability that a tweet has hashtag t; given that hashtags t;, tx, and t; are present, absent, and
present, respectively. We can pose a query Pr(T; = 1|T; = 1, T = 0,T; = 1) on the BN. Let us extend
our model by including a multinomial random variable R for attribute retweeted_count in each tweet.

ACM Transactions on Knowledge Discovery from Data, Vol. X, No. X, Article X, Publication date: December 2018.
https:)}mc.manuscrlptcentral.com/tkdd

Page 3 of 41 Transactions on Knowledge Discovery from Data

Fast Approximate Score Computation X:3

e To| o [T3 o | Ts
o
s—|o 1 1
R 0 1
O <
@ @ ImOEE
Tyl o [Ts| o [Ts
N
@ @& R
22t 0 1
0 1 0
//}\\\ Lm
AN Sg|0 0 !
Other variables 220 1 0
QO
Conditional prob. distribution of T, @ 0 @
00 |01 |10 11
o|o1]o02[04]0 LI LEL R AL
1]02]04]03 51 0 1
w O
09|08 06|07 338(6 0 0
[f(Tl=1l T4=0, T¢=0) | 0 1 0

(a) (b)

Fig. 1. (a) An example of a BN on variables Ti, . . ., Tp,. (b) Data instances for the variables Ty, . . ., T, distributed
across four cluster nodes.

After learning a new BN on the random variables, suppose we wish to predict the popularity of a
tweet based on retweeted_count given the presence, absence, and presence of hashtags t;, t;, and #,
respectively. We can pose a maximum a posteriori query argmax; Pr(R = r|T; = 1,T; = 0, T = 1),
whose output can be used to estimate the most likely value of retweeted_count, and hence the
tweet’s popularity.

We formulate the task of score computation on large-scale distributed data as a scalable data
aggregation problem. This is because score computation, which will be formally introduced in
Section 2, requires computing the frequency counts of different values of a random variable and its
parents (a.k.a. sufficient statistics) on the entire dataset. The key contributions of this work are as
follows.

e We propose a novel approach called DiSC (Distributed Score Computation) for fast approxi-
mate score computation over large-scale distributed data. The key features of DiSC are: (a)
decentralized score computation using the principle of gossiping; (b) lower resource con-
sumption via a probabilistic approach for maintaining scores using the properties of a Markov
chain; and (c) effective distribution of tasks during score computation (on large datasets) by
synergistically combining consistent hashing and locality sensitive hashing (LSH).

e We conduct theoretical analysis of DiSC in terms of convergence speed (for a given accuracy
and confidence bound) of the sufficient statistics required for score computation, and memory
and network bandwidth consumption. We also discuss how DiSC is capable of efficiently
recomputing scores when new data are available.

ACM Transactions on Knowledge Discovery from Data, Vol. X, No. X, Article X. Publication date: December 2018.
https://mc.manuscriptcentral.com/tkdd

Transactions on Knowledge Discovery from Data Page 4 of 41

X:4 A. Katib et al.

e Finally, we conducted a comprehensive performance evaluation of DiSC on a 16-node cluster
setup on CloudLab [3]. We compared DiSC with the MapReduce-style computation (imple-
mented using Apache Spark) to compute the frequency counts for score computation. We
used datasets with different characteristics containing up to 200M data instances/records
each for the evaluation. When the MapReduce-style computation provided exact values
of frequency counts needed to compute scores, it was nearly 10 times slower than DiSC.
Although it ran faster on randomly sampled datasets than on the entire datasets, it performed
worse than DiSC in terms of accuracy. DiSC computed approximate values of frequency
counts but achieved high accuracy (below 6% average relative error) in estimating them on
all the tested datasets. Thus, DiSC provides a feasible tradeoff between computation time
and accuracy for fast approximate score computation on large-scale distributed data.

The rest of this paper is organized as follows: Section 2 provides background and motivation for
this work; Section 3 introduces DiSC and discusses a basic approach and an improved approach to
lower resource consumption; Section 3.5 presents theoretical analysis of DiSC and comparison with
the MapReduce-style computation; Section 4 describes the performance evaluation and comparison
between DiSC and the MapReduce-style computation; and finally, we provide our concluding
remarks in Section 5.

A preliminary version of this work appeared in the AAAI 2017 Workshop on Distributed Machine
Learning [52].

2 BACKGROUND AND MOTIVATION
2.1 Score-Based Learning of BNs

Over the last few decades, several advances have been made in score-based learning algorithms [36].
At each step in the search, the algorithm attempts to improve the overall score of the BN by
modifying the DAG structure via local steps such as edge deletion, addition, reversal, etc., and
computing a score difference of the affected variables. Different search strategies (e.g., greedy
hill-climbing, simulated annealing) can be used, and when the network score does not improve
further, the algorithm terminates. If the structure is known, parameter estimation is done by
computing sufficient statistics over the data in one pass (e.g., parameters of a Dirichlet distribution
for a multinomial random variable).

We provide a brief discussion on scoring functions and refer the reader to the work by Car-
valho [14], who conducted a comprehensive analysis and comparison of scoring functions for
learning Bayesian networks. Computing a scoring function is a fundamental task during approx-
imate structure learning. The goal is to find the best Bayesian network that fits the data. Let d
denote the data instances/records. Given a scoring function ¢, one aims to maximize the value of
#(G, d), where G is a Bayesian network. A scoring function is designed to compute the posterior
probability distribution of G conditioned on d, i.e., P(G|d). The best Bayesian network is the one
that maximizes the posterior probability. As P(d) is the same for all possible networks, it is sufficient
to compute P(G, d). Popular scoring functions are of two types: information-theoretic scoring func-
tions (based on information theory) and Bayesian scoring functions [14]. These scoring functions
are decomposable in the sense that they can be computed by first computing the individual score
of a variable given its parent. Our work in this paper applies to a broad class of decomposable
scoring functions proposed in the literature that require computing the sufficient statistics over the
data, which is essentially a set of frequency counts of how many data instances have a particular

assignment of values for a variable and its parents in a Bayesian network.
As a motivating example, let us consider the Bayesian Dirichlet equivalence (BDe) scoring
function [14, 36]. Suppose X; denotes a multinomial random variable and Val(X;) denotes the

ACM Transactions on Knowledge Discovery from Data, Vol. X, No. X, Article X, Publication date: December 2018.
https:)?mc.manuscrlptcentral.com/tkdd

Page 5 of 41 Transactions on Knowledge Discovery from Data

Fast Approximate Score Computation X:5

set of possible values of X;. Let xl’ € Val(X;) denote a possible value of X;. Let Pa)c(;, denote the
parents of X; in a DAG G. Note that XilPa)Cé is also called a family. Suppose Val(Pa)Cé) denotes

all possible configurations of Pa)% (i.e., assignment of values to the parents). Let u; € Val(Pa)Céi)

denote a particular configuration of X;’s parents. We will use M[-] to denote the frequency counts

computed over the data instances d. For each configuration u;, let M[u;] = > M [x{ , Ui,
x{. eVal(X;)

where the tuple containing all M [x: ,u;] is referred to as the sufficient statistics (i.e., the number of

data instances where X; = xl’ with parent configuration u;). Let ax; |y, = D i\, denote
Jeval(x;)
the prior parameters of the Dirichlet distribution. The BDe scoring function is stated as follows:

C + Mx/, u;])

score(X;|Pax;, d) = l—[Lilui) X I—[(1)

weval(pag,) Tax;ju; + Mluil) evaiixy F(ax{Iui)

Note I'(n) = (n — 1)!. The total score of a DAG G for Xi,...,X, on d is the product of the
family scores, i.e., score(G,d) = []}-, score(X;|Pax;,,d). (The logarithm of the total score is usually
computed to replace all the products and divisions by sums and differences. This makes it easier
to compute the scoring function during learning.) During learning, we only need to compute the
change in the score due to the DAG operations. When data instances are distributed, computing
the required sufficient statistics for the family scores is challenging; this challenge is the motivation
for our work.

Example 2.1. Consider the BN shown in Figure 1(a). Let the data instances for the variables
Ty, ..., T, be distributed on four cluster nodes as shown in Figure 1(b). Consider the family T;|T5, Ts.
The sufficient statistics for T;|T3 = 0, Tg = 0 is (1,2), because there is 1 data instance with T; = 0,
T; = 0,and Ty = 0 (i.e., on node 4) and 2 instances with T; = 1, T3 = 0, and T = 0 (i.e., on nodes 2
and 3). Similarly, the sufficient statistics for T|T3 = 1, Tg = 0 is (3,1). Once the required sufficient
statistics are available, the family score of T;|T3, Tg can be computed using Equation 1.

If the structure of a BN is given/known, then the parameters of the conditional probability
distributions that best fit the observed data need to be learned. This also requires computing the
sufficient statistics of families efficiently and becomes challenging on massive datasets when a
large number of variables are present in the BN.

2.2 Parallel BN Learning

Due to the computational complexity of BNs, parallel algorithms were proposed for structure
learning of BNs on high-performance computing platforms and shared-memory architectures [37,
47, 49]. Recently, parallel methods for scalable BN learning and reasoning using the MapReduce
paradigm were proposed for a shared-nothing cluster [11, 15, 22, 57, 65]. More recently, Arias et
al. [9] developed parallel versions of Bayesian network classifiers (e.g., Tree Augmented Naive
Bayes, k-Dependence Bayesian classifier) by computing multidimensional contingency tables using
the MapReduce paradigm on Apache Spark [64]. One may wonder whether we can simply develop
a parallel algorithm to compute the family scores using the map and reduce operations in Apache
Spark. This can be done by identifying all possible families that may be needed during structure
learning and partial counts on individual data blocks (in the map phase) and computing the required
sufficient statistics for each family (in the reduce phase). As shown by the results reported later in
Section 4, the MapReduce-style of computing sufficient statistics is very slow and time consuming.
Furthermore, the batch-oriented nature of MapReduce requires complete re-execution when new
data instances are available.

ACM Transactions on Knowledge Discovery from Data, Vol. X, No. X, Article X. Publication date: December 2018.
https://mc.manuscriptcentral.com/tkdd

Transactions on Knowledge Discovery from Data Page 6 of 41

X:6 A. Katib et al.

2.3 Distributed Machine Learning Frameworks

In recent years, there has been much interest in developing scalable distributed machine learning
frameworks given the growing number of use cases in the industry. GraphLab [42] exploited
common patterns in machine learning algorithms such as sparse computational dependencies and
asynchronous iterative computation. Its efficacy was demonstrated on parameter learning and
inference in Markov Random Fields, Gibbs sampling, and other machine learning tasks. GraphLab
was later extended to operate in a distributed environment with reduced network congestion and
latency, and support for fault-tolerance [43]. MLlib [46], a library of Apache Spark, provides scalable
implementations of common machine learning algorithms using Apache Spark and its primitives.
Another recent framework is the Parameter Server [40], which was developed to scale distributed
machine learning algorithms. It proposed an efficient way to aggregate and synchronize model
parameters in a distributed setting using asynchronous communication and flexible consistency
models. Its efficacy was demonstrated on Sparse Logistic Regression, Latent Dirichlet Allocation,
and Distributed Sketching. Recently, Petuum [63] was developed for scaling both data-parallel
and model-parallel machine learning algorithms by considering properties such as error tolerance,
dynamic structure, and nonuniform convergence. Its benefit was demonstrated on tasks such as
topic modeling, deep learning, and Lasso regression.

SystemML [12, 25] proposed a declarative, high-level language for writing machine learning
algorithms. Efficient execution plans were generated for these algorithms using SystemML’s cost-
based optimizer. The algorithms were executed on top of data parallel frameworks such as Apache
Hadoop’s MapReduce and Apache Spark. A few systems have been proposed to integrate statistical
machine learning with a DBMS for improved performance and efficiency (e.g., MADIib [29], UDA-
GIST [39]). Recently, Edward [60] was developed for probabilistic modeling on large datasets
using TensorFlow [8]. Edward enables a user to build a model of a phenomena (e.g., using directed
graphical models and neural networks), reason about the model, and criticize how well the model
fits of the data. Edward can exploit GPUs for parallelism. AMIDST [44] is a Java toolbox for scalable
probabilistic machine learning and allows a user to build probabilistic graphical models and perform
scalable inference. To process large data streams and large-scale datasets, AMIDST employs Apache
Flink [23] and Apache Spark [58]. Using a Bayesian approach of updating a model as new data
arrive, AMIDST avoids relearning a model from scratch when new data arrive.

Whereas prior efforts focused on scaling a broad class of machine learning algorithms, our goal
is centered around fast approximate score computation, a fundamental task during BN structure
learning, on large-scale distributed data. Like others, we also aim for a scalable and fault-tolerant
solution, which is highlighted next.

2.4 Gossip Algorithms

Gossip algorithms are used by companies such as Amazon and Facebook to build global-scale
computing systems like Dynamo [20] and Cassandra [38]. They are also being used in the blockchain
technology for scalable data dissemination among peers [30]. They are attractive in large-scale
distributed systems due to their simplicity, decentralized nature, high scalability, ability to tolerate
failures, and ability to provide probabilistic guarantees. Prior work on gossip algorithms have
mainly focused on information exchange (or rumor spreading) [21, 24, 33] and computing aggregates
(and separable functions) [13, 32, 34, 35, 48]. The essence of these algorithms lies in the exchange
of information or aggregates between a pair of nodes, using a probability transition matrix for
the given network topology. Previous studies have shown that after a provably finite number of
rounds/time intervals and a provably finite number of message exchanges, the information reached
all the nodes or the aggregates converged to the true value.

ACM Transactions on Knowledge Discovery from Data, Vol. X, No. X, Article X, Publication date: December 2018.
https:)?mc.manuscrlptcentral.com/tkdd

Page 7 of 41 Transactions on Knowledge Discovery from Data

Fast Approximate Score Computation X:7

In this work, we draw inspiration from a state-of-the-art gossip algorithm proposed by Mosk-
Aoyama and Shah [2, 48] to compute the sum of values stored on n nodes. We call this algorithm SUM.
Let P = [P;;] denote a (doubly stochastic and symmetric) probability transition matrix, where P;; is
the probability that node i contacts node j during gossip. Each node has a local clock that ticks at the
times of rate 1 Poisson process. Let x; denote the value at node i. Each node i maintains r independent
exponential random variables with rate x;, say Ej; where [= 1 to r. A node becomes active when
its local clock ticks, selects a neighbor with probability P;;, and then they exchange their current
state. It computes for [= 1 to r, m; = min}_, E;;. Note that the minimum of a set of exponential
random variables is an exponential random variable with rate equal to the sum of the rates of the

exponential random variables in the set. Finally, SUM uses ST . a8 the estimate of 37", x;. Suppose
=1

Tsum(e, 8, P) is the smallest time at which all nodes have computed the sum such that the estimate
is within § of the true sum with probability at least 1 — e. (This is called the convergence speed.)

By choosing r = ©(57%(1 + €7!)), it was shown that Tsy (e, 5, P) = O(log e 1292;(_}1’; ——)’

where ®(P) denotes the conductance of the communication topology. Thus, if higher accuracy or
confidence is desired by SUM, then a higher value of r must be chosen. When r is increased, the
number of exponential random variables maintained at each node also increases along with the
size of messages exchanged during gossip.

2.5 Challenges and Motivation

There are several technical challenges that must be addressed to develop a scalable score computa-
tion approach over large-scale distributed data. First, data blocks are distributed across nodes in
a cluster. Therefore, it is pragmatic to move computations to data [19]. Second, the score compu-
tation should be efficient and scalable, tolerate failures and changes to the cluster topology, and
provide provable guarantees on the accuracy of the estimated sufficient statistics. This requires
fast aggregate computation (e.g., sum) over distributed data, effective load balancing of tasks, and
redundancy to cope with failures. Although a straightforward application of SUM sounds promising,
it unfortunately does not yield a scalable solution for score computation of families. (We provide
more details in Section 3.2.) Therefore, we must design a new algorithm by adapting SUM. Third,
when new data are produced, efficient recomputation of family scores over a large dataset is needed
for faster relearning compared to a batch-style approach.

Every data instance/record in the dataset/table will contribute to the sufficient statistics of a
family either as a zero or larger value. Hence, every node in the network is involved in computing
the sufficient statistics to avoid moving the data to a central location. One may wonder if we can
partition the dataset vertically. However, this will introduce additional complexity when a family
spans variables across different partitions. Shuffling of data will be required. Hence, it is better to
horizontally partition the dataset, where an entire data instance is on a single machine.

3 OUR APPROACH

In this section, we present DiSC and explain the key ideas that underpin its design. We also
present the theoretical analysis of DiSC w.r.t. convergence speed, memory and network bandwidth
consumption, and score recomputation when new data are available. DiSC addresses two key issues
to achieve fast approximate score computation: (1) distribution of families across cluster nodes
for load balancing and (2) approximate score computation of families in an efficient, scalable, and
fault-tolerant manner. DiSC can be viewed as a black box (by different score-based BN learning
algorithms) to provide an estimate of family scores over large-scale distributed data. Table 1 lists
the frequently used notations in the remainder of the paper.

ACM Transactions on Knowledge Discovery from Data, Vol. X, No. X, Article X. Publication date: December 2018.
https://mc.manuscriptcentral.com/tkdd

Transactions on Knowledge Discovery from Data Page 8 of 41
X:8 A. Katib et al.
’ Notation | Description ‘
f = | A family f where X is a random variable

X|Pax and Pay is the set of parents

|Val(X)| Number of possible values of X

|Val(Pax)| | Number of possible configurations of Pax

N; A node in the cluster

[sn;.en;] | The interval assigned to N; in consistent
hashing address space

Fn, The family list of the cluster node N;

L The hash function that combines LSH and
consistent hashing

k Number of hash values output by L

h} The j** hash value output by L

d Conductance of a network of cluster nodes

0, P/, Q/ | Doubly stochastic transition matrices

Ty = | A row matrix denoting the stationary dis-

[z} ...7"] | tribution of a Markov chain with n states

f f .

for family f

D Number of distinct families in the network

SSAy Sufficient statistics array of the family f

E}[] An array of exponential random variables
for a counter in SSAf

1-€ Desired confidence of an estimate via gos-
sip

1-96 Desired accuracy of an estimate via gossip

Tsum Convergence speed of SUM

Tpisc Convergence speed of DiSC

Table 1. Table of notations

3.1 Distribution of Families

Given a cluster with n nodes, we assume they are connected by an overlay network, where any two
nodes can communicate with each other in a finite number of hops (e.g., using a Distributed Hash
Table (DHT) [59]). The decomposability property of the Bayesian scoring function (e.g., Equation 1)
enables us to achieve distributed score computation. There are two issues that arise. First, we
must distribute the task of computing the scores of families across the cluster nodes in a scalable,
load-balanced, and fault-tolerant manner. This implies that when the learning algorithm is running
on a cluster node, the score of a family may not be available locally and requires communication
with another cluster node. Thus, the second issue is to allow a cluster node to manage similar
families so that we can minimize the number of network lookups during BN learning.

We address the above issues by synergistically combining consistent hashing [59] and LSH [31].
In consistent hashing, only a finite fraction of the keys needs to be redistributed when there is
a change in the size of the hash table (or cluster) allowing DHTs to scale. Using LSH, data items
that are more similar are more likely to produce collisions. We can design LSH for sets using k X [
random linear hash functions as follows [27]. For each linear hash function, apply it on each item
in a set and compute the minimum of the hash values. Create k groups each with I minimum hash

ACM Transactions on Knowledge Discovery from Data, Vol. X, No. X, Article X, Publication date: December 2018.
https:)?mc.manuscrlptcentral.com/tkdd

Page 9 of 41 Transactions on Knowledge Discovery from Data

Fast Approximate Score Computation X:9

values; concatenate I minimum values in each group and apply another hash function (e.g., SHA-1)
to produces a value in the integer range [0, m]. Finally, produce a total of k values for a set. Let
{hll, ol h’;l} and {hlz, c hlgz} denote the outputs of LSH on sets S; and S;, respectively. Prior
work has shown that if the similarity (i.e., Jaccard index) between S; and S; is p, the probability
that there exists at least one pair of identical hash values is 1 — (1 — p})¥, i.e., hgl = hgz (1<i<k).

Similar to a DHT, let Nj,..., Nj,_; denote the n cluster nodes mapped to a m-bit hash address space.
We partition the address space [0, 2™ — 1] equally among the cluster nodes. Let [sy;,, en,] denote
the interval assigned to N;. (A similar method of assigning ranges is used by Cassandra [38] and
Dynamo [20].) Let L denote LSH on a set that produces k hash values in the range [0,2™ — 1] (e.g,
using SHA-1 or MD5). Given a family f = X|Pay, we first represent it as a set of random variables
{X} UPayx.Let {hL,..., hjﬁ} denote the k hash values output by L({X} U Pay). We assign f to

every cluster node whose assigned interval contains any K., where 1 < j < k. Through consistent

hashing, we distribute the families almost evenly across nodes in a cluster. Through LSH, we can
ensure that two similar sets/families are assigned to the same node with high probability. This will
be useful to a score-based learning algorithm when retrieving the scores of similar families. Due to
k values output by LSH, multiple cluster nodes will be assigned a family and are responsible for
computing the score of that family. Thus, DiSC can cope with node failures for high availability.

Example 3.1. An example of assignment of families is shown in Figure 2(a). Cluster nodes
Ny, . .., N7 are assigned intervals in the hash address space. Suppose there are four families f; =
Xi|Pax,, f> = Xz|Pax,, f3 = X3|Pax,, and f; = X4|Pay,. Let L produce k = 2 hash values. Therefore,
each family is assigned to two nodes in the cluster. Suppose the set representations of {X;} U Pax,
and {X4} U Pay, have high similarity. As shown in the figure, N is assigned both f; and f; due to
the property of LSH.

Once the families are assigned to cluster nodes, it is possible to apply a gossip algorithm such
as SUM to compute the sufficient statistics of the families. For this, we must maintain an array of
counters for each family and perform gossiping. However, this will lead to an undesirable scenario
in which every node ends up tracking every family, as shown in Figure 2(b). This has shortcomings
for the following reasons: each node will have to spend more resources maintaining the families
and exchange large messages during gossip. Similar observations were reported in XGossip [54-56],
albeit for a different problem and gossip algorithm. So, it is desirable to have families distributed in
the manner shown in Figure 2(c), which is the ultimate goal of DiSC.

Next, we show a basic approach to compute scores in DiSC using SUM and point out the afore-
mentioned shortcomings. Then, we improve DiSC using our idea of probabilistically dropping
families during gossip.

3.2 A Basic Approach for Gossip-Based Score Computation

The next challenge is to compute the scores of families in a scalable manner on large distributed
data. We need to compute the sufficient statistics of each family. Once we have the sufficient
statistics of a family, Equation 1 can be used to compute the score of the family. We first present a
basic approach for computing sufficient statistics by applying SUM (Section 2.4) over all the families
of interest. Suppose there are n cluster nodes. Each node N; stores the families assigned to it in its
family list Fy;,. In the family list, for each family f, a 2D array of size r’ X ¢’ is maintained, where
r’ = |Val(X)| and ¢’ = |Val(Pax)|. Each element in this 2D array contains a list of r exponential
random variables needed to estimate a value in the sufficient statistics of a family. We call this 2D
array the sufficient statistics array (SSA) of f denoted by SSAy. Figure 3 shows an example of a
family list.

ACM Transactions on Knowledge Discovery from Data, Vol. X, No. X, Article X. Publication date: December 2018.
https://mc.manuscriptcentral.com/tkdd

Transactions on Knowledge Discovery from Data Page 10 of 41

X:10 A. Katib et al.

X4l Pay,

X1lPay; -. Xz|Pay,

Hash address space
[0,2m-1]

X;|Paxs

X3|Paxs

X1 |Pax; Xz|Paxz
x4|P0x4
(a) Initial assignment of families to the cluster nodes
X3lPaxs Xi|Pay, XslPaxs Xi|Pax;

X4lPays XalPax, Xa4lPaxs Xa|Pax,

X3lPays X;|Pay;

X3|Paxs X;|Pax,
Xal Paxs X, | Pay,

X4| P0x4 xz | dez

Hash address space
[0.2m-1]

X3|Paxs X;|Pay;
XslPaxs Xa|Pax,

X3lPaxs X;|Pax;
X4|Pﬂx4 lepﬂxz

X3|Pays Xi[Pay Xs|Pays Xi|Pay;
X4lPays X:|Pax, X4lPaxs Xa|Pay,
(b) An undesirable scenario where all the nodes track all the families

X;|Pay; X3|Pay;
X4 I Pﬂx4 XZ I Paxz

X4|Paygs X3|Paxs
X,|Pay, X;|Pay,
Hash address space
[0,2m-1]

Xi|Paxy X3|Paxs

X;|Pays X4lPays

X;|Pay; Xz|Pay,
Xz|Pay, X4lPays

(c) A desirable scenario

Fig. 2. Assignment of families during gossip

Next, we present the basic approach to compute scores in DiSC. First, each family is assigned to
cluster nodes by invoking Algorithm 1. Depending on the value of k, hash values are constructed

from Data, Vol. X, No. X, Article X, Publication date: December 2018.

ACM Transactions on Knowledge Discover)
:)}mc.manuscrlptcentral.com/tkdd

https

Page 11 of 41 Transactions on Knowledge Discovery from Data

Fast Approximate Score Computation X:11

List of r exponential

Family list 2D array random variables

1 {Teh (1T 1]
Y

[] | = [Val(Pay)

[11 ' = Val(x;)|

Fig. 3. An example of a family list at a node

for the family (Line 2). For each hash value, the family is routed to the node for that hash value
(Line 4). That node adds the family to its family list and initializes the SSA (Line 5).

Algorithm 1 AssignFamily(f)

: Let f = X|Pax

: {hjl,, .. .,h]’ﬁ} «— L({X} U Payx)

: for j=1to k do _ .

Route f to the cluster node Nj that is responsible for h}, ie., h} € [sn;» en;]
Add f to the family list Fy, of N; and set SSA; to NULL

Algorithm 2 shows the actions performed by every cluster node. Consider node N;. It first initial-
izes the SSAs for every family in Fy, by using local data instances and generating the exponential
random variables for the partial sufficient statistics of the family by invoking InitLocalState(-)
(Lines 2-4). The local clock is initialized as a rate 1 Poisson process (Line 6). (The specific implemen-
tation of the local clock is shown later in Section 4.) When its local clock ticks, it becomes active
during gossiping and does the following steps: Pick a neighbor N; with probability O;; (Line 8).
Exchange between N; and N; the SSAs of the families in their family lists (Lines 9-10). (Note all the
families in their family lists are exchanged.) For each family in the family list of N;, the minimum
is computed for the exponential random variables for each element of the SSA of the family in Fy;,
(Lines 11-17). Finally, those families in F; that are not in Fy, are added to Fy;, along with their
SSAs (Lines 18-19).

Algorithm 4 lists the steps performed by a cluster node when it is receives messages from other
nodes during gossiping. If the family in a received message is not in the family list of the receiving
node, then the node initializes the SSA of the family (using any local data blocks) (Lines 4-6). The
node responds to the sender with the SSAs of the families in its family list (Line 7). Next, for the
families in the family list, the minimum of the exponential random variables for each element in an
SSA is computed (Lines 8-13).

Example 3.2. Consider a cluster with 3 nodes, N1, Ny, and N3 as shown in Figure 4(a). Let {d}, d5},
{ds, d4}, and {ds, dg} denote the data instances stored on Nj, N;, and N3, respectively. Let fi = X;|Y;
and f; = X3|Y, denote two families on binary random variables. Suppose we need to compute the
sufficient statistics of f; and f> using DiSC. As shown in the figure, Nj is responsible for fi; N; is
responsible for f,. The exponential random variables in the SSAs for these families is also shown.
Let r = 1 (i.e., the number of exponential random variables per counter). Let aji. . denote the value

ACM Transactions on Knowledge Discovery from Data, Vol. X, No. X, Article X. Publication date: December 2018.
https://mc.manuscriptcentral.com/tkdd

Transactions on Knowledge Discovery from Data Page 12 of 41

X:12 A. Katib et al.
yl yZ
a'gy [a%n b2gy | b%01
Xl N1 N X2
aly [a'y 2 b2, | b2

.{d1,d2} {d3,d4}. 10 11

fi= XY, f2 = XolY,
{ds.de}
o N;

(a) Initial values of exponential random variables in the SSAs

Y1 y2
aly | a'os b0 | b%:
xl N1 Nz XZ
aly [a'n b2, | b?
C®didy (da® 017
gossip\zx
{ds,de}
o N,
Y
ady | @y
X
ady | @y
(b) Gossip between N; and Nj
Y1
MIN(aly, a3y) | MIN(algy, @3y,)
X MIN(aly,, a3;0) | MIN(atyy, @3;) Ye
b2y | b%;
Nl Nz XZ b2 b2
.{dhdz} {d3,d4}. 10 11

{d5ld6}
Y1

MIN(a'gg, a%0) | MIN(agy, a%y;)

X

<

MIN(a'yo, a%;0) | MIN(atyy, a%;)

(c) Updated exponential random variables after gossip

Fig. 4. Steps during gossip

ACM Transactions on Knowledge Discovery from Data, Vol. X, No. X, Article X. Publication date: December 2018.
https:)}mc.manuscrlptcentral.com/tkdd

Page 13 of 41 Transactions on Knowledge Discovery from Data

Fast Approximate Score Computation X:13

Algorithm 2 DiSC-Basic-Send()

1: Let N; denote the cluster node executing this procedure

2: for all f € Fy, do

3 SSAy < InitLocalState(f)

4 Store SSAy for f in Fy,

5: Let O denote the doubly stochastic symmetric transition matrix for the n cluster nodes, s.t.
O,‘j = 1

: Initiali’;e rate 1 Poisson process at node N; as the local clock for gossiping

: for each local clock tick do

Pick a neighbor N; with probability O;;

Send exponential random variables in SSA for families in Fy;, to N;

10: Receive exponential random variables in SSA for families in Fy; from N;

11: for each family f € Fy, do

12: for each element e € SSAf do

13: Let E} denote the list of exponential random variables for e in SSA¢

14: Let E} denote the list of exponential random variables for e received from Nj
15: if E} # null then

16: forg=1tordo

17 E}lg] — min(E}[q, E}[q])

18: for all family f’ € Fy; sit. f' ¢ Fy, do
19: Add f’ and its SSA to Fy,

Algorithm 3 InitLocalState(f)

1: Read local data and compute the counts for f and store in a 2D array

2: for each counter in 2D the array do

3. Let v denote the value of the counter

4: Generate the list of r independent exponential random variables with rate v and store in
SSAf

5: return SSAf

of the exponential random variable for the frequency count of X; = j|Y; = k on the data instances
stored at N;. Similarly, bj’:k is for X, = j|Y, = k on N;.

Next, we show how the gossip phase works. Suppose the local clock of N ticks first. Let N; pick
N; to exchange the state. As shown in Figure 4(b), N; and N; exchange the exponential random
variables. N3 has to compute ago, agl, a?o, and a?l over {ds, ds}. N3 learns about f; from N; and
updates its family list. As shown in Figure 4(c), N; and N3 compute the minimum of all.j and a?j
after exchanging state.

After several clock ticks, the nodes reach a state as shown in Figure 5(a). The final values of
a;; and b;; are shown in Figure 5(b). Each node maintains the SSAs for f; and f;. The estimates

of the sufficient statistics of f; (on any node) are (=, -, -1, -L) because r = 1. In addition, the

ag’ ao1’ ai’ an
. . . . 1 1 1 1
estimates of the sufficient statistics of f; (on any node) are (o B Bt B). |

Next, we state results on the convergence of DiSC and the size of the family list at each node.

ACM Transactions on Knowledge Discovery from Data, Vol. X, No. X, Article X. Publication date: December 2018.
https://mc.manuscriptcentral.com/tkdd

Transactions on Knowledge Discovery from Data Page 14 of 41

X:14 A. Katib et al.

Algorithm 4 DiSC-Basic-Receive()

1: Let N; denote the cluster node executing this procedure
2: while new message is received do
3. for each family f in the message do

4: if f ¢ PNJ- then

5: SSAf « InitLocalState(f)

6: Store f and SSAy in Fy;,

7. Respond to sender with exponential random variables for the families in Fy;,

8: for each family f in the message do

9: for each element e € SSAf in Fy, do

10: Let E} denote the list of exponential random variables for e in SSAf¢

11 Let E} denote the list of exponential random variables for e received from sender N;
12: forg=1tordo

13: E}[q] — min(E}[q],E}[q])

THEOREM 3.3. Suppose node N is responsible for computing the score of a family f. Let Tp;sc(f, €, 6)
denote the smallest time at which N; can estimate the sufficient statistics for f within a relative error
of § with a probability of at least 1 — €. Then Tpisc(f,€,8) = Tsum(e, 6, O).

Proof. The dissemination speed of a gossip algorithm to compute SSA¢ will depend on how fast
the state of the nodes are exchanged through the network. DiSC is based on SUM with the probability
transition matrix O to estimate SSAy¢. Thus, the convergence speed of DiSC is Tsym(€,5,0). O

THEOREM 3.4. Let D denote the number of distinct families and k denote the number of hash values
output by L. The expected value of the size of family list at a cluster node is O(D).

Proof. During gossip, each time a node communicates with another node, its learns any new
families that the other node has. Ultimately, every node learns every distinct family in the network.
Thus, the expected size of the family list at each node is upper bound by the number of distinct
families. O

Unfortunately, a major drawback of the basic approach of score computation in DiSC is that
each node will learn about more families each time it gossips and eventually track the sufficient
statistics of all the families known to the cluster nodes. This will defeat the purpose of gossiping
because of potentially very large number of unique families (e.g., when a dataset has large number
of variables) to compute the sufficient statistics on during learning. As a result, each node will
send large messages through the network during gossip leading to increased network bandwidth
consumption.

3.3 An Improved Approach for Gossip-Based Score Computation

To overcome the above limitations, we develop an improved algorithm by using a probabilistic
approach for guaranteeing a bound on the number of families managed by each node. As shown
in Figure 2(c), we would like each node to manage only a finite fraction of the families with high
probability. This is achieved using a Markov chain and its attractive properties. A Markov chain is
modeled by ¢ states, sy, . . ., s;, where the probability of transitioning from one state to another is
given by a transition matrix T. The stationary distribution of the Markov chain is denoted by a row

ACM Transactions on Knowledge Discovery from Data, Vol. X, No. X, Article X, Publication date: December 2018.
https:)?mc.manuscrlptcentral.com/tkdd

Page 15 of 41 Transactions on Knowledge Discovery from Data

Fast Approximate Score Computation X:15

Yi Yy
A0 |30 A0 |30
X] XI
A |@u A |an
Y . e Y
2 [) 2
(dudd {ds,d®
boo | boy boo | boy
Xz XZ
by, | by by | by
{ds,de}
oN;
yl yZ
A0 | @01 by | boy
X1 X2
A, |an by, | by

(a) Final state on all the nodes

- 1 a2 a3 - i oA A
ago = MIN(a'yg, @%gg, @%g) g, = MIN(a'oy, 3%y, a%py)

a;o = MIN(a';p, @%y, 3@1) a;;= MIN(a'yy, a%yy, @%y)

boo = MIN(boo, b2g0, b300) boy = MIN(bo, b%y, b3o)

b= MIN(b%;4, b%;, b3;) b;;= MIN(b?yy, b2y, b34)

(b) Final values of the exponential random variables on all the nodes

Fig. 5. Final state of gossiping

N(u,0?)

_ (snj+ enj)
2
h} € [SNj,eNj]

.. of
Forl<],Pl-j -

SNj BN]' 2m_]

Fig. 6. The function PZ

matrix 7t = [7'...x"] s.t. £ = 2'T. Over a long run, the probability of being at a particular state s;
converges to the stationary distribution x; independent of the starting state.

ACM Transactions on Knowledge Discovery from Data, Vol. X, No. X, Article X. Publication date: December 2018.
https://mc.manuscriptcentral.com/tkdd

Transactions on Knowledge Discovery from Data Page 16 of 41

X:16 A. Katib et al.

We model the n cluster nodes by a Markov chain with n states. Let us define a few transition
matrices. Let us define O to be a doubly stochastic transition matrix where O;; = % For each family

f, let us define P/, another doubly stochastic transition matrix, s.t. PZ = /s ;Nf N(u,0%) dhfori < j,
j

iten;)
(SN’#. (Note that P/ is defined to be a symmetric matrix.) That is, for f, we can select

(sn;+en;) .)))
N 5 N° and some standard deviation o. An illustration of le; is

shown in Figure 6. An interesting observation is that P;; peaks when N; is responsible for f.In

where 1 =

a normal distribution with mean

addition, the total area under the curve of a normal distribution is 1. Finally, let us define Q to be
a doubly stochastic transition matrix s.t. Qlfj = 0;j X Pl’; fori # j.

Algorithms 5 and 6 show the steps performed by the improved approach for gossip-based score
computation in DiSC. Algorithm 5 lists the actions performed by every cluster node. Consider
node N;. Similar to the basic approach, it first initializes the SSAs for every family in Fy;, by using
local data instances and generating the exponential random variables for the partial sufficient
statistics of the family by invoking InitLocalState(-) (Lines 2-4). The local clock is initialized as a
rate 1 Poisson process. When its local clock ticks, it becomes active during gossiping and does the
following steps: Pick a neighbor N; with probability O;;. N; sends the SSAs of all the families in its
family list to N;. N; receives the SSAs for the families in its family list from N; (Lines 9-10). (Note
that this is different from what is done in the basic approach.) The SSAs for every family in Fy;, is
updated based on the SSAs received from N; by computing the minimum of the exponential random
variables (Lines 11-17). The next steps involve dropping families probabilistically (Lines 18-26),
which is a major difference from the basic approach. A list G is maintained to keep track of families
(and their SSAs) that N; should be informed to add to its family list after N; drops them. For each

family f in Fy,, if N; is responsible for f, add f and SSA; to G with probability P]f i+ Otherwise,

with probability x> Temove f from the family list and add f and SSA¢ to G. Once all the families
are processed, inform N; to store the families in G in its family list.

This key idea of probabilistically removing a family from the family list of a cluster node during
score computation prevents the family list from growing very large. (See Section 3.5 for a bound
on the size of the family list.)

Algorithm 6 lists the steps performed by every cluster node when it is receives messages from
other nodes during gossiping. If the message received contains exponential random variables
of families, and if a family under consideration is not in the family list of the receiving node,
then the receiving node initializes the SSA of the family (using any local data blocks) by calling
InitLocalState(-) (Lines 4-8). A temporary family list is maintained to keep track of SSAs of families
that are seen for the first time by the receiving node. The receiving node responds to the sender
with the SSAs of all the families it knows that are also in the sender’s family list (Line 9). The
receiving node then updates its family list by computing the minimum of exponential random
variables in the SSAs (Lines 10-16). If the message from the sender indicates adding a set of families,
then the receiving node stores them in its family list (Lines 17-20).

3.4 Retrieving Scores During Learning

DiSC can be viewed as a black box by (a serial or parallel version of) a score-based learning algorithm,
wherein it has efficiently precomputed the sufficient statistics of large number of families required
during learning. When the learning algorithm executes on a cluster node and needs the sufficient
statistics of a family, it will invoke Algorithm 7. The algorithm first computes the hash values for
the family by applying L (Line 2). For each hash value, the algorithm contacts the cluster node

ACM Transactions on Knowledge Discovery from Data, Vol. X, No. X, Article X, Publication date: December 2018.
https:)?mc.manuscrlptcentral.com/tkdd

Page 17 of 41 Transactions on Knowledge Discovery from Data

Fast Approximate Score Computation X:17

Algorithm 5 DiSC-Improved-Send()

1: Let N; denote the cluster node executing this procedure
2: for all each f € Fy, do
3 SSAy < InitLocalState(f)
4 Store SSAy for f in Fy,
5: Let O denote the doubly stochastic transition matrix of a Markov chain representing the n
cluster nodes, s.t. O;; = %
Initialize rate 1 Poisson process at node N; as the local clock for gossiping
for each local clock tick do
Pick a neighbor N; with probability O;;
Send exponential random variables in SSA for families in Fy;, to N;
10: Receive exponential random variables in SSA for families in Fy, from N;
11: for each family f € Fy, do

12: for each element e € SSAf do

13: Let E} denote the list of exponential random variables for e in SSA¢

14: Let ch denote the list of exponential random variables for e received from Nj
15: if E} # null then

16: forqg=1tordo .

17: E}[q] — min(E}[q],E}[q])

182 G« 0

19: for each family f € Fy, do

20: Let P/ denote a doubly stochastic transition matrix for f as described in Section 3.3
21: if 3j,1<j<kst h} € [sn,,en,] then

22: With probability Pfj, add f and SSAf to G

23: else

24: With probability Pf;., remove f and SSA¢ from Fy, and add f and SSAf to G
25: if G # 0 then

26 Inform Nj to store families in G

responsible for that hash value to obtain the SSA for the family (Line 5)." For each element in SSAf
received from a node, the algorithm computes the estimate over r exponential random variables
and stores it in a 2D array denoted by est; (Lines 7-13). Finally, the element-wise median of estimate
arrays serves as the final estimate of the sufficient statistics of the family. Because of LSH, it is
more likely for the learning algorithm to retrieve the SSAs of similar families from the same node,
potentially reducing the network latency during learning.

One may wonder how DiSC is beneficial to a structure learning algorithm and why parallelism is
needed for score computation of families. Suppose we wish to learn the structure of a BN with large
number of variables, namely, X, ..., X, over large number of data instances distributed across
nodes in a cluster. During structure learning, we need to know the scores of certain families as the
DAG operations are executed. One solution is the learn the score of a family of interest during the
execution of the structure learning algorithm. This would require reading all the data instances each
time a family score is needed. But in a distributed setup and on large-scale data, this could make
the structure learning algorithm wait on computing the sufficient statistics over distributed data.

In a system like Voldemort, the lookup cost is O(1).

ACM Transactions on Knowledge Discovery from Data, Vol. X, No. X, Article X. Publication date: December 2018.
https://mc.manuscriptcentral.com/tkdd

Transactions on Knowledge Discovery from Data Page 18 of 41

X:18 A. Katib et al.

Algorithm 6 DiSC-Improved-Receive()

1: Let N; denote the cluster node executing this procedure
2: while new message is received do
3. if the message contains exponential random variables of families then

4: Ptmp — 0
5: for each family f in the message do
6: if f ¢ Fn; and f is seen first time then
7: SSAy « InitLocalState(f)
8: Store f and SSAf in Fyppp
9: Respond to the sender with exponential random variables for the families in the message
that N; has in either F;p,, or Fy;
10: for each family f in the message do
11: if f € FN]. then
12: for each element e € SSAr do
13: Let E} denote the list of exponential random variables for e in SSAf¢
14: Let E]’; denote the list of exponential random variables for e received from sender
N;
15: forq=1tordo
16: E}[q] — min(E}[q],E}[q])
17: else if the message indicates storing families then
18: for each f in the message do
19: if f é FNJ- then
20: Add f and SSAf to Fy;,

Algorithm 7 GetSufficientStatistics(f)
1: Let f = X|Pax
2 {h},, . .,h]’ﬁ} — L({X} U Pax)
3: forj=1tok do
4. Route f to the cluster node N; that is responsible for " , l.e., hjr € [sn;» en;]
5: Receive SSA¢ for f stored in Fy;, from N;
6: Initialize est; to denote a 2D array (with r’ X ¢’ counters) to store the estimates of the sufficient

statistics of f (from Nj)
7. for each element e € SSAr do

8: Let EJIC denote the list of exponential random variables for e
9: temp «— 0

10: forg=1tordo

11 temp «— temp + E}[q]

12: Let u, v denote the array indices for e in est;

13: estj[u][v] « tefnp

14: return element-wise median for the arrays esty, ..., esty

Another solution is to precompute the scores of possible families needed during structure learning”
on large-scale distributed data. It is true that there will be many families that do not get considered

2For instance, we can consider for every variable, a family with up to a certain number of parents.

ACM Transactions on Knowledge Discovery from Data, Vol. X, No. X, Article X, Publication date: December 2018.
https:)}mc.manuscrlptcentral.com/tkdd

Page 19 of 41 Transactions on Knowledge Discovery from Data

Fast Approximate Score Computation X:19

during structure learning but are still precomputed. However, if the precomputation of sufficient
statistics can be done efficiently, it is well worth the effort. Therefore, for efficiency, parallelism and
cluster computing should be exploited. This way the score of a family is readily available to the
structure learning algorithm when updating the overall score due to DAG operations. We therefore
pursue the latter solution of precomputing the sufficient statistics of families for structure learning.

3.5 Theoretical Analysis

3.5.1 DiSC. We present the theoretical analysis of DiSC by considering the following metrics:
(a) accuracy and confidence of the estimated sufficient statistics of a family, (b) convergence speed
of the gossip algorithm, and (c) memory and network bandwidth requirement during gossip. We
state a theorem on the convergence speed of DiSC to estimate the sufficient statistics of a family.

THEOREM 3.5. Suppose node Nj is responsible for computing the score of a family f. Let Tp;sc(f, €, 6)
denote the smallest time at which N; can estimate the sufficient statistics for f within a relative error
of & with a probability of at least 1 — €. Then Tsypm(€, 5,0) < Tpisc(f,€,8) < Tsum(e, 5, o).

Proof. The dissemination speed of a gossip algorithm to compute SSA; will depend on how fast
the state of the nodes are exchanged through the network. Suppose we use SUM with the probability
transition matrix O to estimate SSAy. Then the convergence speed is Tsy (e, 3, 0). In DiSC, we
exchange the SSAs of families with probability O;; in Algorithm 5 (Lines 9-10). However, we move a

family from one node to another only with probability QZ =0;j X P{j in Algorithm 5 (Lines 18-26).

(Note that Qf . < Oy for i # j.) Therefore, the dissemination speed of DiSC cannot be faster than SUM
with transition matrix O. Therefore, Tsy (€, 5, 0) < Tpisc(f, €, §). However, DiSC is at least as

fast as SUM with transition matrix Q, because the SSAs are exchanged each time a node i contacts
Jj with probability O;;. Therefore, Tpisc(f,€,6) < Tsum(e, d, Qf). m]

The next theorem states the expected value of the number of families tracked by each node. This
key property enables DiSC to scale with increasing number of families to consider when learning a
BN.

THEOREM 3.6. For a family f, let wy = [71'} e 71']’}] denote the stationary distribution of the Markov

chain with the transition matrix Q' containing n states. Let D denote the number of distinct families
and k denote the number of hash values output by L. Then E(|Fy;|) = f%D 71} +]%D.

Proof. Let us define a binary random variable Yy to indicate the presence or absence of f in Fy;.
Suppose Yy = 1 when f € Fy, and Yy = 0 otherwise. Let U denote a random variable that denotes

the number of families N; is responsible for via L. We define a random variable Z = 3, Yr+ U,
febD

an unbiased estimator of [Fy;,|. Consistent hashing in L ensures that the families are distributed
evenly across the nodes with high probability. Furthermore, L produces k hash values per family.
Thus, over a long run (i.e., clock ticks), E(Z) = ng E(Yr)+EU) = ng 71'} + I%D. O

The intuition for the above theorem is that the probability of a family being stored in the family
list of a node will converge to the stationary distribution of the underlying Markov chain. In
addition, a node is also responsible for storing a fraction of all the distinct families due to L.

Next, we discuss the memory and network bandwidth requirement. The SSA of each family
Xi|Pay, is a 2D array of size r] X c;, where r/ = |[Val(X;)| and ¢] = |Val(Pax;)|. Over a long run, the
expected number of families stored by a node is given by Theorem 3.6. According to Theorem 3.5,
the number of time steps required by DiSC for convergence of the sufficient statistics of a family is

ACM Transactions on Knowledge Discovery from Data, Vol. X, No. X, Article X. Publication date: December 2018.
https://mc.manuscriptcentral.com/tkdd

Transactions on Knowledge Discovery from Data Page 20 of 41

X:20 A. Katib et al.

given by Tp;sc(f, €, §). Each time step has on an average n clock ticks, one per node [13]. Suppose
each node maintains r exponential random variables per element in the 2D array for a family’s SSA.
During each clock tick, for a family X;|Pax,, two nodes exchange r X r/ X c¢; exponential random
variables to compute their minimum.

3.5.2 Comparison With MapReduce-Style Computation. Hereinafter, we use MR-SS (MapReduce-
based Sufficient Statistics) to denote the MapReduce-style of computing sufficient statistics. We
provide insight on the difference between DiSC and MR-SS, in terms of the network bandwidth
consumption. For MR-SS, we assume a simple model: The map phase is run on all the cluster nodes
to process all the data blocks to produce intermediate key-value pairs. The reducer phase, which
may run on a subset of cluster nodes, needs to receive the intermediate key-value pairs. Thus,
in the worst case, all the intermediate key-value pairs produced during the map phase must be
transmitted across the network. We will assume compression is not used by both approaches.

Let us analyze the process of computing the scores of D distinct families using MR-SS. In the
map phase, the partial counts for each family f € D on each block of data are computed. During
the reduce phase, the sufficient statistics across all the data blocks for each family is obtained
and combined to produce the final sufficient statistics for the D families. On a cluster of n nodes
and b data blocks, the map phase will produce intermediate key-value data of size proportional
ton X b X 3 (rf X ¢s) words, assuming maximum parallelism. During the reduce phase, the

€D
intermediatfe key-value data must be moved to the reducers through the network. Hence, the
communication cost is O(nbDS), where S is the size of the largest SSA in D.

In DiSC, the number of time steps (involving communication) for estimating the sufficient

statistics of a family is O(g)(gé?))), given a user-specified accuracy, LSH parameters, and other user-

defined parameters. Each time step has on an average n clock ticks, one per node [13]. Each clock
tick results in communication. For simplification of analysis, suppose we assume DiSC does not
drop families. Then ®(Qf) = ®(0) ~ 0.5 [2]. For D families, the total communication cost is
O(nlog(n)DS). As b grows faster than log(n) asymptotically, DiSC has lower communication cost
compared to MR-SS.

3.6 Recomputing Family Scores on New Data

Because gossiping can be stopped on the cluster nodes after a period of time and started again,
DiSC can efficiently recompute the family scores as new data are produced. Unlike AMIDST [44]
that is designed for a streaming scenario where new data arrive continuously, we focus on stored
datasets that may be updated over time but not in real-time. Suppose a new data block with some
number of data instances is added to a cluster node. This node will compute the SSAs for all families
under consideration over the data block using InitLocalState(-). By applying L, a node responsible
for each family can be identified, for example, based on the first hash value output by L. Next, the
families can be grouped by the node responsible for them. The SSAs for each group of families
can be sent to the respective node responsible for those families. The receiving node can update
its family list with the SSAs by computing the minimum of exponential random variables similar
to the regular gossip phase of DiSC. Recall that a node responsible for a family never drops the
family during gossip. Once the SSAs are updated by the nodes, all the cluster nodes can continue to
execute DiSC, thereby disseminating the sufficient statistics computed over the new data to other
nodes, resulting in efficient score recomputation.

In contrast to DiSC, the batch-style processing of MapReduce must process the entire dataset
(with new data) to obtain the new sufficient statistics of the families. As a result, DiSC is better
choice than MR-SS for score recomputation when new data are available.

ACM Transactions on Knowledge Discovery from Data, Vol. X, No. X, Article X, Publication date: December 2018.
https:)?mc.manuscrlptcentral.com/tkdd

Page 21 of 41 Transactions on Knowledge Discovery from Data

Fast Approximate Score Computation X:21

4 PERFORMANCE EVALUATION

In this section, we report the performance evaluation of DiSC and comparison with MR-SS. We
demonstrate that DiSC provides a feasible tradeoff between computation time and accuracy for
fast approximate score computation on datasets with different characteristics.

4.1 Implementation and Environment

For implementation, we used the Java package for gossip algorithms available online [1, 53]. The
code was compiled using Java 1.8. For MR-SS, we implemented the code in Scala using Scala 2.11.8.
The code was executed using Apache Spark 2.0.2 and Apache Hadoop 2.7.3. We conducted all our
experiments on CloudLab [3], a testbed for cloud computing research and new applications. We ran
all the experiments for DiSC and MR-SS on 16 nodes in the Utah data center of CloudLab. (Spark
was run in the standalone mode on the cluster.) These nodes were configured with OpenStack
Mitaka on Ubuntu 16.04. Each node had eight 64-bit ARMv8 cores, 120 GB of flash storage, and 64
GB RAM. Each node was configured with a network link speed of 1Gbps. One node was run as the
controller and the remaining were configured as compute nodes. All 16 nodes were used to run the
experiments.

4.2 Local Clock and Exponential Random Variables

For DiSC, we needed a way to generate Poisson processes and exponential random variables. We
implemented local clocks (rate 1 Poisson process) using Algorithm 8 and generated exponential
random variables using Algorithm 9. Note that these algorithms are based on the work done by
McQuighan [45].

Algorithm 8 LocalClock(4, ¢)

Let A denote the rate of Poisson process
Let ¢ denote a positive integer (a.k.a. delay constant)

Pick a random number x uniformly between 0 and 1
log(1—x)

Yy -
Sleep for ¢ X y seconds
return

AL

Algorithm 9 ExpRand(v)

1: Let v denote a positive integer and the rate of the exponential random variable
2: Pick a random number x uniformly between 0 and 1

log(1-x)
3y i
4

: return y

4.3 MR-SS

Algorithm 10 lists the steps performed by MR-SS to compute the sufficient statistics of families.
The input file is a CSV (comma-separated values) file (stored in HDFS) containing the values of the
n binary random variables. Note that flatMap applies myMapFunc on a block of lines to produce
a collection of key-value pairs. The key is a family. The reduceByKey applies myReduceFunc to all
key-value pairs with the same key. That is, the partial counts for each family is added to produce
the true count across all the lines in the input file. The code for MR-SS was written in Scala.

ACM Transactions on Knowledge Discovery from Data, Vol. X, No. X, Article X. Publication date: December 2018.
https://mc.manuscriptcentral.com/tkdd

Transactions on Knowledge Discovery from Data Page 22 of 41

X:22 A. Katib et al.

Algorithm 10 MR-55

Let I denote the list of families

record_blks «+ read _record blocks(B/hdfs_file®)
partialS5A « record_blks. flat Map{mapFunc)
final55A « partial S5A.reduce ByK ey(reduce Func)
Write finalS5A to a file

return

LA L

el

function mapFunc(blk)
8: Let blk denote a block of records
% forall f € Ddo
10: Initialize the counter array CAy of sizer x ¢
11: for all f in D do
122 Compute sufficient statistics of f over b records in rec_blk and store in CAf
13: Output/return key-value pair (f, CAy)
14: end function

15: function reduceFunc{CA?, CAF)

16: Let CA}'} and G&; denote two counter arrays for the same family

17: Compute CA by performing element-wise addition of C‘Ajf. and CAF
18: Output/return CA
19: end function

Note that DiSC and MR-55 both stop at computing the sufficient statistics of families. The scores
can be computed by applying Equation 1.

4.4 Datasets

We conducted the experiments using three synthetic datasets, the HIGGS dataset [10] from the UC
Irvine (UCI) Machine Learning repository [7], and a dataset based on tweets collected from Twitter.

The three synthetic datasets, 5,, 53, and S5, each had 100 binary random variables (or features)
and 200 million rows. We generated the data instances for these datasets as follows: For each
dataset, we assumed 5 multinomial random variables, each of which could take 20 distinct values.
We used a binomial distribution B(n, p) to generate the values for each variable, where n is the
number of trials and p is the probability of success in each trial. We set n = 19 for the three datasets
to assign 20 distinct values to each multinomial random variable. A variable was assigned a value k
with probability {:}pk{l — p)**. We used p = 0.25 for S, p = 0.5 for 5,, and p = 0.75 for S; so that
the datasets have different distributions. After generating the data instances for the multinomial
random variables for a particular n and p, we used one-hot encoding to map them into binary
random wvariables. The sufficient statistics for a family of multinomial random wvariables can be
computed by examining the counters computed for corresponding binary random variables.

The HIGGS dataset was based on Monte Carlo simulations and contained 11 million data instances,
1 class label (0 or 1), and 28 features. The 21 features were based on properties measured by particle
detectors; 7 features were functions of the 21 features. The 28 features were assigned real numbers
in the dataset. For each feature, we only considered the integer part of a real number assigned to it
and mapped it to a multinomial random variable based on the number of unique integer values for
that feature. For example, if a feature was assigned to five values in the dataset, namely, 1.1, -2.2,

ACM Transactions on Knowled i ery from Data, Viol. X, No. X, Article X jcation date: December 2018.
5 ﬁttps:l?:fmc.manuscnp’tcentra .n:{:-rm"tﬂJ

Page 23 of 41 Transactions on Knowledge Discovery from Data

Fast Approximate Score Computation X:23

3.3, -4.4, and -4.2, then this feature was mapped to a multinomial random variable with 4 levels.
We then represented each multinomial random variable as a set of binary random variables using
one-hot encoding. So in total, we had 240 binary random variables for HIGGS. In order to have a
larger dataset for the experiments, we replicated the 11 million instances 16 times.

The Tweets dataset was based on 200 million tweets collected during 2016. We extracted the
language attribute in each tweet along with other Boolean attributes such as isVerified, isPossi-
blySensitive, isRetweeted, isGeoEnabled, and so on. Because the language feature/attribute was a
categorical variable, we used one-hot encoding to convert it to a set of binary features based on the
language value like en, es, jp, fr, ru, and so on. Essentially, the features of this dataset were a set of
binary random variables.

Table 2 summarizes the characteristics of the four datasets we used for the experiments. On each
dataset, the sufficient statistics of 10,000 families were computed. The average number of binary
random variables per family was 3.96 for the synthetic datasets, 5 for the HIGGS dataset, and 3.97
for the Tweets dataset.

Dataset | No. of No. of binary No. of File
instances | random variables | families size
S1 200M 100 10,000 | 37.2 GB
S, 200M 100 10,000 | 37.2 GB
S3 200M 100 10,000 | 37.2 GB
HIGGS 176 M 240 10,000 | 79.0 GB
Tweets 200M 136 10,000 | 50.7 GB

Table 2. Datasets and their characteristics

4.5 Setup and Evaluation Metrics

DiSC was executed by specifying a time budget after which the gossiping was terminated. One
process was started on each cluster node. After the time budget expired, all the processes were
gracefully terminated. The processes were programmed to output the estimates of the counters for
each family into a log file. On the other hand, MR-SS was run as a Spark job using the spark-submit
command to use all the 128 cores in the cluster. Both the executor memory and driver memory
were set to 50 GB. We ran MR-SS with LZ4 compression [5], a lossless data compression algorithm,
and Java serializer as well as Snappy compression [6] and Kyro serializer [4]. One executor was
run on each cluster node; each executor used 8 cores on the node.

We compared DiSC and MR-SS by measuring the total wall-clock time to compute the sufficient
statistics of a given set of families on the aforementioned datasets. By design, MR-SS computes
exact sufficient statistics. Nonetheless, we investigated how random sampling of the data instances
in a dataset could speed up MR-SS albeit obtaining approximate sufficient statistics. Suppose we
randomly select t% of the data instances in a dataset. Then we will first compute the sufficient
statistics on the samples using MR-SS. To estimate the true value of sufficient statistics, we will
multiply the estimated counts by %. In the experiments, we computed the accuracy of MR-SS as
follows: Compute the relative error of each counter in the counter array maintained for a family
(Algorithm 10). Compute the average relative error over all the families. When the entire dataset
was processed by MR-SS (i.e., no sampling), 100% accuracy was achieved.

By design, DiSC computes approximate sufficient statistics. We computed the accuracy of the
estimates of sufficient statistics of the families. We did the following at each cluster node: Compute

ACM Transactions on Knowledge Discovery from Data, Vol. X, No. X, Article X. Publication date: December 2018.
https://mc.manuscriptcentral.com/tkdd

Transactions on Knowledge Discovery from Data Page 24 of 41

X:24 A. Katib et al.

the relative error of the estimated count for each element of the SSA of a family that the cluster
node is responsible for. Compute the average over all the families that the node is responsible for.
Only the families that a node is responsible for are considered during relative error calculation
at a node, because given a family only the nodes responsible for the family should be contacted
to compute the sufficient statistics estimates. For the time budget, we ran DiSC long enough on
a dataset so that the average relative error computed on each node reached and stayed below
10%. For DiSC, we also measured the total number of messages sent by the cluster nodes during
execution, average message size, percentage of messages lost, and average size of the family lists,
which provided insight into the reduction in the network bandwidth consumption due to dropping
families probabilistically during gossiping.

4.6 Impact of r on the Relative Error of the Estimates in DiSC

As discussed in Section 2.4, the parameter r should be chosen based on the desired accuracy
and confidence. The value of r will increase when higher level of accuracy/confidence is desired.
However, by increasing r, we also increase the size of messages exchanged during gossip, and
hence the network communication cost. In DiSC, we maintain r exponential random variables per
element of the 2D array that serves as the SSA for a family. To understand the impact of r on the
accuracy of the estimates of sufficient statistics, we empirically studied the accuracy achieved by
DiSC for different values of r: 40, 80, and 120. To understand the robustness of DiSC, we tested
with different values of k. Note that k controls the level of redundancy by assigning a family to
k cluster nodes during the execution of DiSC. Thus, a family will always be stored/maintained
in the family lists of k cluster nodes and will never be dropped by these nodes. Note that when a
node gossips with another node it may learn new families that are not in its family list. Hence, a
family could be in the family list of > k nodes. If a node fails during execution of DiSC, having
k > 1is beneficial so that we do not lose a family permanently. (See Algorithms 1 and 7 where k is
mentioned.) Although in our experiments, we did not have any node failures, we still varied k from
1 to 3 to understand how k impacts DiSC’s performance and resource consumption.

As gossiping progresses in DiSC, the estimate of the sufficient statistics of a family tends to
converge closer to the true value. Hence, we expect the average relative error to decrease and
eventually stabilize at a positive value on each cluster node. The total time budget to execute DiSC
was chosen empirically by observing how soon the relative errors stabilized for our cluster setup
and a delay constant of ¢ = 10 for the local clock (Algorithm 8).

In the interest of space, we show the results for one of the cluster nodes. Similar results were obtained
on the remaining nodes. Let us first discuss the results for the synthetic datasets. Figures 7(a)-7(b)
show how the average relative error decreased and stabilized on one of the cluster nodes over time
for S; given different values of k. Similarly, Figures 7(c)-7(d) and Figures 7(e)-7(f) show how the
average relative error decreased on a cluster node over time for S; and Ss, respectively. (Similar
trends were observed for k = 3.) In each plot, the X-axis denotes the wall-clock time (MM:SS) and
the results are shown from the 9 minute mark, and the Y-axis denotes the % average relative error
computed for the families that the cluster node is responsible for. In general, as r was increased,
the final accuracy of DiSC improved and the average relative error of DiSC stabilized to a lower
value by the completion of the time budget. For example, in Figure 7(a), the final average relative
error was 7.5%, 5.0%, and 3.9% for r = 40, r = 80, and r = 120, respectively.’

For HIGGS and Tweets, similar trends were observed for the average relative error when r was
increased from 40 to 120. Figures 8(a)-8(b) and Figures 8(c)-8(d) show how the average relative

3Towards the end of the time budget, the red line (r = 80) is usually sandwiched between the blue line (» = 40) and the
black line (r = 120).

ACM Transactions on Knowledge Discovery from Data, Vol. X, No. X, Article X, Publication date: December 2018.
https:)}mc.manuscrlptcentral.com/tkdd

Page 25 of 41

Transactions on Knowledge Discovery from Data

Fast Approximate Score Computation

=40 —=— =80 —+— =120 —&—

S o o 9o 9o 9o 9o 9
222222 2 2
S 2 d &6 0F v 8 =
— — — — — — — —
Time (MM:SS)
(@) Sy, k =1

r=40 — = =80 —+ =120 —=—

S o 9o 9o o o o o9
S & &5 & &5 & & 3
S =~ & @ F 9w o =
— — — — — — — —
Time (MM:SS)
(c) Sz, k=1

=40 —=— =80 —+ =120 —&—

ju

g 60

= 50 -

]

5 40

2 30

g 20 +

&b 10 |

< 0
S
[}
(e}

§ 60

Z 50

o

=

]

0]

=

=

&

oh

>

<
S
[N
(e}

g 60

—~ 50+

]

E 40

2 3

Tz 20 +

gb 10 -

< 0
S
X
S

10:00
11:00 +
12:00
13:00 -
14:00
15:00 -
16:00 q
17:00

Time (MM:SS)
€Sy k =1

Avg. relative error (%) Avg. relative error (%)

Avg. relative error (%)

60

X:25

=40 —m— =80 —a— =120 —e

0 ‘ L ‘ ‘ Al ‘
o o o 9o 9 9 9o o 9
S & & &5 &5 & & &5 3
- =) — IS “ < To) ~
o — — — — — — — —
Time (MM:SS)
(b) Sy, k =2
60 40 —m— =80 —— =120 —&-
50 =40 —=— 1= r= —a
.. L =y
o o 9o 9o o 9o 9o o 9
S & & &5 &5 & &5 &5 3
= S — N e < %) [\ ~
o — — — — — — — —
Time (MM:SS)
(d) Sa, k=2
60 ‘ ‘ ‘ ‘ ‘ ‘ ‘
=40 —s— =80 —— =120 —=—
50 |
40
30
20
10 s »] =
0 ‘ ‘ 1 Lo T 1
o o o 9o 9 9 9o 9o 9
S & & & 5 & & &5 3
g & = 8 8 ¥ 8 g §

Time (MM:SS)
(f) S5,k =2

Fig. 7. Synthetic datasets: impact of 7 on the average relative error of the estimates computed by DiSC on a

cluster node

error decreased and stabilized at a cluster node for different values of k for HIGGS and Tweets,
respectively. (Similar results were obtained for k = 3.)

In our evaluation, we empirically studied the impact of r on the average relative error of DiSC.
For our cluster setup and all the tested datasets, the average relative error was under 6% by the end
of the time budget for r = 120. So for the remainder of this section, unless necessary, we present
the results achieved by DiSC for r = 120 as this setting yielded the best accuracy. Note that in a
different cluster setup, one would need to choose r based on the desired accuracy/confidence and
network bandwidth budget as increasing r increases the size of gossip messages in DiSC.

ACM Transactions on Knowledge Discovery from Data, Vol. X, No. X, Article X. Publication date: December 2018.
https://mc.manuscriptcentral.com/tkdd

Transactions on Knowledge Discovery from Data Page 26 of 41

X:26 A. Katib et al.
<> 60 . ; ; ; ; < 60 : ; ; ; ;
) =40 —=— =80 —+— =120 —=a—) =40 —=— =80 —+— =120 —=—
5 50 +] 5 50 |
E 40!] E 40|
2 0 L2 s
g 20 1 7:; 20 ¢
on 10T 1 on 10 F
é 0 | 7 I B .= o = E 0 ‘ ‘ Rk e
[} (e} (o] (e} [} (e}] o] (e} (e} (e [} [} (e}
[} (e — [q\] on <t w [*N) [e] — N on <t v
o — — — — — — =) — — — — — —
Time (MM:SS) Time (MM:SS)
(a) HIGGS, k =1 (b) HIGGS, k = 2
< 60 . . ‘ ‘ ‘ ‘ < 60 ‘ ‘ ‘ ‘ : ‘
) =40 —=— =80 —+— r=120 —=— & =40 —=— =80 4 r=120 —=—
= 50 - - = S50+t
e S
540 ¢ 1 5 40
2 30}] 2 30,
g 20 + 1 ;T::; 20
°>b 10 + SR gn 10 + I
< 0 — e < 0 - 3 —
(e} [en) (e} (e} [en) [en) o (e (e [e] (e o (e} (e} (e} (e}
(e} [(] — N o <t wv 0 [N (e} — N o <t v
o o — — — — — — o o — — — — — —
Time (MM:SS) Time (MM:SS)
(c) Tweets, k = 1 (d) Tweets, k = 2

Fig. 8. HIGGS and Tweets: impact of r on the average relative error of the estimates computed by DiSC on a
cluster node

DiSC (hh:mm:ss) MR-SS (no sampling)

Dataset | Total time || k= 1,r =120 k=2,r=120 k=3,r=120 (LZ4/Java) | (Snap./Kyro)

First Last First Last First Last Total time | Total time

node node node node node node || (hh:mm:ss) | (hh:mm:ss)
S1 0:17:00 0:10:19 | 0:13:20 || 0:09:31 | 0:13:36 || 0:09:26 | 0:13:08 02:50:53 02:49:54
Ss 0:17:00 0:11:31 | 0:13:49 || 0:09:45 | 0:13:32 || 0:09:41 | 0:13:58 02:50:00 02:50:30
Ss 0:17:00 0:10:23 | 0:13:55 || 0:09:48 | 0:13:09 || 0:09:39 | 0:13:27 02:50:24 02:49:07
HIGGS 0:15:00 0:09:31 | 0:12:53 || 0:09:41 | 0:11:19 || 0:09:37 | 0:11:42 02:33:53 02:29:35
Tweets 0:17:00 0:09:14 | 0:12:50 || 0:08:49 | 0:12:00 || 0:08:44 | 0:12:50 02:50:38 02:47:31

Table 3. Total wall-clock time (hh:mm:ss) taken by DiSC and MR-SS (no sampling). The times when (in
hh:mm:ss) the first one and the last one among the cluster nodes achieved below 10% average relative error
are also reported.

4.7 DiSC vs MR-SS

Next, we compare DiSC and MR-SS in terms of computation time and accuracy to compute the
sufficient statistics of a given set of families. For every dataset, 10,000 families were considered
during the sufficient statistics computation. As discussed earlier, DiSC was executed by specifying a
time budget after which gossiping was terminated. When MR-SS was executed on an entire dataset,
it provided exact sufficient statistics — 100% accuracy. However, when it was executed on a sampled

ACM Transactions on Knowledge Discovery from Data, Vol. X, No. X, Article X, Publication date: December 2018.
https:)?mc.manuscrlptcentral.com/tkdd

Page 27 of 41 Transactions on Knowledge Discovery from Data

Fast Approximate Score Computation X:27

dataset, it computed approximate sufficient statistics. DiSC provided only approximate sufficient
statistics.

We begin with the case where MR-SS operated on the entire datasets (i.e., no sampling). Table 3
shows the comparison of DiSC and MR-SS in terms of wall-clock time to compute the sufficient
statistics of the families. For Sy, S,, and S3, DiSC took 17 minutes for the setting r = 120. However,
MR-SS required 2 hrs 50 mins and was up to 10 times slower than DiSC. We tested MR-SS with LZ4
compression/Java serializer and Snappy compression/Kyro serializer. As shown, both configurations
gave similar results. For HIGGS, DiSC required only 15 minutes for the setting r = 120. MR-SS
finished in nearly 150 minutes and was 10 times slower than DiSC. Note that the HIGGS dataset had
smaller number of data instances as compared to the synthetic datasets. For Tweets, DiSC required
17 minutes for the setting r = 120. MR-SS was nearly 10 times slower than DiSC. Clearly, DiSC
was significantly faster than MR-SS for approximately computing sufficient statistics of families on
all the five datasets. We also observed when the cluster nodes achieved below 10% average relative
error (for the families they are responsible for) when executing DiSC. In Table 3, we report the time
when the first one among the cluster nodes achieved below 10% average relative error. We also
report the time when the last one among the cluster nodes achieved below 10% average relative
error. This shows that different cluster nodes see improvement in the accuracy of their estimates of
sufficient statistics over a period of time in a distributed setting. It is fair to conclude that computing
sufficient statistics approximately using DiSC is nearly 10 times faster (in terms of computation time)
than MR-SS for learning a BN on large-scale distributed data.

Let us closely analyze the accuracy of the sufficient statistics computed by DiSC. Table 4 shows
the average relative error (%) achieved by each cluster node for the different datasets for varying
values of k. Note that all the reported numbers in this table are for r = 120. We highlight two
observations. First, for a given dataset and a particular value of k, every cluster node achieved
similar average relative error on different subsets of families, and, therefore, similar accuracy in
estimating the sufficient statistics. Second, the average relative errors were within 5.9% for the
synthetic datasets, within 2.59% for HIGGS, and within 3.19% for Tweets. DiSC achieved very good
accuracy in estimating the sufficient statistics for all the five datasets. The above results demonstrate
the robustness of our approach in estimating the sufficient statistics of families for datasets with
different characteristics.

Next, we report how MR-SS performed on random samples of the datasets. We chose 10%, 8%,
and 4% of the data instances randomly in each dataset to create different sample sizes. Table 5
shows the wall-clock time taken and % average relative error achieved by MR-SS (computed over
all the 10,000 families) to estimate the sufficient statistics on different sample sizes. The table also
shows the results for MR-SS without any sampling. While the time taken by MR-SS significantly
reduced when samples were processed, the accuracy degraded as smaller sample sizes were tested
with. For comparison, we show a representative case of DiSC for k = 1 and r = 120. DiSC achieved
the best accuracy (i.e., lowest relative error) compared to MR-SS executed on the different samples
sizes. For instance, DiSC achieved an average relative error of 2.62% for HIGGS. However, MR-SS
achieved poorer accuracy than DiSC with a much higher average relative error of 9.51% for 10%
sample size. Note that DiSC’s average relative error reported in the table was also computed over
all the 10,000 families for fair comparison. Our evaluation indicates that although MR-SS ran faster
on random samples of the tested datasets than on the entire datasets, it was still slower than DiSC and
performed worse than DiSC in terms of accuracy.

4.8 Convergence Speed of DiSC

We analyzed the convergence speed of DiSC empirically by computing the % average relative error
on each cluster node over time for the tested datasets. (The average relative error was computed

ACM Transactions on Knowledge Discovery from Data, Vol. X, No. X, Article X. Publication date: December 2018.
https://mc.manuscriptcentral.com/tkdd

Transactions on Knowledge Discovery from Data Page 28 of 41

X:28 A. Katib et al.
Dataset | k N1 N2 N3 N4 N5 N(, N7 Ng N9 N10 N11 le N13 N14 N15 N16
(%) | () | %) | %) | %) | &) | # | &) | &) | & | & | & | &] %] &]

1| 425|401 (435|420 | 414|376 | 448 | 4.04 | 442 | 3.98 | 4.20 | 4.07 | 4.10 | 3.91 | 3.97 | 4.20

S1 2| 425 | 411 | 414 | 424 | 426|412 | 394 | 398 | 4.19 | 395 | 431 | 397 | 4.10 | 4.01 | 4.11 | 3.89
3| 412 | 412 | 421 | 3.94 | 4.00 | 3.87 | 4.03 | 4.19 | 4.09 | 3.97 | 4.23 | 4.05 | 3.99 | 3.88 | 4.14 | 3.98

1] 512|590 | 494 | 5.18 | 530 | 5.56 | 4.89 | 5.17 | 5.43 | 532 | 5.73 | 5.44 | 5.28 | 540 | 554 | 5.29

S, 21552 | 516 | 523 | 557 | 530 | 556 | 576 | 5.57 | 5.52 | 5.22 | 5.25 | 5.16 | 5.34 | 5.56 | 5.59 | 5.50
31550 | 560 | 551 | 559|527 |5.01|5.64 511|551 | 523 | 539 | 527 | 527 | 556 | 5.28 | 5.31

1] 415|392 | 428 | 427 | 414 | 3.82 | 440 | 4.08 | 438 | 454 | 4.55 | 443 | 401 | 413 | 4.20 | 4.21

S3 2| 428 | 477 | 474 | 456 | 4.80 | 440 | 448 | 4.23 | 498 | 431 | 4.87 | 446 | 5.04 | 4.27 | 452 | 412
31404 | 397 | 429|404 | 434|412 | 410 | 4.26 | 4.20 | 4.26 | 4.19 | 4.10 | 4.05 | 4.09 | 4.44 | 4.36

1| 239 | 221|217 220|219 | 253 | 2.24 | 239|244 | 2.10 | 2.10 | 2.59 | 2.14 | 242 | 233 | 2.17

HIGGS | 2 | 2.14 | 2.10 | 2.11 | 2.12 | 2.09 | 2.08 | 2.20 | 2.14 | 2.08 | 2.27 | 2.17 | 2.09 | 2.09 | 2.13 | 2.12 | 2.04
312200212 |212 208|212 | 213 | 2.16 | 2.08 | 2.12 | 2.12 | 2.10 | 2.11 | 2.12 | 2.13 | 2.05 | 2.11
1235|254 (253|249 250|273 |3.19 | 251|269 | 274 | 243 | 237 | 249 | 244 | 243 | 2.53

Tweets | 2 | 239 | 232 | 2.39 | 235 | 2.31 | 234 | 239 | 237 | 236 | 2.36 | 24 | 242 | 2.34 | 2.44 | 238 | 2.34
31249 | 2.68 | 255 | 255|238 | 249 | 245 | 233 | 248 | 2.51 | 2.59 | 250 | 2.45 | 249 | 247 | 2.69

Table 4. Average relative error achieved (%) by DiSC on each cluster node Ni-Njg for varying values of k and
r = 120. The maximum value is shown in bold.

MR-SS DiSC
Dataset No sampling 10% sampling 8% sampling 4% sampling (k=1,r=120)
Total | Avg.rel. | Total | Avg.rel. | Total | Avg.rel. | Total | Avg.rel | Total | Avg. rel.
time error time error time error time error time error

S1 2:50:53 0% 0:51:43 9.78% 0:58:48 9.31% | 0:38:46 | 11.80% || 0:17:00 | 4.13%

S, 2:50:00 0% 0:51:03 | 10.36% | 0:50:54 | 10.65% | 0:49:06 | 13.88% || 0:17:00 5.34%

S3 2:50:24 0% 0:50:41 9.79% 0:51:20 | 11.25% | 0:49:53 | 13.02% || 0:17:00 | 4.22%
HIGGS | 2:33:53 0% 0:28:00 | 9.51% | 0:27:52 | 9.52% | 0:27:40 | 11.88% || 0:15:00 | 2.62%
Tweets | 2:50:38 0% 1:50:59 | 11.07% | 1:56:15 | 10.58% | 1:51:43 | 13.39% || 0:17:00 2.56%
Table 5. Performance of MR-SS by on sampled datasets. The time taken (in hh:mm:ss) is shown along with %
average relative error across all families.

over the families that a cluster node was responsible for.) As gossiping progresses, the estimate of
the sufficient statistics of a family tends to converge to a value that is close to but not exactly the
true value. Hence, we expect the average relative error to decrease and eventually stabilize at a
positive value by the end of the time budget on each cluster node. The accuracy will depend on
DiSC’s parameters such as r, the size of the cluster, time budget, and others. We show the results of
8 nodes, namely, N5-Nj; and refer the reader to the Appendix for the results of the remaining nodes.
Figure 9 shows how the average relative error drops over time and stabilizes on nodes N5-Nj; for
varying values of k. The average relative error is shown for different wall-clock times starting at the
9-minute mark. Overall, all nodes N;-Nj¢ produced accurate estimates of the sufficient statistics of
families with low relative error by the end of the time budget, which was 17 minutes for S;. Similar
trends were observed for S; and S; as shown in Figures 10 and 11, respectively. The average relative
errors were under 6% in all cases. In our implementation of DiSC, the cluster nodes initialized their
local state (i.e., SSAs of families) based on the local data blocks during the initial phase of execution.
A node started exchanging messages once it finished computing the local state.

Figure 12 shows how the average relative error of the sufficient statistics estimates drops over
time and stabilizes on a set of cluster nodes for HIGGS. The average relative error was within 2.59%
in all cases by the end of the time budget. Finally, Figure 13 shows how the average relative error of

ACM Transactions on Knowledge Discovery from Data, Vol. X, No. X, Article X, Publication date: December 2018.
https:)?mc.manuscrlptcentral.com/tkdd

Page 29 of 41

Fast Approximate Score Computation

Transactions on Knowledge Discovery from Data

X:29

.60 I S N S N B .60 I I B N B .60 I S N N
NS Node 5 —=— Node 7 —a— NS Node 5 —a— Node 7 —a— IS Node 5 —=— Node 7 —a—
:’50 B Node 6 —4— Node 8 —eo— 7 :50 B Node 6 —a— Node 8 —eo— 7 :’50 B Node 6 —a— Node 8 —eo— 7]
£ 40 4 B4} 4 240} |
5} (5] 5}
230 H4 230 H4 230
520 4 220) _
- - -
510 @10 [—- 4 ebio - -
<ol l ol o1y DT) PR B 5t it R sl sl DRI 38 PR o i o i s
(= (=3 (el o o (=3 (=3 o o o (=} o (= (= o o (= (= (= (= (=3 (=3 o (= (= (=3 (el
S A T e B B B S - R B B S T B B T B
D (=} — [9\] o <t w el o~ [=)) o — N o <t vy Nel o~ (=)} [} - [\l o < w Nl o~
S = = H = = = = S = = = = = = = - S = = = == = =
Time (MM:SS) Time (MM:SS) Time (MM:SS)
60 60 60
NS Node 9 —=— Node 11 —a— X Node 9 —=— Node 11 —a— IS Node 9 —m— Node 11 —a—
=50 = Node 10 —a— Node 12 —e— =50 Node 10 —a— Node 12 —e— =50 - Node 10 —a— Node 12 —e— |
o =] o
E40 4 B4 -4 E40 _
£30 1 23 1zl
20 4 =2 4 E2 i
= = =
10 10 |- - -4 eio f _
<ol l i1 T < g L[e e < g LT e e
[} [} o [o [} [} [[o [o o [} [[o o o [} [} [} o o [} [} [
= T T e B B B S T A B B B] = T A B B B B
D (=} — (o] o <t g} O o~ [N o — (o} o <t g} el o~ D [} — [\ o < g} Nl o~
S = — — e — — —_ — =) — — —_— = = — —_— = S = - — —_ —_— = = —
Time (MM:SS) Time (MM:SS) Time (MM:SS)
(@ k=1r=120 (b) k =2,r =120 (c)k=3,r=120
Fig. 9. Dataset Sq: convergence speed of DiSC on cluster nodes N5-Ni2 (200M data instances)
.60 I IS I S .60 I I N N B .60 I IS N N B
NS Node 5 —=— Node 7 —a— NS Node 5 —a— Node 7 —a— IS Node 5 —=— Node 7 —a—
=50 Node 6 —a— Node§ —s— | =30~ Node6 —a— Node8 —e— | =0 Node 6 —a— Node 8 —e— |]
£ £ 40 4 40 |
(5] 5}
230 S
520 520 -
- -
> 210 - e - 210 — N
<ol tt b P DI A A s e Al <ol Ll 1y P
[} [} [[(=) [} [} o (=) o [o o [} [o o o o o [} [} o o [} [} [
= T T e B B B S T R B B B = T = A B B B
D (=] - (o] o <t wv O o~ (=) S — (o} o <t v el o~ D (= ~— [\ [<+ v Nl o~
S = = - = = = = - S = = = = = = = - S = o e e e e e e
Time (MM:SS) Time (MM:SS) Time (MM:SS)
60 60 T 60
IS Node 9 —a— Node 11 —a— IS Node 9 —a— Node 11 —a— IS Node 9 —m— Node 11 —a—
=50 Node 10 —&— Node 12 —e— =50 Node 10 —a— Node 12 —s— |] =90 = |Node 10 —a— Node 12 —e—
o o
£ 40 4 Ea0 |
(5} o
230 - 230 .
= =
5.3.20 - 220 |
10 |- -4 eio b - |
<ol it T T ol 11y T <ol t i T
[} (=} o [o [} [} [o [o o jel [} [o o jl jl [} [} [} [jel [} [} [
S = = R B B 2R 2 2 2 S R = T B B
D [} — (o] o <t vy O o~ [N o — (o} o <+ g} el o~ D [} — (o]] <+ vy O o~
S = — — —_ -~ — — — =) — — e — — — S =~ — — —_ - = —
Time (MM:SS) Time (MM:SS) Time (MM:SS)

@k=1r=120

(b k = 2, r = 120

(c)k=3,r=120

Fig. 10. Dataset Sy: convergence speed of DiSC on cluster nodes N5-Nj2 (200M data instances)

ACM Transactions on Knowledtg
ht

e Discovery from Data, Vol. X, No. X, Artjcle X. Publication date: December 2018.

ps://mc.manuscriptcentral.com/tkdd

Transactions on Knowledge Discovery from Data P

age 30 of 41

X:30 A. Katib et al.
.60 T T T T T T "1 .60 T T T T T T] .60 A L L L
NS Node 5 —=— Node 7 —a— NS Node 5 —a— Node 7 —a— IS Node 5 —=— Node 7 —a—
:’50 Node 6 —4— Node 8§ —eo— 1 :50 I~ Node 6 —a— Node 8 —eo— 1 :’50 Node 6 —a— Node 8§ —eo— m
40 4 240} i
230 H4 230 -
=20 4 220 -
- -
@10 |- -+ @10}
[A ol T e < Lo
(= (=3 (el o o (=3 (=3 o o o (=} o (= (= o o (= (= (= (= (=3 (=3 o (= (= (=3 (el
(=} (=} (=] (=) [« (=} (=} [« (=) o [«=) [« (=} (=} (=) [« (=} (=} (=} (=} (=} (=} o (=} (=} (=} (=]
XS = A Ea F n 8N XS = A O F v 8N XS = & & F »n 8 =
S = = H = = = = S = = = = = = = - S = = = == = =
Time (MM:SS) Time (MM:SS) Time (MM:SS)
60 60 60
NS Node 9 —=— Node 11 —a— X Node 9 —=— Node 11 —a— IS Node 9 —m— Node 11 —a—
50— Node 10 —a— Node 12 —e— 1 =90 = Node 10 —a— Node 12 —s— | =30 Node 10 —a— Node 12 —e—
Sa0 4 E40 _
o 5}
230 1 g3 .
520 4 S20 .
= =
10 |- R A
[I DT P s s B i s < g LT ey
[} [} o [o [} [} [[o [o o [} [[o o o [} [} [} o o [} [} [
= T T e B B B S T A B B B] = T A B B B B
D (=} — (o] o <t g} O o~ [N o — (o} o <t g} el o~ D [} — [\ o < g} Nl o~
S = — — e — — —_ — =) — — —_— = = — —_— = S = - — — —_ = = —
Time (MM:SS) Time (MM:SS) Time (MM:SS)
(@ k=1r=120 (b) k =2,r =120 (c)k=3,r=120
Fig. 11. Dataset S3: convergence speed of DiSC on cluster nodes N5-Nj2 (200M data instances)
.60 L .60 L .60 L
NS Node 5 —=— Node 7 —a— NS Node 5 —a— Node 7 —a— IS Node 5 —=— Node 7 —a—
=50 Node6 —a— Node§ —s— | =90 [Node6 —s— Node8 —e— | =90 [~ Node6 —a— Node§ —s—]
-4 E4of 4 E40 i
(5] 5}
g30f 1 Zaf
4 22 =20 -
- -
4 w0 | 4 ei0 | _
| Tl 1™ ‘ < g L [epem—pogewpepvan,
[} [[} (=) [o (=) o jl [[} o [} o o [} o o [} [[
(=} [« (=} [« [« (=} [« [« (=} [« (=} (=) (=} (=} (=} (=} (=} [« (=} [« [«
=N S — & I <t v N S — N [32) < v =N S = S & < w
fe) — — — — — — S — — — — — — be) — — — — — —
Time (MM:SS) Time (MM:SS) Time (MM:SS)
60 S 60 —— 60 ——
IS Node 9 —a— Node 11 —a— IS Node 9 —a— Node 11 —a— IS Node 9 —m— Node 11 —a—
=50 = Node 10 —a— Node 12 —e— | =50 = Node 10 —a— Node 12 —so— | =0 Node 10 —a— Node 12 —e—
S40 [. £40 |
o
>30 'g 30
= =
) 20 — 5 20 B —
@10 | - 10 .
< 0 P BRI s o Bk S | < 0 L | T Teerees-memerE=-a |
[} [[} o [jol o [jl o [} o [} jl jl [} [} [[} o [
< < < < < < < < < < < < < < < < < < < < <
D o — (o]] <t g [N [} — (o} o <t vy D (=} — N o <+ g}
t=) — — — — — — =) — — — — — — t=) — — — — — —
Time (MM:SS) Time (MM:SS) Time (MM:SS)
@k=1r=120 (b)k=2,r=120 (c)k=3,r=120

Fig. 12. Dataset HIGGS: convergence speed of DiSC on cluster nodes N5-Nj2 (176M data instances)

ACM Transactions on Knowledge Discover)} from Data, Vol. X, No. X, Article X. Publication date: December 2018.

https

mc.manuscriptcentral.com/tkdd

Page 31 of 41

Fast Approximate Score Computation

Transactions on Knowledge Discovery from Data

X:31

A60 T T T T T ,«60 [T T T T T T A60 [T T T T T T

NS Node 5 —=— Node 7 —a— IS Node 5 —=— Node 7 —a— IS Node 5 —=— Node 7 —a—

:’50 Node 6 —4— Node 8 —eo— 7 :50 Node 6 —a— Node 8 —eo— 7 :’SO Node 6 —a— Node 8 —e— 7]

o o o

£40 — — £40 — 540 — —

5} 1) 5}

230 230f 1 zaf

= s =

520 |- - 520 ~ 520 .

— - -

@10 |- 4 @0 4 @10 -

< 0 | P T e ta < 0 | S eE e < 0 N
(=3 o (= (=3 o (=3 (=3 (=] o (= (=3 (=] (=3 (=3 (=] (=3 (=3 (=3 (=] (=3 (=3 (= (=3 o
22222 2 < 22222 2 <2 L2 22 2
oo (=) (=} — o~ o <t) =<} [=) (=] — [\ [Se) < el 0 [=) S — (] o <t)
> S — — — — — — o S — — — — — — > =) — — — — — —

Time (MM:SS) Time (MM:SS) Time (MM:SS)
60 T T T T T 60 T T T T T 60 T T T T T

—~ T I T T T T —~ T I T T T T ~ T I T T T T

IS Node 9 —=— Node 11 —a— NS Node 9 —=— Node 11 —a— IS Node 9 —m— Node 11 —a—

\:50 ™ Node 10 —a— Node 12 —e— :50 Node 10 —a— Node 12 —eo— \:50 I~ Node 10 —a— Node 12 —o— T

o =} o

£40 — — 240 — 540 — —

5} o 5}

'g 30 — 'g 30 g 30

s = s

220 — 20 3 20 —

— - -

010 — e 10 010 —

< 0 I Il Y s et =l Bt < 0 | < 0 e e ot N e . S
(=3 (=l (=3 (=3 o = (=3 (=l o =3 (=3 (=} = (=3 o (= = (=3 o = (=3 o (=3 (=l
S T T L B S e 2 e e e 2 < 2R 22 <
e (=) (=} — () o <t gl =9} D (=] — (o] s <) o] (=) S — [\ o <+ vy
I=) =) =} — — — — — =) =) — — — — — —_— S l=) e} — — — — —

Time (MM:SS)

@k=1,r=120

Time (MM:SS)
(b) k =2, r = 120

Time (MM:SS)

(c)k=3,r=120

Fig. 13. Dataset Tweets: convergence speed of DiSC on cluster nodes N5-Nj, (200M data instances)

estimates drops over time and stabilizes for Tweets. The average relative error was within 3.19% in
all cases by the end of the time budget. Overall, DiSC’s convergence speed was fast, and it estimated
the sufficient statistics of families with high accuracy.

4.9 Communication Cost of DiSC

We report the communication cost of DiSC for the five datasets by varying the value of k and r.
Table 6 reports the total number of messages sent by the cluster nodes during the execution of
DiSC, % of messages lost during execution, and average message size. Note that these values were
computed over the entire time budget for which DiSC was executed. That is, even though the
average relative error on the nodes stabilized before the end of the time budget, the nodes still
continued to gossip with other nodes till the end of the time budget. Each message sent by a node
was compressed using Snappy compression and delivered through the network as a UDP (User
Datagram Protocol) packet.

Let us first analyze the results for the synthetic datasets. As expected, the number of messages
increased as r was increased from 40 through 120 for every dataset due to increase in the total
amount of data to transmit the exponential random variables. Also, as k was increased, the total
number of messages exchanged also increased. Similar to the synthetic datasets, for HIGGS and
Tweets, the total number of messages sent by the cluster nodes increased as r was increased from 40
to 120. Also, the number of messages increased with increase in k. This is a cost to pay for achieving
increased redundancy for fault-tolerance. One may wonder if k > 1 is too much redundancy for
DiSC in the given setup on CloudLab where there were no node failures during execution. While
this is true, our goal was to test the robustness of DiSC as k was increased and gain insights on
how k affected the performance of DiSC.

Snappy compression provided significant benefit to DiSC in all cases. The average compression
ratio for the messages was 40.6%, 27.5%, and 40.5% for Sy, S;, and Ss, respectively. For HIGGS and

ACM Transactions on Knowledge Discovery from Data, Vol. X, No. X, Article X. Publication date: December 2018.
https://mc.manuscriptcentral.com/tkdd

Transactions on Knowledge Discovery from Data Page 32 of 41

X:32 A. Katib et al.
Dataset | k r =40 r =280 r=120
#of % of Avg. # of % of Avg. # of % of Avg.
messages | messages | message messages | messages | message messages | messages | message
sent lost size (bytes) sent lost size (bytes) sent lost size (bytes)

1 297,311 1.81% 36,974.02 589,576 3.44% 36,749.17 888,316 4.04% 36,005.52

St 2 | 315,747 2.47% 37,106.94 678,801 2.85% 36,841.08 996,140 3.98% 36,224.52

3] 332,108 2.01% 37,224.08 763,833 3.45% 36,891.64 1,059,339 4.13% 36,401.34

1 278,438 2.30% 44,836.29 549,797 3.47% 44,713.73 816,135 3.83% 43,795.38

S, 2| 312,434 2.82% 44,979.14 632,803 4.20% 44,782.18 954,651 4.17% 44,139.51

3| 364,044 2.48% 45,082.57 674,835 4.32% 44,839.84 1,107,472 4.84% 44,240.76

1 276,018 2.60% 36,997.95 585,358 3.15% 36,787.08 823,924 3.47% 35,972.28

Ss 2 317,732 2.29% 37,182.32 659,178 2.74% 36,904.41 988,215 4.36% 36,295.86

3| 344,609 2.38% 37,274.98 692,584 2.99% 36,974.82 1,031,404 4.23% 36,497.82

1 191,336 1.93% 39,254.09 366,314 4.06% 38,936.50 610,607 5.20% 38,645.70

HIGGS | 2 203,013 2.16% 39,523.69 435,332 4.19% 39,295.28 675,949 4.99% 38,499.67

31 219,964 1.72% 39,632.80 434,236 4.22% 39,478.74 736,433 5.60% 38,468.32

1 134,178 1.61% 48,163.67 284,473 1.38% 48,331.03 420,951 3.06% 47,707.04

Tweets | 2 147,556 1.77% 48,423.50 309,644 2.78% 48,543.28 468,153 2.67% 47,950.37

3 148,774 1.33% 48,548.52 308,988 2.93% 48,733.34 481,049 2.69% 48,050.40

Table 6. Total number of messages sent during the execution of DiSC. Each message was compressed and
sent through the network as a UDP packet.

k=1 m k=2 m k=3 m
10000

8000
6000
4000 +

o M HHH
1 23 45 6 7 8 9 10111213 14 15 16
Node

2000

Avg. family list size

Fig. 14. Dataset Sy: reduction in the size of the family list at the nodes due to dropping of families in DiSC
(r = 120)

Tweets, the average compression ratio was 64.8% and 61.9%, respectively. We attribute a better
compression ratio for HIGGS and Tweets due to the difference in the distribution of sufficient
statistics values for the families between them and the synthetic datasets. Overall, compression
provided significant reduction in the communication cost for DiSC. In hindsight, we could have
modified DiSC’s implementation to pack as many SSAs as possible (after compression) in a UDP
packet. This would have reduced the number of messages exchanged.

Table 6 also reports the percentage of messages lost during the execution of DiSC. DiSC was
able to cope with lost messages while achieving high accuracy due to the inherent ability of gossip
algorithms to tolerate failures.

4.10 Impact of Probabilistically Dropping Families

Next, we study the impact of dropping families probabilistically in DiSC. As stated in Section 3.2,
the basic approach will result in all the cluster nodes learning all the families under consideration.
Thus, the size of the family list on each node will reach 10,000 for the synthetic datasets, HIGGS,
and Tweets.

ACM Transactions on Knowledge Discovery from Data, Vol. X, No. X, Article X. Publication date: December 2018.
https:)}mc.manuscrlptcentral.com/tkdd

Page 33 of 41 Transactions on Knowledge Discovery from Data

Fast Approximate Score Computation X:33

10000

8000
6000 -
4000 +

Avg. family list size

2000 +

Fig. 15. Dataset Sy: reduction in the size of the family list at the nodes due to dropping of families in DiSC
(r = 120)

k=1 m k=2 m k=3 m

10000
8000
6000
4000 +
2000

Avg. family list size

Fig. 16. Dataset S3: reduction in the size of the family list at the nodes due to dropping of families in DiSC
(r = 120)

k=1 m k=2 m k=3 m
10000

8000
6000
4000 +
2000 +

Avg. family list size

Fig. 17. Dataset HIGGS: reduction in the size of the family list at the nodes due to dropping of families in
DiSC (r = 120)

The improved approach in DiSC, however, drops families probabilistically to control the size of
the family lists on each node. This is because the size of the family list dictates the amount of data
exchanged during gossip, and DiSC aims to lower the network bandwidth consumption. In our
implementation, during gossip, we dropped a family f from the family list of a node N; (assuming
that N; is not responsible for f) with probability 0.8 if the neighbor N; selected to send a gossip
message is responsible for f. Otherwise, we dropped with a lower probability of 0.4.

ACM Transactions on Knowledtge Discovery from Data, Vol. X, No. X, Article X. Publication date: December 2018.
https://mc.manuscriptcentral.com/tkdd

Transactions on Knowledge Discovery from Data Page 34 of 41

X:34 A. Katib et al.
k=1 m k=2 m k=3 m
10000
[
S 8000 |
= 6000
=
£ oo 000 E OO
ST
£ 2000 |
< AREEREERERNAANY
0
1 23 456 7 8 9 10111213141516

Fig. 18. Dataset Tweets: reduction in the size of the family list at the nodes due to dropping of families in
DiSC (r = 120).

100

80 +

60 -

=

40 L

% reduction in bandwidth
consumption

20 +

20 30 40
Delay Constant

Fig. 19. Reduction in bandwidth due to increase in the delay constant. The results are for the dataset Sz with
r=120and k = 2.

Figures 14, 15,and 16 show the average family size on each cluster node achieved during the
execution of DiSC for different values of k on the datasets Sy, S,, and Ss, respectively. Figures 17
and 18 show the average family size results on each cluster node for different values of k on HIGGS
and Tweets, respectively. As expected, with least redundancy, i.e., k = 1, the size of the family list
at each cluster node tends to be the lowest. Clearly, DiSC’s ability to drop families probabilistically
significantly reduced the size of the family lists on all the cluster nodes compared to what a basic
approach would have achieved.

For all the experiments reported so far, we chose a delay constant ¢ = 10 for the local clock as
shown in Algorithm 8. We decided to slow down the local clock and increase the time interval
between clock ticks by increasing c. As expected, this resulted in lower number of messages sent
during the execution of DiSC, thereby leading to reduction in network bandwidth consumption.
Figure 19 shows the % reduction in bandwidth consumption of DiSC with increase in the delay
constant to 20, 30, and 40 for a representative case. (The results are for the dataset S, with r = 120
and k = 2.) For ¢ = 20 and ¢ = 30, all the cluster nodes converged to under 10% average relative
error in the given time budget of 18 minutes. However, for ¢ = 40, this was not the case for the
same time budget. Thus, tuning the delay constant is another way to lower the network bandwidth
consumption of DiSC.

ACM Transactions on Knowledge Discovery from Data, Vol. X, No. X, Article X. Publication date: December 2018.
https:)}mc.manuscrlptcentral.com/tkdd

Page 35 of 41

Fast Approximate Score Computation

Transactions on Knowledge Discovery from Data

Total n/w bandwidth consumption (GB)

100

80

60

40 |

20 |

o
ol

T
fotiees

o
25

0
e

T
Tolets%s

e
atitets

50
atitele

QR

s

Bttty

S

DisSC
Naive EZ

S3

Datasets

HIGGS Tweets

X:35

Fig. 20. Comparison of a naive approach and DiSC based on total network bandwidth consumption. We
report the results on the five datasets for k = 1 and r = 120.

4.11

Benefit of Distributing Families Across Cluster Nodes in DiSC

One may wonder how DiSC benefits by distributing the families across cluster nodes and dividing
the work among cluster nodes to compute the sufficient statistics of only a subset of families. To
understand this, we compared DiSC with a naive approach of gossiping to compute the sufficient
statistics of families. In the naive approach, we assigned all the 10,000 families to each cluster node
at the beginning. At each gossip round, two nodes exchanged the exponential random variables
for the SSA of every family. No families were dropped probabilistically. Hence, the size of the
family list at each node remained at 10,000. Note that the naive approach also uses gossiping and is

decentralized.

We expect the naive approach to increase the communication cost significantly. This was precisely
observed in our experiments as shown in Figure 20. The communication cost of the naive approach
was between 1.72 to 2.37 times higher than that of DiSC. Thus, DiSC’s approach of distributing the
families among cluster nodes for load balancing and distributed processing of sufficient statistics of
families was superior than the naive approach. In fact, as the total number of families increases,
the naive approach must be run with a much larger delay constant to allow the exchange of SSAs

of all the families during a gossip round leading to slower convergence of the estimates.

4.12 Summary of Performance Evaluation

Below we summarize the key observations of our performance evaluation.

e DiSC provides a feasible tradeoff between computation time and accuracy for fast score

computation on large-scale distributed data. Although it computes approximate sufficient
statistics of families, it was nearly 10 times faster than MR-SS, which is based on MapReduce-
style computation and computed exact sufficient statistics. Although random sampling of the
tested datasets enabled MR-SS to run faster than on the entire datasets, it was still slower
than DiSC and performed worse than DiSC in terms of accuracy.

e DiSC’s decentralized, gossip-based computation of sufficient statistics provides a robust

approach for computing sufficient statistics of families and achieves very high accuracy (less
than 6% average relative error) on datasets with different characteristics. DiSC can gracefully
tolerate loss of messages during execution.

e DiSC’s approach of probabilistically dropping families provides significant benefit in reducing

the size of the family lists during execution, thereby reducing the communication cost of DiSC.

ACM Transactions on Knowledge Discovery from Data, Vol. X, No. X, Article X. Publication date: December 2018.
https://mc.manuscriptcentral.com/tkdd

Transactions on Knowledge Discovery from Data Page 36 of 41

X:36 A. Katib et al.

In addition, a naive approach of maintaining all families at the cluster nodes and gossiping
them without carefully dividing the work among these nodes significantly increases the
communication cost, and thereby validates DiSC’s effective design.

5 CONCLUSIONS

Score computation is a fundamental task during structure learning of a multinomial BN. In this
paper, we presented an efficient approach called DiSC for fast approximate score computation
on large-scale distributed datasets stored in a cluster. DiSC’s novelty is based on the following:
(a) a decentralized algorithm for scalable score computation using the principle of gossiping, (b)
properties of Markov chains and a probabilistic approach to lower resource consumption, and
(c) consistent hashing and LSH for effective distribution of tasks for score computation on large
datasets. We presented the theoretical analysis of DiSC in terms of convergence speed (for a given
accuracy and confidence bound) of the sufficient statistics, and memory and network bandwidth
consumption. We also discussed how DiSC is capable of efficiently recomputing scores when new
data are available. We conducted comprehensive evaluation of DiSC and MR-SS on datasets with
different characteristics using a 16-node cluster. When MR-SS provided exact sufficient statistics
of families, it was nearly 10 times slower than DiSC. Although it ran faster on randomly sampled
datasets than on the entire datasets, it performed worse than DiSC in terms of accuracy. DiSC
achieved high accuracy (below 6% average relative error) in estimating the sufficient statistics of
families on all the tested datasets. Thus, DiSC provides a feasible tradeoff between computation
time and accuracy for fast approximate score computation on large-scale distributed data. The code
and datasets are available at https://github.com/UMKC-BigDataLab/DiSC.

ACKNOWLEDGMENTS

We are grateful to the anonymous reviewers for their insightful comments. Part of this work was
performed while the second author (P. R.) held an NRC Research Associateship award at Air Force
Research Lab, Rome, New York. He would like to acknowledge the support of the U.S. Air Force
Summer Faculty Fellowship Program and the University of Missouri Research Board, and the partial
support of the National Science Foundation Grant No. 1747751. The first author (A. K.) would like
to acknowledge the support of King Abdullah Scholarship Program (Saudi Arabia).

REFERENCES

J. Levenberg, R. Monga, S. Moore, D. G. Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu, and
X. Zheng. Tensorflow: A system for large-scale machine learning. In 12th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 16), pages 265-283, Savannah, GA, 2016.
[9] J. Arias, J. A. Gamez, and J. M. Puerta. Learning distributed discrete Bayesian Network Classifiers under MapReduce

with Apache Spark. Knowledge-Based Systems, 117:16 — 26, 2017.

[10] P. Baldi, P. Sadowski, and D. Whiteson. Searching for Exotic Particles in High-Energy Physics with Deep Learning.
Nature Commun., 5:4308, 2014.

[11] A.Basak, I. Brinster, X. Ma, and O. Mengshoel. Accelerating Bayesian Network Parameter Learning using Hadoop and
MapReduce. In Proc. of 2012 BigMine Workshop, pages 1-8, 2012.

[12] M.Boehm, M. W. Dusenberry, D. Eriksson, A. V. Evfimievski, F. M. Manshadi, N. Pansare, B. Reinwald, F. R. Reiss, P. Sen,
A. C. Surve, and S. Tatikonda. SystemML: Declarative Machine Learning on Spark. Proc. VLDB Endow., 9(13):1425-1436,

ACM Transactions on Knowledge Discovery from Data, Vol. X, No. X, Article X. Publication date: December 2018.
https:)}mc.manuscrlptcentral.com/tkdd

Page 37 of 41 Transactions on Knowledge Discovery from Data
Fast Approximate Score Computation X:37
Sept. 2016.
[13] S.P.Boyd, A. Ghosh, B. Prabhakar, and D. Shah. Gossip Algorithms: Design, Analysis and Applications. In Proc. of

(19]

[20]

[21]

(27]
(28]
(29]

(30]
(31]

(32]
(33]
(34]

(35]

INFOCOM 2005, pages 1653-1664, 2005.

A. M. Carvalho. Scoring Functions for Learning Bayesian Networks. Technical report, IST, TULisbon/INESC-ID Tech.
Report 54/2009, Apr. 2009.

W. Chen, T. Wang, D. Yang, K. Lei, and Y. Liu. Massively Parallel Learning of Bayesian Networks with MapReduce for
Factor Relationship Analysis. In Proc. of Intl. Joint Conf. on Neural Networks, pages 1-5, 2013.

D. Chickering. Learning from Data: Artificial Intelligence and Statistics V. chapter Learning Bayesian Networks is
NP-Complete, pages 121-130. 1996.

G. F. Cooper, L. Bahar, M. J. Becich, P. V. Benos, J. Berg, J. U. Espino, C. Glymour, R. C. Jacobson, M. Kienholz, A. V.
Lee, X. Lu, and R. Scheines. The Center for Causal Discovery of Biomedical Knowledge from Big Data. Journal of the
American Medical Informatics Association, 22(6):1132-1136, 2015.

N. R. Council. Frontiers in Massive Data Analysis. The National Academies Press, Washington, DC, 2013.

J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing on Large Clusters. In Proc. of the 6th OSDI Conference,
pages 137-150, 2004.

G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall, and
W. Vogels. Dynamo: Amazon’s Highly Available Key-Value Store. In Proc. of 21st Symp. on Operating Systems Principles,
pages 205-220, 2007.

A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker, H. Sturgis, D. Swinehart, and D. Terry. Epidemic
Algorithms for Replicated Database Maintenance. In Proc. of the 6th Annual ACM Symposium on Principles of Distributed
Computing, pages 1-12, 1987.

Q. Fang, K. Yue, X. Fu, H. Wu, and W. Liu. A MapReduce-based Method for Learning Bayesian Network from Massive
Data. In Proc. of 2013 APWeb Conference, pages 697-708, 2013.

A. Flink. https://flink.apache.org, 2017.

C. Georgiou, S. Gilbert, R. Guerraoui, and D. Kowalski. On the Complexity of Asynchronous Gossip. In Proc. of the
27th ACM Symposium on Principles of Distributed Computing, pages 135-144, Toronto, Canada, 2008.

A. Ghoting, R. Krishnamurthy, E. Pednault, B. Reinwald, V. Sindhwani, S. Tatikonda, Y. Tian, and S. Vaithyanathan.
SystemML: Declarative Machine Learning on MapReduce. In Proceedings of the 2011 IEEE 27th International Conference
on Data Engineering, ICDE ’11, pages 231-242, 2011.

D. Grossman and P. Domingos. Learning Bayesian Network Classifiers by Maximizing Conditional Likelihood. In Proc.
of the 21st International Conference on Machine Learning, pages 4654, 2004.

T. H. Haveliwala, A. Gionis, D. Klein, and P. Indyk. Evaluating Strategies for Similarity Search on the Web. In Proc. of
the 11th WWW Conference, pages 432-442, 2002.

K. A. Heller and Z. Ghahramani. Bayesian Hierarchical Clustering. In Proc. of the 22nd International Conference on
Machine Learning, pages 297-304, Bonn, Germany, 2005.

J. M. Hellerstein, C. Ré, F. Schoppmann, D. Z. Wang, E. Fratkin, A. Gorajek, K. S. Ng, C. Welton, X. Feng, K. Li, and
A. Kumar. The MADIib Analytics Library: Or MAD Skills, the SQL. Proc. VLDB Endow., 5(12):1700-1711, Aug. 2012.
Hyperledger. http://hyperledger-fabric.readthedocs.io/en/release-1.0/gossip.html, 2017.

P. Indyk and R. Motwani. Approximate Nearest Neighbors: Towards Removing the Curse of Dimensionality. In
Proceedings of the 13th ACM Symposium on Theory of Computing, pages 604-613, 1998.

M. Jelasity, A. Montresor, and O. Babaoglu. Gossip-Based Aggregation in Large Dynamic Networks. ACM Transactions
on Computer Systems, 23:219-252, August 2005.

R. Karp, C. Schindelhauer, S. Shenker, and B. Vocking. Randomized Rumor Spreading. In IEEE Symposium on Foundations
of Computer Science, pages 565-574, 2000.

S. Kashyap, S. Deb, K. Naidu, R. Rastogi, and A. Srinivasan. Efficient Gossip-Based Aggregate Computation. In Proc. of
the 35th ACM Principles of Database Systems, Chicago, IL, 2006.

D. Kempe, A. Dobra, and J. Gehrke. Gossip-Based Computation of Aggregate Information. In Proc. of the 44th IEEE
Symposium on Foundations of Computer Science, pages 482-491, Oct 2003.

D. Koller and N. Friedman. Probabilistic Graphical Models: Principles and Techniques. The MIT Press, 2009.

E. J. Kontoghiorghes. Handbook of Parallel Computing and Statistics. Chapman & Hall/CRC, 2005.

A. Lakshman and P. Malik. Cassandra: A Structured Storage System on a P2P network. In Proc. of the 21st Symposium
on Parallelism in Algorithms and Architectures, page 47, Alberta, Canada, 2009.

K. Li, D. Z. Wang, A. Dobra, and C. Dudley. UDA-GIST: An In-database Framework to Unify Data-parallel and
State-parallel Analytics. Proc. VLDB Endow., 8(5):557-568, Jan. 2015.

M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed, V. Josifovski, J. Long, E. J. Shekita, and B.-Y. Su. Scaling
Distributed Machine Learning with the Parameter Server. In Proc. of the 11th OSDI Conference, pages 583-598, Oct.
2014.

ACM Transactions on Knowledge Discovery from Data, Vol. X, No. X, Article X. Publication date: December 2018.
https://mc.manuscriptcentral.com/tkdd

Transactions on Knowledge Discovery from Data Page 38 of 41

X:38 A. Katib et al.

[41] K. W. Lim, C. Chen, and W. Buntine. Twitter-Network Topic Model: A Full Bayesian Treatment for Social Network
and Text Modeling. In NIPS 2013 Topic Model Workshop, pages 1-5, Australia, 2013.

[42] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and J. Hellerstein. GraphLab: A New Framework for Parallel
Machine Learning. In Proceedings of the Twenty-Sixth Conference on Uncertainty in Artificial Intelligence, UAT’10, pages
340-349, Catalina Island, CA, 2010.

[43] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and J. M. Hellerstein. Distributed GraphLab: A framework for
machine learning in the cloud. In Proc. of PVLDB Conference, pages 716-727, 2012.

[44] A.R. Masegosa, A. M. Martinez, D. Ramos-Lopez, R. Cabanas, A. Salmeroén, T. D. Nielsen, H. Langseth, and A. L.
Madsen. AMIDST: a Java Toolbox for Scalable Probabilistic Machine Learning. CoRR, abs/1704.01427, 2017.

[45] P. McQuighan. Simulating the Poisson Process. http://www.math.uchicago.edu/~may/VIGRE/VIGRE2010/REUPapers/
Mcquighan.pdf, 2010.

[46] X.Meng, J. Bradley, B. Yavuz, E. Sparks, S. Venkataraman, D. Liu, J. Freeman, D. Tsai, M. Amde, S. Owen, D. Xin, R. Xin,
M. J. Franklin, R. Zadeh, M. Zaharia, and A. Talwalkar. MLlib: Machine Learning in Apache Spark. Journal of Machine
Learning Research, 17(34):1-7, 2016.

[47] S.Misra, V. Md., K. Pamnany, S. P. Chockalingam, Y. Dong, M. Xie, M. R. Aluru, and S. Aluru. Parallel bayesian network
structure learning for genome-scale gene networks. In Proc. of the Intl. Conference for High Performance Computing,
Networking, Storage and Analysis, pages 461-472, 2014.

[48] D. Mosk-Aoyama and D. Shah. Fast Distributed Algorithms for Computing Separable Functions. IEEE Transactions on
Information Theory, 54(7):2997-3007, 2008.

[49] O.Nikolova and S. Aluru. Parallel Bayesian Network Structure Learning with Application to Gene Networks. In Proc.
of Intl. Conf. for High Performance Computing, Networking, Storage and Analysis, pages 1-9, 2012.

[50] J. Pearl. Causality: Models, Reasoning, and Inference. Cambridge University Press, 2000.

[51] J. Podesta, P. Pritzker, E. Moniz, J. Holdren, and J. Zients. Big Data: Seizing Opportunities, Preserving Values.
http://www.whitehouse.gov/sites/default/files/docs/big_data_privacy_report_5.1.14_final print.pdf, 2014.

[52] P.Rao, A. Katib, K. Barnard, C. Kamhoua, K. Kwiat, and L. Njilla. Scalable Score Computation for Learning Multinomial
Bayesian Networks over Distributed Data. In Proc. of the 2017 AAAI Workshop on Distributed Machine Learning (DML),
pages 498-504, San Francisco, CA, 2017.

[53] S.Serbu, E. Riviére, and P. Felber. Network-Friendly Gossiping. In Proceedings of the 11th International Symposium on
Stabilization, Safety, and Security of Distributed Systems, SSS 09, pages 655-669, Lyon, France, 2009.

[54] V. Slavov, A. Katib, and P. Rao. A Tool for Internet-Scale Cardinality Estimation of XPath Queries Over Distributed
Semistructured Data. In Proc. of the 30th IEEE International Conference on Data Engineering, pages 12701273, Chicago,
USA, 2014.

[55] V. Slavov and P. Rao. Towards Internet-Scale Cardinality Estimation of XPath Queries Over Distributed XML Data. In
Proc. of the 6th International Workshop on Networking Meets Databases, pages 1-8, Athens, Greece, 2011.

[56] V. Slavov and P. R. Rao. A gossip-based approach for Internet-Scale cardinality estimation of XPath queries over
distributed semistructured data. The VLDB Journal, 23(1):51-76, 2014.

[57] SMILE-WIDE. http://smilewide.github.io/main, 2014.

[58] A. Spark. https://spark.apache.org, 2017.

[59] L Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan. Chord: A Scalable Peer-to-peer Lookup Service
for Internet Applications. In Proc. of the 2001 ACM-SIGCOMM Conference, pages 149-160, San Diego, CA, Aug. 2001.

[60] D. Tran, A. Kucukelbir, A. B. Dieng, M. Rudolph, D. Liang, and D. M. Blei. Edward: A library for probabilistic modeling,
inference, and criticism. arXiv preprint arXiv:1610.09787, 2016.

[61] W. Wei, K. Joseph, W. Lo, and K. Carley. A Bayesian Graphical Model to Discover Latent Events from Twitter. In Proc.
of the 9th International AAAI Conference on Web and Social Media, 2015.

[62] T. White. Hadoop: The Definitive Guide. O’Reilly Media, Inc., 1st edition, 2009.

[63] E.P.Xing, Q. Ho, W. Dai, J.-K. Kim, J. Wei, S. Lee, X. Zheng, P. Xie, A. Kumar, and Y. Yu. Petuum: A New Platform
for Distributed Machine Learning on Big Data. In Proceedings of the 21th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’15, pages 1335-1344, Sydney, Australia, 2015.

[64] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica. Spark: Cluster Computing with Working Sets. In
Proc. of the 2nd USENIX Conference on Hot Topics in Cloud Computing, pages 10-10, Boston, MA, 2010.

[65] Y. Zhao, J. Xu, and Y. Gao. A Parallel Algorithm for Bayesian Network Parameter Learning Based on Factor Graph. In
Proc. of IEEE Intl. Conf. on Tools with Artificial Intelligence, pages 506-511, 2013.

ACM Transactions on Knowledge Discovery from Data, Vol. X, No. X, Article X. Publication date: December 2018.
https:)}mc.manuscrlptcentral.com/tkdd

Page 39 of 41 Transactions on Knowledge Discovery from Data

Fast Approximate Score Computation X:39

APPENDIX

In this section, we show the convergence speed of DiSC on nodes N;-N; and Nj3-Nie. Figure 21
shows the convergence speed of DiSC on S;. Figure 22 shows the convergence speed of DiSC on S,.
Figure 23 shows the convergence speed of DiSC on S;. Figure 24 shows the convergence speed of
DiSC on HIGGS. Finally, Figure 25 shows the convergence speed of DiSC on Tweets.

Note that N; was configured as the controller node in the cluster and ran slower than the others.
Hence, we notice that the convergence on N (blue line) starts later than the other nodes. Recall

that the nodes initially compute the local state (i.e., SSAs of families) based on local data blocks
before beginning the gossip phase.

.60 AL L .60 A UL B N N 60 A UL L NN N

IS Node | —a— Node 3 —a— 1SS Node | —=— Node 3 —a— IS Node | —m— Node 3 —a—

=50 Node2 —a— Noded —e— | =90~ Node2 —a— Noded —e— | | =0 Node 2 —a— Node 4 —e—

o o o

£40 S40 | 4 B4l

[o] o

23 23 1 230

520 20 +4 3520

510 610 |- -+ w10}

R DT) AP T P oo sl P A < g L rfteree e
[l [l (=] o (=) (=l (=3 o (=) o (=) o j=d [l o (=) j=l j=d j=d j=d [l (=} o j=d [l (=} (=]
S T T = = B T B o T T = R S B] S T = B B T B
D (=) — o™ o <t vy O o~ (=) (=} - N o <t v el ~ D (=) — o™ o <t vy O o~
S = o o = = = = S = o = o = = = S = o o o e = =

Time (MM:SS) Time (MM:SS) Time (MM:SS)

.60 T T T 1 7T 7T "] .60 T T T T T T 71 "] 60 T T T T T T 71 7]

NS Node 13 —=— Node 15 —a— IS Node 13 —a— Node 15 —a— NS Node 13 —=— Node 15 —a—

:’50 [~ Node 14 —a— Node 16 —e— ‘:50 Node 14 —a— Node 16 —eo— :’50 I~ Node 14 —a— Node 16 —e—

]] o

£ 40 4 E40 4 240

5} (5] 5}

_QZ’30 — ESO — <°§30

= s s

@20 — §20 — @20

10 10 |- - -+ @10

Coll ol vl < o L Tt peeytempaga < g L e et e
(= (=3 (=l o o (= (=3 o o o o o (= (= o o (= (= (= (= (=3 (=3 o (= (= (=3 (el
S A T e B R B S = B B S = = B B R B
(=)} (=} — [9\] o <t v O o~ [o — N o <t vy Nel o~ D [} - [\l o <t vy O o~
S = A H = = s = S = = = = = = = - S = = = = = = = -

Time (MM:SS) Time (MM:SS) Time (MM:SS)
@k=1,r=120 (b)k=2,r=120 (c)k=3,r=120

Fig. 21. Dataset Si: convergence speed of DiSC on cluster nodes N1-N4 and Nj3-Njg (200M data instances)

ACM Transactions on Knowledge Discovery from Data, Vol. X, No. X, Article X. Publication date: December 2018.
https://mc.manuscriptcentral.com/tkdd

Transactions on Knowledge Discovery from Data

A. Katib et al.

60 T T T

~ T T T

IS Node | —=—

:’50 I~ Node 2 —a— 7|

< Node 3 —a—

= [—

540 Node 4 —e—

2%

s

< 20 —

-

010 - —

<ol dl 1| T
(=3 (=3 (=3 (=3 o (=3 (=3 (=3 o
S T B B T B
[=) S — [\ [5g] <t el O Lot
> — - — — —_ = = —

Time (MM:SS)

A60 T T ™

IS Node 13 —m— Node 15 —a—

\:50 I~ Node 14 —a— Node 16 —e—

o

=40 —

5}

230

=

< 20 —

=4

010 —
0 PR ST T ST I N A
= (=3 (=3 (=3 o = (=3 (=3 (=l
= T A B B B B
D [} — [\ o < g} Nl o~
S = ~ — — —_ = = —

Time (MM:SS)

(c)k=3,r=120

/-\60 NN

IS Node | —=— Node 3 —a—

:’50 I~ Node 2 —a— Node 4 —o— T

<]

240 _

5}

230 .

=

820 —

@10 |- _

< o L L T AT e s e
o o 9 9 9 9 9 9 9
= T = A B B B
QXS = a4 o T v O o
o — — — — — — — —

Time (MM:SS)

A60 [T T T T T T

IS Node 13 —=— Node 15 —a—

=50 Node 14 —a— Node 16 —e—

8

£40 _

o

230 .

]

520 —

@10 [

< o L VT I
o o 9 9 9 9 9 9 9
S R = T B B
XS = d a6 F n o =
l=) — — — — —_— — — —

Time (MM:SS)

(c)k=3,r=120

X:40
.60 T T T T T T 1 .60 T T T T T T T]
NS Node | —=— Node 3 —a— NS Node | —=— Node 3 —a—
:’50 Node 2 —4— Node 4 —eo— 1 :50 Node 2 —a— Node 4 —e—
£40 4 £
23 1 230
= s
520 4 320
510 10 |
<ol dl ol 1y T ol 1T T
(= (=3 (el o o (=3 (=3 o o o (=} o (= (= o o (= (=
(=} (=} (=] (=) [« (=} (=} [« (=) o [«=) [« (=} (=} (=) [« (=} (=}
XS = A Ea F n 8N XS = A O F v 8N
S = = H = = = = S = = = = = = = -
Time (MM:SS) Time (MM:SS)
60 60 R
NS Node 13 —=— Node 15 —a— X Node 13 —=— Node 15 —a—
=50 Node 14 —a— Node 16 —e— =50 Node 14 —a— Node 16 —e—
£40
o
230
=
@20
&0 10 -
N O I N At Mt <0 I N o P
[} [} o [o [} [} [[o [o o [} [[o o
(=} (=} (=) (=) [« (=} (=} (=) (=) (=) (=) (=) (=} (=} (=) (=) (=} (=}
XS = A EF w8 XS = A A F o 8=
f=) — — — — — — — — =) —_ — — — — — —_ —
Time (MM:SS) Time (MM:SS)
@k=1r=120 (b)k=2,r=120
Fig. 22. Dataset Sy: convergence speed of DiSC on cluster nodes N1-Ny and Nj3-Nj¢ (200M data instances)
60 T T T T T T 1 .60 T T T T T T T]
NS Node | —=— Node 3 —a— NS Node | —=— Node 3 —a—
=50 = Node2 —a— Noded —o— | =50 Node 2 —a— Node 4 —e—
o o
540
(5]
230
=
@20
&0 10 ——
N P B B DT) P U sl e
[} [} [[(=) [} [} o (=) o [o o [} [o o o
= T T e B B B S T R B B B
D (=} - (o] o <t wv O o~ D S — (o} o <t v el o~
S = = - = = = = - S = = = = = = = -
Time (MM:SS) Time (MM:SS)
60 e
IS Node 13 —a— Node 15 —a— IS Node 13 —a— Node 15 —a—
=50 Node 14 —s— Node 16 —e— =50 Node 14 —a— Node 16 —es—
o o
£40 — 240
[} (0]
230 - 230
520 ~4 520
10 10 |-
<ol lo 1 | T DT PR T v i s st
[} (=} o [o [} [} [o [o o jel [} [o o jl
2R 22 e 2 2R 222
g 2 - g9 2 I e L g 2 - a8 2 3 v g g
Time (MM:SS) Time (MM:SS)
@k=1r=120 (b)k=2,r=120
Fig. 23.

ACM Transactions on Knowledge Dlscove

https:

Dataset S3: convergence speed of DiSC on cluster nodes N1-N4 and Nj3-Nig (200M data instances)

ry from Data, Vol. X, No. X, Article X. Publication date: December 2018.
”mc manuscriptcentral.com/tkdd

Page 40 of 41

Page 41 of 41 Transactions on Knowledge Discovery from Data

Fast Approximate Score Computation X:41
,-\60 17 T T AGO T T T T T T A60 T T T T 7T 77
NS Node | —=— Node 3 —a— NS Node | —=— Node 3 —a— IS Node | —=— Node 3 —a—
=50 - Node 2 —4— Node 4 —o— . :50 B Node 2 —a— Node 4 —eo— . =50 - Node 2 —a— Node 4 —eo—

| | |
(=3 o (=3 (= o (=3 (=] o (=3 (= (=3 (=3 (=3 (=3 (=3 (=3 (=3 o (=3 (= o
(=] S — o [5g] <) (=) S — (] o <t el [=) (=] — (o] o < vy
S = — — —_ — — S = — — — — — S = — — — - —
Time (MM:SS) Time (MM:SS) Time (MM:SS)
60 T T T T 60 T T T T 60 T T T T

—~] T T T T —~] T T I T _ I T T T T

NS Node 13 —=— Node 15 —a— X Node 13 —=— Node 15 —a— IS Node 13 —m— Node 15 —a—

=50 |- Node 14 —a— Node 16 —e— n :50 I~ Node 14 —a— Node 16 —e— n \:50 I~ Node 14 —a— Node 16 —e—

o =} o

£40 — — E 40 — 540

S0} 1 gaf 1 g3

= = =

A elal
[}*)
S
[
| |
A ela
[*)
S
[
| |
A elal
)
S
/ [[

&0 10 &0 10 &0 10
0 PR Bl | 0 P | 0 L | TS mepageEmae,
[} [[} o o o [o o [[} o [} o o [} [} o [} [[
S S
D o — (o] [e] <t) [N [} — (o} o <t vy D (=} — (o] o <t g}
S —_ — —_ — — —_ =) — — — — — — S — — — — — —
Time (MM:SS) Time (MM:SS) Time (MM:SS)
(@ k=1r=120 (b) k =2,r =120 (c)k=3,r=120
Fig. 24. Dataset HIGGS: convergence speed of DiSC on cluster nodes Ni-Nj and Nij3-Njg (176M data
instances)
60 T " T T T T "] .60 T T T T T T T "1 .60 T T T T T "1
NS Node | —=— Node 3 —a— IS Node | —=— Node 3 —a— IS Node | —=— Node 3 —a—
=50 |- Node 2 —4— Node 4 —eo— 7 \:50 B Node 2 —a— Node 4 —eo— 7 :’50 B Node 2 —a— Node 4 —eo—
& ol
(5] 5}
o

| | PR I T M . Y o
o o o 9o 9o 9o 9o 9 S 9o o 9 9 9 o 9 o o 9o 9 9 o 9o 9
S & &8 & &8 &8 & & S & &8 &8 & & & & S & & & &8 & & &
oo} (=)} o — (9] o <t v oo} D S - [\ o < v 0 D (=} - [\l o <t v
=) =) — — — — — — =) =) — — — — — — S =) — — — — — —
Time (MM:SS) Time (MM:SS) Time (MM:SS)
60 T T T T T 60 T T T T T 60 T T T T T
—~ | T T T T T —~ | T T T T T ~ | T T T T T
IS Node 13 —=— Node 15 —a— NS Node 13 —=— Node 15 —a— IS Node 13 —m— Node 15 —a—
=50 = Node 14 —a— Node 16 —e— — 1 =50 = Node 14 —a— Node 16 —s— | =50 = Node 14 —a— Node 16 —es—
<]
— £40
5}
230
]
<
_| < 20
e
| 10 |-
| b F—res—a—e-u | < 0 L il T e Y e B A, ol
o o 9o 9 9o 9o o 9 o o 9 9 9 9 9o o o o 9o 9o 9o 9o o 9
S & &5 &5 & & & & S & & 5 & & & 3 S & & & & & & &
B X S = A & F wn X X S = & & F own B X S = A & F own
S =) — — — —_ — — =) P} — — —_— — — —_ S f=) — —_ — — — —
Time (MM:SS) Time (MM:SS) Time (MM:SS)
(@ k=1,r =200 (b) k =2,r =200 (c)k=3,r=200

Fig. 25. Dataset Tweets: convergence speed of DiSC on cluster nodes N1-Ny and Ni3-Njg (200M data instances)

ACM Transactions on Knowledtge Discovery from Data, Vol. X, No. X, Article X. Publication date: December 2018.
https://mc.manuscriptcentral.com/tkdd

