
Virtual Speed Test:

an AP Tool for Passive Analysis of Wireless LANs

Peshal Nayak ∗, Santosh Pandey †, Edward W. Knightly ∗

∗Rice University, USA, †Cisco Systems, USA

Abstract—Internet speed tests assess end-to-end network per-
formance by measuring throughput for 10s of MB of TCP
uploads and downloads. While such tests provide valuable
insights into network health, they are of little use to network
administrators since (1) the results are only available on the
client that performs the test and (2) the tests can saturate
the network, increasing load and worsening performance for
other clients. In this paper, we present virtual speed test, a
measurement based framework that enables an AP to estimate
speed test results for any of its associated clients without any
special-purpose probing, with zero end-user co-operation and
purely based on passively observable parameters at the AP.
We implemented virtual speed test using commodity hardware,
deployed it in office and residential environments, and conducted
measurements spanning multiple days having different network
loads and channel conditions. Overall, virtual speed test has mean
estimation error less than 6% compared to ground truth speed
tests, yet with zero overhead, and outcomes available at the AP.

I. INTRODUCTION

TCP speed tests are end-to-end tests of network health and

are available via a plethora of online apps [1], [2], [3]. As part

of the measurement process, a client performs an active TCP

download and an active TCP upload to a server to measure the

download and upload TCP throughput respectively. Since more

than 80% of current Internet traffic is transmitted via TCP [4],

the performance of numerous online applications is crucially

dependent on the maximum TCP throughput achievable over

an underlying network path.

If a client’s speed test uses a nearby server (i.e., a server with

minimum possible latency to the AP), the WLAN becomes

the key part of the end-to-end path. Consequently, the results

would be valuable to the network manager to assess WLAN

performance and make decisions on network infrastructure

alterations to improve the quality of service experienced by

the end user. However, the results can only be seen by the end

user and are unavailable to the administrator without seeking

end user co-operation. Moreover, regularly performing such

speed tests imposes additional traffic load on the network and

hence doing so can potentially disrupt user traffic and drain

the battery of mobile devices.

In this paper, we make the following contributions. First,

we present a framework that enables an AP to estimate the

outcome of a speed test, i.e., the upload and download TCP

throughputs that any of its associated STAs should obtain

from a nearby server, yet, without any special-purpose probing,

with zero co-operation of endpoints (i.e., the server and the

client), and solely based on measurements that are passively

observable at the AP. We call our measurement based frame-

work virtual speed test. The speed test results obtained by

a STA can vary over time depending on numerous factors

such as the number of active STAs, interference level, etc.

Likewise, virtual speed test can enable the network manager to

dynamically track any given STA’s speed test results based on

its own unique characteristics (e.g., via a dynamic dashboard).

Virtual speed test employs a novel L2 edge TCP model

to perform throughput estimation. The key challenge for the

AP to estimate these inherently bi-directional, end-to-end and

layer-4 throughputs, is that the AP only has a limited view

of the network. Since the AP is unaware of the presence of

hidden terminals, interference from neighboring BSS to the

STAs, etc. (which affect the STA’s queuing delays, NAV timers

and packet retransmissions), the AP cannot estimate how long

it takes a STA to successfully transmit after it starts to attempt.

Our design is motivated by the fact that since the WLAN is

the final hop for any TCP segment directed towards a STA,

this duration can also be estimated by measuring the delay

incurred between the transmission of a TCP segment on the

downlink to the reception of the corresponding TCP ACK on

the uplink from the STA. This TCP segment, therefore, can

belong to any TCP flow (e.g., a Netflix video stream) and need

not be a part of a flow from a nearby server. To carry out these

measurements, the AP must identify TCP flows. To this end,

we leverage TCP’s inherent bi-directionality and packet size

signatures to spot TCP flows. Specifically the fact that TCP

flows involve TCP segment traversing on the forward path and

small sized TCP ACKs on the reverse path enables the AP to

identify these flows and perform its measurements.

Second, we develop a virtual speed test enabled AP (VST

AP) by using commodity hardware. We build APIs that enable

the VST AP to passively collect a number of per packet

statistics and feed them into the L2 edge TCP model to

obtain throughput estimates. While virtual speed test does

not require collection of STA-side statistics, for validation

purposes, we also implement APIs for data collection from

STAs associated with the VST AP for characterizing the

operating environment and for ground truth measurement.

We deploy VST AP in two environments: an office located

inside a university building and an apartment in a residential

complex. The VST AP is deployed in the office for a period

of 2 days and in the apartment for a period of 7 days. Both

deployment settings are characterized by interference from

non-BSS devices co-existing in the same frequency band,

human mobility and link diversity with respect to signal



Co-managed AP 2Co-managed AP 1

Non-managed AP

Fig. 1: Enterprise WLAN scenario: bold lines indicate connectivity while
dotted lines indicate interference.

propagation (i.e., LoS vs non-LoS paths) and supported PHY

rates. The office and the residential scenario cover a total

of 36 and 49 topologies respectively with a varying number

of STAs. Overall, the VST AP observes a total of 113,047

TCP flows across both deployments. These TCP flows result

from multiple applications running on end devices such as

video streaming, music streaming, pdf downloads and email

activities. For validation, actual client-based speed tests are

employed as ground truth. Virtual speed test demonstrates a

high level of estimation accuracy compared with ground truth,

with average estimation error under 6% for both upload and

download speed estimation.

Finally, we implement virtual speed test into ns-3’s source

code and perform extensive simulations to investigate operat-

ing conditions beyond those encountered in our field trials.

The simulation results concur with field trial conclusions

demonstrating estimation errors below 5%.

To the best of our knowledge, virtual speed test is the first to

estimate both upload and download TCP throughputs of STAs

in the network by using passive measurement metrics at only

the access point, i.e., without any active probing, additional

hardware infrastructure or user participation.

II. VIRTUAL SPEED TEST: SCENARIO DESCRIPTION AND

PROBLEM FORMULATION

A. Enterprise WLAN setup

We consider an enterprise WLAN environment such as

illustrated in Fig. 1. As depicted, the network comprises of

multiple APs. While the network may use channelization, for

ease of exposition we consider only APs with at least partially

overlapping channels such that they can potentially interfere

with each other. Moreover, we consider that in addition to

the managed infrastructure, there may be one or more non-

managed WLANs that may be interfering. Such WLANs can

correspond to an LTE hot spot or a neighboring WLAN under

different administrative control.

Ideally, all such networks should have sufficient physical

separation to enable full spatial reuse for each AP (i.e., simul-

taneous transmission for each network). However, as depicted,

the unwanted interconnectivity creates interference and con-

tention among nodes. Moreover, inter-node connectivity can

form a complex relationship: while all STAs are necessarily

connected to the APs that they associate with, a particular STA

may or may not be in range of other APs. Likewise, STAs may

be hidden from each other or mutually in range. It is further

possible that a STA is in range of other APs which are not

in range of the AP that is serving it. The interference and

contention possibilities are further compounded by the need

to consider both downlink transmissions (AP to STA), uplink

transmissions (STA to AP), and mixes.

We do not make any assumptions about the PHY layer

capabilities of the AP or the STAs. For instance, the AP may

have advanced physical layer capabilities such as multi-user

MIMO. Likewise, the AP can have any channelization strategy,

e.g., dynamically bonding channels to 80 MHz as available.

B. Background on TCP upload and download speed test

Speed tests measure a client’s upload and download TCP

throughput from a server on the internet.1 If the speed test

happens from a nearby server or low latency server, the WLAN

becomes the key part of this end-to-end path and the network

manager can use these results to assess WLAN performance.

For the remainder of the paper, we focus on speed tests that

happen from a nearby server. A speed test is user initiated and

the results are visible to the user at the end of the measurement.

Speed tests primarily consist of two phases: a setup phase

during which the speed test parameters are configured and a

measurement phase which involves an active TCP upload and

download.

Setup phase. The setup phase begins with a server selection

process which can either be manual or app driven. If this

is app driven, a server is selected by probing a pool of

available servers such that the backbone delay between the

server and the AP is as less as possible to ensure a maximum

TCP throughput [5] (with the ideal case being a server in

the same LAN as the AP). Since the goal is to measure

the maximum TCP throughput, while running a speed test,

a STA is recommended to turn off other applications. Next,

the client and server side TCP parameters are configured. The

exact mechanism used for performing this configuration differs

from one speed test application to another. A commonly used

procedure is to conduct a test download and a test upload

from the STA. For instance, for the Ookla speed test, the STA

initially downloads or uploads a small file to estimate initial

throughput. Following this initial phase, the STA adjusts the

file size, buffer size and number of parallel TCP flows (limited

to maximum of 8) to maximize the network connection usage

while preventing congestion during the measurement phase

[6].

Measurement phase. As shown in Fig. 2, the measurement

phase consists of two sessions: an upload session and a down-

load session. The vast majority of speed test apps available

online follow a flooding based mechanism in these sessions

which involves establishment of several parallel TCP flows

between the server and a STA with a calculation of aggregate

throughput across all the flows [7]. This ensures that the results

are robust to a small TCP window size (e.g., due to loss of a

1Unless stated explicitly, the terms client and STA are used interchangeably.







flow will reach a steady state wherein TCP operates at Wm.

Consequently, the number of packets that are contained in the

speed test flow, which can either be TCP segments or TCP

ACKs, remain constant and the system behaves as a closed

queuing network with tandem servers and a constant number

of jobs circulating inside it.

Based on the aforementioned notations, the mean service

time for the forward and the reverse queue in the virtual end

point (Fig. 4) is given by:

Svf = daccess + dtx + V (1)

Svr = uaccess + utx (2)

Let S = Sbf + Sbr + Svf + Svr, Smax =
max(Sbf , Sbr, Svf , Svr) and θ denote the throughput in

terms of jobs per second. It can be shown [10] that

θ ≤ min

(

Wm

S
,

1

Smax

)

(3)

where Wm

S
is an asymptotic bound for small values of Wm and

1
Smax

acts as an asymptotic bound for large values of Wm. The

cases of small and large here are relative to a critical value

W ∗

m
which is the point at which the asymptotes cross each

other. Consequently,

W ∗

m
=

S

Smax

(4)

To understand the physical relevance of the two components

of Eq. (3), let us consider two extreme case scenarios. Let

us assume that Wm = 1 which makes the number of jobs

circulating in Fig. 4 the botteneck. The throughput, therefore,

is given by Wm

S
. On the other extreme, if Wm is sufficiently

large (again large as compared to W ∗

m
) to not bottleneck the

system, then the slowest queue acts as a bottleneck. In this case

the slowest queue always remains busy and in accordance with

the utilization law, θ = 1
Smax

.

Recall that due to the server selection process, Sbr and Sbf

are not the bottleneck in the system. To understand the typical

values that W ∗

m
can take, let us consider the critical point

wherein Sbr = Sbf ∼ max(Svf , Svr). Substituting in Eq. (4),

we will get W ∗

m
=

2∗(Svf+Svr)
max(Svf ,Svr)

. The maximum value of W ∗

m

occurs when Svf = Svr and thus max(W ∗

m
) = 4. In practice,

Wm ≫ 4 and consequently, we can see that θ ≤
1

Smax
will act

as a asymptotic bound on the values of θ. In fact, we find in

our experimental evaluation that for a typical speed test, the

values of Wm is extremely large as compared to 4 and θ will

tend to the bound yielding

θ ∼
1

Smax

. (5)

2) TCP ACK thinning: Now, we extend the above to

the more general case of TCP ACK thinning. For an ACK

thinning ratio of n, we can view a maximum of only Wm

n

jobs circulating in the system and the remaining jobs can

again be accounted for by further inflating the service times

of each of the queues (just as for non-speed test flows).

Consequently, when the wireless nodes transmit only one

frame per transmission, the service times of both the forward

and reverse queue in the virtual end point stretch by an amount

equal to (n−1)×(daccess +dtx +V ) for the case of the download

speed test. Here we inflate the service time of the reverse queue

to account for the fact that the TCP ACK is not generated until

the nth TCP segment is received. The numerator of Eq. (5)

should also be multiplied by n to compensate for the shrinking

of the total number of TCP segments. For the upload speed

test, the service times stretch by (n−1)×(uaccess+utx). However,

when the nodes transmit multiple frames per transmission,

such an inflation is not necessary since the STA receives

multiple TCP segments in a single downlink transmission and

there is no additional delay in the generation of a TCP ACK.

These multiple frames may be transmitted using frame aggre-

gation in single stream transmissions (e.g., SISO) or by using

multi-stream transmissions (e.g., MIMO) or a combination of

both frame aggregation and multi-stream transmissions. We

emphasize that this is possible since typical ACK thinning

ratios of TCP are much smaller than the number of frames

that can be transmitted in a single transmission via the above

mentioned policies under 802.11 [11], [12], [13], [14].

In summary, the throughput in bits/sec is given by

θdl =
E[TCP segment size]× FAP

max(Svf , Svr)
(6)

θul =
E[TCP segment size]× FSTA

max(Svf , Svr)
(7)

where we denote θdl and θul as the download and upload TCP

throughputs respectively. FAP denotes the average number of

frames transmitted by the AP in a single downlink transmis-

sion to the target STA. For the case of the upload speed test,

we use FSTA instead.

Note that while calculating Svf and Svr for Eq. (6), dtx

is the average time to transmit FAP number of TCP segments

at the AP’s data rate and utx is the average time to transmit

FSTA number of TCP ACKs at the target STA’s data rate. In

Eq. (7), this is reversed since the target STA is now the one

transmitting TCP segments and the AP is the one transmitting

the TCP ACKs. Svf and Svr further vary depending on which

STA is chosen as the target STA. Consequently, the AP has

to estimate these two parameters with respect to the particular

STA that is chosen as the target STA.

We remark that while the L2 edge TCP model needs to be

supplemented with AP-side measurements, it is not restricted

by a requirement for AP-side knowledge of inter-node con-

nectivity or an assumption on network traffic characteristics.

Next we show how the model parameters are estimated.

IV. OBTAINING AP-SIDE MEASUREMENTS

In this section, we show how the AP can measure all of the

parameters required for the above model, thereby enabling a

dynamic AP-side speed test estimate for each STA.

A. AP-side estimation problem

We observe that Eq. (6) and (7) are independent of Sbr and

Sbf . To estimate θdl and θul at the AP, the key challenge is



computation of Svr, as the remaining parameters are based on

common AP side observables described in Sec II-C. Recall

from Eq. (2) that Svr is composed of utx and uaccess. While

the average uplink transmission time utx is known to the AP

via per-STA metrics, the uplink access time uaccess is known

only at the STA side. Let t
U,i
hq denote the time at which the ith

uplink packet reaches the head of the STA’s queue, tU,i
ts

denote

the start time corresponding to the successful transmission

of this packet and tU,i
te

denote the end time of this packet

transmission. By definition, uaccess = E[(tU,i
ts

− t
U,i
hq )]. While the

AP can observe tU,i
ts

for any uplink transmission, t
U,i
hq remains

unknown. If the STA is assumed to be fully backlogged, the

end time of the previous transmission can be approximated

to be the time when the next packet reached the head of the

queue. However, STA backlog is user activity dependent and is

not known to the AP. As a result, the AP cannot estimate uaccess

by a simple observation of packets received on the uplink.

B. Snooped handshakes for estimation of uplink access time

Suppose that the client is performing a TCP download

from a server (e.g., streaming a Netflix video). This can be

any server on the internet with any backbone delay to the

AP. The client will attempt to return a TCP ACK as fast as

possible after reception of the corresponding TCP segment.

This TCP ACK is “data” at layer 2. For now, consider a

case where there are no other flows on the uplink from the

target STA and no ACK thinning. Since the WLAN is the

final hop for the TCP segment, upon reception of a TCP

segment, i.e., at the end of the AP’s successful downlink

transmission (denoted by tD,i
te

), the STA has the corresponding

TCP ACK and begins to contend. Consequently, in this case,

t
U,i
hq = tD,i

te
and thus the AP will have inferred a parameter

that is not directly observable. In essence, the delay incurred

between the transmission of the segment to the reception of

the TCP ACK enables the AP measure how long it takes the

STA to successfully transmit after it starts to attempt. Thus,

our general approach is to selectively sample TCP data-ACK

handshakes from any TCP download performed by the target

STA and use them to drive a measurement based prediction

of θdl and θul. We refer to such TCP flows as snooped flows.

This can be generalized under a flow hypothesis (i.e.,

knowing that a given flow on the downlink is a TCP flow)

by the following two cases.

ACK queuing. This case occurs when the target STA has

other uplink flows whose packets get queued prior to the TCP

ACK. Consequently, in such scenarios, t
U,i
hq = tU,i−1

te
. In such

cases, we abuse the term tU,i−1
te

to refer to the end time of

transmission of the immediately preceding uplink packet.

ACK immediate. However, if the target STA has no other

uplink flow, it begins to contend as soon as the TCP ACK

is queued. Consequently, t
U,i
hq = tD,i∗n

te
where the superscript

‘D’ refers to a downlink transmission.

C. TCP flow inference

Because the layer four handshake is needed to estimate

uaccess, it is crucial to identify this handshake at the AP, which

does not have layer four visibility. To this end, we employ IP

addresses and size signatures as follows.

IP address signature. Due to the inherent bi-directionality

of TCP, the source and destination addresses for TCP segments

traversing on the forward path are swapped for the correspond-

ing TCP ACKs on the reverse path. This key factor enables us

to distinguish individual TCP flows and separate them from

the remainder of the downlink and uplink traffic.

Packet size signature. Although the above signature

enables identification of a bidirectional flow, it does not aid

in spotting the forward and reverse paths distinctly. While the

size of TCP segments on the forward path may fluctuate during

the course of a download, the reverse path is characterized

by small TCP ACKs whose size remains fixed during the

entire duration of the flow. Typically a TCP ACK is 20

bytes long [15]. Having distinctly identified the forward and

reverse paths, the AP can employ the uaccess estimation process

described in the previous sub-section.

V. IMPLEMENTATION AND EXPERIMENTAL

METHODOLOGY

In this section, we provide details of the virtual speed test

enabled AP (VST AP), field trial details and our ground truth

procurement methodology.

A. VST AP characterization

VST AP runs on a Linux operating system and is factory

installed with 32 GB DDR4 SO-DIMM RAM, 2.4 GHz dual

core CPU with a Gigabit LAN port. It is equipped with a

Ralink RT3070 off-the-shelf WiFi chipset. The radio card

supports IEEE 802.11b/g/n utilizing up to 40 MHz bandwidth

and a peak PHY rate of 300 Mbps. To enable throughput

estimation, we build APIs that enable the acquisition of a

number of per packet statistics at the AP. Specifically, VST

AP collects packet timestamps (available on a nanosecond

granularity), source and destination IP addresses, frame sizes,

and PHY rates using these APIs and feeds them into the L2

edge TCP model to estimate the throughput. As described

earlier, the parameter estimation methodologies employ packet

timestamps as a part of the computation process. While the

absolute value of these timestamps can be impacted by sys-

tem dependent offsets, their post-subtraction residue becomes

negligible as they have a low second moment. The STAs asso-

ciated with the VST AP are a mix of portable laptops running

on either Windows or Linux OS whose network interface card

supports 802.11b/g/n as well. While VST does not require

collection of STA side statistics, for validation purposes, we

also implement APIs and data collection capabilities for STAs

associated with the VST AP to enable us to characterize the

operating environment.

B. Field trials

To study the estimation accuracy of virtual speed test, we

deploy VST AP and STAs in two environments. The first

deployment is in an office located in a 3 storied building on

a university campus. In this deployment, the VST AP and







not applicable or extensible to our scenario as they require

AP-side knowledge of network topology, interfering nodes

including those from neighboring BSS, their traffic patterns,

PHY capabilities, data rates, etc. Obtaining this information

requires STA-side co-operation and regular reporting. On the

other hand, virtual speed test enables throughput estimation

with zero STA-side co-operation and no reporting.

Active measurements. Active probing techniques such

as [19], [20] involve usage of probing packets to estimate

bandwidth. However, they impose additional traffic load on

the network that can disrupt user traffic or drain the battery of

mobile devices. Tools such as [21] require client-side software

to perform network analysis. On the other hand, virtual speed

test performs passive measurement based estimation and hence

does not impose any additional traffic load on the network or

require any specialized client-side software.

Passive measurements. Careful deployment of sniffers can

be used to make passive observations to collect traffic traces

of various users to estimate throughput [22],[23]. Likewise,

collection of information from co-existing BSS can also enable

the AP to estimate throughput of its associated STAs [24].

However, such methods either require installation and mainte-

nance of additional hardware or co-operation from neighboring

BSS for data collection. In contrast, virtual speed test requires

no additional infrastructure or any cooperation from among

co-existing APs.

Training via ground truth measurements. In this ap-

proach, followed by [9], [25], [26], network clients store

empirical throughput of all TCP sessions and report them

to the AP to build a database of TCP throughputs. This

coupled with AP-side records of wireless conditions during

the TCP session (e.g., the session’s MCS, busy air time,

and collision rate) enable the AP to predict throughput by

correlating the current conditions with historical averages

corresponding to similar conditions. However, this requires

client-side reporting to obtain ground truth as network and

traffic conditions change, a requirement that is not allowed in

our problem formulation.

TCP flow analysis. TCP flow analysis has been leveraged to

understand IP and TCP statistics such as segment reordering,

duplication, etc. [27], identification of malicious attacks [28]

and for P2P Botnet detection [29]. In contrast, we utilize TCP

flow dynamics to measure L2 parameters to facilitate upload

and download throughput estimation for WLANs.

VIII. CONCLUSIONS

We presented virtual speed test - a measurement based

framework that enables an AP to continuously estimate TCP

speed test results for any of its associated STAs without

any end-user co-operation, with no additional traffic load on

the network and solely based on passively obtained AP-side

observables. We deploy a VST enabled AP in a university

office and in a residential apartment characterized by a variety

of operating conditions including the presence of multiple co-

existing BSSs, link diversity in terms of signal propagation

and supported PHY rates and variation in traffic characteristics

and the number of associated clients. Overall, virtual speed test

exhibits high accuracy with mean estimation errors below 6%.

IX. ACKNOWLEDGEMENTS

This research was supported by Cisco and by NSF grants

CNS-1801857 and CNS-1642929.

REFERENCES

[1] Ookla Speedtest. http://www.speedtest.net/. Accessed: 2018-05-27.
[2] AT & T Internet Speed Test. http://speedtest.att.com/speedtest/. Ac-

cessed: 2018-05-27.
[3] Xfinity Speed Test. http://speedtest.xfinity.com/. Accessed: 2018-05-27.
[4] D. Murray, T. Koziniec, S. Zander, M. Dixon, and P. Koutsakis. An

analysis of changing enterprise network traffic characteristics. In Proc.

of IEEE APCC, 2017.
[5] Ookla SpeedTest. How does the Begin Test button select a server?,

2012.
[6] Ookla SpeedTest. How does the test itself work? How is the result

calculated?, 2012.
[7] O. Goga and R. Teixeira. Speed measurements of residential internet

access. In Proc. of PAM, 2012.
[8] E. Altman, D. Barman, B. Tuffin, and M. Vojnovic. Parallel TCP

Sockets: Simple Model, Throughput and Validation. In Proc. of IEEE

INFOCOM, 2006.
[9] A. Patro, S. Govindan, and S. Banerjee. Observing Home Wireless

Experience Through WiFi APs. In Proc. of ACM MobiCom, 2013.
[10] M. Harchol-Balter. Performance modeling and design of computer

systems: queueing theory in action. Cambridge University Press, 2013.
[11] D. Murray and T. Koziniec. The state of enterprise network traffic in

2012. In Proc. of APCC, 2012.
[12] R. Braden. RFC-1122: Requirements for internet hosts. Request for

Comments, pages 356–363, 1989.
[13] IEEE Std. 802.11ac-2013. Enhancements for Very High Throughput for

Operation in Bands Below 6 GHz, 2013.
[14] IEEE Std. 802.11n-2009. Enhancements for Higher Throughput, 2009.
[15] P. Jon. Transmission control protocol–darpa internet program protocol

specification. Technical report, RFC-793, DARPA, 1981.
[16] Companion technical report, available at. https://www.dropbox.com/s/

ruf3qh60bxdwhls/tech report.pdf?dl=0.
[17] P. Nayak, M. Garetto, and E. W. Knightly. Multi-user Downlink with

Single-User Uplink can Starve TCP. In Proc. of IEEE INFOCOM, 2017.
[18] D. Miorandi, A. Kherani, and E. Altman. A queueing model for HTTP

traffic over IEEE 802.11 WLANs. Computer Networks, 2006.
[19] K. Lakshminarayanan, V. N Padmanabhan, and J. Padhye. Bandwidth

estimation in broadband access networks. In Proc. of ACM SIGCOMM,
2004.

[20] R. Kapoor, L. Chen, L. Lao, M. Gerla, and M. Sanadidi. Capprobe:
A simple and accurate capacity estimation technique. In Proc. of ACM

SIGCOMM, 2004.
[21] K. Kim, H. Nam, and H. Schulzrinne. WiSlow: A Wi-Fi network

performance troubleshooting tool for end users. In Proc. of INFOCOM,
2014.

[22] L. DiCioccio, R. Teixeira, and C. Rosenberg. Impact of Home Networks
on End-to-end Performance: Controlled Experiments. In Proc. of ACM

HomeNets, 2010.
[23] Y. Cheng, J. Bellardo, P. Benkö, A. Snoeren, G. Voelker, and S. Savage.

Jigsaw: Solving the Puzzle of Enterprise 802.11 Analysis. In Proc. of

ACM SIGCOMM, 2006.
[24] V. Shrivastava, S. Rayanchu, S. Banerjee, and K. Papagiannaki. Pie in

the sky: Online passive interference estimation for enterprise wlans. In
Proc. of NSDI, 2011.

[25] C. Rattaro and P. Belzarena. Throughput prediction in wireless networks
using statistical learning. In Proc. of LAWDN, 2010.

[26] M. Mirza, K. Springborn, S. Banerjee, P. Barford, M. Blodgett, and
X. Zhu. On the accuracy of TCP throughput prediction for opportunistic
wireless networks. In Proc. of IEEE SECON, 2009.

[27] M. Mellia, A. Carpani, and R. Cigno. Tstat: TCP statistic and analysis
tool. In Proc. of Springer QoS-IP, 2003.

[28] Y. Chen and K. Hwang. TCP flow analysis for defense against shrew
DDoS attacks. In Proc. of IEEE ICC, 2007.

[29] L. Zhou, Z. Li, and B. Liu. P2P traffic identification by TCP flow
analysis. In Proc. of IWNAS, 2006.


