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Adaptive Quantization as a Device-Algorithm
Co-Design Approach to Improve the
Performance of In-Memory
Unsupervised Learning
With SNNs
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Abstract— Off-chip memory access is the primary
bottleneck toward accelerating neural network operations
and reducing energy consumption. In-memory training and
computation using emerging nonvolatile memories (eNVMs)
have been proposed to address this problem. However,
a small number of conductance states limit in-memory
online learning performance. Here, we introduce a device-
algorithm co-design approach and its application to phase
change memory (PCM) for improving learning accuracy.
We present an adaptive quantization method, which com-
pensates the accuracy loss due to limited conductance
levels and enables high-accuracy unsupervised learning
with low-precision eNVM devices. We develop a spiking
neural network framework for NeuroSim platform to com-
pare online learning performance of PCM arrays for analog
and digital implementations and benchmark the tradeoffs in
energy consumption, latency, and area.

Index Terms— Emerging nonvolatile memory (eNVM),
MNIST digit classification, phase change memory (PCM),
quantization, unsupervised learning.

I. INTRODUCTION

EURAL networks (NNs) have revolutionized artificial
Nintelligence (AD) and led to remarkable advances across
diverse applications. However, a high level of parallelism
required by NN operations necessitates continuous shuffling
of a massive amount of NN parameters between memory
and processor. This causes substantial computing power and
time for conventional von Neumann-based computation sys-
tems such as CPUs/GPUs [1]. To eliminate delay and power
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Fig. 1. lllustration of limited conductance levels of the device. Uniform
quantization maps weights to conductance changes linearly.

consumption problems due to data transfer between CPU and
memory, in-memory training and computing using emerging
nonvolatile memory (eNVM) devices have been identified as
a promising non-von Neumann approach [2]-[4]. Advances
in new materials and eNVM devices offer new approaches
to very low-energy computing with scalable devices [5]-[8].
Mapping NN training to eNVM arrays requires quantization of
weight values into discrete conductance levels. Unfortunately,
most of the synaptic devices demonstrated so far have limited
conductance levels and cannot represent NN weights in ideal
high precision (64-bit) as shown in Fig. 1.

All previous demonstrations of learning with synaptic arrays
have adopted uniform quantization, which maps continuous
NN weights into discrete device conductance values uniformly,
leading to a steep decrease in accuracy for precisions less
than 6-bits [5]-[8] for online learning. Various different quan-
tization schemes have been proposed in [9]-[11]. However,
this paper mainly focuses on the development of adaptive
quantization to be applied to the eNVM devices. To overcome
this accuracy degradation, we propose an adaptive quantization
technique, which maps NN weights to the hardware conduc-
tances based on the distribution and importance of the weights.
We apply this device-algorithm co-design approach to phase
change memory (PCM) synapses for online unsupervised
learning with a spiking neural network (SNN). SNNs allow
sparse and event-driven parameter updates for energy-efficient
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Fig. 2. Cross-sectional TEM image of an electronic synapse made
of GST. (a) Low-conductance amorphous state. (b) High-conductance
poly-crystalline state.

implementation of online learning in hardware. Therefore,
SNNs have been widely explored for neuromorphic circuits in
the past. In addition, SNNs are particularly suitable for unsu-
pervised learning using unlabeled data, offering complemen-
tary skills to widely-adopted artificial NNs using supervised
learning based on back-propagation.

In this paper, we investigate adaptive quantization method-
ologies to train SNNs with low-bit precision synaptic devices
for online learning in hardware. We also study the impact of
adaptive quantization on abruptness and asymmetry of device
conductance. Then, we develop an SNN framework for Neu-
roSim, which is an integrated device-to-algorithm simulator
(SNN + NeuroSim). Using SNN + NeuroSim, we explore
the system-level performance of the implementation of unsu-
pervised learning with PCM arrays for analog and digital
architectures in various technology nodes.

II. PCM CHARACTERIZATION

In this paper, we use GeySbyTes; (GST), a phase
change material, to implement PCM-based synaptic devices.
A 200-nm-thick GST is deposited between a bottom elec-
trode (75 nm diameter) and a top electrode. Cross-sectional
TEM images of a PCM synaptic device programmed into low-
conductance (7 V, 50 ns) and high-conductance (1.2 V, 50 ns)
states are shown in Fig. 2(a) and (b). At high-conductance
state, the GST is poly-crystalline. At low-conductance state,
an amorphous cap starts to form at the bottom electrode
interface, determining the resistance of the PCM device.

We investigate the gradual programing in PCM synapses.
When identical amplitude pulses (2 V, 50 ns) are used, PCM
synapses exhibit gradual programing only for conductance
increase [Fig. 3(a)]. Fig. 3(b) and (c) show the gradual
conductance change of our PCM device in both high- and
low-conductance (G) regimes. To achieve both gradual set
and reset in our PCM device, we need to apply pulses with
increasing amplitude. In high-G regime [Fig. 3(b)], the gradual
set (increasing conductance) programing of the PCM devices
is achieved by using staircase pulses (20 pulses per each
voltage step of 0.1 V starting from 0.5 to 0.9 V), and gradual
reset (decreasing conductance) is achieved using pulses with
increasing amplitude from 2 to 4 V with 20-mV-voltage steps.
In low-G regime [Fig. 3(c)], the gradual set is performed
by staircase pulses with an increasing step of 50 mV in the
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Fig. 3. (a) Measured conductance increase programmed by the same
amplitude pulses. We use pulses with 50 ns of pulsewidth, 5 ns of rise
time, and 5 ns of fall time. (b) and (c) Gradual switching characteristics
of the device in high-G and low-G regimes, respectively. For both high-G
and low-G regimes, we use pulses with 10 ns of pulsewidth, 5 ns of rise
time, and 5 ns of fall time for gradual set and 20 ns of pulsewidth, 5 ns of
rise time, and 5 ns of fall time for gradual reset. The callout window in
(c) shows the abrupt conductance change during gradual reset.

range of 1-1.7 V (four pulses for each step), and gradual
reset is performed by pulses with increasing amplitude from
5.7 to 7.3 V with 25-mV-voltage steps. The current for gradual
set ranges from 0.04 to 0.25 mA, and the current for gradual
reset ranges from 2 to 2.4 mA in low-G regime. The 0.1-V and
40-ns pulse is used to read the device conductance. We plot
the callout window in Fig. 3(c) to clearly show the abruptness
during gradual reset. If we implement large synaptic core
array, IR drop across metal lines can affect the accuracy.
To avoid the accuracy drop due to the IR drop, ON-resistance
of memory cell needs to be higher than 10 kQ for online
learning case [12]. Since ON-state resistance of high-G regime
is 5 kQ, we use low-G PCM data (ON-state: 200 kQ) for
in-memory NN training in this paper. Our PCM device exhibits
~55 levels for gradual conductance increase and decrease,
corresponding to ~6-bit precision.

I11. NEURAL NETWORK MODEL

SNNs have been extensively investigated by the neuromor-
phic circuits community since they offer sparse and event-
driven parameter updates for energy-efficient implementation
of online learning in hardware [13]. In this paper, we use
an SNN model to investigate unsupervised online learning
with PCM arrays. Our SNN model for unsupervised learn-
ing is summarized in Fig. 4(a) and (b). For the training,
synaptic weights are updated using a timing- and weight-
based learning rule [Fig. 4(c) and (d)]. The iterative training
cycle consists of first converting all input digits to Poisson
prespike trains, computing the membrane potentials for the
output layer, generating a postspike using a probabilistic firing
mechanism, and finally updating the synaptic weights using
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Fig. 4. (a) SNN architecture with fully connected structure. Each pixel of
an MNIST image is corresponding to one of the input neurons. The num-
ber of output layer neurons ranges from 100 to 500. (b) Algorithm used
for training of the SNN. (c) Simplified STDP rule used for SNN. (d) LTP
update is an exponential decaying function that depends on the current
weight, and the LTD update is a constant.

the simplified spike-timing-dependent plasticity (STDP) rule
shown in Fig. 4(c) and (d).

According to this rule, if the time difference between the
postspike and prespike is within a 10-ms window, the synaptic
weight is increased by AWprrp according to the long-term
potentiation (LTP) rule in (1). Otherwise, the synaptic weight
is decreased by A Wrrp using the long-term depression (LTD)
rule in (2)

AWrrp = a x exp(—f(W + 1)) (nH
AWrrp = —y. 2)

The parameters a and f control the LTP strength. W is the
current weight value. The parameter y determines the depres-
sion scale. The network is trained in an unsupervised fashion
with 60000 MNIST digits. After training is done, we assign
labels to the output neurons and perform inference with the
MNIST test set of 10000 handwritten digits. The classification
accuracy for our SNN is 94.05% for an ideal 64-bit floating
point. This accuracy is already high for unsupervised learning
and can be further increased up to 98.17% if supervision is
introduced into the SNN [13].

There are two ways to use our PCM devices for imple-
menting online training of our SNN model. First, since our
device can only achieve the gradual SET using identical pulses
[Fig. 3(a)], we can use 2-PCM configuration [14] for online
training. An alternative way is to use the device characteristics
shown in Fig. 3(c). Since we use nonidentical pulses for
gradual switching of the devices, an additional read step is
required before updating the weights in hardware as suggested
by Chen et al. [15]. Fig. 5 shows how this test scheme can be
applied to online training. Before the weight update, we read
the device conductance from the PCM array. The peripheral
neuron circuit then calculates the weight update (A W), which
is converted into AG to calculate the number of programing
pulses (AP) and amplitudes based on AG and the current
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Fig. 5. Schematic of online training using nonidentical pulse scheme for
SNN.
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Fig.6. (a) Weightdistribution during the training of the first 5000 samples.
(b) lllustrations of medium-W, low-W, and high-W quantization.

conductance state. Finally, the programing circuitry will apply
the pulses to update the conductance of the PCM devices in
the array.

IV. ADAPTIVE QUANTIZATION FOR
Low-PRECISION SYNAPSES

Although low-precision weights can be used for inference,
online learning requires a high-precision representation of
weights to achieve high accuracy [12]. Therefore, mapping
network training to eNVM arrays requires the quantization
of weight values with high precision. Uniform quantization
ignores the distribution and evolution of weights during train-
ing and treats all the weights with equal importance. However,
every weight does not equally contribute to learning outcome
and hence, unimportant weights do not require high precision.
To address that, we develop adaptive quantization for quantiz-
ing weights based on their distribution during training using
Lloyd maximum quantization [16].

To train an adaptive quantizer, we use the evolution of
weights in the first 5000 training samples [Fig. 6(a)]. We inves-
tigate medium-W, low-W, and high-W quantizers [Fig. 6(b)],
allocating more levels to intermediate, negative, and positive
weights, respectively. Fig. 7(a) and (b) show the weight visual-
izations of output neurons for ideal 64-bit software simulation
and 4-bit low-W quantizer, respectively, as representative
examples.

We also explore the performance of different quantizers for
training SNN using PCM data [Fig. 3(c)] with lower preci-
sion. To implement adaptive quantization with the PCM data,
we first choose the number of quantized levels to distribute
in positive ([0, 1]) and negative ([—1, 0]) regions according
to the bit precision and the type of quantizer. Then, we use
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transformation to map the quantized weight (Wquan) to the
closest PCM conductance values in the following equation:

(Gmax - Gmin) (Gmax + Gmin)
5 > . (3)

Fig. 8(a) shows that quantized weight levels are mapped
to PCM conductance values for low-W quantization as a
representative example. PCM gradual programing data from
Fig. 3(c) are subsampled to 32 levels (5-bit quantization).
For low-W quantization, a larger number of levels were
allocated to low-conductance values. Similar mappings are
performed for uniform, medium-W, and high-W quantizers.
Fig. 8(b) shows theoretically simulated classification accura-
cies of different quantization techniques without using device
data, shown by solid lines. Fig. 8(b) also includes adaptive
quantization applied directly to PCM data, shown by star
symbols. Low-W adaptive quantization boosts classification
accuracy by ~60% for 5-bit and ~75% for 4-bit precisions.

Table I summarizes the performance of 5-bit adaptive quan-
tization against 5-bit uniform quantization and ideal 64-bit
software simulation. A 5-bit (A.Q.) is the software simulation
result based on the 5-bit adaptive quantization without using
the device data, and PCM 5-bit (A.Q.) directly uses subsam-
pled device conductance from Fig. 8(a) to perform adaptive
quantization. Our results suggest that adaptive quantization

G= unan

Fig. 9. Weights at the beginning and the end of training of no quantiza-
tion (64-bit), 4-bit uniform, low-W, medium-W, and high-W quantization.

can enable the use of eNVM devices with limited conductance
levels.

To better understand the effect of different adaptive quanti-
zations on the weight development, we plot weight distribution
at the beginning (after presenting 100th sample to the network)
and the end of the training for no quantization (64-bit) along
with all four quantizers (4-bit) in Fig. 9. To achieve high
accuracy, the distribution of the trained weights should well
represent the input features of MNIST digits. In the MNIST
case, the distribution of the trained weights can be divided
into two distinct parts, namely, the foreground pixels (green,
yellow, and red; positive weights [0, 1]) and background
pixels (blue; negative weights [—1, 0]) as shown in Fig. 7(a).
Therefore, both positive and negative weights are important
for creating a contrast between foreground and background
pixels. As shown in Fig. 9, no quantization represents both
foreground and background pixels very well by distributing
the weights in [—1, 1]. Among the four quantizers, low-W and
medium-W adaptive quantization have weights distributed in a
similar range with no quantization case. Moreover, compared
to medium-W quantization, low-W quantization has more
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(c) Plot of cumulative distribution function of absolute values of SF for
our data and device data from [20] and [21].

positive weights and its maximum weight value is closer
to 1. This indicates that low-W provides a better contrast
between foreground and background pixels than medium-W.
Therefore, medium-W shows a slightly lower accuracy than
low-W [Fig. 8(b)] while low-W achieves a more accurate
representation of input features than other quantizers and
shows the highest accuracy [Fig. 8(b) and Table I]. How-
ever, for uniform and high-W quantization, the weights get
stuck at the negative range or positive range and do not
develop properly during training. Hence, the accuracy with
uniform or high-W quantizations is lower than low-W and
medium-W. It is important to note that the choice of different
quantizers depends on the network algorithm.

We have shown that adaptive quantization can effectively
boost the accuracy of low-precision devices. Furthermore,
we investigate its effects on the abruptness of conductance
change and asymmetry of weight update. Abruptness and
asymmetry are the two nonideal effects, which could be
impacted by different adaptive quantization schemes. Other
nonideal characteristics such as nonlinearity and variation of
PCM devices have been extensively studied in [12], [14], [15],
[17], and [18], previously.

First, we investigate the effectiveness of adaptive quanti-
zation on the abruptness of conductance change. As shown
in Fig. 8(b), PCM uniform quantization (cyan stars) performs
slightly worse than theoretically simulated uniform quantiza-
tion (purple line) because there are no conductance levels to
represent weights in LTD part due to the abruptness [Fig. 3(c)
callout window]. However, PCM low-W quantization (green
stars) achieves reasonable accuracy in low bit precision and
suffers less from the abruptness. This suggests that the low-W
quantization could help to mitigate the effect of the abruptness
in device conductance on accuracy.

In addition to abruptness, symmetry of the weight update
is another important consideration of the online train-
ing [17], [19]. Here, we characterize the symmetry of our
device using the Gaussian process regression (GPR) method
presented in [17]. We extract the noise-free curve for our
PCM data [Fig. 3(c)] as shown in Fig. 10(a). We vary the
ok value in the range between 0 and 50 [Fig. 10(b)] to find
the optimum value for GPR fitting (ox = 31.6). Based on
the fitting, we then characterize the symmetry factor (SF) of
our device. SF of our device is presented along with the SF
of device from [20] and [21] in Fig. 10(c). The device data
from [20] show good switching symmetry according to the

TABLE Il
CLASSIFICATION ACCURACY FOR ASYMMETRIC DEVICE

Precision Accuracy
Device [21] (~6-bit) 64.39 %
Device [21] 6-bit (A.Q.) 81.13 %

(a) Analog Synaptic Core (b) Digital Synaptic Core
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Fig. 11. (a) Analog synaptic core with pseudo-crossbar 1T1R array

and peripheral circuitry. Each eNVM represents one synapse. (b) Digital
synaptic core consists of TT1R eNVM array with peripheral circuitry.
n eNVM cells represent one synapse.

symmetry requirement specified in [19]. Our device is less
symmetric than the device from [20] but more symmetric than
the device from [21]. Therefore, we use the most asymmetric
device [21] to investigate the impact of adaptive quantization
on accuracy. We incorporate this device data (~6-bit) directly
into our simulation. In addition, we implement 6-bit low-W
quantization based on this data. Table II shows that the low-W
quantization improves the accuracy to 81.13% while the device
data only show 64.39% accuracy due to the asymmetry of the
weight update. These results suggest that adaptive quantization
could be helpful to improve the accuracy for the devices that
exhibit the asymmetric weight update.

V. CIRCUIT-LEVEL PERFORMANCE BENCHMARK

In order to investigate performance gains as a result of
adaptive quantization, we develop an SNN framework for
NeuroSim [12]. NeuroSim is a C++4 based simulator with
hierarchical organization starting from the experimental device
data and extending to array architectures with peripheral
circuit modules and algorithm level NN models. SNN -+
NeuroSim can simulate circuit-level performance metrics
(energy, area, latency, and leakage power) at runtime of online
learning, while providing instruction-accurate classification
accuracy for the SNN using experimental PCM data. For
the implementation of NN training with PCM arrays, synap-
tic weights can be represented in either analog formats or
binary (digital). For an analog implementation, the cells can
be arranged into a pseudo-crossbar array and synaptic weights
are stored in the form of multilevel conductances [Fig. 11(a)].
For a digital implementation, n binary 1T1R cells are grouped
to represent one synaptic weight [Fig. 11(b)] and each cell is
programmed to high- or low-conductance states.

We apply adaptive quantization to both analog and digital
approaches to reduce bit precision for in-memory online
learning. With SNN + NeuroSim, we simulate analog synaptic
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TABLE IlI
SUMMARY OF BENCHMARK RESULTS OF PCM DEVICE DATA AND DEVICE/ALGORITHIM
Co-DESIGN FOR ANALOG AND DIGITAL ARCHITECTURES (14 nm)

PCM Device Data (Fig. 3¢) Device/Algorithm Co-design
Analog Digital Analog 4-bit (A.Q.7) | Digital 4-bit(A.Q.%)
Bit precision 50 levels (~06) 6 16 levels (~4) 4
R,, 200kQ 200kQ 200kQ 200k
ON/OFF ratio 10 10 10 10
LTP pulse 1V-1.7V/10ns 1.2V/50ns 1V-1.7V/10ns 1.2V/50ns
LTD pulse 5.7V-7.3V/20ns 7V/50ns 5.7V-7.3V/20ns 7V/50ns
Accuracy* 85.12% 85.87% 86.11% 86.11%
Area(um?) 2990 9420.94 2990 6420
Latency* (s) 3.29 '-_ _12z2 0.22 32
Energy* (mJ) 5.36 2.97 249 1.89
Leakage Power (uW) 53.8 54.1 538 493
*for 3 training epochs (60k images/epoch) * A.Q.: adaptive quantization.
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Fig. 12.  (a) Energy consumption and (b) chip area versus technology 0 Q—0O— .
node (nm) for analog and digital synaptic cores. 103 104 105 108
Area(um?)
(3)102 T T T (b) 10° T T r
- EFo—Analog Fo—Analog] Fig. 14. Energy versus area (under different technology nodes:
E o~ 14, 22, 32, 45, 65, and 90 nm) for analog and digital synaptic cores.
= £
E 10" o 2 gk n/u/n—""’_‘n 3
o /o___—o/ x ) ) )
] W < _ [Figs. 12(b) and 13(b)]. To make a fair comparison between
N - , analog and digital synaptic core, we plot energy versus
il 4 5 6 7 8 W 4 5 6 7 8 area (under different technology nodes) for both cases in
Bit Precision Bit Precision Fig. 14. As can be seen in Fig. 14, analog occupies less
Fig. 13. (a) Energy consumption and (b) chip area versus bit precision ~area while consumes more energy than digital. As shown

for analog and digital synaptic cores.

core [Fig. 11(a)] mapping network weights into discrete con-
ductance levels of the PCM device data [Fig. 3(c)] and digital
synaptic core [Fig. 11(b)] using binary states of memory cells.
Figs. 12 and 13 show total energy consumption and chip area
for analog and digital architectures as a function of technology
node and bit precision, respectively. Note that, the technology
node used in our simulation refers to the transistors of the
peripheral circuit.

The analog implementation consumes more energy than
the digital [Figs. 12(a) and 13(a)] mainly due to the volt-
age levels used in the write operation of pseudo-crossbar
array [Fig. 11(a)] [12]. On the other hand, analog imple-
mentation always occupies less chip area than digital imple-
mentation because a smaller number of devices are used

in Fig. 12(a) and (b), energy and area increase with the
technology node since transistors for larger technology require
higher Vyq and larger area. Fig. 13(a) shows that energy con-
sumption continues increasing as the bit precision increases,
indicating that it is critical to reduce bit precision to sig-
nificantly improve the energy efficiency. Fig. 13(b) shows
that the total neurosynaptic core area does not change for
the analog implementation with different bit precisions since
single devices are used for all cases. On the other hand, the use
of higher bit precision for the digital case increases the chip
area. Therefore, adaptive quantization can help to reduce bit
precision while substantially decreasing energy consumption,
chip area, and latency.

Table III summarizes the benchmarking results for online
learning with SNN for analog and digital architectures using
PCM device data (left two columns) and device-algorithm
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co-design approach using adaptive quantization (right two
columns). The best performance metrics are highlighted in
yellow and blue. Our device-algorithm co-design approach
applies 4-bit low-W quantizers, which allocate more levels
for negative weights. We use the simulation results for 14-nm
technology node in Table III. As can be seen in analog (first
column) and analog 4-bit (third column) cases in Table III,
adaptive quantization allows the use of 16 conductance levels
to reduce energy and latency while achieving better accuracy
(86.11%). As shown in digital (second column) and digital
4-bit (fourth column) cases in Table III, 4-bit precision enabled
by adaptive quantization achieves a ~tenfold decrease in
latency (red dashed boxes), while also decreasing the energy
consumption and chip area, and providing a higher classifica-
tion accuracy. For both PCM device data and device/algorithm
co-design cases, our benchmarking results suggest that analog
implementation provides better latency than the digital while
digital has lower energy consumption. However, it is important
to note that the use of analog or digital implementation to
achieve the best performance strongly depends on the device
characteristics and programing pulse parameters. Adaptive
quantization enables both lower energy and shorter latency.
Particularly for digital implementation, adaptive quantization
provides a substantial decrease in latency by enabling 4-bit
precision.

VI. CONCLUSION

This paper demonstrated that accuracy loss due to limited
conductance levels can be compensated by adaptive quantiza-
tion. We also showed that abruptness and asymmetry in device
conductance can be mitigated by the adaptive quantization.
Benchmarking results with our SNN + NeuroSim platform
showed that digital PCM architecture achieves lower energy
consumption than the analog one, while the analog PCM
is preferred for smaller chip area and lower latency. Our
device-algorithm co-design solutions suggested that energy
consumption, chip area, and latency can be significantly
reduced by lowering bit precision with adaptive quantization
and engineering the eNVM characteristics.
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