
Das et al. BMC Genomics 2019, 20(Suppl 11):948

https://doi.org/10.1186/s12864-019-6286-9

RESEARCH Open Access

A hybrid and scalable error correction
algorithm for indel and substitution errors of
long reads
Arghya Kusum Das1*, Sayan Goswami2, Kisung Lee2 and Seung-Jong Park2

From IEEE International Conference on Bioinformatics and Biomedicine 2018

Madrid, Spain. 3-6 December 2018

Abstract

Background: Long-read sequencing has shown the promises to overcome the short length limitations of
second-generation sequencing by providing more complete assembly. However, the computation of the long
sequencing reads is challenged by their higher error rates (e.g., 13% vs. 1%) and higher cost ($0.3 vs. $0.03 per Mbp)

compared to the short reads.

Methods: In this paper, we present a new hybrid error correction tool, called ParLECH (Parallel Long-read Error
Correction using Hybrid methodology). The error correction algorithm of ParLECH is distributed in nature and

efficiently utilizes the k-mer coverage information of high throughput Illumina short-read sequences to rectify the
PacBio long-read sequences.
ParLECH first constructs a de Bruijn graph from the short reads, and then replaces the indel error regions of the long

reads with their corresponding widest path (or maximummin-coverage path) in the short read-based de Bruijn graph.
ParLECH then utilizes the k-mer coverage information of the short reads to divide each long read into a sequence of
low and high coverage regions, followed by a majority voting to rectify each substituted error base.

Results: ParLECH outperforms latest state-of-the-art hybrid error correction methods on real PacBio datasets. Our
experimental evaluation results demonstrate that ParLECH can correct large-scale real-world datasets in an accurate
and scalable manner. ParLECH can correct the indel errors of human genome PacBio long reads (312 GB) with Illumina

short reads (452 GB) in less than 29 h using 128 compute nodes. ParLECH can align more than 92% bases of an E. coli

PacBio dataset with the reference genome, proving its accuracy.

Conclusion: ParLECH can scale to over terabytes of sequencing data using hundreds of computing nodes. The
proposed hybrid error correction methodology is novel and rectifies both indel and substitution errors present in the
original long reads or newly introduced by the short reads.

Keywords: Hybrid error correction, PacBio, Illumina, Hadoop, NoSQL

*Correspondence: dasa@uwplatt.edu
1Department of Computer Science and Software Engineering, University of
Wisconsin at Platteville, Platteville, WI, USA
Full list of author information is available at the end of the article

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Kisung Lee

Das et al. BMC Genomics 2019, 20(Suppl 11):948 Page 2 of 15

Background
The rapid development of genome sequencing technolo-

gies has become the major driving force for genomic

discoveries. The second-generation sequencing technolo-

gies (e.g., Illumina, Ion Torrent) have been providing

researchers with the required throughput at significantly

low cost ($0.03/million-bases), which enabled the discov-

ery of many new species and variants. Although they

are being widely utilized for understanding the com-

plex phenotypes, they are typically incapable of resolving

long repetitive elements, common in various genomes

(e.g., eukaryotic genomes), because of the short read

lengths [1].

To address the issues with the short read lengths, third-

generation sequencing technologies (e.g., PacBio, Oxford

Nanopore) have started emerging recently. By producing

long reads greater than 10 kbp, these third-generation

sequencing platforms provide researchers with signifi-

cantly less fragmented assembly and the promise of a

much better downstream analysis. However, the produc-

tion costs of these long sequences are almost 10 times

more expensive than those of the short reads, and the

analysis of these long reads is severely constrained by their

higher error rate.

Motivated by this, we develop ParLECH (Parallel

Long-read Error Correction using Hybrid methodology).

ParLECH uses the power of MapReduce and distributed

NoSQL to scale with terabytes of sequencing data [2].

Utilizing the power of these big data programming mod-

els, we develop fully distributed algorithms to replace both

the indel and substitution errors of long reads. To rectify

the indel errors, we first create a de Bruijn graph from the

Illumina short reads. The indel errors of the long reads are

then replaced with the widest path algorithm that maxi-

mizes the minimum k-mer coverage between two vertices

in the de Bruijn graph. To correct the substitution errors,

we divide the long read into a series of low and high cover-

age regions by utilizing the median statistics of the k-mer

coverage information of the Illumina short reads. The sub-

stituted error bases are then replaced separately in those

low and high coverage regions.

ParLECH can achieve higher accuracy and scalabil-

ity over existing error correction tools. For example,

ParLECH successfully aligns 95% of E. Coli long reads,

maintaining larger N50 compared to the existing tools.We

demonstrate the scalability of ParLECH by correcting a

312GB human genome PacBio dataset, with leveraging a

452 GB Illumina dataset (64x coverage), on 128 nodes in

less than 29 h.

Related work

The second-generation sequencing platforms produce

short reads at an error rate of 1-2% [3] in which most

of the errors are substitution errors. However, the low

cost of production results in high coverage of data,

which enables self-correction of the errors without using

any reference genome. Utilizing the basic fact that the

k-mers resulting from an error base will have significantly

lower coverage compared to the actual k-mers, many error

correction tools have been proposed such as Quake [4],

Reptile [5], Hammer [6], RACER [7], Coral [8], Lighter

[9], Musket [10], Shrec [11], DecGPU [12], Echo [13], and

ParSECH [14].

Unlike second-generation sequencing platforms, the

third-generation sequencing platforms, such as PacBio

and Oxford Nanopore sequencers, produce long reads

where indel (insertion/deletion) errors are dominant [1].

Therefore, the error correction tools designed for sub-

stitution errors in short reads cannot produce accurate

results for long reads. However, it is common to leverage

the relatively lower error rate of the short-read sequences

to improve the quality of long reads.

While improving the quality of long reads, these hybrid

error correction tools also reduce the cost of the pipeline

by utilizing the complementary low-cost and high-quality

short reads. LoRDEC [15], Jabba [16], Proovread [17],

PacBioToCA [18], LSC [19], and ColorMap [20] are a

few examples of hybrid error correction tools. LoRDEC

[15] and Jabba [16] use a de Bruijn graph (DBG)-based

methodology for error correction. Both the tools build

the DBG from Illumina short reads. LoRDEC then cor-

rects the error regions in long reads through the local

assembly on the DBG while Jabba uses different sizes

of k-mer iteratively to polish the unaligned regions of

the long reads. Some hybrid error correction tools use

alignment-based approaches for correcting the long reads.

For example, PacBioToCA [18] and LSC [19] first map

the short reads to the long reads to create an over-

lap graph. The long reads are then corrected through a

consensus-based algorithm. Proovread [17] reaches the

consensus through the iterative alignment procedures

that increase the sensitivity of the long reads incremen-

tally in each iteration. ColorMap [20] keeps information

of consensual dissimilarity on each edge of the overlap

graph and then utilizes the Dijkstra’s shortest path algo-

rithm to rectify the indel errors. Although these tools

produce accurate results in terms of successful align-

ments, their error correction process is lossy in nature,

which reduces the coverage of the resultant data set. For

example, Jabba, PacBioToCA, and Proovread use aggres-

sive trimming of the error regions of the long reads

instead of correcting them, losing a huge number of bases

after the correction [21] and thereby limiting the prac-

tical use of the resultant data sets. Furthermore, these

tools use a stand-alone methodology to improve the base

quality of the long reads, which suffers from scalability

issues that limit their practical adoption for large-scale

genomes.

Das et al. BMC Genomics 2019, 20(Suppl 11):948 Page 3 of 15

On the contrary, ParLECH is distributed in nature, and

it can scale to terabytes of sequencing data on hundreds

of compute nodes. ParLECH utilizes the DBG for error

correction like LoRDEC. However, to improve the error

correction accuracy, we propose a widest path algorithm

that maximizes the minimum k-mer coverage between

two vertices of the DBG. By utilizing the k-mer cover-

age information during the local assembly on the DBG,

ParLECH is capable to produce more accurate results

than LoRDEC. Unlike Jabba, PacBioToCA, and Proovread,

ParLECH does not use aggressive trimming to avoid lossy

correction. ParLECH further improves the base qual-

ity instead by correcting the substitution errors either

present in the original long reads or newly introduced

by the short reads during the hybrid correction of the

indel errors. Although there are several tools to rectify

substitution errors for second-generation sequences (e.g.,

[4, 5, 9, 13]), this phase is often overlooked in the error

correction tools developed for long reads. However, this

phase is important for hybrid error correction because a

significant number of substitution errors are introduced

by the Illumina reads. Existing pipelines depend on pol-

ishing tools, such as Pilon [22] and Quiver [23], to further

improve the quality of the corrected long reads. Unlike the

distributed error correction pipeline of ParLECH, these

polishing tools are stand-alone and cannot scale with large

genomes.

LorMA [24], CONSENT [25], and Canu [26] are a few

self-error correction tools that utilize long reads only

to rectify the errors in them. These tools can automat-

ically bypass the substitution errors of the short reads

and are capable to produce accurate results. However,

the sequencing cost per base for long reads is extremely

high, and so it would be prohibitive to get long reads with

high coverage that is essential for error correction without

reference genomes. Although Canu reduces the coverage

requirement to half of that of LorMA and CONSENT by

using the tf-idf weighting scheme for long reads, almost

10 times more expensive cost of PacBio sequences is still

a major obstacle to utilizing it for large genomes. Because

of this practical limitation, we do not report the accuracy

of the these self-error correction tools in this paper.

Methods
Rationale behind the indel error correction

Since we leverage the lower error rate of Illumina reads

to correct the PacBio indel errors, let us first describe

an error model for Illumina sequences and its conse-

quence on the DBG constructed from these reads. We

first observe that k-mers, DNA words of a fixed length

k, tend to have similar abundances within a read. This

is a well-known property of k-mers that stem from each

read originating from a single source molecule of DNA

[27]. Let us consider two reads R1 and R2 representing the

same region of the genome, and R1 has one error base.

Assuming that the k-mers between the position posbegin
and posend represent an error region in R1 where error

base is at position poserror =
posend+posbegin

2 , we can make

the following claim.

Claim 1: The coverage of at least one k-mer of R1 in the

region between posbegin and posend is lower than the cov-

erage of any k-mer in the same region of R2. A brief the-

oretical rationale of the claim can be found in Additional

file 1. Figure 1 shows the rationale behind the claim.

Rationale behind the substitution error correction

After correcting the indel errors with the Illumina reads,

a substantial number of substitution errors are introduced

in the PacBio reads as they dominate in the Illumina short-

read sequences. To rectify those errors, we first divide

each PacBio long read into smaller subregions like short

reads. Next, we classify only those subregions as errors

where most of the k-mers have high coverage, and only a

few low-coverage k-mers exist as outliers.

Specifically, we use Pearson’s skew coefficient (or

median skew coefficient) to classify the true and error sub-

regions. Figure 2 shows the histogram of three different

types of subregions in a genomic dataset. Figure 2a has

similar numbers of low- and high-coverage k-mers, mak-

ing the skewness of this subregion almost zero. Hence, it is

not considered as error. Figure 2b is also classified as true

because the subregion is mostly populated with the low-

coverage k-mers. Figure 2c is classified as error because

the subregion is largely skewed towards the high-coverage

k-mers, and only a few low-coverage k-mers exist as out-

liers. Existing substitution error correction tools do not

analyze the coverage of neighboring k-mers and often

classify the true yet low-coverage k-mers (e.g., Fig. 2b as

errors.

Another major advantage of our median-basedmethod-

ology is that the accuracy of the method has a lower

dependency on the value of k. Median values are robust

because, for a relatively small value of k, a few substitution

errors will not alter the median k-mer abundance of the

read [28]. However, these errors will increase the skewness

of the read. The robustness of the median values in the

presence of sequencing errors is shown mathematically in

the Additional file 1.

Big data framework in the context of genomic error

correction

Error correction for sequencing data is not only data-

and compute-intensive but also search-intensive because

the size of the k-mer spectrum increases almost expo-

nentially with the increasing value of k (i.e., up to 4k

unique k-mers), and we need to search in the huge search

space. For example, a large genome with 1 million reads

of length 5000 bp involves more than 5 billion searches

Das et al. BMC Genomics 2019, 20(Suppl 11):948 Page 4 of 15

Fig. 1Widest Path Example: Select correct path for high coverage error k-mers

in a set of almost 10 billion unique k-mers. Since existing

hybrid error correction tools are not designed for large-

scale genome sequence data such as human genomes, we

design ParLECH as a scalable and distributed framework

equipped with Hadoop and Hazelcast.

Hadoop is an open-source abstraction of Google’s

MapReduce, which is a fully parallel and distributed

framework for large-scale computation. It reads the data

from a distributed file system called Hadoop Distributed

File System (HDFS) in small subsets. In the Map phase,

a Map function executes on each subset, producing the

output in the form of key-value pairs. These intermedi-

ate key-value pairs are then grouped based on the unique

keys. Finally, a Reduce function executes on each group,

producing the final output on HDFS.

Hazelcast [29] is a NoSQL database, which stores large-

scale data in the distributedmemory using a key-value for-

mat. Hazelcast uses MummurHash to distribute the data

evenly over multiple nodes and to reduce the collision.

The data can be stored and retrieved fromHazelcast using

Fig. 2 Skewness in k-mer coverage statistics

Das et al. BMC Genomics 2019, 20(Suppl 11):948 Page 5 of 15

hash table functions (such as get and put) in O(1) time.

Multiple Map and Reduce functions can access this hash

table simultaneously and independently, improving the

search performance of ParLECH.

Error correction pipeline

Figure 3 shows the indel error correction pipeline of

ParLECH. It consists of three phases: 1) constructing a

de Bruijn graph, 2) locating errors in long reads, and 3)

correcting the errors. We store the raw sequencing reads

in the HDFS while Hazelcast is used to store the de Bruijn

graph created from the Illumina short reads. We develop

the graph construction algorithm following the MapRe-

duce programming model and use Hadoop for this pur-

pose. In the subsequent phases, we use both Hadoop and

Hazelcast to locate and correct the indel errors. Finally,

we write the indel error-corrected reads into HDFS. We

describe each phase in detail in the subsequent sections.

ParLECH has three major steps for hybrid correction

of indel errors as shown in Fig. 4. In the first step, we

construct a DBG from the Illumina short reads with the

coverage information of each k-mer stored in each vertex.

In the second step, we partition each PacBio long read

into a sequence of strong and weak regions (alternatively,

correct and error regions respectively) based on the

k-mer coverage information stored in the DBG. We select

the right and left boundary k-mers of two consecutive

strong regions as source and destination vertices respec-

tively in the DBG. Finally, in the third step, we replace

each weak region (i.e., indel error region) of the long

read between those two boundary k-mers with the corre-

sponding widest path in the DBG, which maximizes the

minimum k-mer coverage between those two vertices.

Figure 5 shows the substitution error correction pipeline

of ParLECH. It has two different phases: 1) locating errors

and 2) correcting errors. Like the indel error correction,

the computation of phase is fully distributed with Hadoop.

These Hadoop-based algorithms work on top of the indel

error-corrected reads that were generated in the last phase

and stored in HDFS. The same k-mer spectrum that was

generated from the Illumina short reads and stored in

Hazelcast is used to correct the substitution errors as well.

De bruijn graph construction and counting k-mer

Algorithm 1 explains the MapReduce algorithm for de

Bruijn graph construction, and Fig. 6 shows the working

of the algorithm. The map function scans each read of

the data set and emits each k-mer as an intermediate key

and its previous and next k-mer as the value. The inter-

mediate key represents a vertex in the de Bruijn graph

whereas the previous and the next k-mers in the interme-

diate value represent an incoming edge and an outgoing

edge respectively. An associated count of occurrence (1)

is also emitted as a part of the intermediate value. After

Algorithm 1 de Bruijn graph construction

1: procedureMAP(read)
2: for each shortread in reads do
3: for each kmer in shortread do
4: EmitIntermediate(kmer, "previousKmer + nex-

tKmer + 1") //1 emitted as intermediate count
5: end for
6: end for
7: end procedure
8: procedure REDUCE(key, values)
9: //key : kmer

10: //value : "previousKmer + nextKmer + 1"
11: for each v in values do
12: incomingEdges += extractPreviousKmer(v)
13: outgoingEdges += extractNextKmer(v)
14: count += int(1)
15: end for
16: end procedure

Fig. 3 Indel error correction

Das et al. BMC Genomics 2019, 20(Suppl 11):948 Page 6 of 15

Fig. 4 Error correction steps

the map function completes, the shuffle phase partitions

these intermediate key-value pairs on the basis of the

intermediate key (the k-mer). Finally, the reduce function

accumulates all the previous k-mers and next k-mers cor-

responding to the key as the incoming and outgoing edges

respectively. The same reduce function also sums together

all the intermediate counts (i.e., 1) emitted for that partic-

ular k-mer. In the end of the reduce function, the entire

graph structure and the count for each k-mer is stored

in the NoSQL database of Hazelcast using Hazelcast’s put

Fig. 5 Substitution error correction

Das et al. BMC Genomics 2019, 20(Suppl 11):948 Page 7 of 15

Fig. 6 De Bruijn graph construction and k-mer count

method. For improved performance, we emit only a single

nucleotide character (i.e.,A,T,G, orC instead of the entire

k-mer) to store the incoming and outgoing edges. The

actual k-mer can be obtained by prepending/appending

that character with the k − 1 prefix/suffix of the vertex

k-mer.

Locating the indel errors of long read

To locate the errors in the PacBio long reads, ParLECH

uses the k-mer coverage information from the de Bruijn

graph stored in Hazelcast. The entire process is designed

in an embarrassingly parallel fashion and developed as

a Hadoop Map-only job. Each of the map tasks scans

through each of the PacBio reads and generates the k-

mers with the same value of k as in the de Bruijn graph.

Then, for each of those k-mers, we search the coverage in

the graph. If the coverage falls below a predefined thresh-

old, we mark it as weak indicating an indel error in the

long read. It is possible to find more than one consecu-

tive errors in a long read. In that case, we mark the entire

region as weak. If the coverage is above the predefined

threshold, we denote the region as strong or correct. To

rectify the weak region, ParLECH uses the widest path

algorithm described in the next subsection.

Correcting the indel errors

Like locating the errors, our correction algorithm is also

embarrassingly parallel and developed as a Hadoop Map-

only job. Like LoRDEC, we use the pair of strong k-mers

that enclose a weak region of a long read as the source

and destination vertices in the DBG. Any path in the DBG

between those two vertices denotes a sequence that can be

assembled from the short reads.We implement the widest

path algorithm for this local assembly. The widest path

algorithm maximizes the minimum k-mer coverage of a

path in the DBG. We use the widest path based on our

assumption that the probability of having the k-mer with

the minimum coverage is higher in a path generated from

a read with sequencing errors than a path generated from

a read without sequencing errors for the same region in

a genome. In other words, even if there are some k-mers

with high coverage in a path, it is highly likely that the path

includes some k-mer with low coverage that will be an

obstacle to being selected as the widest path, as illustrated

in Fig. 1.

Therefore, ParLECH is equipped with the widest path

technique to find a more accurate sequence to correct

the weak region in the long read. Algorithm 2 shows our

widest path algorithm implemented in ParLECH, a slight

Das et al. BMC Genomics 2019, 20(Suppl 11):948 Page 8 of 15

Algorithm 2Widest (maximum min-coverage) path

1: procedure MODIFIEDDIJKSTRA(Graph, source, destina-
tion)

2: for (each vertex v in Graph) do
3: width[v] := -infinity
4: previous[v] := undefined
5: end for
6: width[source] := infinity
7: Q := the set of all nodes in Graph
8: while (Q is not empty AND destination is not reached)

do
9: u := vertex in Q with largest width in width[]

10: remove u from Q
11: if (width[u] = -infinity) then
12: break
13: end if
14: for (each neighbor v of u) do
15: alt := max(width[v], min(width[u], widthBe-

tween(u, v)))
16: if alt > width[v]: then
17: width[v] := alt
18: previous[v] := u
19: end if
20: end for
21: end while
22: end procedure

modification of the Dijkstra’s shortest path algorithm

using a priority queue that leads to the time complexity

of O(E logV). Instead of computing the shortest paths,

ParLECH traverses the graph and updates the width of

each path from the source vertex as the minimum width

of any edge on the path (line 15).

Locating the substitution error

Algorithm 3 shows the process to locate substitution base

errors. To locate the substitution errors in the long reads,

we first divided the long reads into shorter fragments. As

the k-mers in a smaller subregion tend to have similar

abundances [27], this will divide the longer reads into a

sequence of high- and low-coverage fragments. If a frag-

ment belongs to a low-coverage area of the genome, most

of the k-mers in that fragment are expected to have low

coverage. Otherwise, the k-mers are expected to have high

coverage. This methodology enables ParLECH to bet-

ter distinguish between true-yet-low-coverage and error-

yet-high-coverage k-mers. By default, ParLECH uses the

length of the short reads as the length of the shorter

fragments. However, it can be easily modified with a user-

defined length. The last fragment of the long reads can

have a length shorter than default (or user-defined) length.

This fragment is always ignored for correcting the substi-

tution error as it is considered insufficient to gather any

statistics.

After dividing the long reads into shorter fragments,

we calculate the Pearson’s skew coefficient (mentioned

as skewThreshold in Algorithm 3) of the k-mer cover-

age of each fragment as a threshold to classify those

Algorithm 3 Locate substitution errors based on k-mer

coverage skew

1: procedure LOCATEERROR(longRead, threshold)
2: subregions[] ← longRead.tokenize(len); //len equals

the length of a short read by default
3: for each subregion in subregions[] do
4: skewThreshold ←

(meanCoverage(subregion)−medianCoverage(subregion))

stdevOfCoverage(subregion)

5: if skewThreshold ≤ threshold then
6: trueSubregions[] ← subregion
7: else
8: errorSubregions[] ← subregion
9: end if

10: end for
11: for each errorSubregion ∈ errorSubregions[] do
12: if medianCoverage(subregion) ≥ medianCover-

age(kmerSpectrumShortReads) then
13: locateErrorBases(errorSubregion,

highCovThreshold)
14: else
15: locateErrorBases(errorSubregion,

lowCovThreshold)
16: end if
17: end for
18: end procedure
19: function LOCATEERRORSINREAD(errorSubregion, cov-

Threshold)
20: for each kmer ∈ errorSubregion do
21: if k-merCoverage ≤ covThresshold then
22: errorkmers[] ← kmer
23: end if
24: end for
25: errorBases ← getSubSection(errorKmers[])
26: end function

fragments as true or error. If the skew coefficient of the

fragment lies in a certain interval, the fragment is classi-

fied as a true fragment without any error. Furthermore,

the fragments with mostly low-coverage k-mers are also

ignored. All the other fragments (i.e., the fragments with

highly skewed towards high-coverage k-mers) are clas-

sified as erroneous. Through this classification, all the

low-coverage areas of the genome will be considered as

correct even if they have low-coverage k-mers but almost

similar coverage as that of the neighboring k-mers.

After classifying the fragments as true and error, we

divide all the error fragments as high and low coverage.

If the median k-mer coverage of a fragment is greater

than the median coverage of the entire k-mer spectrum,

the fragment is classified as high coverage. Otherwise, the

fragment belongs to a low-coverage area. ParLECH uses

a pattern of true and error k-mers to localize the errors

and searches for the set of corrections with a maximum

likelihood that make all k-mers true.

Correcting the substitution error

To rectify the substitution errors, ParLECH uses a major-

ity voting algorithm similar to that of Quake [4]. However,

we have two major differences. First, ParLECH’s majority

voting algorithm is fully distributed and can scale over

Das et al. BMC Genomics 2019, 20(Suppl 11):948 Page 9 of 15

hundreds of nodes. Second, unlike Quake, ParLECH uses

different thresholds for the low and high coverage area of

the genome to improve the accuracy. For each error base

detected in the previous phase, ParLECH substitutes the

base with all the different nucleotide characters (i.e., A, T,

G, and C) and calculates the coverage of all the k-mers

with that base. Finally, the error base is replaced with the

one such that all those k-mers with that base exceeds or

equals the specified threshold for that area.

Results
In this section, we show the experimental results of

ParLECH using various real-world sequence datasets.

Datasets

We evaluate ParLECH with respect to four real data sets

including E. coli, yeast, fruit fly, and human genome. The

details of the data set are summarized in Table 1. The first

three of them are relatively small-sized genomes. We use

them to compare the accuracy of ParLECH with the exist-

ing hybrid error correction tools such as LoRDEC, Jabba,

and Proovread. These data sets are also used to analyze

the scalability and compare other resource consumption

statistics such as memory requirement and CPU-Hour.

The fourth one is the largest among all. It is a large

human genome data set that consists of almost 764 GB

of sequencing reads including both Illumina and PacBio

sequences. We use it to showcase the scaling capability of

ParLECH with hundreds of GBs of sequencing reads over

hundreds of compute nodes. In our experiments, other

existing tools could not produce the result for the data set.

Computing environment

To evaluate ParLECH, we use SuperMic [30] HPC cluster,

and Table 2 summarizes its configuration. The maximum

number of compute nodes we can use for a single job is

128. Each node has 20 cores, 64 GB main memory, and

one 250 GB hard disk drive (HDD). Note that the main

bottleneck for our Hadoop jobs running on top of disk-

based HDFS is the I/O throughput because each node is

equipped with only one HDD. We expect that the perfor-

mance of ParLECH can be significantly improved by using

multiple HDDs per node and/or SSD. Our previous work

[31–33] demonstrates the effects of various computing

environments for large-scale data processing.

Table 2 Experimental environment

Maximum #nodes 128

Processor Intel IvyBridge Xeon

#cores per node 20

DRAM per node 64 GB

Disk per node 250 GB hard disk drive

Network 56 Gbps InfiniBand

Accuracy metrics

We evaluate the accuracy of ParLECH with respect to

three different metrics as follows: 1) % Aligned reads

and 2) % Aligned bases: These accuracy metrics indicate

how well the corrected long reads are aligned to the ref-

erence genome. We report the %alignment both in terms

of the total number of reads as well as the total bases

present in the data set. For all the data sets other than

the human genome, we use BLASR [34] to align the long

reads to the reference genome as it reports longer align-

ments by bridging the long indel error. However, for the

large human genome, we use BWA-mem [35] to get the

alignment results quickly.

2) N50 statistics: It is also important to preserve input

read depth in the corrected data set. Shorter reads and/or

reduced depth may show better alignment but may have

a negative impact on downstream analyses. Hence, we

measure the N50 statistics of the data sets to indicate the

discard or trimming of errors in the long reads instead of

rectifying them.

3) Gain:We also use the gainmetric [5] to measure the

fraction of effectively corrected errors by ParLECH. The

gain is defined as

Gain =
TP − FP

TP + FN
(1)

where TP (true-positive) is the number of error bases

that are successfully corrected, FP (false-positive) is the

number of true bases that are wrongly changed, and FN

(false-negative) is the number of error bases that are

falsely detected as correct.

To measure TP, FP, and FN, we follow the procedure

described in [36]. Let r be an original read and rc be the

read after correction. We derive the set of real sequenc-

Table 1 Datasets

Data
Accn. # #Reads Data size (GB) Read length %Reads aligned

PacBio Illumina PacBio Illumina PacBio Illumina PacBio (Avg) Illumina PacBio Illumina

E. coli DevNet ERR022075 282394 45440200 1.032 13.50 1120 101 78.97 99.44

Yeast DevNet SRR567755 2315594 4503422 0.53 1.20 5874 101 82.12 93.75

Fruit fly BergmanLab ERX645969 6701498 179363706 55 59 4328 101 51.14 95.56

Human DevNet SRX016231 23897260 1420689270 312 452 6587 101 72.3 79.60

Das et al. BMC Genomics 2019, 20(Suppl 11):948 Page 10 of 15

ing errors Em by mapping r to the reference genome

and recording differences. Then, we measure Er , the set

of errors remaining in rc, by applying global alignment

between rc and the genomic region where r was mapped

to and recording the differences in the alignment. Finally,

we calculate TP = |Em \ Er|, FP = |Er \ Em|, and FN =

|Er ∩ Em|.

Comparison with existing tools

Table 3 compares the accuracy of ParLECH with that of

LoRDEC, Jabba, and Proovread in terms of the percentage

of aligned reads and aligned bases. Table 4, on the other

hand, compares the accuracy in terms of gain.Wemeasure

the accuracy metrics using BLASR by running multiple

instances of BLASR in parallel for efficiently processing

large datasets.

The results demonstrate that ParLECH can rectify the

indel errors with significantly more accuracy comparing

to LoRDEC both in terms of the aligned bases and gain.

Like LoRDEC, ParLECH does not correct the long reads

in which there is no strong k-mer. However, ParLECH

searches strong k-mers in all reads regardless of their

length while LoRDEC filters out reads whose length is less

than a threshold.

Although Jabba attains significantly higher alignment

accuracy compared to ParLECH, this high alignment

accuracy is attained at the cost of producing reduced

depths. This is because, unlike ParLECH, Jabba chooses to

Table 4 Accuracy comparison (Gain)

TP FP FN %Gain

E. coli
LoRDEC 31264830 330659 4230385 87.15

Jabba 10386868 105445 244608 96.7

Proovread 23541209 318191 3942940 84.49

ParLECH (Indel) 33229635 355464 3275190 90.05

ParLECH (Indel+Subst) 34521649 250129 2088511 93.61

Yeast
LoRDEC 322660270 8989628 62594234 81.42

Jabba 171200961 3004132 9543906 93.06

Proovread 313517992 8734915 60820684 83.21

ParLECH (Indel) 355708411 20037769 51642375 82.40

ParLECH (Indel+Subst) 368206322 19556218 39626015 85.49

Fruit fly
LoRDEC 732799376 34190591 84891209 85.43

Jabba 188817493 18141254 45042597 93.2

Proovread 613007402 30867421 72123053 84.96

ParLECH (Indel) 785735162 37126377 97826995 84.73

ParLECH (Indel+Subst) 799834035 34065158 86789341 86.37

The best results are shown in bold faces

discard several of the uncorrected reads instead of rectify-

ing them. As shown in Table 3, the total number of reads in

the resulting error-corrected dataset is significantly higher

in ParLECH comparing to Jabba.

Proovread attains almost similar alignment accuracy

comparing to ParLECH. However, it trims many of the

Table 3 Accuracy comparison (Alignments)

Data Methodology #Reads #Bases N50 #Aligned Reads #Aligned bases %Aligned reads %Aligned bases

E. coli Original 282394 316367409 3414 223017 237497013 78.97 75.07

LoRDEC 282394 307987923 3422 247227 266373078 87.55 86.49

Jabba 149836 149322524 2517 148293 141563938 98.97 94.80

Proovread 263206 284871906 1222 241948 246138387 91.92 86.40

ParLECH (Indel) 282394 309367145 3394 264574 285070391 93.69 92.15

ParLECH (Indel+Subst) 282394 309367145 3394 264720 295438268 93.74 95.50

Yeast Original 231594 1360457697 2990 190184 1206524663 82.12 88.69

LoRDEC 231594 1345253694 2982 196669 1171490123 84.92 87.08

Jabba 152882 634947441 2173 151359 634732955 99.02 99.09

Proovread 225032 1307137185 1693 211323 1100350212 93.90 84.18

ParLECH (Indel) 231594 1389446261 2994 199332 1240945939 86.07 89.31

ParLECH (Indel+Subst) 231594 1389446261 2994 201857 1254987596 87.16 90.32

Fruit fly Original 6701498 29007475325 15154 3427146 13355041639 51.14 46.04

LoRDEC 6701498 30025673204 15154 3654326 14919815143 54.53 49.69

Jabba 4423855 10820828565 14302 3921032 9455816742 88.63 87.38

Proovread 6511617 20174923756 8603 5450784 14497076095 83.70 71.86

ParLECH (Indel) 6701498 30117416348 15154 4417627 18799138439 65.92 62.42

ParLECH (Indel+Subst) 6701498 30117416348 15154 4557627 19983756932 68.01 66.35

The best results are shown in bold faces

Das et al. BMC Genomics 2019, 20(Suppl 11):948 Page 11 of 15

error regions in each read and breaks an erroneous longer

read at the error region, producing multiple shorter reads.

Consequently, Proovread produces significantly lower

N50 compared to ParLECH.

We have further improved the accuracy by correcting

the substitution errors of the long reads. This phase is not

present in LoRDEC. However, it has a substantial impact

on improving the quality of the data. As shown in Tables 3

and 4, by correcting the substitution errors, ParLECH

improve the quality of the dataset by 1 to 3% from the

indel error-corrected output both in terms of alignment

and gain.

Scalability

Figure 7 demonstrates the scalability of different phases of

ParLECH. Figure 7a demonstrates the scalability of each

phase of ParLECH’s indel error correction pipeline for the

fruit fly dataset. The results show that the processing time

of all three phases (i.e., constructing a de Bruijn graph,

locating errors in long reads, and correcting errors in long

reads) improves almost linearly with the increasing num-

ber of compute nodes. Therefore, the overall execution

time of ParLECH also shows the almost linear scalability

as we add more compute nodes.

Figure 7b demonstrates the scalability of different

phases of ParLECH’s substitution error correction

pipeline for the same fruit fly dataset. Like the indel error

correction phases, these phases are also linearly scalable

with the increasing number of nodes.

Figure 8 compares ParLECH with existing error cor-

rection tools. As shown in Fig. 8a, on a single node

for the same E. coli data, ParLECH performs almost 1.5

times faster than Jabba and almost 7.5 times faster than

Proovread. On a single node, LoRDEC shows slightly

better (1.2 times faster) performance than ParLECH

because both the tools have similar asymptotic complexity

(O(E log v)) whereas ParLECH has some distributed com-

puting overhead. However, utilizing the power of Hadoop

and Hazelcast, the embarrassingly parallel algorithm of

ParLECH can be easily distributed over multiple nodes

and eventually outperform LoRDEC by several magni-

tudes, which is not designed for distributed computing.

Even though the correction algorithm of LoRDEC can

work independently on each of the long reads, the com-

putation cannot be distributed because of the absence of a

proper scheduler.

Figure 8b compares the substitution error correction

pipeline with Quake [4], an existing tool to correct the

substitution errors of Illumina short read sequences. For

the similar reason mentioned above, ParLECH outper-

formsQuake by several magnitudes when distributed over

multiple nodes. For a fair comparison with Quake, we

use the E. coli Illumina dataset only for this experiment.

Since the major motivation of ParLECH is to correct the

long-read errors, we did not report the results of accuracy

comparison between ParLECH and Quake in this paper.

Discussion
Effects of different traversal algorithms on indel error

correction

To better understand the benefit of our widest path algo-

rithm (ParLECHWP), we compare its accuracy with that

of two other graph traversal algorithms, which are popu-

lar in this domain. The first one is the Dijkstra’s shortest

Fig. 7 Scalability of ParLECH. a Time to correct indel error of fruit fly dataset. b Time to correct subst. error of fruit fly dataset

Das et al. BMC Genomics 2019, 20(Suppl 11):948 Page 12 of 15

Fig. 8 Comparing execution time of ParLECH with existing error correction tools. a Time for hybrid correction of indel errors in E.coli long reads

(1.032 GB). b Time for correction of substitution errors in E.coli short reads (13.50 GB)

path algorithm (ParLECHSP), and the other one is a greedy

traversal algorithm (ParLECHGreedy). Table 5 reports the

accuracy results of all the three algorithms over the real

PacBio data sets.

ParLECHSP replaces the weak region in the long read

with the sequence corresponding to the shortest path in

the DBG. ParLECHGreedy always selects the vertex with

the maximum coverage among all neighboring vertices

during its traversal. For ParLECHGreedy, the traversal often

ends up in a tip of a dead-end path. So, we use a branch-

ing factor b (100 by default) such that, after traversing

b successive vertices from the source vertex, the algo-

rithm backtracks if it cannot meet the destination vertex.

The algorithm aborts when all successors from the source

vertex are visited using this branching factor.

Although ParLECHSP has the similar performance as

ParLECHWP, because of the counter intuitive nature

of shortest paths and the strong (high coverage)

k-mers desired for the correction, it cannot take the

advantage of the k-mer coverage information in a

straight forward way, adversely impacting the accu-

racy. ParLECHGreedy, on the other hand, can take the

advantage of the k-mer coverage information, but its

accuracy depends highly on the higher value of the

branching factor that poses a severe limitation on its

performance.

Table 5 Effects of different traversal algorithms

Data Methodology #Reads #Bases #Aligned Reads #Aligned bases %Aligned reads %Aligned bases

E. coli ParLECHWP 282394 309367145 264574 285070391 93.69 92.15

ParLECHSP 282394 307987923 247227 266373078 87.55 86.49

ParLECHGreedy 282394 328966341 216543 233312807 76.68 70.92

Yeast ParLECHWP 231594 1389446261 199332 1240945939 86.07 89.31

ParLECHSP 231594 1355153783 196669 1171490123 84.92 86.44

ParLECHGreedy 231594 1399628927 175478 1045262567 75.77 74.68

Fruit fly ParLECHWP 6701498 30117416348 4417627 18799138439 65.92 62.42

ParLECHSP 6701498 30193752318 3654326 14919815143 54.53 49.41

ParLECHGreedy 6701498 32131749687 2946734 12030871508 43.97 37.44

Das et al. BMC Genomics 2019, 20(Suppl 11):948 Page 13 of 15

Our widest path algorithm not only optimizes the

performance but also makes better use of k-mer cov-

erage information. The algorithm maximizes the min-

imum coverage of the k-mer in a path. Compared to

both ParLECHSP and ParLECHGreedy, ParLECHWP better

balances the coverage of all the k-mers in a particular path

of the DBG, which improves the accuracy of the resultant

data set.

As shown in Table 5, the widest path shows almost 15

to 25% better alignment accuracy compared to the greedy

algorithm, which is found to perform worst among all.

Comparing to the shortest path algorithm, the widest path

shows almost 6 to 13% improvement for the dataset.

Resource consumption statistics

Using the power of Hadoop and Hazelcast, ParLECH

is capable to tradeoff between CPU-Hour and DRAM

utilization. That is, based on the data size and the avail-

able resources, ParLECH can be tuned to utilize the disk

space at the cost of higher execution time.

Table 6 compares the CPU-Hour and DRAM resource

consumption of ParLECH with existing error correc-

tion tools with respect to the E. coli data set. For the

best (lowest) execution time, ParLECH consumes almost

similar CPU-Hour as LoRDEC, which is significantly

less comparing to Jabba and Proovread. For this perfor-

mance, ParLECH needs the entire k-mer spectrum in

DRAM. Consequently, it utilizes almost 32GB of DRAM.

However, ParLECH can process the same E. coli data con-

suming significantly less amount (only 5GB) of DRAM

if configured properly. However, the process takes more

time to finish because of context switching between the

DRAM and the hard disk.

Processing large-scale human genomes

To showcase the data handling capability of ParLECH

with hundreds of GBs of sequencing data and its scaling

capability with hundreds of computing nodes, we analyze

a large human genome data set. This 312 GB of PacBio

data set includes more than 23 million long reads with

the average length of 6,587 base pairs. The corresponding

Illumina data set is 452 GB in size and contains more than

Table 6 Comparing resource consumption of ParLECH with

existing error correction tools with respect to E. coli dataset

Error correction tool CPU-Hour
(single node)

Peak
memory
usage

LoRDEC 10 20.65

Jabba 18 11.16

Proovread 89 31.77

ParLECH (configured for least execution time)11.67 23.80

ParLECH (configured to use lower DRAM) 29.37 5

1.4 billion reads with the read length of 101 base pairs.

To analyze this large data set (764 GB cumulative), we use

128 nodes of SuperMic cluster.We tuned ParLECH for the

maximum performance. That means we distributed the

entire de Bruijn graph in the memory available across the

cluster.

The indel error correction process takes about 28.6 h as

shown in Table 7. After this indel error correction, 78.3%

of reads and 75.4% of bases are successfully aligned to the

reference genome. The substitution error correction pro-

cess took another 26.5 h, successfully aligning 79.73% of

the reads and 80.24% of the bases to the reference genome.

Conclusion
In this paper, we present a distributed hybrid error cor-

rection framework for PacBio long reads, called ParLECH.

For efficient and scalable analysis of large-scale sequence

data, ParLECH makes use of Hadoop and Hazelcast.

ParLECH uses the de Bruijn graph and k-mer coverage

information from the short reads to rectify the errors of

the long reads. We develop a distributed version of the

widest path algorithm to maximize the minimum k-mer

coverage in a path of the de Bruijn graph constructed

from the Illumina short reads. We replace the indel error

regions in a long read with their corresponding widest

path. To improve the substitution accuracy, we develop

a median statistics-based strategy that considers rela-

tive k-mer abundance in a specific area of a genome to

take care of high- and low-coverage areas separately. Our

experimental results show that ParLECH can scale with

hundreds of compute nodes and can improve the quality

of large-scale sequencing data sets in an accurate manner.

While correcting the errors, ParLECH takes care of high-

and low-coverage regions of the sequencing reads sepa-

rately and is better capable to balance the k-mer coverage

based on the neighborhood. Hence, we believe that it is a

good starting point for detecting and correcting errors in

RNA and metagenome sequences.

Table 7 Correcting a human genome

PacBio data size 312GB

Illumina data size 452GB

#nodes used 128

Time 28.6 h

%Aligned reads (Indel) 78.3

%Aligned bases (Indel) 75.43

%Gain (Indel) 82.38

Time (Indel + Subst) 3.4 h

%Aligned reads (Indel + Subst) 79.73

%Aligned bases (Indel + Subst) 80.24

%Gain (Indel + Subst) 84.51

Das et al. BMC Genomics 2019, 20(Suppl 11):948 Page 14 of 15

Supplementary information
Supplementary information accompanies this paper at
https://doi.org/10.1186/s12864-019-6286-9.

Additional file 1: This file provides a brief of the theoretical rationale for
using widest path algorithm (claim 1), and a theoretical justification for
why median statistics has lower dependency on the value of k.

Abbreviations

CCT: Center for computation and technology; DBG: De bruijn graph; DNA:
Deoxyribonucleic acid; DRAM: Dynamic random access memory; GB: Giga
bytes; HDD: Hard disk drive; HDFS: Hadoop distributed file system; HPC: High
performance computing; LSU: Louisiana State University; NoSQL: Not only SQL;
ParLECH: Parallel long-read error correction using hybrid methodology; RNA:
Ribonucleic acid; SSD: Solid state drive; UW: University of Wisconsin

Acknowledgements

We would like to thank the Information Technology and Service (ITS)
department of both UW Platteville and LSU for providing the testing
infrastructure required in different phases of the project.

About this supplement

This article has been published as part of BMC Genomics Volume 20 Supplement

11, 2019: Selected articles from the IEEE BIBM International Conference on

Bioinformatics & Biomedicine (BIBM) 2018: genomics. The full contents of the
supplement are available online at https://bmcgenomics.biomedcentral.com/
articles/supplements/volume-20-supplement-11.

Authors’ contributions

AKD and KL developed the algorithms of long read error correction. SG and
SJP evaluated and tested the tool. All the authors read and approved the final
manuscript.

Funding

Publication costs were funded by NSF grants (MRI-1338051, IBSS-L-1620451,
SCC-1737557, RAPID-1762600), NIH grants (P20GM103458-10,
P30GM110760-03, P20GM103424), LA Board of Regents grants
(LEQSF(2016-19)-RD-A-08 and ITRS), and IBM faculty awards.

Availability of data andmaterials

The source code for ParLECH is available at https://github.com/
arghyakusumdas/GenomicErrorCorrection.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Author details
1Department of Computer Science and Software Engineering, University of
Wisconsin at Platteville, Platteville, WI, USA. 2School of Electrical Engineering
and Computer Science, Center for Computation and Technology, Louisiana
State University, Baton Rouge, Baton Rouge, LA, USA.

Published: 20 December 2019

References

1. Goodwin S, McPherson JD, McCombie WR. Coming of age: ten years of
next-generation sequencingtechnologies. NatRevGenet. 2016;17(6):333–51.

2. Das AK, Lee K, Park S-J. Parlech: Parallel long-read error correction with
hadoop. In: 2018 IEEE International Conference on Bioinformatics and
Biomedicine (BIBM). IEEE; 2018. p. 341–8. https://doi.org/10.1109/bibm.
2018.8621549.

3. Lou DI, Hussmann JA, McBee RM, Acevedo A, Andino R, Press WH,
Sawyer SL. High-throughput dna sequencing errors are reduced by

orders of magnitude using circle sequencing. Proc Natl Acad Sci.
2013;110(49):. https://doi.org/10.1073/pnas.1319590110.

4. Kelley DR, Schatz MC, Salzberg SL. Quake: quality-aware detection and
correction of sequencing errors. Genome Biol. 2010. https://doi.org/10.
1186/gb-2010-11-11-r116.

5. Yang X, Dorman KS, Aluru S. Reptile: representative tiling for short read
error correction. Bioinformatics. 2010;26(20):. https://doi.org/10.1093/
bioinformatics/btq468.

6. Medvedev P, Scott E, Kakaradov B, Pevzner P. Error correction of
high-throughputsequencingdatasetswithnon-uniformcoverage. Bioinformatics.
2011;27(13):. https://doi.org/10.1093/bioinformatics/btr208.

7. Ilie L, Molnar M. Racer: Rapid and accurate correction of errors in reads.
Bioinformatics. 2013. https://doi.org/10.1093/bioinformatics/btt407.

8. Salmela L, Schröder J. Correcting errors in short reads by multiple
alignments. Bioinformatics. 2011;27(11):. https://doi.org/10.1093/
bioinformatics/btr170.

9. Song L, Florea L, Langmead B. Lighter: fast and memory-efficient
sequencing error correction without counting. Genome Biol. 2014;15(11):.

https://doi.org/10.1186/s13059-014-0509-9.

10. Liu Y, Schröder J, Schmidt B. Musket: a multistage k-mer spectrum-based
error corrector for illumina sequence data. Bioinformatics. 2013;29(3):.

https://doi.org/10.1093/bioinformatics/bts690.

11. Schröder J, Schröder H, Puglisi SJ, Sinha R, Schmidt B. Shrec: a
short-read error correction method. Bioinformatics. 2009;25:. https://doi.
org/10.1093/bioinformatics/btp379.

12. Liu Y, Schmidt B, Maskell DL. Decgpu: distributed error correction on
massively parallel graphics processing units using cuda and mpi. BMC
Bioinformatics. 2011;12(1):. https://doi.org/10.1186/1471-2105-12-85.

13. KaoW-C, Chan AH, Song YS. Echo: a reference-free short-read error correction
algorithm. GenomeRes. 2011;21(7):. https://doi.org/10.1101/gr.111351.110.

14. Das AK, Shams S, Goswami S, Platania R, Lee K, Park S-J. Parsech: Parallel
sequencing error correction with hadoop for large-scale genome. In:
Proceedings of the 9th International BICob Conference. ISCA; 2017.

https://www.searchdl.org/PagesPublic/ConfPaper.aspx?ConfPprID=
26C12DF8-87DB-E711-A40B-E4B3180586B9.

15. Salmela L, Rivals E. Lordec: accurate and efficient long read error
correction. Bioinformatics. 2014;30(24):3506–14.

16. Miclotte G, Heydari M, Demeester P, Audenaert P, Fostier J. Jabba: Hybrid
error correction for long sequencing reads using maximal exact matches.
In: International Workshop on Algorithms in Bioinformatics. Springer;
2015. p. 175–88. https://doi.org/10.1007/978-3-662-48221-6_13.

17. Hackl T, Hedrich R, Schultz J, Förster F. proovread: large-scale
high-accuracy pacbio correction through iterative short read consensus.
Bioinformatics. 2014;30(21):3004–11.

18. Koren S, Schatz MC, Walenz BP, Martin J, Howard JT, Ganapathy G,
Wang Z, Rasko DA, McCombie WR, Jarvis ED, et al. Hybrid error
correction and de novo assembly of single-molecule sequencing reads.
Nat Biotechnol. 2012;30(7):693–700.

19. Au KF, Underwood JG, Lee L, Wong WH. Improving pacbio long read
accuracy by short read alignment. PLoS ONE. 2012;7(10):46679.

20. Haghshenas E, Hach F, Sahinalp SC, Chauve C. Colormap: Correcting
long reads by mapping short reads. Bioinformatics. 2016;32(17):545–51.

21. Zhang H, Jain C, Aluru S. A comprehensive evaluation of long read error
correctionmethods. BioRxiv. 2019519330. https://doi.org/10.1101/519330.

22. Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S,
Cuomo CA, Zeng Q, Wortman J, Young SK, et al. Pilon: an integrated tool
for comprehensive microbial variant detection and genome assembly
improvement. PLoS ONE. 2014;9(11):112963.

23. Hsu J. PacBio� variant and consensus caller. https://github.com/
PacificBiosciences/GenomicConsensus. Last accessed on 03 Feb 2018.

24. Salmela L, Walve R, Rivals E, Ukkonen E. Accurate self-correction of errors
in long reads using de bruijn graphs. Bioinformatics. 2016;33(6):799–806.

25. Morisse P, Marchet C, Limasset A, Lecroq T, Lefebvre A. Consent:
Scalable self-correction of long reads with multiple sequence alignment.
BioRxiv. 2019546630. https://doi.org/10.1101/546630.

26. Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, Phillippy AM. Canu:
scalable and accurate long-read assembly via adaptive k-mer weighting
and repeat separation. Genome Res. 2017;27(5):722–36.

27. Crusoe MR, Alameldin HF, Awad S, Boucher E, Caldwell A, Cartwright R,
Charbonneau A, Constantinides B, Edvenson G, Fay S, et al. The khmer

Das et al. BMC Genomics 2019, 20(Suppl 11):948 Page 15 of 15

software package: enabling efficient nucleotide sequence analysis.
F1000Res. 2015;4:. https://doi.org/10.12688/f1000research.6924.1. PMID:
26535114; PMCID: PMC4608353.

28. Brown CT, Howe A, Zhang Q, Pyrkosz AB, Brom TH. A reference-free
algorithm for computational normalization of shotgun sequencing data.
2012. arXiv preprint arXiv:1203.4802.

29. Johns M. Getting Started with Hazelcast: Packt Publishing Ltd; 2015.
https://www.packtpub.com/big-data-and-business-intelligence/
getting-started-hazelcast.

30. High Performance Computing Louisiana State University. http://www.
hpc.lsu.edu/resources/hpc/system.php?system=SuperMIC.

31. Das AK, Koppa PK, Goswami S, Platania R, Park S-J. Large-scale parallel
genome assembler over cloud computing environment. J Bioinform
Comput Biol. 2017. https://doi.org/10.1142/s0219720017400030.

32. Das AK, Park S-J, Hong J, Chang W. Evaluating different
distributed-cyber-infrastructure for data and compute intensive scientific
application. In: IEEE International Conference on Big Data; 2015. https://
doi.org/10.1109/bigdata.2015.7363750.

33. Das AK, Hong J, Goswami S, Platania R, Lee K, Chang W, Park S-J, Liu L.
Augmenting amdahl’s second law: A theoretical model to build
cost-effective balanced hpc infrastructure for data-driven science. In:
Cloud Computing (CLOUD), 2017 IEEE 10th International Conference On.
IEEE; 2017. p. 147–54. https://doi.org/10.1109/cloud.2017.27.

34. Chaisson MJ, Tesler G. Mapping single molecule sequencing reads using
basic local alignment with successive refinement (blasr): application and
theory. BMC Bioinformatics. 2012;13(1):238.

35. Li H, Durbin R. Fast and accurate short read alignment with
burrows–wheeler transform. Bioinformatics. 2009;25(14):1754–60.

36. Yang X, Chockalingam SP, Aluru S. A survey of error-correction methods
for next-generation sequencing. Brief Bioinform. 2012;14(1):56–66.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

	Abstract
	Background
	Methods
	Results
	Conclusion
	Keywords

	Background
	Related work

	Methods
	Rationale behind the indel error correction
	Rationale behind the substitution error correction
	Big data framework in the context of genomic error correction
	Error correction pipeline
	De bruijn graph construction and counting k-mer
	Locating the indel errors of long read
	Correcting the indel errors
	Locating the substitution error
	Correcting the substitution error

	Results
	Datasets
	Computing environment
	Accuracy metrics
	Comparison with existing tools
	Scalability

	Discussion
	Effects of different traversal algorithms on indel error correction
	Resource consumption statistics
	Processing large-scale human genomes

	Conclusion
	Supplementary informationSupplementary information accompanies this paper at https://doi.org/10.1186/s12864-019-6286-9.
	Additional file 1

	Abbreviations
	Acknowledgements
	About this supplement
	Authors' contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher's Note

