Das et al. BMC Genomics 2019, 20(Suppl 11):948

https://doi.org/10.1186/512864-019-6286-9 B M C Gen om iCS

RESEARCH Open Access

A hybrid and scalable error correction ®
algorithm for indel and substitution errors o
long reads

Arghya Kusum Das'", Sayan Goswami?, Kisung Lee? and Seung-Jong Park?

Check for
updates

From |EEE International Conference on Bioinformatics and Biomedicine 2018
Madrid, Spain. 3-6 December 2018

Abstract

Background: Long-read sequencing has shown the promises to overcome the short length limitations of
second-generation sequencing by providing more complete assembly. However, the computation of the long
sequencing reads is challenged by their higher error rates (e.g., 13% vs. 1%) and higher cost ($0.3 vs. $0.03 per Mbp)
compared to the short reads.

Methods: In this paper, we present a new hybrid error correction tool, called ParLECH (Parallel Long-read Error
Correction using Hybrid methodology). The error correction algorithm of ParLECH is distributed in nature and
efficiently utilizes the k-mer coverage information of high throughput lllumina short-read sequences to rectify the
PacBio long-read sequences.

ParlLECH first constructs a de Bruijn graph from the short reads, and then replaces the indel error regions of the long
reads with their corresponding widest path (or maximum min-coverage path) in the short read-based de Bruijn graph.
ParLECH then utilizes the k-mer coverage information of the short reads to divide each long read into a sequence of
low and high coverage regions, followed by a majority voting to rectify each substituted error base.

Results: Parl ECH outperforms latest state-of-the-art hybrid error correction methods on real PacBio datasets. Our
experimental evaluation results demonstrate that ParLECH can correct large-scale real-world datasets in an accurate
and scalable manner. ParLECH can correct the indel errors of human genome PacBio long reads (312 GB) with lllumina
short reads (452 GB) in less than 29 h using 128 compute nodes. ParLECH can align more than 92% bases of an E. coli
PacBio dataset with the reference genome, proving its accuracy.

Conclusion: ParLECH can scale to over terabytes of sequencing data using hundreds of computing nodes. The
proposed hybrid error correction methodology is novel and rectifies both indel and substitution errors present in the
original long reads or newly introduced by the short reads.

Keywords: Hybrid error correction, PacBio, Illumina, Hadoop, NoSQL

*Correspondence: dasa@uwplatt.edu

'Department of Computer Science and Software Engineering, University of
Wisconsin at Platteville, Platteville, WI, USA

Full list of author information is available at the end of the article

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0

International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver

(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Kisung Lee

Das et al. BMC Genomics 2019, 20(Suppl 11):948

Background

The rapid development of genome sequencing technolo-
gies has become the major driving force for genomic
discoveries. The second-generation sequencing technolo-
gies (e.g., [llumina, Ion Torrent) have been providing
researchers with the required throughput at significantly
low cost ($0.03/million-bases), which enabled the discov-
ery of many new species and variants. Although they
are being widely utilized for understanding the com-
plex phenotypes, they are typically incapable of resolving
long repetitive elements, common in various genomes
(e.g., eukaryotic genomes), because of the short read
lengths [1].

To address the issues with the short read lengths, third-
generation sequencing technologies (e.g., PacBio, Oxford
Nanopore) have started emerging recently. By producing
long reads greater than 10 kbp, these third-generation
sequencing platforms provide researchers with signifi-
cantly less fragmented assembly and the promise of a
much better downstream analysis. However, the produc-
tion costs of these long sequences are almost 10 times
more expensive than those of the short reads, and the
analysis of these long reads is severely constrained by their
higher error rate.

Motivated by this, we develop ParLECH (Parallel
Long-read Error Correction using Hybrid methodology).
ParLECH uses the power of MapReduce and distributed
NoSQL to scale with terabytes of sequencing data [2].
Utilizing the power of these big data programming mod-
els, we develop fully distributed algorithms to replace both
the indel and substitution errors of long reads. To rectify
the indel errors, we first create a de Bruijn graph from the
[lumina short reads. The indel errors of the long reads are
then replaced with the widest path algorithm that maxi-
mizes the minimum k-mer coverage between two vertices
in the de Bruijn graph. To correct the substitution errors,
we divide the long read into a series of low and high cover-
age regions by utilizing the median statistics of the k-mer
coverage information of the Illumina short reads. The sub-
stituted error bases are then replaced separately in those
low and high coverage regions.

ParLECH can achieve higher accuracy and scalabil-
ity over existing error correction tools. For example,
ParLECH successfully aligns 95% of E. Coli long reads,
maintaining larger N50 compared to the existing tools. We
demonstrate the scalability of ParLECH by correcting a
312GB human genome PacBio dataset, with leveraging a
452 GB Illumina dataset (64x coverage), on 128 nodes in
less than 29 h.

Related work

The second-generation sequencing platforms produce
short reads at an error rate of 1-2% [3] in which most
of the errors are substitution errors. However, the low

Page 2 of 15

cost of production results in high coverage of data,
which enables self-correction of the errors without using
any reference genome. Utilizing the basic fact that the
k-mers resulting from an error base will have significantly
lower coverage compared to the actual k-mers, many error
correction tools have been proposed such as Quake [4],
Reptile [5], Hammer [6], RACER [7], Coral [8], Lighter
[9], Musket [10], Shrec [11], DecGPU [12], Echo [13], and
ParSECH [14].

Unlike second-generation sequencing platforms, the
third-generation sequencing platforms, such as PacBio
and Oxford Nanopore sequencers, produce long reads
where indel (insertion/deletion) errors are dominant [1].
Therefore, the error correction tools designed for sub-
stitution errors in short reads cannot produce accurate
results for long reads. However, it is common to leverage
the relatively lower error rate of the short-read sequences
to improve the quality of long reads.

While improving the quality of long reads, these hybrid
error correction tools also reduce the cost of the pipeline
by utilizing the complementary low-cost and high-quality
short reads. LoRDEC [15], Jabba [16], Proovread [17],
PacBioToCA [18], LSC [19], and ColorMap [20] are a
few examples of hybrid error correction tools. LORDEC
[15] and Jabba [16] use a de Bruijn graph (DBG)-based
methodology for error correction. Both the tools build
the DBG from Illumina short reads. LoORDEC then cor-
rects the error regions in long reads through the local
assembly on the DBG while Jabba uses different sizes
of k-mer iteratively to polish the unaligned regions of
the long reads. Some hybrid error correction tools use
alignment-based approaches for correcting the long reads.
For example, PacBioToCA [18] and LSC [19] first map
the short reads to the long reads to create an over-
lap graph. The long reads are then corrected through a
consensus-based algorithm. Proovread [17] reaches the
consensus through the iterative alignment procedures
that increase the sensitivity of the long reads incremen-
tally in each iteration. ColorMap [20] keeps information
of consensual dissimilarity on each edge of the overlap
graph and then utilizes the Dijkstra’s shortest path algo-
rithm to rectify the indel errors. Although these tools
produce accurate results in terms of successful align-
ments, their error correction process is lossy in nature,
which reduces the coverage of the resultant data set. For
example, Jabba, PacBioToCA, and Proovread use aggres-
sive trimming of the error regions of the long reads
instead of correcting them, losing a huge number of bases
after the correction [21] and thereby limiting the prac-
tical use of the resultant data sets. Furthermore, these
tools use a stand-alone methodology to improve the base
quality of the long reads, which suffers from scalability
issues that limit their practical adoption for large-scale
genomes.

Das et al. BMC Genomics 2019, 20(Suppl 11):948

On the contrary, ParLECH is distributed in nature, and
it can scale to terabytes of sequencing data on hundreds
of compute nodes. ParLECH utilizes the DBG for error
correction like LORDEC. However, to improve the error
correction accuracy, we propose a widest path algorithm
that maximizes the minimum k-mer coverage between
two vertices of the DBG. By utilizing the k-mer cover-
age information during the local assembly on the DBG,
ParLECH is capable to produce more accurate results
than LoRDEC. Unlike Jabba, PacBioToCA, and Proovread,
ParLECH does not use aggressive trimming to avoid lossy
correction. ParLECH further improves the base qual-
ity instead by correcting the substitution errors either
present in the original long reads or newly introduced
by the short reads during the hybrid correction of the
indel errors. Although there are several tools to rectify
substitution errors for second-generation sequences (e.g.,
[4, 5, 9, 13]), this phase is often overlooked in the error
correction tools developed for long reads. However, this
phase is important for hybrid error correction because a
significant number of substitution errors are introduced
by the Illumina reads. Existing pipelines depend on pol-
ishing tools, such as Pilon [22] and Quiver [23], to further
improve the quality of the corrected long reads. Unlike the
distributed error correction pipeline of ParLECH, these
polishing tools are stand-alone and cannot scale with large
genomes.

LorMA [24], CONSENT [25], and Canu [26] are a few
self-error correction tools that utilize long reads only
to rectify the errors in them. These tools can automat-
ically bypass the substitution errors of the short reads
and are capable to produce accurate results. However,
the sequencing cost per base for long reads is extremely
high, and so it would be prohibitive to get long reads with
high coverage that is essential for error correction without
reference genomes. Although Canu reduces the coverage
requirement to half of that of LorMA and CONSENT by
using the tf-idf weighting scheme for long reads, almost
10 times more expensive cost of PacBio sequences is still
a major obstacle to utilizing it for large genomes. Because
of this practical limitation, we do not report the accuracy
of the these self-error correction tools in this paper.

Methods

Rationale behind the indel error correction

Since we leverage the lower error rate of Illumina reads
to correct the PacBio indel errors, let us first describe
an error model for Illumina sequences and its conse-
quence on the DBG constructed from these reads. We
first observe that k-mers, DNA words of a fixed length
k, tend to have similar abundances within a read. This
is a well-known property of k-mers that stem from each
read originating from a single source molecule of DNA
[27]. Let us consider two reads R; and R, representing the

Page 3 of 15

same region of the genome, and R1 has one error base.
Assuming that the k-mers between the position posy,;,

and pos,,,; represent an error region in R; where error

. eps POSend+P0Speqi
base is at position pos = =5 =

error
the following claim.

Claim 1: The coverage of at least one k-mer of R; in the
region between posy,,;, and pos,,,, is lower than the cov-
erage of any k-mer in the same region of Ry. A brief the-
oretical rationale of the claim can be found in Additional
file 1. Figure 1 shows the rationale behind the claim.

, we can make

Rationale behind the substitution error correction

After correcting the indel errors with the Illumina reads,
a substantial number of substitution errors are introduced
in the PacBio reads as they dominate in the Illumina short-
read sequences. To rectify those errors, we first divide
each PacBio long read into smaller subregions like short
reads. Next, we classify only those subregions as errors
where most of the k-mers have high coverage, and only a
few low-coverage k-mers exist as outliers.

Specifically, we use Pearson’s skew coefficient (or
median skew coefficient) to classify the true and error sub-
regions. Figure 2 shows the histogram of three different
types of subregions in a genomic dataset. Figure 2a has
similar numbers of low- and high-coverage k-mers, mak-
ing the skewness of this subregion almost zero. Hence, it is
not considered as error. Figure 2b is also classified as true
because the subregion is mostly populated with the low-
coverage k-mers. Figure 2c is classified as error because
the subregion is largely skewed towards the high-coverage
k-mers, and only a few low-coverage k-mers exist as out-
liers. Existing substitution error correction tools do not
analyze the coverage of neighboring k-mers and often
classify the true yet low-coverage k-mers (e.g., Fig. 2b as
errors.

Another major advantage of our median-based method-
ology is that the accuracy of the method has a lower
dependency on the value of k. Median values are robust
because, for a relatively small value of &, a few substitution
errors will not alter the median k-mer abundance of the
read [28]. However, these errors will increase the skewness
of the read. The robustness of the median values in the
presence of sequencing errors is shown mathematically in
the Additional file 1.

Big data framework in the context of genomic error
correction

Error correction for sequencing data is not only data-
and compute-intensive but also search-intensive because
the size of the k-mer spectrum increases almost expo-
nentially with the increasing value of k (i.e., up to 4~
unique k-mers), and we need to search in the huge search
space. For example, a large genome with 1 million reads
of length 5000 bp involves more than 5 billion searches

Das et al. BMC Genomics 2019, 20(Suppl 11):948

Page 4 of 15

Genome

[E Y A A A O GO A S A A

Set of short reads

30 30

40

S ——— A
. X
D, = . True
B kmers
\ . J/
Base call
error
e Error
kmers

AHA%A A

Case 2: Many error k-mers have high coverage.
But, probability of the minimum coverage is higher in the error

path

Fig. 1 Widest Path Example: Select correct path for high coverage error k-mers

in a set of almost 10 billion unique k-mers. Since existing
hybrid error correction tools are not designed for large-
scale genome sequence data such as human genomes, we
design ParLECH as a scalable and distributed framework
equipped with Hadoop and Hazelcast.

Hadoop is an open-source abstraction of Google’s
MapReduce, which is a fully parallel and distributed
framework for large-scale computation. It reads the data
from a distributed file system called Hadoop Distributed
File System (HDEFS) in small subsets. In the Map phase,

a Map function executes on each subset, producing the
output in the form of key-value pairs. These intermedi-
ate key-value pairs are then grouped based on the unique
keys. Finally, a Reduce function executes on each group,
producing the final output on HDEFS.

Hazelcast [29] is a NoSQL database, which stores large-
scale data in the distributed memory using a key-value for-
mat. Hazelcast uses MummurHash to distribute the data
evenly over multiple nodes and to reduce the collision.
The data can be stored and retrieved from Hazelcast using

No error: All k—mers have similar coverage

(=3

= 3
=] = =
g g2
5000 80
2 &
Q 0
£ £%

o
8 R=|
)] T - %%
2 2
5 15}
= =59
g a
- —
[S3F] ’ ’ ‘ e

ol 4 =) .

No error: Most k—mers are low coverage

Error: Low coverage k—mers
in high coverage region

10 15 20

Frequency in the region
5

- []

——y

0 2 4 6 8 10 12 0 2 4
k—mer coverage in the entire spectrum

k—mer coverage in the entire spectrum

6 8 10 12 0 2 4 6 8
k—mer coverage 1n the entire spectrum

a) No error is detected as the distribution is
not skewed

Fig. 2 Skewness in k-mer coverage statistics

b) No error is detected as most k-mers are
low coverage

c) High coverage area with fewer low
coverage error k-mers

Das et al. BMC Genomics 2019, 20(Suppl 11):948

hash table functions (such as get and put) in O(1) time.
Multiple Map and Reduce functions can access this hash
table simultaneously and independently, improving the
search performance of ParLECH.

Error correction pipeline
Figure 3 shows the indel error correction pipeline of
ParLECH. It consists of three phases: 1) constructing a
de Bruijn graph, 2) locating errors in long reads, and 3)
correcting the errors. We store the raw sequencing reads
in the HDFS while Hazelcast is used to store the de Bruijn
graph created from the Illumina short reads. We develop
the graph construction algorithm following the MapRe-
duce programming model and use Hadoop for this pur-
pose. In the subsequent phases, we use both Hadoop and
Hazelcast to locate and correct the indel errors. Finally,
we write the indel error-corrected reads into HDFS. We
describe each phase in detail in the subsequent sections.
ParLECH has three major steps for hybrid correction
of indel errors as shown in Fig. 4. In the first step, we
construct a DBG from the Illumina short reads with the
coverage information of each k-mer stored in each vertex.
In the second step, we partition each PacBio long read
into a sequence of strong and weak regions (alternatively,
correct and error regions respectively) based on the
k-mer coverage information stored in the DBG. We select
the right and left boundary k-mers of two consecutive
strong regions as source and destination vertices respec-
tively in the DBG. Finally, in the third step, we replace
each weak region (i.e., indel error region) of the long
read between those two boundary k-mers with the corre-
sponding widest path in the DBG, which maximizes the
minimum k-mer coverage between those two vertices.
Figure 5 shows the substitution error correction pipeline
of ParLECH. It has two different phases: 1) locating errors

Page 5 of 15

and 2) correcting errors. Like the indel error correction,
the computation of phase is fully distributed with Hadoop.
These Hadoop-based algorithms work on top of the indel
error-corrected reads that were generated in the last phase
and stored in HDFS. The same k-mer spectrum that was
generated from the Illumina short reads and stored in
Hazelcast is used to correct the substitution errors as well.

De bruijn graph construction and counting k-mer

Algorithm 1 explains the MapReduce algorithm for de
Bruijn graph construction, and Fig. 6 shows the working
of the algorithm. The map function scans each read of
the data set and emits each k-mer as an intermediate key
and its previous and next k-mer as the value. The inter-
mediate key represents a vertex in the de Bruijn graph
whereas the previous and the next k-mers in the interme-
diate value represent an incoming edge and an outgoing
edge respectively. An associated count of occurrence (1)
is also emitted as a part of the intermediate value. After

Algorithm 1 de Bruijn graph construction

1: procedure MAP(read)

2 for each shortread in reads do

3: for each kmer in shortread do

4 EmitIntermediate(kmer, "previousKmer + nex-
tKmer + 1") //1 emitted as intermediate count

5: end for

6: end for

7: end procedure

8: procedure REDUCE(key, values)

9: [lkey : kmer

10: /1value : "previousKmer + nextKmer + 1"

11: for each v in values do

12: incomingEdges += extractPreviousKmer(v)
13: outgoingEdges += extractNextKmer(v)

14: count += int(1)

15: end for

16: end procedure

Hazelcast H Hazelcast
Construct de Detect Correct Construct de Detect Correct
Bruijn graph --| errors [==b errors Bruijn graph --+| errors e errors
(Hadoop) (Hadoop) (Hadoop) (Hadoop) (Hadoop) (Hadoop)
. . [) ')

HDFS

Fig. 3 Indel error correction

Das et al. BMC Genomics 2019, 20(Suppl 11):948

Page 6 of 15

Fig. 4 Error correction steps

Step1: Construct a de Bruijn graph from lllumina short reads with
the coverage information of each k-mer. Small circles denote the k-
mers

coool—{ood]

Step2: Identify the strong and weak regions in the PacBio long
reads using the coverage information in the de Bruijn graph. Boxes
and lines denote the strong and weak regions respectively.

Step3: Replace the weak regions with the widest paths in the de
Bruijn graph. Bold lines denote the widest paths.

the map function completes, the shuffle phase partitions
these intermediate key-value pairs on the basis of the
intermediate key (the k-mer). Finally, the reduce function
accumulates all the previous k-mers and next k-mers cor-
responding to the key as the incoming and outgoing edges

respectively. The same reduce function also sums together
all the intermediate counts (i.e., 1) emitted for that partic-
ular k-mer. In the end of the reduce function, the entire
graph structure and the count for each k-mer is stored
in the NoSQL database of Hazelcast using Hazelcast’s put

Hazelcast Server

|-—-| Hazelcast Server

Separate true-

Separate true-

reads reads

Separate Separate

high-coverage |- =+|Locate error- [-* Correct error high-coverage |- - Locate error- |- » Correct error
error reads bases bases error reads bases bases

Separate low-

Separate low-

coverage ~ -+ Locate error- |- »| Correct coverage — -+ Locate error- |- »| Correct
error reads bases errors bases error reads bases errors bases
| Hadoop Distributed File System (HDFS) |

Fig. 5 Substitution error correction

Das et al. BMC Genomics 2019, 20(Suppl 11):948

Page 7 of 15

Key Value
ATG {TGT}, {1}
TGT {GTA}, {1}
GTA {TAC}, {1}
Read 1: TAC {ACC}, {1}
ATGTACCATG | map | pcc {CCA}, {1}
CCA {CAT ,} {1}
CAT {ATG ,} {1}
ATG {NULL}, {1}
Key Value
ACC {cca}, {1}
CCcA {CAT }, {1}
CAT {ATG }, {1}
Read 2: ATG {tec}, {1} |
ACCATGCAGT | map ™ TGC {GCA}, {1}
GCA {cAG }, {1}
CAG {AGT }, {1}
AGT {NuLL}, {1}
Fig. 6 De Bruijn graph construction and k-mer count

Key: Value:
K-mer {out-edges}, {frequency}
_+ reduce
/ ATG {TGT, TGC}, {3}
TGT {GTA}, {1}
GTA {TAC}, {1}
TAC {Acc}, {1}
/ reduce |— ’:ACC {cca}, {2}
L/ /| ccA {CAT}, {2}
| car {ATG}, {2}
AGT 0, {1}
TGC {GCA}, {1}
GCA {CAG}, {1}
— reduce CAG {AGT}, {1}

De Bruijn graph in
adjacency-list format

method. For improved performance, we emit only a single
nucleotide character (i.e., A, T, G, or C instead of the entire
k-mer) to store the incoming and outgoing edges. The
actual k-mer can be obtained by prepending/appending
that character with the k — 1 prefix/suffix of the vertex
k-mer.

Locating the indel errors of long read

To locate the errors in the PacBio long reads, ParLECH
uses the k-mer coverage information from the de Bruijn
graph stored in Hazelcast. The entire process is designed
in an embarrassingly parallel fashion and developed as
a Hadoop Map-only job. Each of the map tasks scans
through each of the PacBio reads and generates the k-
mers with the same value of k as in the de Bruijn graph.
Then, for each of those k-mers, we search the coverage in
the graph. If the coverage falls below a predefined thresh-
old, we mark it as weak indicating an indel error in the
long read. It is possible to find more than one consecu-
tive errors in a long read. In that case, we mark the entire
region as weak. If the coverage is above the predefined
threshold, we denote the region as strong or correct. To
rectify the weak region, ParLECH uses the widest path
algorithm described in the next subsection.

Correcting the indel errors

Like locating the errors, our correction algorithm is also
embarrassingly parallel and developed as a Hadoop Map-
only job. Like LoORDEC, we use the pair of strong k-mers
that enclose a weak region of a long read as the source
and destination vertices in the DBG. Any path in the DBG
between those two vertices denotes a sequence that can be
assembled from the short reads. We implement the widest
path algorithm for this local assembly. The widest path
algorithm maximizes the minimum k-mer coverage of a
path in the DBG. We use the widest path based on our
assumption that the probability of having the k-mer with
the minimum coverage is higher in a path generated from
a read with sequencing errors than a path generated from
a read without sequencing errors for the same region in
a genome. In other words, even if there are some k-mers
with high coverage in a path, it is highly likely that the path
includes some k-mer with low coverage that will be an
obstacle to being selected as the widest path, as illustrated
in Fig. 1.

Therefore, ParLECH is equipped with the widest path
technique to find a more accurate sequence to correct
the weak region in the long read. Algorithm 2 shows our
widest path algorithm implemented in ParLECH, a slight

Das et al. BMC Genomics 2019, 20(Suppl 11):948

Page 8 of 15

Algorithm 2 Widest (maximum min-coverage) path

1: procedure MODIFIEDDIJKSTRA(Graph, source, destina-
tion)
for (each vertex v in Graph) do
width[v] := -infinity
previous[v] := undefined
end for
width[source] := infinity
Q := the set of all nodes in Graph
while (Q is not empty AND destination is not reached)
do

9: u := vertex in Q with largest width in width[]
10: remove u from Q
11: if (width[u] = -infinity) then
12: break
13: end if
14: for (each neighbor v of u) do
15: alt := max(width[v], min(width[#«], widthBe-
tween(u, v)))
16: if alt > width[v]: then
17: width[v] := alt
18: previous[v] := u
19: end if
20: end for
21: end while

22: end procedure

modification of the Dijkstra’s shortest path algorithm
using a priority queue that leads to the time complexity
of O(Elog V). Instead of computing the shortest paths,
ParLECH traverses the graph and updates the width of
each path from the source vertex as the minimum width
of any edge on the path (line 15).

Locating the substitution error

Algorithm 3 shows the process to locate substitution base
errors. To locate the substitution errors in the long reads,
we first divided the long reads into shorter fragments. As
the k-mers in a smaller subregion tend to have similar
abundances [27], this will divide the longer reads into a
sequence of high- and low-coverage fragments. If a frag-
ment belongs to a low-coverage area of the genome, most
of the k-mers in that fragment are expected to have low
coverage. Otherwise, the k-mers are expected to have high
coverage. This methodology enables ParLECH to bet-
ter distinguish between true-yet-low-coverage and error-
yet-high-coverage k-mers. By default, ParLECH uses the
length of the short reads as the length of the shorter
fragments. However, it can be easily modified with a user-
defined length. The last fragment of the long reads can
have a length shorter than default (or user-defined) length.
This fragment is always ignored for correcting the substi-
tution error as it is considered insufficient to gather any
statistics.

After dividing the long reads into shorter fragments,
we calculate the Pearson’s skew coefficient (mentioned
as skewThreshold in Algorithm 3) of the k-mer cover-
age of each fragment as a threshold to classify those

Algorithm 3 Locate substitution errors based on k-mer
coverage skew
1: procedure LOCATEERROR(longRead, threshold)

2 subregions[] < longRead.tokenize(len); //len equals
the length of a short read by default

3: for each subregion in subregions|] do

4 skewThreshold <«

(meanCoverage(subregion) —medianCoverage(subregion))
stdevOfCoverage(subregion)

5: if skewThreshold < threshold then
6: trueSubregions|] < subregion
7 else
8: errorSubregions|]| < subregion
9: end if
10: end for
11: for each errorSubregion € errorSubregions|] do
12: if medianCoverage(subregion) > medianCover-
age(kmerSpectrumShortReads) then
13: locateErrorBases(errorSubregion,
highCovThreshold)
14: else
15: locateErrorBases(errorSubregion,
lowCovThreshold)
16: end if
17: end for

18: end procedure
19: function LOCATEERRORSINREAD(errorSubregion, cov-
Threshold)

20: for each kmer € errorSubregion do

21: if k-merCoverage < covThresshold then
22: errorkmers|[| < kmer

23: end if

24: end for

25: errorBases < getSubSection(errorKmers|])

26: end function

fragments as true or error. If the skew coefficient of the

fragment lies in a certain interval, the fragment is classi-
fied as a true fragment without any error. Furthermore,
the fragments with mostly low-coverage k-mers are also
ignored. All the other fragments (i.e., the fragments with
highly skewed towards high-coverage k-mers) are clas-
sified as erroneous. Through this classification, all the
low-coverage areas of the genome will be considered as
correct even if they have low-coverage k-mers but almost
similar coverage as that of the neighboring k-mers.

After classifying the fragments as true and error, we
divide all the error fragments as high and low coverage.
If the median k-mer coverage of a fragment is greater
than the median coverage of the entire k-mer spectrum,
the fragment is classified as high coverage. Otherwise, the
fragment belongs to a low-coverage area. ParLECH uses
a pattern of true and error k-mers to localize the errors
and searches for the set of corrections with a maximum
likelihood that make all k-mers true.

Correcting the substitution error

To rectify the substitution errors, ParLECH uses a major-
ity voting algorithm similar to that of Quake [4]. However,
we have two major differences. First, ParLECH’s majority
voting algorithm is fully distributed and can scale over

Das et al. BMC Genomics 2019, 20(Suppl 11):948

hundreds of nodes. Second, unlike Quake, ParLECH uses
different thresholds for the low and high coverage area of
the genome to improve the accuracy. For each error base
detected in the previous phase, ParLECH substitutes the
base with all the different nucleotide characters (i.e., A, T,
G, and C) and calculates the coverage of all the k-mers
with that base. Finally, the error base is replaced with the
one such that all those k-mers with that base exceeds or
equals the specified threshold for that area.

Results
In this section, we show the experimental results of
ParLECH using various real-world sequence datasets.

Datasets
We evaluate ParLECH with respect to four real data sets
including E. coli, yeast, fruit fly, and human genome. The
details of the data set are summarized in Table 1. The first
three of them are relatively small-sized genomes. We use
them to compare the accuracy of ParLECH with the exist-
ing hybrid error correction tools such as LoORDEC, Jabba,
and Proovread. These data sets are also used to analyze
the scalability and compare other resource consumption
statistics such as memory requirement and CPU-Hour.
The fourth one is the largest among all. It is a large
human genome data set that consists of almost 764 GB
of sequencing reads including both Illumina and PacBio
sequences. We use it to showcase the scaling capability of
ParLECH with hundreds of GBs of sequencing reads over
hundreds of compute nodes. In our experiments, other
existing tools could not produce the result for the data set.

Computing environment

To evaluate ParLECH, we use SuperMic [30] HPC cluster,
and Table 2 summarizes its configuration. The maximum
number of compute nodes we can use for a single job is
128. Each node has 20 cores, 64 GB main memory, and
one 250 GB hard disk drive (HDD). Note that the main
bottleneck for our Hadoop jobs running on top of disk-
based HDFS is the I/O throughput because each node is
equipped with only one HDD. We expect that the perfor-
mance of ParLECH can be significantly improved by using
multiple HDDs per node and/or SSD. Our previous work
[31-33] demonstrates the effects of various computing
environments for large-scale data processing.

Table 1 Datasets

Page 9 of 15

Table 2 Experimental environment

Maximum #nodes 128

Processor Intel IvyBridge Xeon
f#tcores per node 20

DRAM per node 64 GB

250 GB hard disk drive

56 Gbps InfiniBand

Disk per node

Network

Accuracy metrics

We evaluate the accuracy of ParLECH with respect to
three different metrics as follows: 1) % Aligned reads
and 2) % Aligned bases: These accuracy metrics indicate
how well the corrected long reads are aligned to the ref-
erence genome. We report the %alignment both in terms
of the total number of reads as well as the total bases
present in the data set. For all the data sets other than
the human genome, we use BLASR [34] to align the long
reads to the reference genome as it reports longer align-
ments by bridging the long indel error. However, for the
large human genome, we use BWA-mem [35] to get the
alignment results quickly.

2) NS5O statistics: It is also important to preserve input
read depth in the corrected data set. Shorter reads and/or
reduced depth may show better alignment but may have
a negative impact on downstream analyses. Hence, we
measure the N50 statistics of the data sets to indicate the
discard or trimming of errors in the long reads instead of
rectifying them.

3) Gain: We also use the gain metric [5] to measure the
fraction of effectively corrected errors by ParLECH. The
gain is defined as

Gain — TP~ EP .
= TP LN @)
where TP (true-positive) is the number of error bases
that are successfully corrected, FP (false-positive) is the
number of true bases that are wrongly changed, and FN
(false-negative) is the number of error bases that are
falsely detected as correct.

To measure TP, FP, and FN, we follow the procedure
described in [36]. Let r be an original read and 7, be the
read after correction. We derive the set of real sequenc-

Data Accn. # #Reads Data size (GB) Read length %Reads aligned
PacBio lllumina PacBio lllumina PacBio llumina PacBio (Avg) lllumina PacBio lllumina
E. coli DevNet ERR022075 282394 45440200 1.032 13.50 1120 101 7897 99.44
Yeast DevNet SRR567755 2315594 4503422 0.53 1.20 5874 101 82.12 93.75
Fruit fly BergmanLab ERX645969 6701498 179363706 55 59 4328 101 51.14 95.56
Human DevNet SRX016231 23897260 1420689270 312 452 6587 101 723 79.60

Das et al. BMC Genomics 2019, 20(Suppl 11):948

ing errors Ej, by mapping r to the reference genome
and recording differences. Then, we measure E,, the set
of errors remaining in r., by applying global alignment
between r, and the genomic region where r was mapped
to and recording the differences in the alignment. Finally,
we calculate TP = |E,, \ E;|, FP = |E,; \ Ej;|, and FN =
\Er N Em|.

Comparison with existing tools

Table 3 compares the accuracy of ParLECH with that of
LoRDEC, Jabba, and Proovread in terms of the percentage
of aligned reads and aligned bases. Table 4, on the other
hand, compares the accuracy in terms of gain. We measure
the accuracy metrics using BLASR by running multiple
instances of BLASR in parallel for efficiently processing
large datasets.

The results demonstrate that ParLECH can rectify the
indel errors with significantly more accuracy comparing
to LoORDEC both in terms of the aligned bases and gain.
Like LoRDEC, ParLECH does not correct the long reads
in which there is no strong k-mer. However, ParLECH
searches strong k-mers in all reads regardless of their
length while LoORDEC filters out reads whose length is less
than a threshold.

Although Jabba attains significantly higher alignment
accuracy compared to ParLECH, this high alignment
accuracy is attained at the cost of producing reduced
depths. This is because, unlike ParLECH, Jabba chooses to

Table 3 Accuracy comparison (Alignments)

Page 10 of 15

Table 4 Accuracy comparison (Gain)

TP FP FN %Gain

£ coli LoRDEC 31264830 330659 4230385 87.15
Jabba 10386868 105445 244608 96.7
Proovread 23541209 318191 3942940 8449
ParLECH (Indel) 33229635 355464 3275190 90.05

ParLECH (Indel+Subst) 34521649 250129 2088511 93.61

Veast LoRDEC 322660270 8989628 62594234 81.42
Jabba 171200961 3004132 9543906 93.06
Proovread 313517992 8734915 60820684 83.21
ParLECH (Indel) 355708411 20037769 51642375 82.40

ParLECH (Indel+Subst) 368206322 19556218 39626015 85.49

Fruit fly LoRDEC 732799376 34190591 84891209 8543
Jabba 188817493 18141254 45042597 93.2
Proovread 613007402 30867421 72123053 84.96

ParLECH (Indel) 785735162 37126377 97826995 84.73
ParLECH (Indel+Subst) 799834035 34065158 86789341 86.37

The best results are shown in bold faces

discard several of the uncorrected reads instead of rectify-
ing them. As shown in Table 3, the total number of reads in
the resulting error-corrected dataset is significantly higher
in ParLECH comparing to Jabba.

Proovread attains almost similar alignment accuracy
comparing to ParLECH. However, it trims many of the

Data Methodology #Reads #Bases N50 #Aligned Reads ~ #Aligned bases ~ %Aligned reads ~ %Aligned bases
E. coli Original 282394 316367409 3414 223017 237497013 7897 75.07
LoRDEC 282394 307987923 3422 247227 266373078 87.55 86.49
Jabba 149836 149322524 2517 148293 141563938 98.97 94.80
Proovread 263206 284871906 1222 241948 246138387 91.92 86.40
ParLECH (Indel) 282394 309367145 339%4 264574 285070391 93.69 92.15
ParLECH (Indel+Subst) 282394 309367145 3394 264720 295438268 93.74 95.50
Yeast Original 231594 1360457697 2990 190184 1206524663 82.12 88.69
LoRDEC 231594 1345253694 2982 196669 1171490123 84.92 87.08
Jabba 152882 634947441 2173 151359 634732955 99.02 99.09
Proovread 225032 1307137185 1693 211323 1100350212 93.90 84.18
ParLECH (Indel) 231594 1389446261 2994 199332 1240945939 86.07 89.31
ParLECH (Indel+Subst) 231594 1389446261 2994 201857 1254987596 87.16 90.32
Fruitfly — Original 6701498 29007475325 15154 3427146 13355041639 51.14 46.04
LoRDEC 6701498 30025673204 15154 3654326 14919815143 54.53 49.69
Jabba 4423855 10820828565 14302 3921032 9455816742 88.63 87.38
Proovread 6511617 20174923756 8603 5450784 14497076095 83.70 71.86
ParLECH (Indel) 6701498 30117416348 15154 4417627 18799138439 65.92 62.42
ParLECH (Indel+Subst) 6701498 30117416348 15154 4557627 19983756932 68.01 66.35

The best results are shown in bold faces

Das et al. BMC Genomics 2019, 20(Suppl 11):948

error regions in each read and breaks an erroneous longer
read at the error region, producing multiple shorter reads.
Consequently, Proovread produces significantly lower
N50 compared to ParLECH.

We have further improved the accuracy by correcting
the substitution errors of the long reads. This phase is not
present in LORDEC. However, it has a substantial impact
on improving the quality of the data. As shown in Tables 3
and 4, by correcting the substitution errors, ParLECH
improve the quality of the dataset by 1 to 3% from the
indel error-corrected output both in terms of alignment
and gain.

Scalability

Figure 7 demonstrates the scalability of different phases of
ParLECH. Figure 7a demonstrates the scalability of each
phase of ParLECH’s indel error correction pipeline for the
fruit fly dataset. The results show that the processing time
of all three phases (i.e., constructing a de Bruijn graph,
locating errors in long reads, and correcting errors in long
reads) improves almost linearly with the increasing num-
ber of compute nodes. Therefore, the overall execution
time of ParLECH also shows the almost linear scalability
as we add more compute nodes.

Figure 7b demonstrates the scalability of different
phases of ParLECH’s substitution error correction
pipeline for the same fruit fly dataset. Like the indel error
correction phases, these phases are also linearly scalable
with the increasing number of nodes.

Figure 8 compares ParLECH with existing error cor-
rection tools. As shown in Fig. 8a, on a single node
for the same E. coli data, ParLECH performs almost 1.5

Page 11 of 15

times faster than Jabba and almost 7.5 times faster than
Proovread. On a single node, LoORDEC shows slightly
better (1.2 times faster) performance than ParLECH
because both the tools have similar asymptotic complexity
(O(Elogv)) whereas ParLECH has some distributed com-
puting overhead. However, utilizing the power of Hadoop
and Hazelcast, the embarrassingly parallel algorithm of
ParLECH can be easily distributed over multiple nodes
and eventually outperform LoRDEC by several magni-
tudes, which is not designed for distributed computing.
Even though the correction algorithm of LoRDEC can
work independently on each of the long reads, the com-
putation cannot be distributed because of the absence of a
proper scheduler.

Figure 8b compares the substitution error correction
pipeline with Quake [4], an existing tool to correct the
substitution errors of Illumina short read sequences. For
the similar reason mentioned above, ParLECH outper-
forms Quake by several magnitudes when distributed over
multiple nodes. For a fair comparison with Quake, we
use the E. coli lllumina dataset only for this experiment.
Since the major motivation of ParLECH is to correct the
long-read errors, we did not report the results of accuracy
comparison between ParLECH and Quake in this paper.

Discussion

Effects of different traversal algorithms on indel error
correction

To better understand the benefit of our widest path algo-
rithm (ParLECHyyp), we compare its accuracy with that
of two other graph traversal algorithms, which are popu-
lar in this domain. The first one is the Dijkstra’s shortest

%A « = KmerCount
-~
k= LocateError
é i = = CorrectError
:; = Total
g ugx_ -
=T)]
£ 8
£ s
2 8- W
E =
=
8 Ilo\— -~
p= by
8 -
O & v
=F B -
T T T - T
16 32 64 128

Number of Nodes in log scale

a) Time to correct indel error of fruit fly dataset

Fig. 7 Scalability of ParLECH. a Time to correct indel error of fruit fly dataset. b Time to correct subst. error of fruit fly dataset

s Sf | == LocateError

= | = = CorrectError

E g |

-~ N

[

<

Q

2 o

[o0)) (3]

=

8 8- -

) o OO

E - e

‘8 ¥

=

2

e

1

o (o]

%

58]

. T T T T
16 32 64 128
Number of Nodes in log scale
b) Time to correct subst. error of fruit fly dataset

Das et al. BMC Genomics 2019, 20(Suppl 11):948

Page 12 of 15

=3 B ParLECH
N @ LoRDEC
B Jabba
B Proovread
.
=, o~
g
E
0 o
B O
=
2
g 8
*
m
=3
wv
= l = | =
1 2 4 8 16 32

#Nodes

a) Time for hybrid correction of indel errors
in E. coli long reads (1.032 GB)

300

B ParLECH(Subst.)
B Quake

200 250
L A

150
1

Execution time (min)

50
]

I l B =
2 4 8 16 32
#Nodes

b) Time for correction of substitution errors
in E. coli short reads (13.50 GB)

Fig. 8 Comparing execution time of ParLECH with existing error correction tools. a Time for hybrid correction of indel errors in E.coli long reads
(1.032 GB). b Time for correction of substitution errors in E.coli short reads (13.50 GB)

path algorithm (ParLECHgp), and the other one is a greedy
traversal algorithm (ParLECHgGyeeqy)- Table 5 reports the
accuracy results of all the three algorithms over the real
PacBio data sets.

ParLECHgp replaces the weak region in the long read
with the sequence corresponding to the shortest path in
the DBG. ParLECHGeeqy always selects the vertex with
the maximum coverage among all neighboring vertices
during its traversal. For ParLECH G eeqy, the traversal often
ends up in a tip of a dead-end path. So, we use a branch-
ing factor b (100 by default) such that, after traversing
b successive vertices from the source vertex, the algo-
rithm backtracks if it cannot meet the destination vertex.

Table 5 Effects of different traversal algorithms

The algorithm aborts when all successors from the source
vertex are visited using this branching factor.

Although ParLECHgp has the similar performance as
ParLECHyp, because of the counter intuitive nature
of shortest paths and the strong (high coverage)
k-mers desired for the correction, it cannot take the
advantage of the k-mer coverage information in a
straight forward way, adversely impacting the accu-
racy. ParLECHgyeeqy, on the other hand, can take the
advantage of the k-mer coverage information, but its
accuracy depends highly on the higher value of the
branching factor that poses a severe limitation on its
performance.

Data Methodology #Reads #Bases #Aligned Reads #Aligned bases %Aligned reads %Aligned bases

E. coli ParLECHwp 282394 309367145 264574 285070391 93.69 9215
ParLECHsp 282394 307987923 247227 266373078 87.55 86.49
ParLECHGreedy 282394 328966341 216543 233312807 76.68 70.92

Yeast ParLECHy» 231594 1389446261 199332 1240945939 86.07 89.31
ParLECHsp 231594 1355153783 196669 1171490123 84.92 86.44
ParLECHGreedy 231594 1399628927 175478 1045262567 7577 74.68

Fruit fly ParLECHwp 6701498 30117416348 4417627 18799138439 65.92 62.42
ParLECHsp 6701498 30193752318 3654326 14919815143 54.53 4941
ParLECHGreedy 6701498 32131749687 2946734 12030871508 4397 3744

Das et al. BMC Genomics 2019, 20(Suppl 11):948

Our widest path algorithm not only optimizes the
performance but also makes better use of k-mer cov-
erage information. The algorithm maximizes the min-
imum coverage of the k-mer in a path. Compared to
both ParLECHsp and ParLECHGyeeqy, ParLECHwp better
balances the coverage of all the k-mers in a particular path
of the DBG, which improves the accuracy of the resultant
data set.

As shown in Table 5, the widest path shows almost 15
to 25% better alignment accuracy compared to the greedy
algorithm, which is found to perform worst among all.
Comparing to the shortest path algorithm, the widest path
shows almost 6 to 13% improvement for the dataset.

Resource consumption statistics

Using the power of Hadoop and Hazelcast, ParLECH
is capable to tradeoff between CPU-Hour and DRAM
utilization. That is, based on the data size and the avail-
able resources, ParLECH can be tuned to utilize the disk
space at the cost of higher execution time.

Table 6 compares the CPU-Hour and DRAM resource
consumption of ParLECH with existing error correc-
tion tools with respect to the E. coli data set. For the
best (lowest) execution time, ParLECH consumes almost
similar CPU-Hour as LoRDEC, which is significantly
less comparing to Jabba and Proovread. For this perfor-
mance, ParLECH needs the entire k-mer spectrum in
DRAM. Consequently, it utilizes almost 32GB of DRAM.
However, ParLECH can process the same E. coli data con-
suming significantly less amount (only 5GB) of DRAM
if configured properly. However, the process takes more
time to finish because of context switching between the
DRAM and the hard disk.

Processing large-scale human genomes

To showcase the data handling capability of ParLECH
with hundreds of GBs of sequencing data and its scaling
capability with hundreds of computing nodes, we analyze
a large human genome data set. This 312 GB of PacBio
data set includes more than 23 million long reads with
the average length of 6,587 base pairs. The corresponding
[llumina data set is 452 GB in size and contains more than

Table 6 Comparing resource consumption of ParLECH with
existing error correction tools with respect to E. coli dataset

Error correction tool CPU-Hour Peak
(single node) memory
usage
LoRDEC 10 20.65
Jabba 18 11.16
Proovread 89 31.77
ParlLECH (configured for least execution time)11.67 23.80
ParLECH (configured to use lower DRAM) 29.37 5

Page 13 of 15

1.4 billion reads with the read length of 101 base pairs.
To analyze this large data set (764 GB cumulative), we use
128 nodes of SuperMic cluster. We tuned ParLECH for the
maximum performance. That means we distributed the
entire de Bruijn graph in the memory available across the
cluster.

The indel error correction process takes about 28.6 h as
shown in Table 7. After this indel error correction, 78.3%
of reads and 75.4% of bases are successfully aligned to the
reference genome. The substitution error correction pro-
cess took another 26.5 h, successfully aligning 79.73% of
the reads and 80.24% of the bases to the reference genome.

Conclusion

In this paper, we present a distributed hybrid error cor-
rection framework for PacBio long reads, called ParLECH.
For efficient and scalable analysis of large-scale sequence
data, ParLECH makes use of Hadoop and Hazelcast.
ParLECH uses the de Bruijn graph and k-mer coverage
information from the short reads to rectify the errors of
the long reads. We develop a distributed version of the
widest path algorithm to maximize the minimum k-mer
coverage in a path of the de Bruijn graph constructed
from the Illumina short reads. We replace the indel error
regions in a long read with their corresponding widest
path. To improve the substitution accuracy, we develop
a median statistics-based strategy that considers rela-
tive k-mer abundance in a specific area of a genome to
take care of high- and low-coverage areas separately. Our
experimental results show that ParLECH can scale with
hundreds of compute nodes and can improve the quality
of large-scale sequencing data sets in an accurate manner.
While correcting the errors, ParLECH takes care of high-
and low-coverage regions of the sequencing reads sepa-
rately and is better capable to balance the k-mer coverage
based on the neighborhood. Hence, we believe that it is a
good starting point for detecting and correcting errors in
RNA and metagenome sequences.

Table 7 Correcting a human genome

PacBio data size 312GB
lllumina data size 452GB
#nodes used 128
Time 286h
%Aligned reads (Indel) 783
%Aligned bases (Indel) 7543
%Gain (Indel) 82.38
Time (Indel + Subst) 34h
%Aligned reads (Indel + Subst) 79.73
%Aligned bases (Indel + Subst) 80.24
%Gain (Indel + Subst) 84.51

Das et al. BMC Genomics 2019, 20(Suppl 11):948

Supplementary information
Supplementary information accompanies this paper at
https://doi.org/10.1186/512864-019-6286-9.

Additional file 1: This file provides a brief of the theoretical rationale for
using widest path algorithm (claim 1), and a theoretical justification for
why median statistics has lower dependency on the value of k.

Abbreviations

CCT: Center for computation and technology; DBG: De bruijn graph; DNA:
Deoxyribonucleic acid; DRAM: Dynamic random access memory; GB: Giga
bytes; HDD: Hard disk drive; HDFS: Hadoop distributed file system; HPC: High
performance computing; LSU: Louisiana State University; NoSQL: Not only SQL;
ParLECH: Parallel long-read error correction using hybrid methodology; RNA:
Ribonucleic acid; SSD: Solid state drive; UW: University of Wisconsin

Acknowledgements

We would like to thank the Information Technology and Service (ITS)
department of both UW Platteville and LSU for providing the testing
infrastructure required in different phases of the project.

About this supplement

This article has been published as part of BMC Genomics Volume 20 Supplement
11,2019: Selected articles from the IEEE BIBM International Conference on
Bioinformatics & Biomedicine (BIBM) 2018: genomics. The full contents of the
supplement are available online at https://bmcgenomics.biomedcentral.com/
articles/supplements/volume-20-supplement-11.

Authors’ contributions

AKD and KL developed the algorithms of long read error correction. SG and
SJP evaluated and tested the tool. All the authors read and approved the final
manuscript.

Funding

Publication costs were funded by NSF grants (MRI-1338051, IBSS-L-1620451,
SCC-1737557, RAPID-1762600), NIH grants (P20GM103458-10,
P30GM110760-03, P20GM103424), LA Board of Regents grants
(LEQSF(2016-19)-RD-A-08 and ITRS), and IBM faculty awards.

Availability of data and materials
The source code for ParLECH is available at https://github.com/
arghyakusumdas/GenomicErrorCorrection.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details

! Department of Computer Science and Software Engineering, University of
Wisconsin at Platteville, Platteville, WI, USA. 2School of Electrical Engineering
and Computer Science, Center for Computation and Technology, Louisiana
State University, Baton Rouge, Baton Rouge, LA, USA.

Published: 20 December 2019

References

1. Goodwin S, McPherson JD, McCombie WR. Coming of age: ten years of
next-generation sequencing technologies. Nat Rev Genet. 2016;17(6):333-51.

2. DasAK, LeeK, ParkS-J. Parlech: Parallel long-read error correction with
hadoop. In: 2018 IEEE International Conference on Bioinformatics and
Biomedicine (BIBM). IEEE; 2018. p. 341-8. https://doi.org/10.1109/bibm.
2018.8621549.

3. Lou DI, Hussmann JA, McBee RM, Acevedo A, Andino R, Press WH,
Sawyer SL. High-throughput dna sequencing errors are reduced by

©

12.

20.

21

22.

23.

24.

25.

26.

27.

Page 14 of 15

orders of magnitude using circle sequencing. Proc Natl Acad Sci.
2013;110(49):. https://doi.org/10.1073/pnas.1319590110.

Kelley DR, Schatz MC, Salzberg SL. Quake: quality-aware detection and
correction of sequencing errors. Genome Biol. 2010. https://doi.org/10.
1186/gb-2010-11-11-r116.

Yang X, Dorman KS, Aluru S. Reptile: representative tiling for short read
error correction. Bioinformatics. 2010;26(20):. https://doi.org/10.1093/
bioinformatics/btg468.

Medvedev P, Scott E, Kakaradov B, Pevzner P. Error correction of
high-throughput sequencing datasets with non-uniform coverage. Bioinformatics.
2011;27(13).. https://doi.org/10.1093/biocinformatics/btr208.

llie L, Molnar M. Racer: Rapid and accurate correction of errors in reads.
Bioinformatics. 2013. https://doi.org/10.1093/bioinformatics/btt407.
Salmela L, Schroder J. Correcting errors in short reads by multiple
alignments. Bioinformatics. 2011;27(11).. https://doi.org/10.1093/
bioinformatics/btr170.

Song L, Florea L, Langmead B. Lighter: fast and memory-efficient
sequencing error correction without counting. Genome Biol. 2014;15(11)..
https://doi.org/10.1186/513059-014-0509-9.

Liu'Y, Schroder J, Schmidt B. Musket: a multistage k-mer spectrum-based
error corrector for illumina sequence data. Bioinformatics. 2013;29(3)..
https://doi.org/10.1093/bioinformatics/bts690.

Schroder J, Schroder H, Puglisi SJ, Sinha R, Schmidt B. Shrec: a
short-read error correction method. Bioinformatics. 2009;25:. https://doi.
org/10.1093/bioinformatics/btp379.

Liu'Y, Schmidt B, Maskell DL. Decgpu: distributed error correction on
massively parallel graphics processing units using cuda and mpi. BMC
Bioinformatics. 2011;12(1):. https:.//doi.org/10.1186/1471-2105-12-85.

Kao W-C, Chan AH, Song YS. Echo: a reference-free short-read error correction
algorithm. Genome Res. 2011;21(7):. https://doi.org/10.1101/gr.111351.110.
Das AK, Shams S, Goswami S, Platania R, Lee K, Park S-J. Parsech: Parallel
sequencing error correction with hadoop for large-scale genome. In:
Proceedings of the 9th International BICob Conference. ISCA; 2017.
https://www.searchdl.org/PagesPublic/ConfPaper.aspx?ConfPprlD=
26C12DF8-87DB-E711-A40B-E4B3180586B9.

Salmela L, Rivals E. Lordec: accurate and efficient long read error
correction. Bioinformatics. 2014;30(24):3506-14.

Miclotte G, Heydari M, Demeester P, Audenaert P, Fostier J. Jabba: Hybrid
error correction for long sequencing reads using maximal exact matches.
In: International Workshop on Algorithms in Bioinformatics. Springer;
2015. p. 175-88. https://doi.org/10.1007/978-3-662-48221-6_13.

Hackl T, Hedrich R, Schultz J, Forster F. proovread: large-scale
high-accuracy pacbio correction through iterative short read consensus.
Bioinformatics. 2014;30(21):3004-11.

Koren S, Schatz MC, Walenz BP, Martin J, Howard JT, Ganapathy G,
Wang Z, Rasko DA, McCombie WR, Jarvis ED, et al. Hybrid error
correction and de novo assembly of single-molecule sequencing reads.
Nat Biotechnol. 2012,;30(7):693-700.

Au KF, Underwood JG, Lee L, Wong WH. Improving pacbio long read
accuracy by short read alignment. PLoS ONE. 2012;7(10):46679.
Haghshenas E, Hach F, Sahinalp SC, Chauve C. Colormap: Correcting
long reads by mapping short reads. Bioinformatics. 2016;32(17):545-51.
Zhang H, Jain C, Aluru S. A comprehensive evaluation of long read error
correction methods. BioRxiv. 2019519330. https://doi.org/10.1101/519330.
Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S,
Cuomo CA, Zeng Q, Wortman J, Young SK, et al. Pilon: an integrated tool
for comprehensive microbial variant detection and genome assembly
improvement. PLoS ONE. 2014;9(11):112963.

Hsu J. PacBio® variant and consensus caller. https://github.com/
PacificBiosciences/GenomicConsensus. Last accessed on 03 Feb 2018.
Salmela L, Walve R, Rivals E, Ukkonen E. Accurate self-correction of errors
in long reads using de bruijn graphs. Bioinformatics. 2016;33(6):799-806.
Morisse P, Marchet C, Limasset A, Lecroq T, Lefebvre A. Consent:
Scalable self-correction of long reads with multiple sequence alignment.
BioRxiv. 2019546630. https://doi.org/10.1101/546630.

Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, Phillippy AM. Canu:
scalable and accurate long-read assembly via adaptive k-mer weighting
and repeat separation. Genome Res. 2017;27(5):722-36.

Crusoe MR, Alameldin HF, Awad S, Boucher E, Caldwell A, Cartwright R,
Charbonneau A, Constantinides B, Edvenson G, Fay S, et al. The khmer

Das et al. BMC Genomics 2019, 20(Suppl 11):948 Page 15 of 15

software package: enabling efficient nucleotide sequence analysis.
F1000Res. 2015;4:. https://doi.org/10.12688/f1000research.6924.1. PMID:
26535114; PMCID: PMC4608353.

28. Brown CT, Howe A, Zhang Q, Pyrkosz AB, Brom TH. A reference-free
algorithm for computational normalization of shotgun sequencing data.
2012. arXiv preprint arXiv:1203.4802.

29. Johns M. Getting Started with Hazelcast: Packt Publishing Ltd; 2015.
https://www.packtpub.com/big-data-and-business-intelligence/
getting-started-hazelcast.

30. High Performance Computing Louisiana State University. http://www.
hpclsu.edu/resources/hpc/system.php?system=SuperMIC.

31. Das AK, Koppa PK, Goswami S, Platania R, Park S-J. Large-scale parallel
genome assembler over cloud computing environment. J Bioinform
Comput Biol. 2017. https://doi.org/10.1142/50219720017400030.

32. Das AK, Park S-J, Hong J, Chang W. Evaluating different
distributed-cyber-infrastructure for data and compute intensive scientific
application. In: IEEE International Conference on Big Data; 2015. https://
doi.org/10.1109/bigdata.2015.7363750.

33. Das AK, Hong J, Goswami S, Platania R, Lee K, Chang W, Park S-J, Liu L.
Augmenting amdahl’s second law: A theoretical model to build
cost-effective balanced hpc infrastructure for data-driven science. In:
Cloud Computing (CLOUD), 2017 IEEE 10th International Conference On.
IEEE; 2017. p. 147-54. https://doi.org/10.1109/cloud.2017.27.

34, Chaisson MJ, Tesler G. Mapping single molecule sequencing reads using
basic local alignment with successive refinement (blasr): application and
theory. BMC Bioinformatics. 2012;13(1):238.

35. LiH, Durbin R. Fast and accurate short read alignment with
burrows-wheeler transform. Bioinformatics. 2009;25(14):1754-60.

36. Yang X, Chockalingam SP, Aluru S. A survey of error-correction methods
for next-generation sequencing. Brief Bioinform. 2012;14(1):56-66.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Ready to submit your research? Choose BMC and benefit from:

o fast, convenient online submission

e thorough peer review by experienced researchers in your field

e rapid publication on acceptance

o support for research data, including large and complex data types

e gold Open Access which fosters wider collaboration and increased citations
e maximum visibility for your research: over 100M website views per year

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions k BMC

	Abstract
	Background
	Methods
	Results
	Conclusion
	Keywords

	Background
	Related work

	Methods
	Rationale behind the indel error correction
	Rationale behind the substitution error correction
	Big data framework in the context of genomic error correction
	Error correction pipeline
	De bruijn graph construction and counting k-mer
	Locating the indel errors of long read
	Correcting the indel errors
	Locating the substitution error
	Correcting the substitution error

	Results
	Datasets
	Computing environment
	Accuracy metrics
	Comparison with existing tools
	Scalability

	Discussion
	Effects of different traversal algorithms on indel error correction
	Resource consumption statistics
	Processing large-scale human genomes

	Conclusion
	Supplementary informationSupplementary information accompanies this paper at https://doi.org/10.1186/s12864-019-6286-9.
	Additional file 1

	Abbreviations
	Acknowledgements
	About this supplement
	Authors' contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher's Note

