2019 20th IEEE International Conference on Mobile Data Management (MDM)

Deep Learning-Based Spatial Analytics for
Disaster-Related Tweets: An Experimental Study

Shayan Shams, Sayan Goswami, and Kisung Lee
Division of Computer Science and Engineering
Louisiana State University (LSU)

Baton Rouge, LA 70803, USA
sshams2 @cct.Isu.edu, sgoswami@cct.lsu.edu, klee76 @lsu.edu

Abstract—Online social networks are being widely used during
unexpected large-scale disasters not only for sharing latest
news but also requesting emergency rescues. Particularly, social
network posts with their location information are becoming
more important because they can be utilized for emergency
management, urban planning, and various studies to understand
effects of the disasters. Despite their importance, the percentage
of such posts is generally tiny. In this paper, to address the
location sparsity problem on Twitter in the event of disasters, we
propose a deep learning-based framework to spatially analyze
the disaster-related tweets by focusing on classifying tweets from
affected areas of disasters. We also study effects of different deep
learning architectures and input embedding techniques for this
classification task. Our experimental results demonstrate that
our ConvNet model with the Word2vec word embedding has the
highest classification accuracy.

I. INTRODUCTION

We are witnessing widespread use of online social networks
(e.g., Twitter, Facebook, and Weibo) for not only everyday
lives but also major issues such as sports events, elections,
earthquakes, and terrors. Particularly, during unexpected large-
scale disasters, online social networks can serve as an impor-
tant medium of emergency communication because traditional
emergency systems (e.g., 911 calls in US) can be extremely
slow (or unreachable at all). For example, when Hurricane
Harvey hit the Houston metropolitan area with massive flood-
ing in 2017, several people used social networks to request
emergency rescues in life-threatening situations because they
could not get through to a 911 emergency call center [1].

Social network posts with their location information can be
effectively utilized before/during/after disasters for not only
emergency management and rescues but also various social,
political, environmental, and urban planning studies to under-
stand effects of the disasters. For example, researchers use geo-
tagged tweets to understand social-geographical disparities of
Twitter use during Hurricane Harvey of 2017 [2]. However,
despite the invaluable importance of the location information
on online social networks, most social network users are
reluctant to share their specific location because of various
reasons including privacy concerns. This location sparseness
problem limits opportunities for geographical studies in vari-
ous disciplines.

To tackle the location sparseness problem on online social
networks, researchers have explored various directions for

2375-0324/19/$31.00 ©2019 IEEE

DOI 10.1109/MDM.2019.00-40

337

extracting location-specific hints and predicting the location of
each user or even each post. Even though existing approaches
have shown some promising results for extracting location-
related information, most of them depend on a gazetteer and
a Part-Of-Speech (POS) tagger that are not optimized for
social network posts including a lot of typos, grammatical
errors, abbreviations, and hashtags. To address such limitations
without heavy feature engineering and manual tagging, we
develop a deep learning-based framework to spatially analyze
the disaster-related tweets. Particularly, in this paper, we focus
on classifying tweets from affected areas of two hurricanes
(Hurricane Harvey of 2017 and Hurricane Sandy of 2012)
only based on the text of tweets. This binary classification
can be useful during disasters to quickly find those in affected
areas and after disasters to conduct studies on the effects
of the disasters. It can be also used as a building block
for finer-grained classification tasks such as point of interest
(POI) prediction and trajectory analysis. We also study effects
of various deep learning architectures and input embedding
techniques for this classification task. Our experimental results
demonstrate that our ConvNet model with the Word2vec word
embedding has the highest classification accuracy.

The rest of the paper is organized as follows. In Section I,
we introduce the background of text embedding and deep
learning followed by related work. We describe the design of
our framework in Section III. We show our evaluation results
in Section IV and conclude this paper in Section V.

II. BACKGROUND

In this section, we introduce the background and related
work of this paper.

A. Input Embeddings for Text

1) Bag-of-Words Models: A bag-of-words (BoW) model is
a method by which we can extract features from textual data so
that we can use the features in machine learning algorithms. A
bag-of-words of a text indicates the frequencies of all words in
the text regardless of their locations or structures. The model
checks the occurrences of known words in the document. As
the vocabulary size (i.e., the number of words) increases, so
does the size of the vector representing the input document.
Despite its simplicity, this model has several limitations. First

of all, its wide and sparse representations make it hard to han-
dle large-scale data for running machine learning algorithms
because of the high computational requirements. In addition,
it is hard to capture the semantics of words in text documents
because this model disregards grammar and word order.

2) Vector Space Models: A vector space model (VSM) is
another approach to extract information from text documents
for running machine learning models. This approach alleviates
the data sparsity and lack of semantics problems in the bag-of-
words models. In VSMs, words are embedded in a continuous
vector space such that those similar to each other are mapped
closer to each other in the space. An instance of VSMs is
the Word2vec [3] model, which can be either a continuous
bag-of-words (CBOW) architecture that predicts target words
from source context or a skip-gram architecture that does it
the other way round.

3) Social Network-Specific Models: Processing text (e.g.,
tweets) from online social networks has a few challenges
that are difficult to address with traditional natural language
processing techniques. For example, tweets often contain in-
formal words, spelling and grammatical errors, abbreviations,
emoticons, and special characters, which make the vocabulary
size too large for word-level models. Some of these problems
are addressed in the Tweet2vec [4] model, which embeds an
entire tweet into a vector by extracting complex dependencies
in text. GloVe [5] also provides pre-trained word vectors
for Twitter, trained using aggregated global word-word co-
occurrence statistics.

B. Deep Learning Architectures

Recent advances in deep learning have garnered a lot of
attention from various domains such as image and video
recognition, speech recognition, and natural language pro-
cessing. Complemented by the advancements in accelerator
technologies [6], [7], deep learning techniques have been
widely used not only in computer science but also in medicine,
chemistry, and transportation, to name a few. The field is
still constantly evolving with newer models, and many novel
applications have reported remarkable success using the deep
learning techniques [8]-[11].

1) Convolutional Neural Networks: One of the driving
forces behind the advancement of deep learning is the de-
velopment of convolutional neural networks (CNNs or Con-
vNets). These networks have proved to be extremely good
in image processing such as classification, object recognition,
and diagnosis from medical imagery. Moreover, CNNs are still
under active development, and researchers frequently report
variants with better accuracy results [12]-[14]. Since CNNs
are designed to work on images, their structural characteristics
significantly differ from those of traditional neural networks.
Neurons in neighboring layers exhibit a local connectivity
pattern, ensuring that filters learn to detect patterns based on
spatial locality. Each filter scans the entire image for finding
a certain pattern, and several filters can be stacked, producing
a 3D volume of neurons that is capable of detecting many
different patterns. The network consists of a hierarchy of

338

spatial patterns where smaller receptive fields create larger
ones. Based on weight sharing, a filter learns a certain pattern
across the whole image.

2) Recurrent Neural Networks: CNNs are generally not
optimized when the input data are interdependent as a temporal
pattern. Since CNNs do not preserve any sort of correlation
between the previous input and the next input, all the out-
puts are independent. On the other hand, recurrent neural
networks (RNNs) consist of states (i.e., memory) that are
utilized to process sequences. This makes them suitable for
processing various temporal data such as language modeling,
text generation, machine translation, speech recognition, signal
processing, generating image descriptions, and video tagging,
in which the output depends on a sequence of words or
pictures that are temporally correlated. An RNN stores all
the previous step input and merges that information with
the current step input. Therefore, it can also capture some
information regarding the correlation between the current step
and the previous steps. In other words, the decision at time t—1
affects the decision taken at time ¢. Long Short-Term Memory
(LSTM), a specific type of RNNs, is particularly well-suited
for time-series data [15].

C. Related Work

There are many existing techniques to predict the location
of each Twitter user, and we can broadly categorize them into
two classes: a) a content-based approach that tries to infer
the user’s location from all tweets posted by a user and b) a
network-based approach that extracts the location information
using other users in a person’s network [16]. The content-
based methods find location-specific words from each user’s
tweets to predict the location of the user [17]-[19]. A variation
of the content-based methods uses TF (Term Frequency) or
TF-IDF (Inverse Document Frequency) to score words in
tweets, label the top words with locations, and use them in
a supervised machine learning or deep learning models [20]—
[23]. In addition, there are several existing techniques to
predict the next location of a social network user [24] or
future visitors at given locations [25] using location-based
social networks (LBSN).

Another approach tries to find locations mentioned in the
tweet text using Named Entity Recognition (NER) tools [26],
another location-based social network [27], [28], or deep
learning models [29]. These methods are designed to work
on individual tweets as opposed to a user’s tweet history
mentioned previously. In this paper, we focus on classifying
tweets from affected areas of disasters only based on the text
of tweets, which can be useful for emergency response orga-
nizations, urban planners, and social/environmental scientists.
Unlike existing approaches that typically require heavy feature
engineering or labor-intensive manual tagging for generating
ground truth, we develop a deep learning-based framework
without such burdens and also study the effects of different
deep learning and input embedding techniques for this classi-
fication.

TABLE I
NUMBER OF TWEETS CONTAINING LOCATION INFORMATION

Hurricane ~ With geo With location Affected Not affected
Harvey 13,814 175,424 49,285 96,874
Sandy 131,540 162,032 67,749 91,935

III. FRAMEWORK DESIGN

In this section, we describe the detailed pipeline in our
framework for this study.

A. Data Preprocessing

For this study, we have acquired tweets related to Hurricane
Harvey of 2017 using hashtags “harvey” and “hurricanehar-
vey” and Hurricane Sandy of 2012 using hashtags “sandy”
and “hurricanesandy” (all case insensitive) via Gnip. The total
numbers of tweets gathered after filtering out non-English and
non-US tweets are 21 million for Harvey and 15.4 million for
Sandy. For Hurricane Sandy, about 162 thousand tweets are
associated with a location field and denoted by a polygon. The
field indicates a semantic place, but its resolution widely varies
from points of interest and neighborhoods to cities, admin
regions (e.g., US states), and even countries. The geo field
stores the fine-grained location (i.e., latitude and longitude)
of a tweet where the tweet was posted. Out of the 162 thou-
sand tweets for Hurricane Sandy, about 132 thousand tweets
have their geo-coordinate. For Hurricane Harvey, about 175
thousand tweets have their location information while about
14 thousand tweets among them have their geo-coordinate.
It is worth noting that the percentage of geo-tagged tweets
for Hurricane Harvey is significantly lower than previously
reported percentages in other research publications (around
1%) [27]. Even though we could not figure out its exact causes,
one possible reason would be improved awareness about social
network privacy in recent years.

For each hurricane, we obtain a list of affected zip codes
(i.e., postal codes in US) and convert them into latitude-
longitude pairs. We use the pairs to create a polygon of
affected areas. Among the tweets associated with location,
we discard those with state- or country-level resolutions and
consider only neighborhoods, points of interest, and cities.
After applying this filter, we have about 146 thousand and 160
thousand tweets for Hurricanes Harvey and Sandy respectively.

We compare the location of each filtered tweet with the
polygon of affected areas and mark the tweet as ”from affected
areas” if there is more than 50% overlap. In other words, we
divide the tweets into two classes: 1) those originating from
areas affected by the hurricane and 2) those originating from
the rest of the US. Details of the datasets are summarized in
Table I.

B. Word Embedding

Since the size of the filtered tweets varies from 1 to 34
words, we only keep the tweets whose length is between the
25th percentile (9 words) and 75th percentile (19 words) in

339

Number of tweets

10
Tweet length

15 20 25 30 35

Fig. 1. Histogram of the number of words in tweets after preprocessing

this study, giving us about 176 thousand filtered tweets in
total. We perform this additional filtering for two reasons.
First, it is unlikely that tweets with only a few words have
enough information for this classification task. Second, for
designing LSTM models based on the embedding techniques,
we need to add many zeros to properly represent the tweets
with a large number of words, causing the data sparsity prob-
lem and introducing extra training time without meaningful
benefit in the trained models. We leave efficient processing of
the excluded tweets as our future work. Figure 1 illustrates
the histogram for the word lengths of the tweets after our
preprocessing described in Section III-A.

1) Word2vec: To train a Word2vec model, we first make a
dataset of words in context from the filtered tweets. We define
the context of a word w to be a window spanning from words
to the left of w to those at the right of w. In this study, we use
the skip-gram model for mapping each word to a vector. Next,
we make a dictionary of contexts and targets and convert the
dataset into a set of inputs and outputs, which can be used for
training the model. For feature learning in Word2vec, we train
our skip-gram architecture to classify words into either real
targets or noise based on their probability values. In each step,
we choose one noisy example from the unigram distribution
and calculate the loss for a target-noise pair. We update the
parameters in a way that the model assigns a higher probability
to the observed word than the noisy word. We use stochastic
gradient descent (SGD) with a mini-batch size of 128 for
maximizing the objective over the whole dataset.

We obtain 1,639,779 total words and 141,185 distinct words
(i.e., vocabulary size) using both the Harvey and Sandy
datasets. In our setting, we convert each word into a vector
of size 64 and 500 for LSTM and ConvNet respectively. The
window size (i.e., the number of left and right words) is one
for each direction, and we use 64 as the number of negative
examples to sample.

2) Tweet2vec: We use the open source code! of
Tweet2vec [4] to embed each tweet to a vector of size 500.
In the Tweet2vec model, each tweet is divided into characters,
and each character is converted to a one-hot vector with one bit
set to one representing the presence of the character. The one-
hot vectors are multiplied by the matrix M¢ € RI€I*% where
d. is the size of the vector for the character space and |C| is
the number of characters, to be projected into the character
space. The character vectors are fed to a bi-directional Gated
Recurrent Unit (GRU) and a dense layer to be processed for
obtaining a final embedding vector for the tweet. The last layer
uses the softmax function with the output size equal to the
number of hashtags in the dataset to compute the probability
for each hashtag. In our setting, we convert each tweet into a
vector of size 500.

3) GloVe: Stanford University’s NLP group has processed
massive datasets from Twitter containing 2 billion tweets with
a vocabulary of about 1.2 million words and uploaded the
pre-trained embedding vectors and corresponding words on its
Github page?. The Github page provides embedding vectors
of sizes 25, 50, 100, and 200. In this study, we use the pre-
trained embedding vectors of size 200 to convert each word
in tweets into a vector of size 200.

C. Model Training

1) Convolutional Neural Networks: While convolutional
neural networks (CNNs) are widely used for analyzing data
with spatial correlation such as images, recent works show
that CNNs can have excellent success in analyzing data with
temporal correlation such as speech recognition, text, and
DNA sequences analysis [11], [30], [31]. Therefore, we use
a ConvNet (CNN) architecture as one of our deep learning
models to classify if a tweet was originated from affected areas
of a hurricane. We implement a ConvNet model with five 1-D
convolutional layers followed by two fully connected layers.
The first three layers are followed by max-pooling layers, and
the last two layers are followed by drop-out layers and two
fully connected layers. Activation functions are ReLLU for all
layers except the last layer’s activation, which is the softmax
function to calculate the probability of the tweet being sent
from the affected areas of a hurricane. We use the standard
binary cross-entropy loss with SGD to train the model.

2) Long Short-Term Memory: Long Short-Term Memory
(LSTM), a specific type of RNNs, has been successfully
applied to various temporal data such as text and speech by
preserving the temporal correlations in a sequence of inputs.
Therefore, in this study, we use a single-layer LSTM model
and a stacked version with three LSTM layers to compare their
performance with that of the ConvNet model. Our single-layer
LSTM model comprises of one LSTM with 100 hidden units
followed by a fully connected layer with the softmax activation
function. Our stacked LSTM model includes three LSTM
layers with 100 hidden units followed by a fully connected

Thttps://github.com/bdhingra/tweet2vec
Zhttps://github.com/stanfordnlp/Glo Ve

340

layer with the softmax activation function. For both the LSTM
models, the number of time steps is 19. We use the standard
binary cross-entropy loss with SGD to train the models.

IV. EXPERIMENTS

In this section, we present the classification results for three
different deep learning models (ConvNet, single-layer LSTM,
and stacked LSTM) and one baseline model using linear
logistic regression (LLR). Furthermore, we show the effects
of different embedding techniques on prediction accuracy.
In this paper, we define the accuracy as the proportion of
correctly classified tweets among all evaluated tweets. Table II
summarizes our experimental results.

A. Input Vectors for ConvNet

We evaluate the ConvNet model using three different em-
bedding techniques (Tweet2vec, Word2vec, and GloVe). For
Tweet2vec, we convert each tweet to a vector of size (1 x 500).
For Word2vec, we first find the learned embedding vector for
each word in a tweet, and so each word is converted to a
vector of size 500. Next, we stack all the corresponding vectors
vertically and calculate the average of the stacked vector for
each feature in the learned vector space, as described in [32].
For example, if a tweet has 15 words, the stacked vector’s
size is (15 x 500), and the input vector’s size is (1 x 500). For
GloVe, we convert each word to a vector of size 200 using
pre-trained embedding vectors. Similar to the processing for
Word2vec, we stack all the corresponding vectors vertically
and calculate the average for each feature. The input vector’s
size is (1 x 200).

B. Input Vectors for LSTM

We evaluate two LSTM models (single-layer and stacked
models). As inputs for the LSTM models, we convert each
tweet to a vector using the learned embedding from the
Word2vec model or pre-trained GloVe embedding vectors. For
Word2vec, we first find the learned embedding vector for each
word in a tweet, and so each word is converted to a vector of
size 64. Then, we concatenate all word vectors of a tweet
to form a tweet vector. Finally, since 19 is the maximum
number of words for the tweets in our evaluation as explained
in Section III-A, we pad the obtained tweet vector to reach the
length of 19 in the first axis. For example, if a tweet has 15
words, its tweet vector’s size is (15 x 64), and the final vector’s
size is (19 x 64) with four zero vectors for 16th, 17th, 18th,
and 19th words (i.e., a zero matrix of size (4 x 64)). We follow
the same process for the GloVe embedding vectors except the
size (1 x 200) of each word vector, and so the final input
vector’s size is (19 x 200).

Since we convert each input tweet to a vector of size (19x
the size of the learned vectors), we consider 19 time steps for
our LSTM models. To eliminate the effects of zero padding,
we make a mask matrix and multiply it to the loss matrix. For
example, for a tweet with 12 words, the mask matrix has 1s
for the first 12 rows and Os for the last 7 rows. We exclude
Tweet2vec for evaluating our LSTM models since Tweet2vec

TABLE 1I
CLASSIFICATION ACCURACY FOR DIFFERENT DEEP LEARNING MODELS

Model | Input Accuracy #Param Tr-Time
LLR Word2vec 53.60% 1,002 166 ps
. Word2vec 57.32% 66,202 280 us
Single LSTM | "Giove 56.50% 120602 350ps
Word2vec 60.00% 227,002 763 us
Stacked LSTM | “Giove ™ 5821% 281402 830ps
Word2vec 68.44% 109,632,130 428 ps
ConvNet GloVe 60.03% 40,426,114 280 us
Tweet2vec 64.52% 109,632,130 430 ps

converts each tweet into a vector, and so meaningful time steps
are not defined for LSTM.

C. Training Time and Parameters

We also report the number of trainable parameters and
training time (Tr-Time) for one training iteration with a batch
size of 256 for each model in Table II. We measure the
training time for one iteration by calculating the average of
1000 iterations after the 5th epoch because the first several
epochs’ training time is usually longer than the rest of training.
We use a NVIDIA Tesla V100 PCle GPU and TensorFlow
version 1.11 [33] for measuring the training time. Note that
the difference in terms of the number of parameters for the
same model with different embedding techniques is because
of the different input vector size, not model configurations.
For instance, the input size for ConvNet with Word2vec is
(1 x 500) while the size with GloVe is (1 x 200), and so
ConvNet with GloVe has less parameters.

D. Discussion

As Table II shows, our ConvNet model with Word2vec
demonstrates the highest accuracy among all evaluated deep
learning models and input embedding techniques. We claim
that the ConvNet with Word2vec works better because of
two main reasons. First, our ConvNet model is much deeper
and has much more trainable parameters than the other mod-
els, giving the model the significant nonlinear transformation
capability to effectively map input data to high-dimensional
representations. Second, we use a Word2vec model trained
on our Twitter data while we utilize pre-trained embedding
vectors for GloVe and Tweet2vec, which might not represent
our dataset distribution well.

Even though we show some promising results for this
classification task using the ConvNet with Word2vec, we could
witness only a marginal improvement using the other deep
learning models. For example, the accuracy of the single-
layer LSTM model with GloVe is only 3% higher than
that of our baseline model (linear logistic regression) even
though it has almost 60 times more trainable parameters.
These results demonstrate the importance and challenge of
choosing a proper deep learning model with adequate input
data preparation for classification tasks that are not well
studied. They also show that location prediction only based on
the text of tweets has inherent difficulties that are hard to tackle

341

even with the power of deep learning and word embedding.
For example, our model could correctly classify tweet ”con-
sistently terrible traffic is a problem plaguing houstonians this
week hurricaneharvey houstonstrong” posted from affected
areas. On the other hand, it failed to correctly classify tweets
“everyone in texas that will be affected by hurricaneharvey
please stay safe and take care of each other texasstrong” and
“born in houston a few days before hurricaneharvey she is
now home in miami fleeing hurricaneirma amazingbaby” both
from non-affected areas. To address such challenges, we plan
to extend this work to consider other types of information,
such as the location in previous tweets from the same user, the
home location of users after some validation, and the follower
(or friendship) network of each user. We also believe that,
given that the length of each tweet is less than 280 characters
(140 characters before November 2017), the limited size of
our dataset is another factor of low accuracy results. We plan
to continuously collect more disaster-related tweets to further
improve our models, and so emergency response organizations
and social/environmental scientists can effectively utilize our
classification results.

Another interesting observation from our results in Table II
is the non-linear relationship between the number of trainable
parameters and training time. For instance, the LLR model has
1,002 parameters while the ConvNet model with Word2vec
has 109,632,130 parameters, but the training time of the
ConvNet model is only 2.5 times longer than that of the LLR
model. These results highlight the necessity of having higher-
speed connection between GPU and CPU since the results
indicate data transfer between CPU and GPU rather than the
computation dominated the training time of the LLR model.

V. CONCLUSION

In this paper, we have presented our deep learning-based
framework to spatially analyze the disaster-related tweets by
focusing on classifying tweets from affected areas of disasters.
We have reported our experimental results using different
deep learning architectures and input embedding techniques
for tweets related to Hurricanes Sandy and Harvey. Our
results demonstrate that the ConvNet model with Word2vec
shows the highest accuracy, but they also raise several open
challenges for deep learning-based spatial analytics for tweets.
In this study, we use only the text of tweets for location
prediction to understand the capability of word embedding
and deep learning techniques for short social network posts.
As our future work, we plan to utilize other types of available
data (e.g., previous location history, home location, follower
network) to further improve the prediction accuracy.

ACKNOWLEDGMENTS

This work was partially funded by NSF grants (IBSS-L-
1620451, SCC-1737557, RAPID-1762600) and an LA Board
of Regents grant (LEQSF(2016-19)-RD-A-08).

REFERENCES

[1] L. Silverman. (2017) Facebook, Twitter Replace 911 Calls For Stranded
In Houston. [Online]. Available: https:/n.pr/2vmb8zQ

[2]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

L. Zou, N. S. Lam, S. Shams, H. Cai, M. A. Meyer, S. Yang, K. Lee,
S.-J. Park, and M. A. Reams, “Social and geographical disparities in
Twitter use during Hurricane Harvey,” International Journal of Digital
Earth, pp. 1-19, 2018.

T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” arXiv preprint arXiv:1301.3781,
2013.

B. Dhingra, Z. Zhou, D. Fitzpatrick, M. Muehl, and W. W. Cohen,
“Tweet2vec: Character-based distributed representations for social me-
dia,” arXiv preprint arXiv:1605.03481, 2016.

J. Pennington, R. Socher, and C. Manning, “Glove: Global vectors
for word representation,” in Proceedings of the 2014 conference on
empirical methods in natural language processing (EMNLP), 2014, pp.
1532-1543.

S. Shams, R. Platania, K. Lee, and S.-J. Park, “Evaluation of deep learn-
ing frameworks over different HPC architectures,” in 2017 IEEE 37th
International Conference on Distributed Computing Systems (ICDCS).
IEEE, 2017, pp. 1389-1396.

S. Goswami, K. Lee, S. Shams, and S. Park, “GPU-Accelerated Large-
Scale Genome Assembly,” in 2018 IEEE International Parallel and
Distributed Processing Symposium (IPDPS), May 2018, pp. 814-824.
S. Shams, R. Platania, J. Zhang, J. Kim, K. Lee, and S.-J. Park, “Deep
Generative Breast Cancer Screening and Diagnosis,” in International
Conference on Medical Image Computing and Computer-Assisted Inter-
vention. Springer, 2018, pp. 859-867.

N. Ruchansky, S. Seo, and Y. Liu, “Csi: A hybrid deep model for fake
news detection,” in Proceedings of the 2017 ACM on Conference on
Information and Knowledge Management. ACM, 2017, pp. 797-806.
R. Platania, S. Shams, S. Yang, J. Zhang, K. Lee, and S.-J. Park,
“Automated breast cancer diagnosis using deep learning and region
of interest detection (bc-droid),” in Proceedings of the 8th ACM In-
ternational Conference on Bioinformatics, Computational Biology, and
Health Informatics. ACM, 2017, pp. 536-543.

S. Shams, R. Platania, J. Kim, J. Zhang, K. Lee, S. Yang, and S.-J. Park,
“A Distributed Semi-Supervised Platform for DNase-Seq Data Analytics
using Deep Generative Convolutional Networks,” in Proceedings of the
2018 ACM International Conference on Bioinformatics, Computational
Biology, and Health Informatics. ACM, 2018, pp. 244-253.

K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks
for Large-Scale Image Recognition,” CoRR, vol. abs/1409.1556, 2014.
[Online]. Available: http://arxiv.org/abs/1409.1556

A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural infor-
mation processing systems, 2012, pp. 1097-1105.

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2015, pp. 1-9.

A. Graves, A.-r. Mohamed, and G. Hinton, “Speech recognition with
deep recurrent neural networks,” in Acoustics, speech and signal pro-
cessing (icassp), 2013 ieee international conference on. 1EEE, 2013,
pp. 6645-6649.

X. Zheng, J. Han, and A. Sun, “A survey of location prediction on
Twitter,” IEEE Transactions on Knowledge and Data Engineering, 2018.
Y. Yamaguchi, T. Amagasa, H. Kitagawa, and Y. Ikawa, “Online
user location inference exploiting spatiotemporal correlations in social
streams,” in Proceedings of the 23rd ACM International Conference on
Conference on Information and Knowledge Management. ACM, 2014,
pp. 1139-1148.

B. Han, P. Cook, and T. Baldwin, “Text-based twitter user geolocation
prediction,” Journal of Artificial Intelligence Research, vol. 49, pp. 451—
500, 2014.

342

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

K. Ryoo and S. Moon, “Inferring twitter user locations with 10 km
accuracy,” in Proceedings of the 23rd International Conference on World
Wide Web. ACM, 2014, pp. 643-648.

B. Wing and J. Baldridge, “Hierarchical discriminative classification
for text-based geolocation,” in Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing (EMNLP), 2014,
pp. 336-348.

Y. Miura, M. Taniguchi, T. Taniguchi, and T. Ohkuma, “A simple
scalable neural networks based model for geolocation prediction in
Twitter,” in Proceedings of the 2nd Workshop on Noisy User-generated

Text (WNUT), 2016, pp. 235-239.
A. Rahimi, T. Cohn, and T. Baldwin, “A neural model for user

geolocation and lexical dialectology,” arXiv preprint arXiv:1704.04008,
2017.

Y. Miura, M. Taniguchi, T. Taniguchi, and T. Ohkuma, “Unifying text,
metadata, and user network representations with a neural network for
geolocation prediction,” in Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers),
vol. 1, 2017, pp. 1260-1272.

Y. Su, X. Li, W. Tang, J. Xiang, and Y. He, “Next check-in location
prediction via footprints and friendship on location-based social net-
works,” in 2018 19th IEEE International Conference on Mobile Data
Management (MDM). 1EEE, 2018, pp. 251-256.

M. A. Saleem, F. S. Da Costa, P. Dolog, P. Karras, T. B. Pedersen, and
T. Calders, “Predicting visitors using location-based social networks,” in
2018 19th IEEE International Conference on Mobile Data Management
(MDM). 1EEE, 2018, pp. 245-250.

X. Liu, F. Wei, S. Zhang, and M. Zhou, “Named entity recognition
for tweets,” ACM Transactions on Intelligent Systems and Technology
(TIST), vol. 4, no. 1, p. 3, 2013.

K. Lee, R. K. Ganti, M. Srivatsa, and L. Liu, “When twitter meets
foursquare: tweet location prediction using foursquare,” in Proceedings
of the 11th International Conference on Mobile and Ubiquitous Systems:
Computing, Networking and Services. 1CST, 2014, pp. 198-207.

K. Lee, R. Ganti, M. Srivatsa, and P. Mohapatra, “Spatio-temporal
provenance: Identifying location information from unstructured text,”
in 2013 IEEE International Conference on Pervasive Computing and
Communications Workshops (PERCOM Workshops). 1EEE, 2013, pp.
499-504.

A. Kumar and J. P. Singh, “Location reference identification from tweets
during emergencies: A deep learning approach,” International Journal
of Disaster Risk Reduction, vol. 33, pp. 365-375, 2019.

O. Abdel-Hamid, A.-r. Mohamed, H. Jiang, L. Deng, G. Penn,
and D. Yu, “Convolutional neural networks for speech recognition,”
IEEE/ACM Transactions on audio, speech, and language processing,
vol. 22, no. 10, pp. 1533-1545, 2014.

T. Wang, D. J. Wu, A. Coates, and A. Y. Ng, “End-to-end text
recognition with convolutional neural networks,” in Pattern Recognition
(ICPR), 2012 21st International Conference on. 1EEE, 2012, pp. 3304—
3308.

T. Kenter and M. De Rijke, “Short text similarity with word embed-
dings,” in Proceedings of the 24th ACM international on conference on
information and knowledge management. ACM, 2015, pp. 1411-1420.
M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean,
M. Devin, S. Ghemawat, G. Irving, M. Isard, M. Kudlur,
J. Levenberg, R. Monga, S. Moore, D. G. Murray, B. Steiner,
P. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu, and
X. Zheng, “TensorFlow: A system for large-scale machine learning,”
in 12th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 16), 2016, pp. 265-283. [Online]. Available:
https://www.usenix.org/system/files/conference/osdil6/osdil6-abadi.pdf

