
Deep Learning-Based Spatial Analytics for

Disaster-Related Tweets: An Experimental Study

Shayan Shams, Sayan Goswami, and Kisung Lee

Division of Computer Science and Engineering

Louisiana State University (LSU)

Baton Rouge, LA 70803, USA

sshams2@cct.lsu.edu, sgoswami@cct.lsu.edu, klee76@lsu.edu

Abstract—Online social networks are being widely used during
unexpected large-scale disasters not only for sharing latest
news but also requesting emergency rescues. Particularly, social
network posts with their location information are becoming
more important because they can be utilized for emergency
management, urban planning, and various studies to understand
effects of the disasters. Despite their importance, the percentage
of such posts is generally tiny. In this paper, to address the
location sparsity problem on Twitter in the event of disasters, we
propose a deep learning-based framework to spatially analyze
the disaster-related tweets by focusing on classifying tweets from
affected areas of disasters. We also study effects of different deep
learning architectures and input embedding techniques for this
classification task. Our experimental results demonstrate that
our ConvNet model with the Word2vec word embedding has the
highest classification accuracy.

I. INTRODUCTION

We are witnessing widespread use of online social networks

(e.g., Twitter, Facebook, and Weibo) for not only everyday

lives but also major issues such as sports events, elections,

earthquakes, and terrors. Particularly, during unexpected large-

scale disasters, online social networks can serve as an impor-

tant medium of emergency communication because traditional

emergency systems (e.g., 911 calls in US) can be extremely

slow (or unreachable at all). For example, when Hurricane

Harvey hit the Houston metropolitan area with massive flood-

ing in 2017, several people used social networks to request

emergency rescues in life-threatening situations because they

could not get through to a 911 emergency call center [1].

Social network posts with their location information can be

effectively utilized before/during/after disasters for not only

emergency management and rescues but also various social,

political, environmental, and urban planning studies to under-

stand effects of the disasters. For example, researchers use geo-

tagged tweets to understand social-geographical disparities of

Twitter use during Hurricane Harvey of 2017 [2]. However,

despite the invaluable importance of the location information

on online social networks, most social network users are

reluctant to share their specific location because of various

reasons including privacy concerns. This location sparseness

problem limits opportunities for geographical studies in vari-

ous disciplines.

To tackle the location sparseness problem on online social

networks, researchers have explored various directions for

extracting location-specific hints and predicting the location of

each user or even each post. Even though existing approaches

have shown some promising results for extracting location-

related information, most of them depend on a gazetteer and

a Part-Of-Speech (POS) tagger that are not optimized for

social network posts including a lot of typos, grammatical

errors, abbreviations, and hashtags. To address such limitations

without heavy feature engineering and manual tagging, we

develop a deep learning-based framework to spatially analyze

the disaster-related tweets. Particularly, in this paper, we focus

on classifying tweets from affected areas of two hurricanes

(Hurricane Harvey of 2017 and Hurricane Sandy of 2012)

only based on the text of tweets. This binary classification

can be useful during disasters to quickly find those in affected

areas and after disasters to conduct studies on the effects

of the disasters. It can be also used as a building block

for finer-grained classification tasks such as point of interest

(POI) prediction and trajectory analysis. We also study effects

of various deep learning architectures and input embedding

techniques for this classification task. Our experimental results

demonstrate that our ConvNet model with the Word2vec word

embedding has the highest classification accuracy.

The rest of the paper is organized as follows. In Section II,

we introduce the background of text embedding and deep

learning followed by related work. We describe the design of

our framework in Section III. We show our evaluation results

in Section IV and conclude this paper in Section V.

II. BACKGROUND

In this section, we introduce the background and related

work of this paper.

A. Input Embeddings for Text

1) Bag-of-Words Models: A bag-of-words (BoW) model is

a method by which we can extract features from textual data so

that we can use the features in machine learning algorithms. A

bag-of-words of a text indicates the frequencies of all words in

the text regardless of their locations or structures. The model

checks the occurrences of known words in the document. As

the vocabulary size (i.e., the number of words) increases, so

does the size of the vector representing the input document.

Despite its simplicity, this model has several limitations. First

337

2019 20th IEEE International Conference on Mobile Data Management (MDM)

2375-0324/19/$31.00 ©2019 IEEE
DOI 10.1109/MDM.2019.00-40

of all, its wide and sparse representations make it hard to han-

dle large-scale data for running machine learning algorithms

because of the high computational requirements. In addition,

it is hard to capture the semantics of words in text documents

because this model disregards grammar and word order.

2) Vector Space Models: A vector space model (VSM) is

another approach to extract information from text documents

for running machine learning models. This approach alleviates

the data sparsity and lack of semantics problems in the bag-of-

words models. In VSMs, words are embedded in a continuous

vector space such that those similar to each other are mapped

closer to each other in the space. An instance of VSMs is

the Word2vec [3] model, which can be either a continuous

bag-of-words (CBOW) architecture that predicts target words

from source context or a skip-gram architecture that does it

the other way round.

3) Social Network-Specific Models: Processing text (e.g.,

tweets) from online social networks has a few challenges

that are difficult to address with traditional natural language

processing techniques. For example, tweets often contain in-

formal words, spelling and grammatical errors, abbreviations,

emoticons, and special characters, which make the vocabulary

size too large for word-level models. Some of these problems

are addressed in the Tweet2vec [4] model, which embeds an

entire tweet into a vector by extracting complex dependencies

in text. GloVe [5] also provides pre-trained word vectors

for Twitter, trained using aggregated global word-word co-

occurrence statistics.

B. Deep Learning Architectures

Recent advances in deep learning have garnered a lot of

attention from various domains such as image and video

recognition, speech recognition, and natural language pro-

cessing. Complemented by the advancements in accelerator

technologies [6], [7], deep learning techniques have been

widely used not only in computer science but also in medicine,

chemistry, and transportation, to name a few. The field is

still constantly evolving with newer models, and many novel

applications have reported remarkable success using the deep

learning techniques [8]–[11].

1) Convolutional Neural Networks: One of the driving

forces behind the advancement of deep learning is the de-

velopment of convolutional neural networks (CNNs or Con-

vNets). These networks have proved to be extremely good

in image processing such as classification, object recognition,

and diagnosis from medical imagery. Moreover, CNNs are still

under active development, and researchers frequently report

variants with better accuracy results [12]–[14]. Since CNNs

are designed to work on images, their structural characteristics

significantly differ from those of traditional neural networks.

Neurons in neighboring layers exhibit a local connectivity

pattern, ensuring that filters learn to detect patterns based on

spatial locality. Each filter scans the entire image for finding

a certain pattern, and several filters can be stacked, producing

a 3D volume of neurons that is capable of detecting many

different patterns. The network consists of a hierarchy of

spatial patterns where smaller receptive fields create larger

ones. Based on weight sharing, a filter learns a certain pattern

across the whole image.

2) Recurrent Neural Networks: CNNs are generally not

optimized when the input data are interdependent as a temporal

pattern. Since CNNs do not preserve any sort of correlation

between the previous input and the next input, all the out-

puts are independent. On the other hand, recurrent neural

networks (RNNs) consist of states (i.e., memory) that are

utilized to process sequences. This makes them suitable for

processing various temporal data such as language modeling,

text generation, machine translation, speech recognition, signal

processing, generating image descriptions, and video tagging,

in which the output depends on a sequence of words or

pictures that are temporally correlated. An RNN stores all

the previous step input and merges that information with

the current step input. Therefore, it can also capture some

information regarding the correlation between the current step

and the previous steps. In other words, the decision at time t−1
affects the decision taken at time t. Long Short-Term Memory

(LSTM), a specific type of RNNs, is particularly well-suited

for time-series data [15].

C. Related Work

There are many existing techniques to predict the location

of each Twitter user, and we can broadly categorize them into

two classes: a) a content-based approach that tries to infer

the user’s location from all tweets posted by a user and b) a

network-based approach that extracts the location information

using other users in a person’s network [16]. The content-

based methods find location-specific words from each user’s

tweets to predict the location of the user [17]–[19]. A variation

of the content-based methods uses TF (Term Frequency) or

TF-IDF (Inverse Document Frequency) to score words in

tweets, label the top words with locations, and use them in

a supervised machine learning or deep learning models [20]–

[23]. In addition, there are several existing techniques to

predict the next location of a social network user [24] or

future visitors at given locations [25] using location-based

social networks (LBSN).

Another approach tries to find locations mentioned in the

tweet text using Named Entity Recognition (NER) tools [26],

another location-based social network [27], [28], or deep

learning models [29]. These methods are designed to work

on individual tweets as opposed to a user’s tweet history

mentioned previously. In this paper, we focus on classifying

tweets from affected areas of disasters only based on the text

of tweets, which can be useful for emergency response orga-

nizations, urban planners, and social/environmental scientists.

Unlike existing approaches that typically require heavy feature

engineering or labor-intensive manual tagging for generating

ground truth, we develop a deep learning-based framework

without such burdens and also study the effects of different

deep learning and input embedding techniques for this classi-

fication.

338

TABLE I
NUMBER OF TWEETS CONTAINING LOCATION INFORMATION

Hurricane With geo With location Affected Not affected

Harvey 13,814 175,424 49,285 96,874
Sandy 131,540 162,032 67,749 91,935

III. FRAMEWORK DESIGN

In this section, we describe the detailed pipeline in our

framework for this study.

A. Data Preprocessing

For this study, we have acquired tweets related to Hurricane

Harvey of 2017 using hashtags ”harvey” and ”hurricanehar-

vey” and Hurricane Sandy of 2012 using hashtags ”sandy”

and ”hurricanesandy” (all case insensitive) via Gnip. The total

numbers of tweets gathered after filtering out non-English and

non-US tweets are 21 million for Harvey and 15.4 million for

Sandy. For Hurricane Sandy, about 162 thousand tweets are

associated with a location field and denoted by a polygon. The

field indicates a semantic place, but its resolution widely varies

from points of interest and neighborhoods to cities, admin

regions (e.g., US states), and even countries. The geo field

stores the fine-grained location (i.e., latitude and longitude)

of a tweet where the tweet was posted. Out of the 162 thou-

sand tweets for Hurricane Sandy, about 132 thousand tweets

have their geo-coordinate. For Hurricane Harvey, about 175

thousand tweets have their location information while about

14 thousand tweets among them have their geo-coordinate.

It is worth noting that the percentage of geo-tagged tweets

for Hurricane Harvey is significantly lower than previously

reported percentages in other research publications (around

1%) [27]. Even though we could not figure out its exact causes,

one possible reason would be improved awareness about social

network privacy in recent years.

For each hurricane, we obtain a list of affected zip codes

(i.e., postal codes in US) and convert them into latitude-

longitude pairs. We use the pairs to create a polygon of

affected areas. Among the tweets associated with location,

we discard those with state- or country-level resolutions and

consider only neighborhoods, points of interest, and cities.

After applying this filter, we have about 146 thousand and 160

thousand tweets for Hurricanes Harvey and Sandy respectively.

We compare the location of each filtered tweet with the

polygon of affected areas and mark the tweet as ”from affected

areas” if there is more than 50% overlap. In other words, we

divide the tweets into two classes: 1) those originating from

areas affected by the hurricane and 2) those originating from

the rest of the US. Details of the datasets are summarized in

Table I.

B. Word Embedding

Since the size of the filtered tweets varies from 1 to 34

words, we only keep the tweets whose length is between the

25th percentile (9 words) and 75th percentile (19 words) in

N
u

m
b

er
 o

f
tw

ee
ts

Tweet length

Fig. 1. Histogram of the number of words in tweets after preprocessing

this study, giving us about 176 thousand filtered tweets in

total. We perform this additional filtering for two reasons.

First, it is unlikely that tweets with only a few words have

enough information for this classification task. Second, for

designing LSTM models based on the embedding techniques,

we need to add many zeros to properly represent the tweets

with a large number of words, causing the data sparsity prob-

lem and introducing extra training time without meaningful

benefit in the trained models. We leave efficient processing of

the excluded tweets as our future work. Figure 1 illustrates

the histogram for the word lengths of the tweets after our

preprocessing described in Section III-A.

1) Word2vec: To train a Word2vec model, we first make a

dataset of words in context from the filtered tweets. We define

the context of a word w to be a window spanning from words

to the left of w to those at the right of w. In this study, we use

the skip-gram model for mapping each word to a vector. Next,

we make a dictionary of contexts and targets and convert the

dataset into a set of inputs and outputs, which can be used for

training the model. For feature learning in Word2vec, we train

our skip-gram architecture to classify words into either real

targets or noise based on their probability values. In each step,

we choose one noisy example from the unigram distribution

and calculate the loss for a target-noise pair. We update the

parameters in a way that the model assigns a higher probability

to the observed word than the noisy word. We use stochastic

gradient descent (SGD) with a mini-batch size of 128 for

maximizing the objective over the whole dataset.

We obtain 1,639,779 total words and 141,185 distinct words

(i.e., vocabulary size) using both the Harvey and Sandy

datasets. In our setting, we convert each word into a vector

of size 64 and 500 for LSTM and ConvNet respectively. The

window size (i.e., the number of left and right words) is one

for each direction, and we use 64 as the number of negative

examples to sample.

339

2) Tweet2vec: We use the open source code1 of

Tweet2vec [4] to embed each tweet to a vector of size 500.

In the Tweet2vec model, each tweet is divided into characters,

and each character is converted to a one-hot vector with one bit

set to one representing the presence of the character. The one-

hot vectors are multiplied by the matrix MC ∈ R
|C|×dc , where

dc is the size of the vector for the character space and |C| is

the number of characters, to be projected into the character

space. The character vectors are fed to a bi-directional Gated

Recurrent Unit (GRU) and a dense layer to be processed for

obtaining a final embedding vector for the tweet. The last layer

uses the softmax function with the output size equal to the

number of hashtags in the dataset to compute the probability

for each hashtag. In our setting, we convert each tweet into a

vector of size 500.

3) GloVe: Stanford University’s NLP group has processed

massive datasets from Twitter containing 2 billion tweets with

a vocabulary of about 1.2 million words and uploaded the

pre-trained embedding vectors and corresponding words on its

Github page2. The Github page provides embedding vectors

of sizes 25, 50, 100, and 200. In this study, we use the pre-

trained embedding vectors of size 200 to convert each word

in tweets into a vector of size 200.

C. Model Training

1) Convolutional Neural Networks: While convolutional

neural networks (CNNs) are widely used for analyzing data

with spatial correlation such as images, recent works show

that CNNs can have excellent success in analyzing data with

temporal correlation such as speech recognition, text, and

DNA sequences analysis [11], [30], [31]. Therefore, we use

a ConvNet (CNN) architecture as one of our deep learning

models to classify if a tweet was originated from affected areas

of a hurricane. We implement a ConvNet model with five 1-D

convolutional layers followed by two fully connected layers.

The first three layers are followed by max-pooling layers, and

the last two layers are followed by drop-out layers and two

fully connected layers. Activation functions are ReLU for all

layers except the last layer’s activation, which is the softmax

function to calculate the probability of the tweet being sent

from the affected areas of a hurricane. We use the standard

binary cross-entropy loss with SGD to train the model.

2) Long Short-Term Memory: Long Short-Term Memory

(LSTM), a specific type of RNNs, has been successfully

applied to various temporal data such as text and speech by

preserving the temporal correlations in a sequence of inputs.

Therefore, in this study, we use a single-layer LSTM model

and a stacked version with three LSTM layers to compare their

performance with that of the ConvNet model. Our single-layer

LSTM model comprises of one LSTM with 100 hidden units

followed by a fully connected layer with the softmax activation

function. Our stacked LSTM model includes three LSTM

layers with 100 hidden units followed by a fully connected

1https://github.com/bdhingra/tweet2vec
2https://github.com/stanfordnlp/GloVe

layer with the softmax activation function. For both the LSTM

models, the number of time steps is 19. We use the standard

binary cross-entropy loss with SGD to train the models.

IV. EXPERIMENTS

In this section, we present the classification results for three

different deep learning models (ConvNet, single-layer LSTM,

and stacked LSTM) and one baseline model using linear

logistic regression (LLR). Furthermore, we show the effects

of different embedding techniques on prediction accuracy.

In this paper, we define the accuracy as the proportion of

correctly classified tweets among all evaluated tweets. Table II

summarizes our experimental results.

A. Input Vectors for ConvNet

We evaluate the ConvNet model using three different em-

bedding techniques (Tweet2vec, Word2vec, and GloVe). For

Tweet2vec, we convert each tweet to a vector of size (1×500).
For Word2vec, we first find the learned embedding vector for

each word in a tweet, and so each word is converted to a

vector of size 500. Next, we stack all the corresponding vectors

vertically and calculate the average of the stacked vector for

each feature in the learned vector space, as described in [32].

For example, if a tweet has 15 words, the stacked vector’s

size is (15×500), and the input vector’s size is (1×500). For

GloVe, we convert each word to a vector of size 200 using

pre-trained embedding vectors. Similar to the processing for

Word2vec, we stack all the corresponding vectors vertically

and calculate the average for each feature. The input vector’s

size is (1× 200).

B. Input Vectors for LSTM

We evaluate two LSTM models (single-layer and stacked

models). As inputs for the LSTM models, we convert each

tweet to a vector using the learned embedding from the

Word2vec model or pre-trained GloVe embedding vectors. For

Word2vec, we first find the learned embedding vector for each

word in a tweet, and so each word is converted to a vector of

size 64. Then, we concatenate all word vectors of a tweet

to form a tweet vector. Finally, since 19 is the maximum

number of words for the tweets in our evaluation as explained

in Section III-A, we pad the obtained tweet vector to reach the

length of 19 in the first axis. For example, if a tweet has 15

words, its tweet vector’s size is (15×64), and the final vector’s

size is (19 × 64) with four zero vectors for 16th, 17th, 18th,

and 19th words (i.e., a zero matrix of size (4×64)). We follow

the same process for the GloVe embedding vectors except the

size (1 × 200) of each word vector, and so the final input

vector’s size is (19× 200).
Since we convert each input tweet to a vector of size (19×

the size of the learned vectors), we consider 19 time steps for

our LSTM models. To eliminate the effects of zero padding,

we make a mask matrix and multiply it to the loss matrix. For

example, for a tweet with 12 words, the mask matrix has 1s

for the first 12 rows and 0s for the last 7 rows. We exclude

Tweet2vec for evaluating our LSTM models since Tweet2vec

340

TABLE II
CLASSIFICATION ACCURACY FOR DIFFERENT DEEP LEARNING MODELS

Model Input Accuracy #Param Tr-Time

LLR Word2vec 53.60% 1,002 166 µs

Single LSTM
Word2vec 57.32% 66,202 280 µs

GloVe 56.50% 120,602 350 µs

Stacked LSTM
Word2vec 60.00% 227,002 763 µs

GloVe 58.21% 281,402 830 µs

ConvNet
Word2vec 68.44% 109,632,130 428 µs

GloVe 60.03% 40,426,114 280 µs
Tweet2vec 64.52% 109,632,130 430 µs

converts each tweet into a vector, and so meaningful time steps

are not defined for LSTM.

C. Training Time and Parameters

We also report the number of trainable parameters and

training time (Tr-Time) for one training iteration with a batch

size of 256 for each model in Table II. We measure the

training time for one iteration by calculating the average of

1000 iterations after the 5th epoch because the first several

epochs’ training time is usually longer than the rest of training.

We use a NVIDIA Tesla V100 PCIe GPU and TensorFlow

version 1.11 [33] for measuring the training time. Note that

the difference in terms of the number of parameters for the

same model with different embedding techniques is because

of the different input vector size, not model configurations.

For instance, the input size for ConvNet with Word2vec is

(1 × 500) while the size with GloVe is (1 × 200), and so

ConvNet with GloVe has less parameters.

D. Discussion

As Table II shows, our ConvNet model with Word2vec

demonstrates the highest accuracy among all evaluated deep

learning models and input embedding techniques. We claim

that the ConvNet with Word2vec works better because of

two main reasons. First, our ConvNet model is much deeper

and has much more trainable parameters than the other mod-

els, giving the model the significant nonlinear transformation

capability to effectively map input data to high-dimensional

representations. Second, we use a Word2vec model trained

on our Twitter data while we utilize pre-trained embedding

vectors for GloVe and Tweet2vec, which might not represent

our dataset distribution well.

Even though we show some promising results for this

classification task using the ConvNet with Word2vec, we could

witness only a marginal improvement using the other deep

learning models. For example, the accuracy of the single-

layer LSTM model with GloVe is only 3% higher than

that of our baseline model (linear logistic regression) even

though it has almost 60 times more trainable parameters.

These results demonstrate the importance and challenge of

choosing a proper deep learning model with adequate input

data preparation for classification tasks that are not well

studied. They also show that location prediction only based on

the text of tweets has inherent difficulties that are hard to tackle

even with the power of deep learning and word embedding.

For example, our model could correctly classify tweet ”con-

sistently terrible traffic is a problem plaguing houstonians this

week hurricaneharvey houstonstrong” posted from affected

areas. On the other hand, it failed to correctly classify tweets

”everyone in texas that will be affected by hurricaneharvey

please stay safe and take care of each other texasstrong” and

”born in houston a few days before hurricaneharvey she is

now home in miami fleeing hurricaneirma amazingbaby” both

from non-affected areas. To address such challenges, we plan

to extend this work to consider other types of information,

such as the location in previous tweets from the same user, the

home location of users after some validation, and the follower

(or friendship) network of each user. We also believe that,

given that the length of each tweet is less than 280 characters

(140 characters before November 2017), the limited size of

our dataset is another factor of low accuracy results. We plan

to continuously collect more disaster-related tweets to further

improve our models, and so emergency response organizations

and social/environmental scientists can effectively utilize our

classification results.

Another interesting observation from our results in Table II

is the non-linear relationship between the number of trainable

parameters and training time. For instance, the LLR model has

1,002 parameters while the ConvNet model with Word2vec

has 109,632,130 parameters, but the training time of the

ConvNet model is only 2.5 times longer than that of the LLR

model. These results highlight the necessity of having higher-

speed connection between GPU and CPU since the results

indicate data transfer between CPU and GPU rather than the

computation dominated the training time of the LLR model.

V. CONCLUSION

In this paper, we have presented our deep learning-based

framework to spatially analyze the disaster-related tweets by

focusing on classifying tweets from affected areas of disasters.

We have reported our experimental results using different

deep learning architectures and input embedding techniques

for tweets related to Hurricanes Sandy and Harvey. Our

results demonstrate that the ConvNet model with Word2vec

shows the highest accuracy, but they also raise several open

challenges for deep learning-based spatial analytics for tweets.

In this study, we use only the text of tweets for location

prediction to understand the capability of word embedding

and deep learning techniques for short social network posts.

As our future work, we plan to utilize other types of available

data (e.g., previous location history, home location, follower

network) to further improve the prediction accuracy.

ACKNOWLEDGMENTS

This work was partially funded by NSF grants (IBSS-L-

1620451, SCC-1737557, RAPID-1762600) and an LA Board

of Regents grant (LEQSF(2016-19)-RD-A-08).

REFERENCES

[1] L. Silverman. (2017) Facebook, Twitter Replace 911 Calls For Stranded
In Houston. [Online]. Available: https://n.pr/2vmb8zQ

341

[2] L. Zou, N. S. Lam, S. Shams, H. Cai, M. A. Meyer, S. Yang, K. Lee,
S.-J. Park, and M. A. Reams, “Social and geographical disparities in
Twitter use during Hurricane Harvey,” International Journal of Digital

Earth, pp. 1–19, 2018.
[3] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of

word representations in vector space,” arXiv preprint arXiv:1301.3781,
2013.

[4] B. Dhingra, Z. Zhou, D. Fitzpatrick, M. Muehl, and W. W. Cohen,
“Tweet2vec: Character-based distributed representations for social me-
dia,” arXiv preprint arXiv:1605.03481, 2016.

[5] J. Pennington, R. Socher, and C. Manning, “Glove: Global vectors
for word representation,” in Proceedings of the 2014 conference on

empirical methods in natural language processing (EMNLP), 2014, pp.
1532–1543.

[6] S. Shams, R. Platania, K. Lee, and S.-J. Park, “Evaluation of deep learn-
ing frameworks over different HPC architectures,” in 2017 IEEE 37th

International Conference on Distributed Computing Systems (ICDCS).
IEEE, 2017, pp. 1389–1396.

[7] S. Goswami, K. Lee, S. Shams, and S. Park, “GPU-Accelerated Large-
Scale Genome Assembly,” in 2018 IEEE International Parallel and

Distributed Processing Symposium (IPDPS), May 2018, pp. 814–824.
[8] S. Shams, R. Platania, J. Zhang, J. Kim, K. Lee, and S.-J. Park, “Deep

Generative Breast Cancer Screening and Diagnosis,” in International

Conference on Medical Image Computing and Computer-Assisted Inter-

vention. Springer, 2018, pp. 859–867.
[9] N. Ruchansky, S. Seo, and Y. Liu, “Csi: A hybrid deep model for fake

news detection,” in Proceedings of the 2017 ACM on Conference on

Information and Knowledge Management. ACM, 2017, pp. 797–806.
[10] R. Platania, S. Shams, S. Yang, J. Zhang, K. Lee, and S.-J. Park,

“Automated breast cancer diagnosis using deep learning and region
of interest detection (bc-droid),” in Proceedings of the 8th ACM In-

ternational Conference on Bioinformatics, Computational Biology, and

Health Informatics. ACM, 2017, pp. 536–543.
[11] S. Shams, R. Platania, J. Kim, J. Zhang, K. Lee, S. Yang, and S.-J. Park,

“A Distributed Semi-Supervised Platform for DNase-Seq Data Analytics
using Deep Generative Convolutional Networks,” in Proceedings of the

2018 ACM International Conference on Bioinformatics, Computational

Biology, and Health Informatics. ACM, 2018, pp. 244–253.
[12] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks

for Large-Scale Image Recognition,” CoRR, vol. abs/1409.1556, 2014.
[Online]. Available: http://arxiv.org/abs/1409.1556

[13] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural infor-

mation processing systems, 2012, pp. 1097–1105.
[14] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,

V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, 2015, pp. 1–9.
[15] A. Graves, A.-r. Mohamed, and G. Hinton, “Speech recognition with

deep recurrent neural networks,” in Acoustics, speech and signal pro-

cessing (icassp), 2013 ieee international conference on. IEEE, 2013,
pp. 6645–6649.

[16] X. Zheng, J. Han, and A. Sun, “A survey of location prediction on
Twitter,” IEEE Transactions on Knowledge and Data Engineering, 2018.

[17] Y. Yamaguchi, T. Amagasa, H. Kitagawa, and Y. Ikawa, “Online
user location inference exploiting spatiotemporal correlations in social
streams,” in Proceedings of the 23rd ACM International Conference on

Conference on Information and Knowledge Management. ACM, 2014,
pp. 1139–1148.

[18] B. Han, P. Cook, and T. Baldwin, “Text-based twitter user geolocation
prediction,” Journal of Artificial Intelligence Research, vol. 49, pp. 451–
500, 2014.

[19] K. Ryoo and S. Moon, “Inferring twitter user locations with 10 km
accuracy,” in Proceedings of the 23rd International Conference on World

Wide Web. ACM, 2014, pp. 643–648.
[20] B. Wing and J. Baldridge, “Hierarchical discriminative classification

for text-based geolocation,” in Proceedings of the 2014 Conference on

Empirical Methods in Natural Language Processing (EMNLP), 2014,
pp. 336–348.

[21] Y. Miura, M. Taniguchi, T. Taniguchi, and T. Ohkuma, “A simple
scalable neural networks based model for geolocation prediction in
Twitter,” in Proceedings of the 2nd Workshop on Noisy User-generated

Text (WNUT), 2016, pp. 235–239.
[22] A. Rahimi, T. Cohn, and T. Baldwin, “A neural model for user

geolocation and lexical dialectology,” arXiv preprint arXiv:1704.04008,
2017.

[23] Y. Miura, M. Taniguchi, T. Taniguchi, and T. Ohkuma, “Unifying text,
metadata, and user network representations with a neural network for
geolocation prediction,” in Proceedings of the 55th Annual Meeting of

the Association for Computational Linguistics (Volume 1: Long Papers),
vol. 1, 2017, pp. 1260–1272.

[24] Y. Su, X. Li, W. Tang, J. Xiang, and Y. He, “Next check-in location
prediction via footprints and friendship on location-based social net-
works,” in 2018 19th IEEE International Conference on Mobile Data

Management (MDM). IEEE, 2018, pp. 251–256.
[25] M. A. Saleem, F. S. Da Costa, P. Dolog, P. Karras, T. B. Pedersen, and

T. Calders, “Predicting visitors using location-based social networks,” in
2018 19th IEEE International Conference on Mobile Data Management

(MDM). IEEE, 2018, pp. 245–250.
[26] X. Liu, F. Wei, S. Zhang, and M. Zhou, “Named entity recognition

for tweets,” ACM Transactions on Intelligent Systems and Technology

(TIST), vol. 4, no. 1, p. 3, 2013.
[27] K. Lee, R. K. Ganti, M. Srivatsa, and L. Liu, “When twitter meets

foursquare: tweet location prediction using foursquare,” in Proceedings

of the 11th International Conference on Mobile and Ubiquitous Systems:

Computing, Networking and Services. ICST, 2014, pp. 198–207.
[28] K. Lee, R. Ganti, M. Srivatsa, and P. Mohapatra, “Spatio-temporal

provenance: Identifying location information from unstructured text,”
in 2013 IEEE International Conference on Pervasive Computing and

Communications Workshops (PERCOM Workshops). IEEE, 2013, pp.
499–504.

[29] A. Kumar and J. P. Singh, “Location reference identification from tweets
during emergencies: A deep learning approach,” International Journal

of Disaster Risk Reduction, vol. 33, pp. 365–375, 2019.
[30] O. Abdel-Hamid, A.-r. Mohamed, H. Jiang, L. Deng, G. Penn,

and D. Yu, “Convolutional neural networks for speech recognition,”
IEEE/ACM Transactions on audio, speech, and language processing,
vol. 22, no. 10, pp. 1533–1545, 2014.

[31] T. Wang, D. J. Wu, A. Coates, and A. Y. Ng, “End-to-end text
recognition with convolutional neural networks,” in Pattern Recognition

(ICPR), 2012 21st International Conference on. IEEE, 2012, pp. 3304–
3308.

[32] T. Kenter and M. De Rijke, “Short text similarity with word embed-
dings,” in Proceedings of the 24th ACM international on conference on

information and knowledge management. ACM, 2015, pp. 1411–1420.
[33] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean,

M. Devin, S. Ghemawat, G. Irving, M. Isard, M. Kudlur,
J. Levenberg, R. Monga, S. Moore, D. G. Murray, B. Steiner,
P. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu, and
X. Zheng, “TensorFlow: A system for large-scale machine learning,”
in 12th USENIX Symposium on Operating Systems Design and

Implementation (OSDI 16), 2016, pp. 265–283. [Online]. Available:
https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf

342

