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ABSTRACT or abandoned entirely. These checkpointing packages include: the

Transparently checkpointing MPI for fault tolerance and load bal-
ancing is a long-standing problem in HPC. The problem has been
complicated by the need to provide checkpoint-restart services
for all combinations of an MPI implementation over all network
interconnects. This work presents MANA (MPI-Agnostic Network-
Agnostic transparent checkpointing), a single code base which sup-
ports all MPI implementation and interconnect combinations. The
agnostic properties imply that one can checkpoint an MPI appli-
cation under one MPI implementation and perhaps over TCP, and
then restart under a second MPI implementation over InfiniBand on
a cluster with a different number of CPU cores per node. This tech-
nique is based on a novel split-process approach, which enables two
separate programs to co-exist within a single process with a single
address space. This work overcomes the limitations of the two most
widely adopted transparent checkpointing solutions, BLCR and
DMTCP/InfiniBand, which require separate modifications to each
MPI implementation and/or underlying network APIL The runtime
overhead is found to be insignificant both for checkpoint-restart
within a single host, and when comparing a local MPI computation
that was migrated to a remote cluster against an ordinary MPI
computation running natively on that same remote cluster.
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1 INTRODUCTION

The use of transparent or system-level checkpointing for MPI is
facing a crisis today. The most common transparent checkpointing
packages for MPI in recent history are either declining in usage,
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Open MPI [23] checkpoint-restart service, the MVAPICH2 [15]
checkpoint-restart service, DMTCP for MPI [1], MPICH-V [7], and
a fault-tolerant BLCR-based “backplane”, CIFTS [18]. We argue
existing transparent or system-level checkpoint approaches share
common issues that makes long-term maintenance impractical. In
particular, the HPC community requires checkpoint-restart support
for any of m popular MPI implementations over n different network
interconnects.

We propose MPI-Agnostic Network-Agnostic transparent check-
pointing (MANA), a single code base that can support all combi-
nations of the many MPI implementations and network libraries
that are in wide use. In particular, it supports all m X n combina-
tions, where m is the number of MPI implementations and n is the
number of underlying network libraries. The new approach, based
on a split-process, is fully transparent to the underlying MPI, net-
work, libc library, and underlying Linux kernel. MANA is free and
open-source software [28]. (Transparent checkpointing supports
standard system-level checkpointing, but it can alternatively be
customized in an application-specific manner.)

We begin by distinguishing this work from that of Hursey et al. [22],
which demonstrated a network-agnostic implementation of check-
pointing for a single MPI implementation (for Open MPI). Hursey’s
work adds network-agnostic checkpointing by “taking down” the
network during checkpoint and “building it up” upon resuming —
but only within the single Open MPI implementation. Further, it
requires maintenance of n code bases, where n is the number of
network libraries that Open MPI supports.

In contrast, The new approach of MANA employs a single code
base that exists external to any particular MPI implementation. At
checkpoint time, MANA “disconnects” the application from the MPI
and network libraries, and at the time of resuming, it “reconnects” to
the MPI and network libraries. Further, at the time of restart, MANA
starts a new and independent MPI session (even possibly using a
newer version of the original MPI implementation (perhaps due to
a system upgrade), or it may even switch MPI implementations.

Next, we present three case studies to demonstrate the declining
usage of transparent checkpointing, and how maintenance costs
have factored into supressing adoption of even semi-agnostic sys-
tems.

First, we consider Hursey et al. [22] and Open-MPIL Open MPI
developers created a novel and elegant checkpoint-restart service
that was network-agnostic, with the ability to checkpoint under net-
work A and restart under network B. The mechanism presented by
Hursey et al warrants careful analysis of how it provides network-
agnostic checkpointing (a primary goal of MANA). Their implemen-
tation lifts checkpoint code out of interconnect drivers, applying
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a Chandy/Lamport [11] checkpoint algorithm to an abstraction of
“MPI Messages”.

However, their choice to implement within the MPI library may
have ultimately suppressed widespread adoption. Hursey et al. can
support multiple MPI implementations only by requiring each MPI
implementation to individually integrate the Hursey approach and
maintain support for taking down and restoring network intercon-
nects for each supported network library. This imposes a significant
maintenance penalty on packages maintainers. Even Open-MPI sup-
port remains in question. As of this writing in 2019, the Open-MPI
FAQ says: “Note: The checkpoint/restart support was last released
as part of the v1.6 series. ... This feature is looking for a main-
tainer.” [30].

The second case study concerns BLCR. MPICH and several other
MPI implementations adopted BLCR for checkpointing. BLCR is
based on a kernel module that checkpoints the local MPI rank. BLCR
lacks System V shared memory support (widely used for intra-node
communication), which severely limits its use in practice. As of
this writing, BLCR 0.8.5 (appearing in 2013) was the last officially
supported version [5], and formal testing of the BLCR kernel module
stopped with Linux 3.7 (Dec., 2012) [6]. Here, again, we argue that
BLCR declined not due to any fault with BLCR, but due to the
difficulty of supporting or maintaining common interconnects.

The third case study concerns DMTCP. As discussed above,
DMTCP/InfiniBand is MPI-agnostic, but not network-agnostic, re-
quiring a plugin for each network interconnect. While it supports
InfiniBand [10], and partially supports Intel Omni-Path [8, Chap-
ter 6], DMTCP does not support Cray GNI Aries network, the
Mellanox extensions to InfiniBand (UCX and FCA), the libfabric
API [26], and many others.

Separate MPI-agnostic or network-agnostic checkpoint systems
have not been widely adopted, it seems, in-part due to the mainte-
nance costs. MANA attempts to resolve this.

The split-process approach eliminates this maintenance penalty,
supporting checkpoint/restart on all combinations of MPI library
and interconnect with a single codebase. In a split-process, a single
system process contains two programs in its memory address space.
The two programs are an MPI proxy application (denoted the lower-
half) and the original MPI application code (denoted the upper-
half). MANA tracks which memory regions belong to the upper
and lower halves. At checkpoint time, only upper-half memory
regions are saved. MANA is also fully transparent to the specific
MPI implementation, network, libc library and Linux kernel.

At restart time, MANA initializes a new MPI library and un-
derlying interconnect network in the lower half of a process. The
checkpointed MPI application code and data is then copied in and
restored into the upper half from the checkpoint image file. By ini-
tializing a new MPI library at the time of restart, MANA provides
excellent load-balancing support without the need for additional
logic. The fresh initialization inherently detects the correct num-
ber of CPU cores per node, optimizes the topology as MPI ranks
from the same node may now be split among distinct nodes (or vice
verse), re-optimizes the rank-to-host bindings for any MPI topology
declarations in the MPI application, and so on. (See Section 4 for
further discussion.)

MANA maintains low runtime overhead, avoiding RPC by taking
advantage of a split-process to make library calls within the same

process. Other Proxy-based approaches had been previously used
for checkpointing in general applications [39] and CUDA (GPU-
accelerated) applications [16, 34, 35]. However, such approaches
incur significant overhead due to context switching and copying
buffers between the MPI application and the MPI proxy.

Scalability is a key criterion for MANA. This criterion motivates
the use of version 3.0 of DMTCP [1] as the underlying package
for transparent checkpointing. DMTCP was previously used to
demonstrate petascale-level transparent checkpointing using Lustre.
In particular this was applied to MPI-based HPCG over 32,752 CPU
cores (checkpointing an aggregate 38 TB in 11 minutes), and to
MPI-based NAMD over 16,368 cores (checkpointing an aggregate
10 TB in 2.6 minutes) [9]. DMTCP employs a stateless centralized
checkpoint coordinator for its results, and MANA re-uses for its
own purposes this same coordinator. (The single coordinator is
not a barrier to scalability, since it can use a broadcast tree for
communication with its peers.)

Next in this work, Section 2 describes the design issues in fit-
ting the split-process concept to checkpoint MPL In particular, the
issue of checkpointing during MPI collective communications is
discussed. Section 3 presents an experimental evaluation. Section 4
discusses current and future inquiries opened up by these new
ideas. Section 5 discusses related work. Finally, Section 6 presents
the conclusion.

2 MANA: DESIGN AND IMPLEMENTATION

Multiple aspects of the design of MANA are covered in this sec-
tion. Section 2.1 discusses the design for supporting a split-process.
Section 2.2 discusses the need to save and restore persistent MPI
opaque objects, such as communicators, groups and topologies.
Section 2.3 briefly discusses the commonly used algorithm to drain
point-to-point MPI messages in transit prior to intiaiting a check-
point. Sections 2.4 and 2.5 present a new two-phase algorithm
(Algorithm 2), which enables checkpointing in-progress MPI collec-
tive communication calls in a fully agnostic environment. Finally,
Sections 2.6 and 2.7 present details of the overall implementation
of MANA.

2.1 Upper and Lower Half: Checkpointing with
an Ephemeral MPI Library

In this section, we define the lower half of a split-process as the
memory associated with the MPI library and dependencies, includ-
ing network libraries. The upper halfis the remaining Linux process
memory associated with the MPI application’s code, data, stack,
and other regions (e.g., environment variables). The terms lower
halfand upper half are in analogy with the upper and lower half
of a device driver in an operating system kernel. This separation
into lower and upper half does not involve additional threads or
processes. Instead, it serves primarily to tag memory so that only
upper half memory will be saved or restored during checkpoint
and restart. Section 2.6 describes an additional “helper thread”, but
that thread is active only during checkpoint and restart.

Libc and other system libraries may appear in both the lower
half as a dependency of the MPI libraries, and the upper half as an
independent dependency of the MPI application.



This split-process approach allows MANA to balance two con-
flicting objectives: a shared address space; and isolation of upper
and lower halves. The isolation allows MANA to omit the lower half
memory (an “ephemeral” MPI library) when it creates a checkpoint
image file. The shared address space allows the flow of control to
pass efficiently from the upper-half MPI application to the lower-
half MPI library through standard C/Fortran calling conventions,
including call by reference. As previously noted, Remote Produce
Calls (RPC) are not employed.

Isolation is needed so that at checkpoint time, the lower half can
be omitted from the checkpoint image, and at the time of restart,
replaced with a small “bootstrap” MPI program with new MPI li-
braries. The bootstrap program calls MPI_Init() and each MPI
process discovers its MPI rank via a call to MPI_Rank (). The mem-
ory present at this time becomes the lower half. The MPI process
then restores the upper-half memory from a checkpoint image file
corresponding to the MPI rank id. Control is then transferred back
to the upper-half MPI application, and the stack in the lower half is
never used again.

Shared address space is needed for efficiency. A dual-process
proxy approach was explored in [16, Section IV.B] and in [35, Sec-
tion IV.A]. The former work reported a 6% runtime overhead for
real-world CUDA applications, and the latter work reported run-
time overheads in excess of 20% for some OpenCL examples from
the NVIDIA SDK 3.0. In contrast, Section 3 reports runtime over-
heads less than 2% for MANA under older Linux kernels, and less
than 1% runtime overhead for recent Linux kernels.

Discarding the lower half greatly simplifies the task of check-
pointing. By discarding the lower half, the MPI application in the
upper half appears as an isolated process with no inter-process
communication. Therefore, a single-process checkpointing package
can create a checkpoint image.

A minor inconvenience of this split-process approach is that
calls to sbrk() will cause the kernel to extend the process heap
in the data segment. Calls to sbrk() can be caused by invocations
of malloc(). Since the kernel has no concept of a split-process,
the kernel may choose, for example, to extend the lower half data
segment after restart since that corresponds to the original program
seen by the kernel before the upper-half memory is restored. MANA
resolves this by interposing on calls to sbrk() in the upper-half
libc, and then inserts calls to mmap() to extend the heap of the
upper-half.

Finally, MANA employs coordinated checkpointing, and a check-
point coordinator sends messages to each MPI rank at the time
of checkpoint (see Sections 2.3, 2.4 and 2.5). MPI opaque objects
(communicators, groups, topologies) are detected on creation and
restored on restart (see Section 2.2). This is part of a broader strat-
egy by which MPI calls with persistent effects (such as creation of
these opaque objects) are recorded during runtime and replayed on
restart.

2.2 Checkpointing MPI Communicators,
Groups, and Topologies

An MPI application can create communication subgroups and topolo-
gies to group processes for ease of programmability and efficient

communication. MPI implementations provide opaque handles to
the application as a reference to a communicator object or group.

MANA interposes on all calls that refer to these opaque identi-
fiers, and virtualizes the identifiers. At runtime, MANA records any
MPI calls that can modify the MPI communication state, such as
MPI_Comm_create, MPI_Group_incl, etc. On restart, MANA recre-
ates the MPI communicator state by replaying the MPI calls using
a new MPI library. The runtime virtualization of identifiers allows
the application to continue running with consistent handles across
checkpoint-restart.

A similar checkpointing strategy also works for other opaque
identifiers, such as, MPI derived datatypes, etc.

2.3 Checkpointing MPI Point-to-Point
Communication

Capturing the state of MPI processes requires quiescing the process
threads, and preserving the process memory to a file on the disk.
However, this alone is not sufficient to capture a consistent state of
the computation. Any MPI messages sent but not yet received at
the time of quiescing processes must also be saved as part of the
checkpoint image.

MANA employs a variation of an all-to-all bookmark exchange
algorithm to reach this consistent state. LAM/MPI [31] demon-
strated the efficacy of a such a Chandy/Lamport [11] algorithm
for checkpointing MPI applications. Hursey et al. [22] lifted this
mechanism out of interconnect drivers and into the MPI library.
MANA further lifts this mechanism outside the MPI library, and
into a virtualized MPI APL

An early prototype of MANA demonstrated a naive application
of this bookmark exchange algorithm was sufficient for handling
pre-checkpoint draining for point-to-point communication; how-
ever, collective-communication calls may have MPI implementation
effects that can determine when it is “safe” to begin a checkpoint.
For this reason, a naive application to the entire API was insufficient
to ensure correctness. This is discussed in Section 2.4.

2.4 Checkpointing MPI Collectives: Overview

The MPI collective communications primitive involves communi-
cation amongst all or a program-defined subset of MPI ranks (as
specified by the MPI communicator argument to the function). The
internal behavior of collectives are specific to each MPI implemen-
tation, and so it is not possible to make guarantees about their
behavior, such as when and how messages are exchanged when
ranks are waiting for one or more ranks to enter the collective.

In prior work [22, 31], internal knowledge of the MPI library state
was required to ensure that checkpointing would occur at a “safe”
state. In particular, Hursey et al. [22] required interconnect drivers
be classified as “checkpoint-friendly” or “checkpoint-unfriendly”,
changing behavior based on this classification. As MANA lives
outside the MPI library, a naive application of the Hursey et al.
algorithm can have effects that cross the upper and lower half
boundaries of an MPI rank (for example, when shared memory is
being used for MPI communication).

This problem occurs because of the truly network-agnostic trait
of MANA. As MANA has no concept of transport level constructs,
it cannot determine what “safe” means in context of collectives. To



correct this, MANA’s support for collective communication requires
it to maintain the following invariant:

No checkpoint must take place while a rank is inside a
collective communication call.

There exists one exception to this rule: a trivial barrier. A trivial
barrier is a simple call to MPI_Barrier(). This call produces no side
effects on an MPI rank, and so it can be safely interrupted during
checkpoint, and then re-issued when restarting the MPI application.
This is possible due to the split-process architecture of MANA,
as trivial barrier calls occur exclusively in the lower half, which
is discarded and replaced across checkpoint and restart. MANA
leverages this exception to build a solution for all other collective
calls.

As we discuss MANA’s algorithm for checkpointing collective
calls, we take into consideration three subtle, but important, con-
cerns.

Challenge I (consistency): In the case of a single MPI collec-
tive communication call, there is a danger that rank A will
see a request to checkpoint before entering the collective
call, while rank B will see the same request after entering
the collective call, in violation of MANA’s invariant. Both
ranks might report that they are ready to checkpoint, and the
resulting inconsistent snapshot will create problems during
restart. This situation could arise, for example, if the mes-
sage from the checkpoint coordinator to rank B is excessively
delayed in the network. To resolve this, MANA introduces
a two-pass protocol in which the coordinator makes a re-
quest (sends an intend-to-checkpoint message), each MPI
rank acknowledges with its current state, and finally the
coordinator posts a checkpoint request (possibly preceded
by extra iterations).

Challenge II (progress and latency): Given the aforementioned

solution for consistency, long delays may occur before a
checkpoint request can be serviced. It may be that rank A has
entered the barrier, and rank B will require several hours to
finish a task before entering the barrier. Hence, the two-pass
protocol may create unacceptable delays before a checkpoint
can be taken. Algorithm 2 addresses this by introducing a
trivial barrier prior to the collective communication call. We
refer to this as a two-phase algorithm since each collective call
is now replaced by a wrapper function that invokes a trivial
barrier call (phase 1) followed by the original collective call
(phase 2).

Challenge IIT (multiple collective calls): Until now, it was
assumed that at most one MPI collective communication call
was in progress at the time of checkpoint. It may happen
that there are multiple ongoing collective calls. During the
time that some MPI ranks exit from a collective call, it may
happen that MPI ranks associated with an independent col-
lective call have left the MPI trivial barrier (phase 1) and have
now entered the real collective call (phase 2). As a result,
servicing a checkpoint may be excessive delayed. To solve
this, we introduce an intend-to-checkpoint message, such
that no ranks will be allowed to enter phase 2, and extra itera-
tions will be inserted into the request-acknowledge protocol
between coordinator and MPI rank.

2.5 Checkpointing MPI Collectives: Detailed
Algorithm

Here we present a single algorithm (Algorithm 2) for checkpointing
MPI collectives which contains the elements described in Section 2.4:
a multi-iteration protocol; and a two-phase algorithm incorporating
a trivial barrier before any collective communication call.

From the viewpoint of an MPI application, any call to an MPI
collective communication function is interposed on by a wrapper
function, as shown in Algorithm 1.

Algorithm 1 Two-Phase collective communication wrapper.
(This wrapper function interposes on all MPI collective com-
munication functions invoked by an MPI application)

1: function CoLLECTIVE COMMUNICATION WRAPPER

2 # Begin Phase 1

3 Call MPI_Barrier() # trivial barrier

4 # Begin Phase 2

5 Call original MPI collective communication function
6: end function

Recall that a trivial barrieris an extra call toMPI_Barrier () prior
to a collective call. A collective MPI call can intuitively be divided
into two parts: the participating MPI ranks “register” themselves
as ready for the collective communication; and then the “work” of
communication is carried out. Where the time for the collective
communication calls of an MPI program is significant, it is typically
due to significant “work” in the second part of the calls. Adding a
trivial barrier requires the MPI ranks to register themselves once
for the trvial barrier (but no work is involved), and then register
themselves again for the actual MPI collective communication. The
overhead due to registering twice is tiny in practice. Evidence for
this can be seen in the experiments in Section 3.2.3, which show
small overhead.

The purpose of Algorithm 1 is to enforce the following extension
of the invariant presented in Section 2.4:

No checkpoint must take place while a rank is inside the
collective communication call (Phase 2) of a wrapper
function for collective communication (Algorithm 1).

We formalize this with the following theorem, which guarantees
Algorithm 2 satisfies this invariant.

THEOREM 1. Under Algorithm 2, an MPI rank is never inside a
collective communication call when a checkpoint message is received
from the checkpoint coordinator.

The proof of this theorem is deferred until the end of this sub-
section. We begin the path to this proof by stating an axiom that
serves to define the concept of a barrier.

Ax1tom 1. For a given invocation of an MPI barrier, it never happens
that a rank A exits from the barrier before another rank B enters the
barrier under the “happens-before” relation.

Next, we present the following two lemmas.
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Figure 1: Fundamental “happens-before” relation in commu-
nication between the checkpoint coordinator and the MPI
ranks involved in an MPI barrier.

LEMMA 1. For a given MPI barrier, if the checkpoint coordinator
sends a message to each MPI rank participating in the barrier, and if
at least one of the reply messages from the participating ranks reports
that its rank has exited the barrier, then the MPI coordinator can
send a second message to each participating rank, and each MPI rank
will reply that it has entered the barrier (and perhaps also exited the
barrier).

ProoF. We prove the lemma by contradiction. Suppose that the
lemma does not hold. Figure 1 shows the general case in which this
happens. At event 4, the checkpoint coordinator will conclude that
event 1 (rank A has exited the MPI barrier) happened before event 2
(the first reply by each rank), which happened before event 3 (in
which rank B has not yet entered the barrier). But this contradicts
Axiom 1. Therefore, our assumption is false, and the lemma does
indeed hold. O

LEMMA 2. Recall that an MPI collective communication wrapper
makes a call to a trivial barrier and then makes an MPI collective
communication call. For a given invocation of an MPI collective com-
munication wrapper, we know that one of four cases must hold:

(a) an MPI rank is in the collective communication call, and all
other ranks are either in the call, or have exited;

(b) an MPI rank is in the collective communication call, and no
rank has exited, and every other rank has at least entered the
trivial barrier (and possibly proceeded further);

(c) an MPI rank is in the trivial barrier and no other rank has
exited (but some may not yet have entered the trivial barrier);

(d) either no MPI rank has entered the trivial barrier, or all MPI
ranks have exited the MPI collective communication call.

Proor. The proof is by repeated application of Lemma 1. For
case a, if an MPI rank is in the collective communication call and
another rank has exited the collective call, then Lemma 1 says that
there cannot be any rank that has not yet entered the collective call.
For case b, note that if an MPI rank is in the collective communi-
cation call, then that rank has exited the trivial barrier. Therefore,
by Lemma 1, all other ranks have at least entered the trivial barrier.
Further, we can assume that no ranks that have exited the collec-
tive call, since we would otherwise be in case a, which is already

accounted for. For case c, note that if an MPI rank is in the trivial
barrier and no rank has exited the trivial barrier, then Lemma 1
says that there cannot be any rank that has not yet entered the
trivial barrier. Finally, if we are not in case a, b, or c, then the only
remaining possibility is case d: all ranks have not yet entered the
trivial barrier or all ranks have exited the collective call. ]

Algorithm 2 Two-Phase algorithm for deadlock-free check-
pointing of MPI collectives

1: Messages: {intend-to-checkpoint, extra-iteration, do-ckpt}
2. MPI states: {ready, in-phase-1, exit-phase-2}

3: Process Checkpoint Coordinator do

4 function BEGIN CHECKPOINT

5 send intend-to-ckpt msg to all ranks

6: receive responses from each rank

7 while some rank in state exit-phase-2 do
8 send extra-iteration msg to all ranks
9 receive responses from each rank

10: end while

11: send do-ckpt msg to all ranks

12: end function

13: Process MPI Rank do

14: upon event intend-to-ckpt msg or extra-iteration msg do
15: if not inCollectiveWrapper then

16: reply to ckpt coord: state < ready

17: end if

18: if inCollectiveWrapper and in Phase 1 then

19: reply to ckpt coord: state «— in-phase-1

20: end if

21: if inCollectiveWrapper and in Phase 2 then

22: # guaranteed ckpt coord won’t request ckpt here
23: finish executing coll. comm. call

24: reply to ckpt coord: state « exit-phase-2

25: # ckpt coord can request ckpt after this

26: set state «— ready

27: end if

28: continue, but wait before next coll. comm. call

29: upon event do-ckpt msg do

30: # guaranteed now that no rank is in phase 2 during ckpt
31 do local checkpoint for this rank

32: # all ranks may now continue executing

33: if this rank is waiting before coll. comm. call then
34: unblock this rank and continue executing

35: end if

We now continue with the proof of the main theorem (Theo-
rem 1), which was deferred earlier.

PRrOOF. (Proof of Theorem 1 for Algorithm 2.) Lemma 2 states that
one of four cases must hold in a call by MANA to an MPI collective
communication wrapper. We wish to exclude the possibility that an
MPI rank is in the collective communication call (case a or b of the
lemma) when the checkpoint coordinator invokes a checkpoint.

In Algorithm 2, assume that the checkpoint coordinator has sent
an intend-to-ckpt message, and has not yet sent a do-ckpt message.



An MPI rank will either reply with state ready or in-phase-1 (show-
ing that it is not in the collective communication call and that it will
stop before entering the collective communication call), or else it
must be in Phase 2 of the wrapper (potentially within the collective
communication call), and it will not reply to the coordinator until
exiting the collective call. O

THEOREM 2. Under Algorithm 2, deadlock will never occur. Further,
the delay between the time when all ranks have received the intend-
to-checkpoint message and the time when the do-ckpt message has
been sent is bounded by the maximum time for any individual MPI
rank to enter and exit the collective communication call, plus network
message latency.

Proor. The algorithm will never deadlock, since each rank must
either make progress based on the normal MPI operation or else it
stops before the collective communication call. If any rank replies
with the state exit-phase-2, then the checkpoint coordinator will
send an additional extra-iteration message. So, at the time of check-
point, all ranks will have state ready or in-phase-1.

Next, the delay between the time when all ranks have received
the intend-to-checkpoint message and the time when the do-ckpt
message has been sent is clearly bounded by the maximum time
for an individual MPI rank to enter and exit the collective commu-
nication call, plus the usual network message latency. This is the
case since once the intend-to-checkpoint message is received, no
MPI rank may enter the collective communication call. So, upon re-
ceiving the intend-to-checkpoint message, either the rank is already
in Phase 2 or else it will remain in Phase 1. O

Implementation of Algorithm 2: At the time of process launch
for an MPI rank, a separate checkpoint helper thread is also in-
jected into each rank. This thread is responsible for listening to
checkpoint-related messages from a separate coordinator process
and then responding. This allows the MPI rank to asynchronously
process events based on messages received from the checkpoint
coordinator. Furthermore at the time of checkpoint, the existing
threads of the MPI rank process are quiesced (paused) by the helper
thread, and the helper thread carries out the checkpointing require-
ments, such as copying the upper-half memory regions to stable
storage. The coordinator process does not participate in the check-
pointing directly. In the implementation, a DMTCP coordinator and
DMTCP checkpoint thread [1] are modified to serve as checkpoint
coordinator and helper thread, respectively.

2.6 Verification with TLA+/PlusCal

To gain further confidence in our implementation for handling
collective communication (Section 2.5), we developed a model for
the protocol in TLA+ [25] and then used the PlusCal model checker
of TLA+ based on TLC [38] to verify Algorithm 2. Specifically,
PlusCal was used to verify the algorithm invariants of deadlock-
free execution and consistent state when multiple concurrent MPI
processes are executing. The PlusCal model checker did not report
any deadlocks or broken invariants for our implementation.

2.7 Checkpoint/Restart Package

Any single-process checkpointing package could be utilized for
the basis of implementing MANA. This work presents a prototype
implemented by extending DMTCP [1] and by developing a DMTCP
plugin [2]. Cao et al. [9] demonstrated that DMTCP can checkpoint
MPI-based HPCG over 32,752 CPU cores (38 TB) in 11 minutes, and
MPI-based NAMD over 16,368 cores (10 TB) in 2.6 minutes.

DMTCP uses a helper thread inside each application process, and
a coordinated checkpointing protocol by using a centralized coor-
dinator daemon. Since this was close to the design requirements of
MANA, we leveraged this infrastructure and extended the DMTCP
coordinator to implement the two-phase algorithm.

The same approach could be extended to base MANA on top
of a different underlying transparent checkpointing package. For
example, one could equally well have modified an existing MPI co-
ordinator process to communicate with a custom helper thread in
each MPI rank that then invokes the BLCR checkpointing package
when it is required to execute the checkpoint. In particular, all sock-
ets and other network communication objects are inside the lower
half, and so even a single-process or single-host checkpointing
package such as BLCR would suffice for this work.

3 EXPERIMENTAL EVALUATION

This section seeks to answer the following questions:

Q1: What is the runtime overhead of running MPI applications
under MANA?

Q2: What are the checkpoint and restart overheads of transparent
checkpointing of MPI applications under MANA?

Q3: Can MANA allow transparent switching of MPI implementa-
tions across checkpoint-restart for the purpose of load balancing?

3.1 Setup

We first describe the hardware and software setup for MANA’s
evaluation.

3.1.1 Hardware. The experiments were run on the Cori supercom-
puter [13] at the National Energy Research Scientific Computing
Center (NERSC). As of this writing, Cori is the #12 supercomputer
in the Top-500 list [36]. All experiments used the Intel Haswell
nodes (dual socket with a 16-core Xeon E5-2698 v3 each) connected
via Cray’s Aries interconnect network. Checkpoints were saved to
the backend Lustre filesystem.

3.1.2  Software. Cori provides modules for two implementations of
MPI: Intel MPI and Cray MPICH. The Cray compiler (based on an
Intel compiler) and Cray MPICH are the recommended way to use
MPL, presumably for reasons of performance. Cray MPICH version
3.0 was used for the experiments.

3.1.3 Application Benchmarks. MANA was tested with five real-
world HPC applications from different computational science do-
mains:

(1) GROMACS [4]: Versatile package for molecular dynamics,
often used for biochemical molecules.

(2) CLAMR [12, 29]: Mini-application for CelL-based Adaptive
Mesh Refinement.
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(3) miniFE [20]: Proxy application for unstructured implicit fi-
nite element codes.

(4) LULESH [24]: Unstructured Lagrangian Explicit Shock Hy-
drodynamics

(5) HPCG [14] (High Performance Conjugate Gradient): Uses
a variety of linear algebra operations to match a broad set
of important HPC applications, and used for ranking HPC
systems.

3.2 Runtime Overhead

3.2.1 Real-world HPC Applications. Next, we evaluate the perfor-
mance of MANA for real-world HPC applications. It will be shown
that the runtime overhead is close to 0 % for miniFE and HPCG,
and as much as 2 % for the other three applications. The higher
overhead has been tracked down to an inefficiency in the Linux ker-
nel [27] in the case of many point-to-point MPI calls (send/receive)
with messages of small size. This worst case is analyzed further
in Section 3.3, where tests with an optimized Linux kernel show a
worst case runtime overhead of 0.6 %. The optimized Linux kernel
is based on a patch under review for a future Linux version.

Single Node: Since the tests were performed within a larger clus-
ter where the network use of other jobs could create congestion,
we first eliminate any network-related overhead by running the
benchmarks on a single node with multiple MPI ranks, both under

20000 I PR Without MANA
With MANA (native kernel)

15000 —— With MANA (patched kernel)

10000

Bandwidth (MB/s)

5000

0 1000000 2000000 3000000 4000000
Size (Bytes)

Figure 4: Point-to-Point Bandwidth under MANA with
patched and unpatched Linux kernel. (Higher is better.)

MANA and natively (without MANA). This experiment isolates
the single-node runtime overhead of MANA by ensuring that all
communication among ranks is intra-node.

Figure 2 shows the results for the five different real-world HPC
applications running on a single node under MANA. Each run was
repeated 5 times (including the native runs), and the figure shows
the mean of the 5 runs. The absolute runtimes varied from 4.5 min
to 15 min, depending on the configuration. The worst case overhead
incurred by MANA is 2.1 % in the case of GROMACS (with 16 MPI
ranks). In most cases, the mean overhead is less than 2 %.
Multiple Nodes: Next, the scaling of MANA across the network is
examined for up to 64 compute nodes and with 32 ranks per node
(except for LULESH, whose configuration restricts the number of
ranks/node based on the number of nodes). Hence, the number of
MPI ranks ranges from 64 to 2048.

Figure 3 shows the results of five different real-world HPC ap-
plications running on multiple nodes under MANA. Each run was
repeated 5 times, and the mean of 5 runs is reported. We observe a
trend similar to the single node case. MANA imposes an overhead
of typically less than 2 %. The highest overhead observed is 4.5 % in
the case of GROMACS (512 ranks running over 16 nodes). However,
see Section 3.3 where we demonstrate a reduced overhead of 0.6 %
with GROMACS.

3.22  Memory Overhead. The upper-half libraries were built with
mpicc, and hence include additional copies of the MPI library that
are not used. However, the upper-half MPI library is never ini-
tialized, and so no network library is ever loaded into the upper
half.

Since a significant portion of the lower half is comprised only
of the MPI library and its dependencies, the additional copy of
the libraries (with one copy residing in the upper half) imposes a
constant memory overhead. This text segment (code region) was
26 MB in all of our experiments on Cori with the Cray MPI library.

In addition to the code, the libraries (for example, the networking
driver library) in the lower half also allocate additional memory
regions (shared memory regions, pinned memory regions, memory-
mapped driver regions). We observed that the shared memory re-
gions mapped by the network driver library grow in proportion
with the number of nodes (up to 64 nodes): from 2 MB (for 2 nodes)
to 40 MB for (64 nodes). We expect MANA to have a reduced check-
point time compared to DMTCP/InfiniBand [10], as MANA discards
these regions during checkpointing, reducing the amount of data
that’s written out to the disk.
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3.2.3  Microbenchmarks. To dig deeper into the sources for the run-
time overhead, we tested MANA with the OSU micro-benchmarks.
The benchmarks stress and evaluate the bandwidth and latency
of different specific MPI subsystems. Our choice of the specific
micro-benchmarks was motivated by the MPI calls commonly used
by our real-world MPI applications.

Figure 5 shows the results with three benchmarks from the OSU
micro-benchmark suite. These benchmarks correspond with the
most frequently used MPI subsystems in the set of real-world HPC
applications. The benchmarks were run with 2 MPI ranks running
on a single compute node.

The results show that latency does not suffer under MANA, for
both point-to-point and collective communication. (The latency
curves for application running under MANA closely follow the
curves when the application is run natively.)

3.3 Source of Overhead and Improved
Overhead for Patched Linux Kernel

All experiments in this section were performed on a single node of
our local cluster, where it was possible to directly install a patched
Linux kernel in the bare machine.

Further investigation revealed two sources of runtime overhead.
The larger source of overhead is due to the use of the “FS” register
during transfer of flow of control between the upper and lower half
and back during a call to the MPI library in the lower half. The “FS”
register of the x86-64 CPU is used by most compilers to refer to
the thread-local variables declared in the source code. The upper
and lower half programs each have their own thread-local storage
region. Hence, when switching between the upper and lower half
programs, the value of the “FS” register must be changed to point to
the correct thread-local region. Most Linux kernels today require a
kernel call to invoke a privileged assembly instruction to get or set
the “FS” register. In 2011, Intel Ivy Bridge CPUs introduced a new,
unprivileged FSGSBASE assembly instruction for modifying the
“FS” register, and a patch to the Linux kernel [27] is under review to
allow other Linux programs to use this more efficient mechanism
for managing the “FS” register. (Other architectures, such as ARM,
use unprivileged addressing modes for thread-local variables that
do not depend on special constructs, such as the x86 segments.)

A second (albeit smaller) source of overhead is the virtualization
of MPI communicators and datatypes, and recording of metadata

for MPI sends and receives. Virtualization requires a hash table
lookup and locks for thread safety.

The first and larger source of overhead is then eliminated by
using the patched Linux kernel, as discussed above. Point-to-point
bandwidth benchmarks were run both with and without the patched
Linux kernel (Figure 4). A degradation in runtime performance is
seen for MANA for small message sizes (less than 1 MB) in the
case of a native kernel. However, the figure shows that the patched
kernel yields much reduced runtime overhead for MANA. Note
that the Linux kernel community is actively reviewing this patch
(currently in its third version), and it is likely to be incorporated in
future Linux releases.

Finally, we return to GROMACS, since it exhibited a higher
runtime overhead (e.g., 2.1 % in the case of 16 ranks) in many cases.
We did a similar experiment, running GROMACS with 16 MPI ranks
on a single node with the patched kernel. With the patched kernel,
the performance degradation was reduced to 0.6 %.

3.4 Checkpoint-restart Overhead

In this section, we evaluate MANA’s performance when checkpoint-
ing and restarting HPC applications. Figure 6 shows the checkpoint-
ing overhead for five different real-world HPC applications running
on multiple nodes under MANA. Each run was repeated 5 times,
and the mean of five runs is reported. For each run, we use the
fsync system call to ensure the data is flushed to the Lustre backend
storage.

The total checkpointing data written at each checkpoint varies
from 5.9 GB (in the case of 64 ranks of GROMACS running over
2 nodes) to 4 TB (in the case of 2048 ranks of HPCG running over
64 nodes). Note that the checkpointing overhead is proportional
to the total amount of memory used by the benchmark. This is
also reflected in the size of the checkpoint image per MPI rank.
While Figure 6 reports the overall checkpoint time, note that there
is significant variation in the write times for each MPI rank during
a given run. (The time for one rank to write its checkpoint data can
be up to 4 times more than that for 90 % of the other ranks.) This
phenomenon of stragglers during a parallel write has also been
noted by other researchers [2, 37]. Thus, the overall checkpoint
time is bottlenecked by the checkpoint time of the slowest rank.

Next, we ask what are the sources of the checkpointing overhead?
Does the draining of MPI messages and the two-phase algorithm
impose a significant overhead at checkpoint time?
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Figure 6: Checkpointing overhead and checkpoint image
sizes under MANA for different real-world HPC bench-
marks running on multiple nodes. In all cases, except
LULESH, 32 MPI ranks were executed on each compute node.
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point image size for each MPI rank.
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Figure 8 shows the contribution of different components to the
checkpointing overhead for the case of 64 nodes for the five different
benchmarks. In all cases, the communication overhead for handling
MPI collectives in the two-phase algorithm of Section 2.5 is found
to be less than 1.6s.

In all cases, the time to drain in-flight MPI messages was less
than 0.7 s. The total checkpoint time was dominated by the time to
write to the storage system. The next big source of checkpointing
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Figure 8: Contribution of different factors to the checkpoint-
ing overhead under MANA for different real-world HPC
benchmarks running on 64 nodes. Ranks/node is as in Fig-
ure 6. The “drain time” is the delay in starting a checkpoint
while MPI message in transit are completed. The communi-
cation overhead is the time required in the protocol for net-
work communication between the checkpoint coordinator
and each rank.

overhead was the communication overhead. The current imple-
mentation of the checkpointing protocol in DMTCP uses TCP/IP
sockets for communication between the MPI ranks and the central-
ized DMTCP coordinator. The communication overhead associated
with the TCP layer is found to increase with the number of ranks,
especially due to metadata in the case of small messages that are
exchanged between MPI ranks and the coordinator.

Finally, Figure 7 shows the restart overhead under MANA for
the different MPI benchmarks. The restart time varies from less
than 10s to 68 s (for 2048 ranks of HPCG running over 64 nodes).
The restart times increase in proportion to the total amount of
checkpointing data that is read from the storage. In all the cases,
the restart overhead is dominated by the time to read the data
from the disk. The time to recreate the MPI opaque identifiers (see
Section 2.2) is less than 10 % of the total restart time.

3.5 Transparent Switching of MPI libraries
across Checkpoint-restart

This section demonstrates that MANA can transparently switch
between different MPI implementations across checkpoint-restart.
This is useful for debugging programs (even the MPI library) as it
allows a program to switch from a production version of an MPI
library to a debug version of the MPI library.

The GROMACS application is launched using the production
version of CRAY MPI, and a checkpoint is taken 55 s into the run.
The computation is then restarted on top of a custom-compiled
debug version of MPICH (for MPICH version 3.3). MPICH was
chosen because it is a reference implementation whose simplicity
makes it easy to instrument for debugging.

3.6 Transparent Migration across Clusters

Next, we consider cross-cluster migration for purposes of wide-
area load balancing either among clusters at a single HPC site or
even among multiple HPC sites. This is rarely done, since the two
common vehicles for transparent checkpoint (BLCR as the base of
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an MPI-specific checkpoint-restart service; or DMTCP/InfiniBand)
both save the MPI library within the checkpoint image and continue
to use that same MPI library on the remote cluster after migration.
At each site and for each cluster, administrators typically configure
and tune a locally recommended MPI implementation for perfor-
mance. Migrating an MPI application along with its underlying MPI
library destroys the benefit of this local performance tuning.

This experiment showcases the benefits of MPI-agnostic, network-
agnostic support for transparent checkpointing. GROMACS is run
under MANA, initially running on Cori with a statically linked
Cray MPI library running over the Cray Aries network. GROMACS
on Cori is configured to run with 8 ranks over 4 nodes (2 ranks
per node). Each GROMACS rank is single-threaded. A checkpoint
was then taken exactly half way into the run. The checkpoints
were then migrated to a local cluster that uses Open MPI over the
InfiniBand network.

The restarted GROMACS under MANA was compared with three
other configurations: GROMACS using the local Open MPI, con-
figured to use the local InfiniBand network (8 ranks over 2 nodes);
GROMACS/MPICH, configured to use TCP (8 ranks over 2 nodes);
and GROMACS/MPICH, running on a single node (8 ranks over
1 node). The network-agnostic nature of MANA allowed the Cori
version of GROMACS to be restarted on the local cluster with any
of three network options.

We wished to isolate the effects due to MANA from the effects
due to different compilers on Cori and the local cluster. In order to
accomplish this, the native GROMACS on the local cluster was com-
piled specially. The Cray compiler of Cori (using Intel’s C compiler)
was used to generate object files (.o files) on Cori. Those object files
were copied to the local cluster. The native GROMACS was then
built using the local mpicc, but with the (.o files) as input instead of
the (.c files). The local mpicc linked these files with the local MPI
implementation, and the native application was then launched in
the traditional way.

Figure 9 shows that GROMACS’s performance degrades by less
than 1.8% post restart on the local cluster for the three different
restart configurations (compared to the corresponding native runs).
Also, note that the performance of GROMACS under MANA post
restart closely tracks the performance of the native configuration.

4 DISCUSSION AND FUTURE WORK

Next, we discuss both the limitations and some future implications
of this work concerning dynamic load balancing.

4.1 Limitations

While the split-process approach for checkpointing and process
migration is quite flexible, it does include some limitations inherited
by any approach based on transparent checkpointing. Naturally,
when restarting on a different architecture, the CPU instruction set
must be compatible. In particular, on the x86 architecture, the MPI
application code must be compiled to the oldest x86 sub-architecture
among those remote clusters where one might consider restarting
a checkpoint image. (However, the MPI libraries themselves may
be fully optimized for the local architecture, since restarting on a
remote cluster implies using a new lower half.)

Similarly, while MPI implies a standard API, any local extensions
to MPI must be avoided. The application binary interface (ABI) used
by the compiled MPI application must either be compatible or else
a “shim” layer of code must be inserted in the wrapper functions
for calling from the upper half to the lower half.

And of course, the use of a checkpoint coordinator implies coor-
dinated checkpointing. If a single MPI rank crashes, MANA must
restore the entire MPI computation from an earlier checkpoint.

4.2 Future Work

MPI version 3 has added nonblocking collective communication
calls (e.g., MPI_Igather). In future work, we propose to extend the
two-phase algorithm for collective communication of Section 2.5
to the nonblocking case. The approach to be explored would be
to employ a first phase that uses a nonblocking trivial barrier
(MPI_Ibarrier), and to then convert the actual asynchronous col-
lective call to a synchronous collective call (e.g., MPI_Gather to
MPI_Igather) for the second phase. Nonblocking variations of col-
lective communication calls are typically used as performance op-
timizations in an MPI application. If an MPI rank reaches the col-
lective communication early, then instead of blocking, it can con-
tinue with an alternate compute task while occasionally testing (via
MPI_Test/MPI_Wait) to see if the other ranks have all reached the
barrier. In the two-phase analog, a wrapper around the nonblocking
collective communication causes MPI_Ibarrier to be invoked. When
the ranks have all reached the nonblocking trivial barrier and the
MPI_Test/MPI_Wait calls of the original MPI application reports
completion of the MPI_Ibarrier call of phase 1, then this implies
that the ranks are all ready to enter the actual collective call of
phase 2. A wrapper around MPI_Test/MPI_Wait can then invoke
the actual collective call of phase 2.

The split-process approach of MANA opens up some impor-
tant new features in managing long-running MPI applications. An
immediately obvious feature is the possibility of switching in the
middle of a long run to a customized MPI implementation. Hence,
one can dynamically substitute a customized MPI for performance
analysis (e.g., using PMPI for profiling or tracing); or using a spe-
cially compiled “debug” version of MPI to analyze a particular but
occurring in the MPI library in the middle of a long run.

This work also helps support many tools and proposals for opti-
mizing MPI applications. For example, a trace analyzer is sometimes



used to discover communication hotspots and opportunities for bet-
ter load balancing. Such results are then fed back by re-configuring
the binding of MPI ranks to specific hosts in order to better fit the
underlying interconnect topology.

MANA can enable new approaches to dynamically load balance
across clusters and also to re-bind MPI ranks in the middle of a long
run to create new configurations of rank-to-host bindings (new
topology mappings). Currently, such bindings are chosen statically
and used for the entire lifetime of the MPI application run. This
added flexibility allows system managers to burst current long-
running applications into the Cloud during periods of heavy usage
or when the the MPI application enters a new phase for which a
different rank-to-host binding is optimal.

Finally, MANA can enable a new class of very long-running MPI
applications — ones which may outlive the lifespan of the original
MPI Implementation, cluster, or even the network interconnect.
Such temporally complex computations might be discarded as in-
feasible today without the ability to migrate MPI implementations
or clusters.

5 RELATED WORK

Hursey et al. [22] developed a semi-network-agnostic checkpoint
service for Open-MPL It applied an “MPI Message” abstraction to a
Chandy/Lamport algorithm [11], greatly reducing the complexity
to support checkpoint/restart for many multiple network intercon-
nects. However, it also highlighted the weakness of implementing
transparent checkpointing within the MPI library, since porting to
an additional MPI implementation would likely require as much
software development as for the first MPI implementation. Addi-
tionally, its dependence on BLCR imposed a large overhead cost, as
it lacks support for SysV shared memory.

Separate proxy processes for high- and low-level operations have
been proposed both by CRUM (for CUDA) and McKernel (for the
Linux kernel). CRUM [16] showed that by running a non-reentrant
library in a separate process, one can work around the problem of
a library “polluting” the address space of the application process
— i.e, creating and leaving side-effects in the application process’s
address space. This decomposition of a single application process
into two processes, however, forces the transfer of data between
two processes via RPC, which can cause a large overhead.

McKernel [17] runs a “lightweight” kernel along with a full-
fledged Linux kernel. The HPC application runs on the lightweight
kernel, which implements time-critical system calls. The rest of the
functionality is offloaded to a proxy process running on the Linux
kernel. The proxy process is mapped in the address space of the
main application, similar to MANA’s concept of a lower half, to min-
imize the overhead of “call forwarding” (argument marshalling/un-
marshalling).

In general, a proxy process approach is problematic for MPI,
since it can lead to additional jitter as the operating system tries
to schedule the extra proxy process alongside the application pro-
cess. The jitter harms performance since the MPI computation is
constrained to complete no faster than its slowest MPI rank.

Process-in-process [21] has in common with MANA that both
approaches load multiple programs into a single address space.

However, the goal of process-in-process was intra-node communi-
cation optimization, and not checkpoint-restart. Process-in-process
loads all MPI ranks co-located on the same node as separate threads
within a single process, but in different logical “namespaces”, in
the sense of the dlmopen namespaces in Linux. It would be diffi-
cult to adapt process-in-process for use in checkpoint-restart since
that approach implies a single “ld.so” run-time linker library that
managed all of the MPI ranks. In particular, difficulties occur when
restarting with fresh MPI libraries while “Id.so” retains pointers to
destructor functions in the pre-checkpoint MPI libraries.

In the special regime of application-specific checkpointing for
bulk synchronous MPI applications, Sultana et al. [33] supported
checkpointing by separately saving and restoring MPI state (MPI
identifiers such as communicators, and so on). This is combined
with application-specific code to save the application state. Thus,
when a live process fails, it is restored using these two components,
without the need restart the overall MPI job.

SCR [32], and FTI [3] are other application-specific checkpoint-
ing techniques. An application developer declares memory regions
they’d like to checkpoint and checkpointing can only be done at
specific points in the program determined by the application devel-
oper. Combining these techniques with transparent checkpointing
is outside the scope of this work, though it is an interesting avenue
for further inquiry.

In general, application-specific and transparent checkpointing
each have their merits. Both application-specific and transparent
checkpointing are used in practice.

At the high end of HPC, application-specific checkpointing is
preferred since the labor for supporting this is small compared to the
labor already invested in supporting an extreme HPC application.

At the low and medium end of HPC, developers prefer trans-
parent checkpointing because the development effort for the soft-
ware is more moderate, and the labor overhead of a specialized
application-specific checkpointing solution would then be signif-
icant. System architectures based on burst buffers (e.g., Cray’s
DataWarp [19]) can be used to reduce the checkpointing overhead
for both application-specific and transparent checkpointing.

6 CONCLUSION

This work presents an MPI-Agnostic, Network-Agnostic transpar-
ent checkpointing methodology for MPI (MANA), based on a split-
process mechanism. The runtime overhead is typically less than 2%,
even in spite of the overhead incurred by the current Linux ker-
nel when the “FS” register is modified each time control passes
between upper and lower half. Further, Section 3.3 shows that a
commit (patch) to fix this by the Linux kernel developers is un-
der review and that this commit reduces the runtime overhead of
GROMACS from 2.1% to 0.6% using the patched kernel. Similar
reductions to about 0.6% runtime overhead are expected in the
general case.

An additional major novelty is the demonstration of practical,
efficient migration between clusters at different sites using differ-
ent networks and different configurations of CPU cores per node.
This was considered impractical in the past because a checkpoint
image from one cluster will not be tuned for optimal performance
on the second cluster. Section 3.6 demonstrates that this is now



feasible, and that the migration of a GROMACS job with 8 MPI
ranks experiences an average runtime overhead of less than 1.8%
as compared to the native GROMACS application (without MANA)
on the remote cluster. As before, even this overhead of 1.8% is likely
to be reduced to about 0.6% in the future, based on the results of
Section 3.3 with a patched Linux kernel.
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