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Abstract

We propose a new variant of the top arm
identification problem, top feasible arm iden-
tification, where there are K arms associated
with D-dimensional distributions and the goal
is to find m arms that maximize some known
linear function of their means subject to the
constraint that their means belong to a given
set P Ă RD. This problem has many appli-
cations since in many settings, feedback is
multi-dimensional and it is of interest to per-
form constrained maximization. We present
problem-dependent lower bounds for top fea-
sible arm identification and upper bounds for
several algorithms. Our most broadly appli-
cable algorithm, TF-LUCB-B, has an upper
bound that is loose by a factor of OpD logpKqq.
Many problems of practical interest are two-
dimensional and, for these, it is loose by a fac-
tor of OplogpKqq. Finally, we conduct exper-
iments on synthetic and real-world datasets
that demonstrate the effectiveness of our algo-
rithms. Our algorithms are superior both in
theory and in practice to a naive two-stage al-
gorithm that first identifies the feasible arms
and then applies a best arm identification
algorithm to the feasible arms.

1 Introduction

In the top arm identification problem in multi-armed
bandits, there areK scalar-valued distributions (also re-
ferred to as arms) and an agent plays a sequential game
where, at each round, the agent chooses (or “pulls") one
of the arms and observes an i.i.d. realization from it.
At the end of the game, the agent outputs the set of m
arms believed to have the largest means. This problem
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has applications in areas such as crowdsourcing, A/B
testing, and clinical trials.

While top arm identification considers settings where
the feedback is scalar-valued and the goal is maxi-
mization, in many applications, the feedback is multi-
dimensional and it is of interest to perform constrained
maximization. For example, in crowdsourcing, an im-
portant challenge is to identify high-quality workers
that complete work at a suitable pace (e.g., below 15
seconds on average) and, in clinical trials, it is of in-
terest to efficiently find drugs that are most likely to
be effective and have an acceptably low probability of
causing an adverse effect.

In this paper, we introduce top feasible arm identi-
fication for situations where the feedback is multi-
dimensional and the goal is constrained maximization.
In this problem, there are K arms and each arm i is
associated with a D-dimensional distribution νi that
has mean µi. At each round t “ 1, 2, . . ., the agent
chooses an arm It and observes an independent random
vector drawn from νIt . For given P Ă RD, r P RD,
m ď K, and δ P p0, 1q, the goal of the agent is to
identify m arms that maximize rJµi subject to the
constraint µi P P , with probability at least 1 ´ δ, in
the fewest number of samples possible.

We make several contributions to this problem. We
prove problem-dependent lower bounds for top feasi-
ble arm identification. We also propose a family of
algorithms TF-LUCB, where each instance is speci-
fied by a test for feasibility TestF, and we prove a
master theorem that characterizes an upper bound for
TF-LUCB in terms of the subroutine TestF. Finally,
we use this master theorem to prove upper bounds
for several algorithms. Our most broadly applicable
algorithm, TF-LUCB-B, has an upper bound that is
loose by a factor of OpD logpKqq. Many problems of
practical interest are two-dimensional and for these,
it is loose by a factor of OplogpKqq. Notably, our al-
gorithms are superior both in theory and in practice
to a naive two-stage algorithm that first identifies the
feasible arms and then applies a best arm identification
algorithm to the feasible arms. The sample complexity
of such a two-stage algorithm can be arbitrarily larger
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than the sample complexity of our algorithms and, in-
deed, in our experiments we improve on such a baseline
by as much as a factor of 4.5.

2 Related Work

Top arm identification has received a lot of attention
in recent years (Mannor and Tistisklis, 2004; Audibert
and Bubeck, 2010; Gabillon et al., 2012; Kalyanakrish-
nan et al., 2012; Bubeck et al., 2013; Chen et al., 2014;
Jamieson et al., 2014). Most work considers the case
where arms are scalar-valued and, thus, their results
cannot be applied to our problem setting. Recently,
Chen et al. (2017) proposed the general sampling prob-
lem, which does encompass a variant of top feasible arm
identification. Their work differs from ours in several
significant ways. First, in the work of Chen et al. (2017),
the agent samples from one dimension of one arm at
a time, whereas in our setting pulling an arm yields
a random D-dimensional vector. Second, Chen et al.
(2017) assume that the arms are isotropic Gaussian,
whereas we assume each arm is a multi-dimensional
sub-Gaussian distribution. Finally, their algorithm (see
their Algorithm 7) is impractical for moderate values
of δ in the fixed confidence setting since its first stage
consists of a uniform allocation strategy that termi-
nates when the confidence bounds of all of the means
are small enough to determine which of the arms are
in the top feasible m with probability at least 0.99.

Auer et al. (2016) also consider a setting where arms
are multi-dimensional. Their goal is to determine the
Pareto front of the arms, which is quite different from
the task of constrained maximization in top feasible
arm identification. We also remark that they use an
elimination algorithm, whereas we adapt the LUCB
algorithm from Kalyanakrishnan et al. (2012) to our
setting.

Recently, Katz-Samuels and Scott (2018) proposed the
feasible arm identification problem, in which there are
K multi-dimensional distributions and a given polyhe-
dron, and the goal is to determine which of the distri-
butions have means belonging to the polyhedron. By
contrast, in top feasible arm identification, the goal is to
find a collection of arms whose means are feasible and
maximize some linear function. In short, Katz-Samuels
and Scott (2018) deal with feasibility while the current
paper deals with constrained maximization. Further-
more, whereas Katz-Samuels and Scott (2018) consider
the fixed budget setting (in which there is a fixed num-
ber of rounds), we consider the fixed confidence setting.
These differences require the development of new ideas
and algorithms.

We also note that top feasible arm identification differs
from best-arm identification in linear bandits (Soare

et al., 2014). In best-arm identification in linear bandits,
each arm i is associated with a known feature vector
xi and the reward of arm i has mean xJi θ where θ is
unknown. In our setting, each arm is associated with a
D-dimensional distribution and the goal is to maximize
some known linear function f : RD ÝÑ R subject to
the constraint that µi P P .

3 Problem Statement

Notation. For n P N, let rns “ t1, . . . , nu. Let U
be a finite set and f be a scalar-valued function with
domain containing U , and define max

plq
xPUfpxq –

#

max
txPU :|tyPU :fpyqěfpxqu|ěl´1u

fpxq : |U | ě l

´8 : otherwise
.

In words, max
plq
xPUfpxq is the value of the lth largest

x P U under fp¨q and if |U | ă l, then it is ´8. For
a set A Ă RD, let BA denote the boundary of A, i.e.,
BA “ sAzA˝ (where sA denotes the closure of A and
A˝ denotes the interior of A). Let x P RD, and define
distpx, Aq “ infyPA }x´ y}2. Let γ ą 0, and define
Bγpxq “ ty : }x´ y}2 ă γu. Let xi denote the ith
entry of x and for yi P RD, let yi,j denote the jth entry
of yi. Let ei denote the ith standard basis vector. We
use “whp" for “with high probability" and “wrt" for
“with respect to."

Problem Parameters. Suppose that there are K
arms associated with distributions ν1, . . . , νK over RD
that have means µ1, . . . ,µK P RD, and let ν “

pν1, . . . , νKq. At each round t “ 1, 2, . . ., an agent
chooses an arm It and observes an independent draw
Xt „ νIt .

Let P Ă RD denote a nonempty set such that P ‰

RD. Let r denote a reward vector, which is fixed,
known, and the same across all arms. We assume
}r}2 “ 1. We say that rJµi is the expected reward
of arm i. Let m denote the number of top feasible
arms desired. We denote an instance of the top feasible
arm identification problem by pν, P, r,mq. Let Prν
(Eν) denote the probability measure (expected value)
associated with the problem instance pν, P, r,mq.

Define FEAS “ ti P rKs : µi P P u, INFEAS “ FEASc,
and

OPT “ ti P FEAS : rJµi ě max
pmq
jPFEAS r

Jµju,

SUBOPT “ ti P rKs : rJµi ă max
pmq
jPFEAS r

Jµju.

We say that an arm j is suboptimal if rJµj ă

max
pmq
iPFEASr

Jµi; we say that an arm j is feasible (in-
feasible) if µj P P (µj R P ). We note that, in general,
SUBOPT and INFEAS are not disjoint, and that when
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there are fewer than m arms that are feasible (µi P P ),
SUBOPT “ H.

We consider the following class of problems: M–

tpν, P, r,mq : p@i : µi R BP q and

pmax
pmq
iPFEASr

Jµi ą max
pm`1q
jPFEASr

Jµj _ |FEAS | ď mqu.

In words,M consists of problems where the means of
the arms do not belong to the boundary of P and either
there are m or fewer feasible arms or the mth largest
reward of a feasible arm and the pm ` 1qth largest
reward of a feasible arm are distinct. It is possible to
drop the assumption pν, P, r,mq PM by allowing for
a tolerance for suboptimality or infeasibility, and we
describe this extension in the supplemental material.

Goal. We consider the fixed confidence setting with
a novel criterion for correctness. An algorithm A is
associated with a policy that determines which arm
It P rKs is chosen at time t, a finite stopping time
τ wrt I1,X1, I2,X2, . . . (i.e., Prνpτ ă 8q “ 1) that
determines when the algorithm stops, and an outputted
partition of the arms ppO, pS,pIq with pOY pSYpI “ rKs.

A standard criterion of correctness for an algorithm is
δ- PAC, which we now define.
Definition 1. Let δ P p0, 1q. We say an algorithm A is
δ- PAC wrtM if for any problem pν, P, r,mq belonging
toM, A outputs pO Ă rKs such that PrνppO “ OPTq ě
1´ δ.

A standard goal is to design algorithms that are δ- PAC
wrt M and that minimize τ . We propose a novel
criterion δ- PAC-EXPLANATORY and aim to design
algorithms that are δ- PAC-EXPLANATORY wrtM
and that minimize τ .
Definition 2. Let δ P p0, 1q. We say an algorithm A
is δ- PAC-EXPLANATORY wrtM if for any problem
pν, P, r,mq belonging toM, A outputs a triple ppO, pS,pIq
of disjoint sets such that pOY pSYpI “ rKs and

PrνppO “ OPT and ppS,pIq P Valid-Partitionsq ě 1´ δ

where Valid-Partitions –

tpS, Iq :S Ă SUBOPT, I Ă INFEAS,
S X I “ H, S Y I “ OPTcu.

To identify arms in OPT, an agent must rule out
every i P OPTc as suboptimal or infeasible. When
SUBOPTX INFEAS ‰ H, there are arms that can
be ruled out in multiple ways. Valid-Partitions cap-
tures the various correct ways to partition the arms
in OPTc to distinguish them from OPT. Thus, our
notion, δ- PAC-EXPLANATORY, is slightly stronger
than δ- PAC since it essentially requires that whp (i) an

algorithm output the correct top m feasible arms and
(ii) that it provide a correct reason for rejecting each
arm (either that it is suboptimal or infeasible). We
remark that it is natural to require only one reason for
rejecting an arm because once an algorithm identifies
an arm as infeasible (suboptimal), there is no reason to
keep pulling it to determine whether it is suboptimal
(infeasible). Furthermore, in most problems and for
most algorithms, if an arm is infeasible and suboptimal,
showing one of these is easier than showing the other.

This notion is practically relevant since in many ap-
plications it is of interest to provide a reason to reject
an arm. For example, in crowdsourcing, it might be
necessary to provide a worker with a reason for why
she was not hired. In clinical trials, it might be useful
for the clinician to know why a drug is rejected. Fur-
thermore, as we discuss in the supplemental material,
we conjecture that there is a small gap between δ- PAC
and δ- PAC-EXPLANATORY algorithms.

Sub-Gaussian Assumption. We assume that each
νi is a multi-dimensional sub-Gaussian distribution,
which we now define. LetX be a scalar random variable
and X P RD a random vector. We say that X is
sub-Gaussian if E exppX

2

σ2 q ď 2 for some σ ą 0 and
X P RD is sub-Gaussian if for all a P RD, XJa is
sub-Gaussian. The sub-Gaussian norms of X and X
are defined respectively as:

}X}ψ2
“ inftσ ą 0 : E expp

X2

σ2
q ď 2u,

}X}ψ2
“ sup

aPRD :}a}2“1

›

›XJa
›

›

ψ2
.

X is said to be σ-sub-Gaussian if }X}ψ2
ď σ and X

is said to be σ-sub-Gaussian if }X}ψ2
ď σ. For the

remainder of this paper, we assume that ν1, . . . , νK are
σ-sub-Gaussian. See Vershynin (2012); Vershynin et al.
(2017) for more details.

4 Lower Bounds

Theorem 1 gives our lower bound for
δ- PAC-EXPLANATORY algorithms.
Theorem 1. Let µ1, . . . ,µK P RD such that @i ‰
j P rKs : µi,1 ‰ µj,1. Define νi “ Npµi, IDq for all
i P rKs. Suppose P “ RˆP 1 for some P 1 Ă RD´1 and
@x P BP,@ε ą 0 : BεpxqXP

˝ ‰ H and BεpxqXpP cq˝ ‰
H. Let r “ e1. Assume pν, P, e1,mq P M and let
δ P p0, 0.1q. For any pS, Iq P Valid-Partitions, define
LpS, Iq –

ÿ

iPOPT

maxprmin
jPS

rJpµi ´ µjqs
´2, distpµi, BP q´2q

`
ÿ

iPS

r min
jPOPT

rJpµj ´ µiqs
´2 `

ÿ

iPI

distpµi, P q´2.
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Then, any algorithm A that is
δ- PAC-EXPLANATORY wrt M has a stopping
time τ on the problem pν, P, e1,mq that satisfies

Eνrτ s ě min
pS,IqPValid-Partitions

2

15
lnp

1

2δ
qLpS, Iq.

The conditions P “ R ˆ P 1 and r “ e1 decouple
the reward and feasibility of the arms and hold in
many applications. The other conditions on P remove
pathological cases such as isolated points and nowhere
dense sets with positive measure.

The lower bound is the solution of a constrained mini-
mization problem over all the ways to distinguish the
arms in OPTc from OPT, i.e., pS, Iq P Valid-Partitions.
If we fix some pS, Iq P Valid-Partitions, there are three
main terms in the lower bound reflecting the difficulty
of identifying arms as belonging to either OPT, S, or I,
respectively. Essentially, optimal arms must be shown
to be feasible and to have reward greater than all arms
in S, arms in S must be shown to have reward less
than arms in OPT, and arms in I must be shown to
be infeasible.

The key observation in the proof is that for a given prob-
lem pν, P, r,mq, we can associate with an algorithm
A a particular pS, Iq P Valid-Partitions such that for
every i P S (i P I), it is likely that A puts i P pS (i P pI).
Then, using the notion of δ- PAC-EXPLANATORY, it
suffices to analyze the difficulty of identifying each arm
as belonging either to OPT, S, or I. The result follows
by minimizing over pS, Iq P Valid-Partitions.

We also state a similar lower bound for algorithms that
are δ- PAC wrtM.
Theorem 2. Assume the conditions of Theo-
rem 1. Define ro “ minjPOPT r

Jµj, rs –

maxjPOPTc XFEAS r
Jµj, and L1 –

ÿ

iPINFEASXSUBOPT

minprro ´ r
Jµis

´2, distpµi, P q´2q

`
ÿ

iPOPT

maxprrJµi ´ rss
´2, distpµi, BP q´2q

`
ÿ

iPOPTc XFEAS

r min
jPOPT

rJpµj ´ µiqs
´2

`
ÿ

iPINFEASXSUBOPTc

distpµi, P q´2.

Then, any algorithm A that is δ- PAC wrt M has a
stopping time τ on the problem pν, P, e1,mq that satis-
fies

Eνrτ s ě lnp
1

2.4δ
qL1.

The bound in Theorem 2 suggests that δ- PAC algo-
rithms must show that arms in OPT are feasible and

have reward greater than every arm in OPTcXFEAS,
arms in OPTcXFEAS have reward less than arms
in OPT, arms in INFEASX SUBOPTc are infeasible,
and, finally, arms in INFEASX SUBOPT are either
infeasible or suboptimal.

Since any δ- PAC-EXPLANATORY algorithm wrtM
is δ- PAC wrtM, we expect the lower bound in The-
orem 1 to be at least as large as the lower bound in
Theorem 2, and this is indeed the case. The main
difference between the bounds occurs in the terms cor-
responding to i P OPT. Essentially, in Theorem 1, it
is required to show that every arm in OPT has reward
greater than all arms that are ruled out as suboptimal
(i.e., belong to S), whereas in Theorem 2, these arms
must only be shown to have reward greater than arms
in FEASXOPTc. See the supplemental material for a
more detailed discussion.

5 TF-LUCB: A Family of Algorithms
for Top Feasible Arm Identification

In this section, we introduce an algorithm for the top
feasible arm identification problem. To begin, we define
some notation. Let pµi,s denote the empirical mean
of arm i after s samples. Let Niptq “

řt´1
s“1 1tIs “ iu

denote the number of times that arm i has been selected
up to round t. Let

Upt, δq “ σ

c

2 logp1{δq ` 6 log logp1{δq ` 3 log logpetq

t

denote a confidence bound, which holds uniformly over
time (see Lemma F.10 in the supplemental material)
(Kaufmann et al., 2016). For the sake of simplicity,
we assume henceforth that µ1, . . . ,µK P B 1

2
p0q and

P Ă B 1
2
p0q.

Challenge. As suggested by Theorem 2, a major
challenge in designing a nearly optimal algorithm is
how to rule out with nearly optimal sample complexity
an arm i that is infeasible and whose reward rJµi is too
small to be among the top m feasible arms (i.e., belongs
to INFEASX SUBOPT). In short, a nearly optimal
algorithm must determine which is easier to show: that
arm i is infeasible or that it has too small reward.
Either of these can be arbitrarily more difficult to show
than the other; for example, consider an infeasible arm
with mean very close to the set P and a very small
reward relative to the other arms. In this case, it is
quite easy to show suboptimality, but very difficult to
show infeasibility.

Algorithm. TF-LUCB is a family of algorithms,
where each instance is specified by a subroutine TestF.
TestFpi, sq considers the first s pulls of arm i and re-
turns True if arm i is feasible whp, returns False if i is in-
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feasible whp, and otherwise returns ?, indicating “don’t
know." When the context makes it clear which distri-
bution is involved, we simply write TestFpsq. TestF
essentially solves what we will call the set membership
problem, which we now define. In this problem, there is
a distribution ξ over RD with mean µ P RD and a set
P Ă RD. At round t “ 1, 2, . . . an algorithm B observes
Xt „ ξ. An algorithm B is associated with a stopping
time τ wrt pXtqtPN, and after τ rounds outputs True if
it concludes that µ P P and False if it concludes that
µ R P . We define the following class of set membership
problems:

N “ tpξ, P q :ξ is a distribution over RD with mean
µ P B 1

2
p0q, P Ă B 1

2
p0q, P ‰ H,µ R BP u.

We defer our discussion of specific algorithms for the
set membership problem until the next section.

Given a subroutine TestF, TF-LUCB is an adapta-
tion of LUCB (Lower Upper Confidence Bound) from
Kalyanakrishnan et al. (2012) to the top feasible arm
identification problem. TF-LUCB maintains three sets:
arms Ft that are feasible whp, arms Gt that have not
been determined whp to be feasible or infeasible, and
arms Et – Ft Y Gt that have not been ruled out as
infeasible whp. At round t, TF-LUCB considers TOPt,
the set of m arms that have not been ruled out as
infeasible whp (i.e., belong to Et) and have the top m
estimated rewards. TF-LUCB uses Urpt, δq – Upt, δ

2K q

for a confidence bound on the reward associated with
an arm. If all of the arms in TOPt are feasible whp,
then it pulls an arm ht in TOPt with the smallest lower
confidence bound. If only some of the arms in TOPt
are determined to be feasible whp, then to avoid over-
sampling optimal arms, it chooses the arm ht instead
by picking the arm in TOPtXGt with the smallest
lower confidence bound, i.e., an arm in the top empiri-
cal m for which it is still not determined whp whether
it is feasible. We note that because TOPtXEct “ H
by definition of TOPt, when TOPt Ć Ft, TOPtXGt is
nonempty so that the argmax operator in line 14 is well-
defined. If there are arms outside of TOPt that have
not been ruled out as infeasible, then the algorithm
pulls an additional arm lt among these (in TOPct XEt)
that maximizes an upper confidence bound on its re-
ward. The algorithm terminates when it determines
whp that each arm in TOPt is feasible and has mean
larger than arms in TOPct XEt, or that the arms in
TOPt are feasible and all other arms are infeasible.

For the sake of brevity, define the function F px, yq “
x´2 logplogpx´2qyq. Theorem 3 shows that TF-LUCB
is δ- PAC-EXPLANATORY with a bound on τ that
nearly matches the lower bound.
Theorem 3. Let δ P p0, 1q and pν, P, r,mq PM. Sup-
pose that for any set membership problem pξ,Rq P N

where ξ is σ-sub-Gaussian and has mean µ, with prob-
ability at least 1 ´ δ

2K , TestF returns True only if
µ P R and False only if µ P Rc, and TestF uses at
most ηpξ,Rq samples, where ηpξ,Rq is a deterministic
function of ξ and R. For any pS, Iq P Valid-Partitions,
define UpS, Iq –

ÿ

iPS

F pminjPOPT r
Jpµj ´ µiq,

K

δ
q `

ÿ

iPI

ηpνi, P q

`
ÿ

iPOPT

maxpF pminjPS r
Jpµi ´ µjq,

K

δ
q, ηpνi, P qq.

Then, with probability at least 1´ δ, TF-LUCB returns
ppO, pS,pIq such that pO “ OPT, ppS,pIq P Valid-Partitions,
and

τ ď min
pS,IqPValid-Partitions

cσ2UpS, Iq. (1)

where c is a universal positive constant.

This upper bound has a very similar structure to
the lower bound in Theorem 1. It is the solution
of a constrained minimization problem over pS, Iq P
Valid-Partitions. One can interpret this form as saying
that TF-LUCB finds the easiest way to solve a given
instance of the top feasible arm identification problem.
Ignoring doubly logarithmic factors, the upper bound
on the reward-associated terms is loose by a factor of
logpKq.1 Theorem 3 can be interpreted as a reduction
of the top feasible arm identification problem to the set
membership problem and in the next section we will
discuss how various algorithms for the set membership
problem affect the sample complexity of TF-LUCB.

In light of Theorem 3, it is instructive to consider a
two-stage algorithm that first identifies the collection of
feasible arms and then applies a best arm identification
algorithm to the feasible arms. The drawback of this
two-stage approach is that there may be suboptimal
infeasible arms that are much easier to rule out as sub-
optimal rather than infeasible. Essentially, such a two-
stage algorithm solves a problem instance by picking
the pS1, I 1q P Valid-Partitions such that I 1 “ INFEAS,
whereas TF-LUCB adapts to the problem instance to
choose the best pS, Iq P Valid-Partitions. Thus, the
sample complexity of such a two-stage algorithm is at
least the sample complexity of TF-LUCB and can be
arbitrarily larger than the sample complexity of TF-
LUCB. To see this, consider a problem with an arm
whose mean is very close to the boundary of P , but
has very small reward relative to the other arms.

The proof of Theorem 3 considers the pS, Iq P

Valid-Partitions that minimizes (1) and analyzes the
1We note that this logarithmic factor could be improved

by adapting LUCB++ (Simchowitz et al., 2017) instead of
LUCB.
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Algorithm 1 TF-LUCB: Top-m Feasible Lower Upper Confidence Bound algorithm
1: Input: TestF, sub-Gaussian norm bound σ, confidence δ
2: for t “ 1, 2, . . . do
3: Ft ÐÝ ti P rKs : TestFpi,Niptqq “ Trueu // arms that are feasible whp
4: Gt ÐÝ ti P rKs : TestFpi,Niptqq “ ?u // arms whose feasibility is unclear whp
5: Et ÐÝ Ft YGt // arms that are not ruled out as infeasible whp
6: TOPt ÐÝ arg maxZĂEt,|Z|“minpm,|Et|q

ř

iPZ r
J
pµi,Niptq

7: if TOPt “ Ft and Ft “ Et
8: return pTOPt,TOPct XEt, Ect q
9: if TOPt Ă Ft and miniPTOPt

rJpµi,Niptq ´ UrpNiptq, δq ě maxjPTOPc
t XEt

rJpµj,Njptq ` UrpNjptq, δq
10: return pTOPt,TOPct XEt, Ect q
11: if TOPt Ă Ft
12: ht “ arg miniPTOPt

rJpµi,Niptq ´ UrpNiptq, δq
13: if TOPt Ć Ft
14: ht “ arg miniPTOPt XGt

rJpµi,Niptq ´ UrpNiptq, δq
15: if TOPct XEt ‰ H
16: lt “ arg maxjPTOPc

t XEt
rJpµj,Njptq ` UrpNjptq, δq

17: Pull arm lt
18: Pull arm ht

sample complexity of TF-LUCB to identify each arm
as belonging to either OPT, S, or I. It is shown that
at each round t, either ht or lt is a needy arm wrt
to the sets OPT, S, and I (defined precisely in the
supplemental material) in the sense that either it is
necessary to determine whether it is feasible or it is
necessary to improve our estimate of its reward.

Allowing for a tolerance: It is possible to extend
TF-LUCB to allow for a tolerance on suboptimality or
infeasibility (see supplemental material). For example,
if a suboptimality gap of ε ą 0 is permitted, then pO is
correct if it satisfies @i P pO, i P FEAS and rJpµi ` ε ě
minjPOPT r

Jµj .

6 Three Instances of TF-LUCB

In this section, we consider three distinct general classes
of sets and apply Theorem 3 to derive upper bounds
for algorithms for each of these. To begin, we consider
a general set P . Since there are in general no known
computationally efficient algorithms for such a general
setting, we then consider the computationally tractable
and very rich class of polyhedra. For this setting, let
P “ tx P RD : Ax ď bu denote a polyhedron, where
A P RMˆD and b P RM . Let aJj denote the jth row
of A. By dividing each constraint j by }aj}2, we can
assume without loss of generality that }aj}2 “ 1 for
all j P rM s. Finally, we consider the common case
where the polyhedron has orthogonal constraints, i.e.,
aJi aj “ 0 for all i ‰ j P rM s, which arises for example
when there is one constraint per coordinate. Note that
in this case, it follows that M ď D.

For a general set, we propose the TestF subroutine:

TestF-B (see Algorithm 2). It controls }pµi,t ´ µi}2
with a confidence bound Uballpt, δq – 2Upt, δ

5D2K
q that

is constructed based on an ε-net argument. TestF-B
returns True if the ball centered at pµi,t with radius
Uballpt, δq does not intersect P c, False if this ball does
not intersect P , and otherwise returns ?. The variant
of TF-LUCB that uses TestF-B is called TF-LUCB-B.

For a polyhedron, we propose the subroutine TestF-CB,
which also uses the confidence bound Uconpt,

δ
2 q –

Upt, δ
4KM q (see Algorithm 3). If it determines that µi

satisfies all of the constraints whp, it returns True, if
it determines that the ball centered at pµi,t with radius
Uballpt,

δ
2 q does not intersect P whp, it returns False,

and otherwise it returns ?. The variant of TF-LUCB
that uses TestF-CB is called TF-LUCB-CB.

Finally, a polyhedron with orthogonal constraints, we
propose the subroutine TestF-C, which uses the confi-
dence bound Uconpt, δq (see Algorithm 4). If it deter-
mines that µi satisfies all of the constraints whp, it
returns True, if it determines that µi violates one of
the constraints whp, it returns False, and otherwise it
returns ?.

The following theorem establishes upper bounds for
TF-LUCB-B, TF-LUCB-CB, and TF-LUCB-C.
Theorem 4. Let δ P p0, 1q and pν, P, r,mq P M.
Then, with probability at least 1´ δ,

• TF-LUCB-B returns ppO, pS,pIq such that pO “ OPT,
ppS,pIq P Valid-Partitions, τ is bounded as in (1),
and ηpνi, P q is bounded as in Table 1.

• If P is a polyhedron, TF-LUCB-CB returns
ppO, pS,pIq such that pO “ OPT, ppS,pIq P
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Algorithm 2 TestF-B:
Input: arm index i, number of
pulls t
if distppµi,t, P cq ą Uballpt, δq
return True

if distppµi,t, P q ą Uballpt, δq
return False

else
return ?

Algorithm 3 TestF-CB:
Input: arm index i, number of
pulls t
if Apµi,t ` Uconpt,

δ
2 q1 ď b

return True
if distppµi,t, P q ą Uballpt,

δ
2 q

return False
else
return ?

Algorithm 4 TestF-C:
Input: arm index i, number of
pulls t
if Apµi,t ` Uconpt, δq1 ď b
return True

if Apµi,t ´ Uconpt, δq1 � b
return False

else
return ?

TF-LUCB-B TF-LUCB-CB TF-LUCB-C
i P OPT DF p distpµi, BP q, Kδ q F p distpµi, BP q, KMδ qq F p distpµi, BP q, KMδ q

i P INFEAS DF p distpµi, BP q, Kδ q DF p distpµi, BP q, Kδ q viF p distpµi, P q, KMδ )

Table 1: Upper bounds on ηpνi, P q. For the case where P is a polyhedron, let vi “ |tj : aJj µi ą bju|.

Valid-Partitions, τ is bounded as in (1), and
ηpνi, P q is bounded as in Table 1.

• If P is a polyhedron with orthogonal constraints,
TF-LUCB-C returns ppO, pS,pIq such that pO “ OPT,
ppS,pIq P Valid-Partitions, τ is bounded as in (1),
and ηpνi, P q is bounded as in Table 1.

Ignoring doubly logarithmic factors, the terms related
to determining feasibility for TF-LUCB-B are loose
by a factor of D logpKq relative to our lower bound.
When D is OplogKq, then the bound is loose by a
polylogarithmic factor. Since in many applications the
dimension of the feedback is not very large, this bound
is practically relevant. TF-LUCB-CB only requires
F p distpµi, BP q, KMδ q samples to show that an arm
i P OPT is feasible, which is a significant improvement
over the corresponding term for TF-LUCB-B if M is
polynomial in D. TF-LUCB-C differs from TF-LUCB-
CB in the term for showing infeasibility. The term for
determining that arms in I are infeasible is loose by
a factor vi logpKMq, which can be much smaller than
D logpKq. In the common setting where the arms are
two-dimensional with one coordinate encoding reward
and the other a constraint, the upper bound is only
loose by a logarithmic factor. See the supplemental
material for an upper bound for TF-LUCB-C for the
case of a general polyhedron.

7 Experiments

In this section, we demonstrate experimentally the
effectiveness of our algorithms. We consider the task
of identifying OPT Ă rKs.

Synthetic Datasets: In each of the experiments, we
use δ “ 0.1, the last coordinate determines the reward
(r “ p0, . . . , 0, 1qJ), and the rest of the coordinates

determine whether x P P . We consider two kinds of
reward structures: linearly varying rewards rJµi “
.95p1´ i

100 q and polynomially varying rewards rJµi “
.95p1 ´ p i

100 q
.3q. In each trial, we randomly permute

the rewards among the arms in the sense that we take
a random permutation σ : rKs ÝÑ rKs and set µi,D
to µσpiq,D.

In one set of experiments, we use 6-dimensional mul-
tivariate Gaussian distributions as arms with covari-
ance matrix 1

4I. We use a simplex P “ tx P

R6 :
ř5
i“1 xi ď 2, xi ě 0@i P r5su. We consider

one setting where there are four groups of arms
µ1:15,1:5 “ p.1qb5,µ16:30,1:5 “ p.35qb5,µ31:45,1:5 “

p.45qb5,µ46:60,1:5 “ p´.1qb5. Only the arms in r30s
are feasible. In another setting, we consider arms with
arithmetically changing values. In this setting, for
i P r30s, µi,1:5 “ rp.1 ` p 2´0.05

5 ´ .1q i30 s
b5, for i P

r45szr30s, µi,1:5 “ r2.05{5`p3{5´ 2.05{5q i´30
15 s

b5, and
for i P r60szr45s, µi,1:5 “ r´0.05`p´.3` 0.05q i´45

15 s
b5.

Only the arms in r30s are feasible. We use
a

1{4 as
the sub-Gaussian norm for the arms.

In another set of experiments, we use 5-dimensional
Bernoulli distributions. We use an ordered poly-
hedron P “ tx P R5 : xi ď xi`1@i P

r3su. We consider a setting with three groups:
µ1:30,1:4 “ p0.05, 0.35, 0.65, 0.95qJ, µ31:40,1:4 “

p0.95, 0.65, 0.35, 0.05qJ, and µ41:50,1:4 “ p.7, .6, .5, .4q
J.

Only the arms in r30s are feasible. We use 1 as the
sub-Gaussian norm of the arms.

Crowdsourcing Application: We consider the task
of finding the most accurate crowdsourcing workers
subject to the constraint that they complete tasks at a
suitable average speed. We use a crowdsourcing dataset
collected by Venanzi et al. (2016) in which Amazon
Mechanical Turk workers determine what kind of a



Top Feasible Arm Identification

Experiment TF-LUCB-C TF-LUCB-CB TF-AE-C FFAF-C FFAF-CB
Simplex Arithmetic Linear 1.00 1.45 2.84 1.56 3.05
Simplex Arithmetic Polynomial 1.00 1.48 3.12 1.59 3.23
Simplex Groups Linear 1.00 1.25 2.78 1.29 2.14
Simplex Groups Polynomial 1.00 1.32 2.97 1.32 2.14
Ordered Groups Linear 1.00 1.04 1.93 1.15 1.16
Ordered Groups Polynomial 1.00 1.05 2.02 1.43 1.33
Crowdsourcing 1.00 N/A 2.15 2.88 N/A
Medical 1.00 N/A 1.12 4.52 N/A

Table 2: Number of samples required, relative to TF-LUCB-C, averaged over 50 trials.

statement a tweet makes regarding the weather: (i)
positive, (ii) neutral, (iii) negative, (iv) unrelated, or
(v) can’t tell. We only consider workers that have
answered at least 100 questions, leaving a total of 21
workers. Here, µi,1 is the probability of being correct
and µi,2 is the average amount of time required. We
seek the top 3 most accurate workers who on aver-
age answer questions within 15 seconds. Whenever
an algorithm pulls an arm corresponding to a worker,
it samples a datapoint associated with that worker
uniformly at random with replacement. We use the
standard deviation of the speed measurements (135.86
sec) as the sub-Gaussian norm for the coordinate corre-
sponding to the speed and 1 as the sub-Gaussian norm
for the other coordinate. We use δ “ 0.1 and allow for
a suboptimality gap of 0.05.

Clinical Trials Application: We examine the prob-
lem in clinical trials of finding the most effective drugs
that also meet some safety threshold. We use data
from Genovese et al. (2013) (see ARCR20 in week
16 in Table 2 and Table 3), which studies the drug
secukinumab for treating rheumatoid arthritis. Each
arm corresponds to a dosage level (25mg, 75mg, 150mg,
300mg, placebo) and has two attributes: the probability
of being effective, µi,1, and the probability of causing
an infection or infestation, µi,2. The dosage levels
25mg, 75mg, 150mg, and 300mg have averages µ1 “

p.34, .259qJ, µ2 “ p.469, .184qJ, µ3 “ p.465, .209qJ,
µ4 “ p.537, .293q

J, respectively, and the placebo has
average µ5 “ p.36, .36q

J. In our experiment, whenever
arm i is chosen two Bernoulli random variables with
means given by µi are drawn. We assume that a drug
is acceptable if the probability of an infection is below
.25, we set m “ 1, and we allow for a suboptimality
gap of 0.05. Thus, the correct answer is either arm 2 or
arm 3. We use δ “ 0.05. We use 1 as the sub-Gaussian
norm.

Algorithms: We consider our algorithms TF-LUCB-
C and TF-LUCB-CB. We also consider Find-Feasible-
Arms-First (FFAF), which is a two-stage algorithm
that first determines which of the arms are feasible and
then applies LUCB to the feasible arms to find the
top arms. FFAF-CB uses TestF-CB to test feasibility,

whereas FFAF-C uses TestF-C. We also implement an
action elimination algorithm (TF-AE-C) that samples
remaining arms in a round-robin fashion, eliminating
an arm if it is determined using confidence bounds to
be either suboptimal or infeasible. We only consider
a variant that uses TestF-C since TF-AE-C has poor
performance. For the experiments where D “ 2, we
only run the constraint based algorithms since the ε-
net approach uses strictly worse (by a constant factor)
confidence bounds.

Discussion of Results: Table 2 displays our results
as the number of samples required, relative to TF-
LUCB-C. All algorithms find a correct set of arms on
every trial. TF-LUCB-C has the best sample com-
plexity in all of the experiments, beating the FFAF
algorithms by a substantial margin in many of them. In
particular, FFAF-C requires nearly five times as many
samples as TF-LUCB-C on the medical dataset and
nearly three times as many samples on the crowdsourc-
ing dataset. The performance gap between TF-LUCB
and FFAF depends on the relative difficulty of show-
ing arms to be suboptimal vs. infeasible. In particu-
lar, FFAF-C has poor performance on the real-world
datasets because on the crowdsourcing dataset the sub-
Gaussian norm for showing feasibility is large and on
the medical dataset one of the suboptimal infeasible
arms is very close to the boundary. TF-AE-C performs
so poorly because each suboptimal feasible arm must
be pulled until at least m arms are shown to be feasible
and have larger reward than it.

8 Conclusion

We introduced a novel problem, top feasible arm identi-
fication: the first general pure exploration multi-armed
bandit problem on constrained optimization. We ar-
gued that it has many real-world applications since in
many settings there is multi-dimensional feedback and
a natural goal is constrained optimization based on this
feedback (e.g., safety and effectiveness in clinical trials);
thus, we argue that our algorithms are of significant
practical interest.
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