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Abstract

In the problem of domain adaptation for binary classification, the learner is presented with la-

beled examples from a source domain, and must correctly classify unlabeled examples from a

target domain, which may differ from the source. Previous work on this problem has assumed

that the performance measure of interest is the expected value of some loss function. We study a

Neyman-Pearson-like criterion and argue that, for this optimality criterion, stronger domain adap-

tation results are possible than what has previously been established. In particular, we study a class

of domain adaptation problems that generalizes both the covariate shift assumption and a model for

feature-dependent label noise, and establish optimal classification on the target domain despite not

having access to labelled data from this domain.

Keywords: Domain Adaptation, Neyman-Pearson Classification, Feature-Dependent Label Noise,

Covariate Shift, Immunity

1. Introduction

In the problem of domain adaptation for binary classification, the learner is given labeled examples

from a source distribution, and must design a classifier that performs well on a potentially different

target distribution. We consider the semi-supervised setting where, in addition to labeled training

data from the source distribution, the learner has access to an unlabeled sample from the target

distribution. To gain traction on this problem, it is necessary to make some assumptions relating the

source and target distributions, and several types of assumptions have been considered previously

in the literature, such as covariate shift, target shift, and various forms of label noise.

Previous work on domain adaptation has focused almost exclusively on a particular class of

performance measures, namely, those expressible as the expected value of some loss function, with

particular attention being paid to the 0-1 loss. We argue that the difficulty of a domain adaptation

problem depends on the performance measure being optimized, and the focus on loss-based criteria

has limited the contributions of prior work. The present work was motivated by the problem of

classification with feature- (or instance-) dependent label noise (FDLN), where previous efforts to

minimize the expected 0-1 loss (probability of error) require excessively strong assumptions on

the nature of the label noise. Our work also bears on the covariate shift model, where prior work

requires source and target distributions to be rather similar in order to make strong performance

guarantees.

c© 2019 C. Scott.
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OPTIMAL DOMAIN ADAPTATION

We examine an optimality criterion for binary classification that we call the controlled discovery

rate (CDR), which is a special case of a more general class of generalized Neyman-Pearson criteria.

We show that it is possible to optimize CDR over a broad class of domain adaptation problems that

we refer to as covariate shift with posterior drift. We do this by showing that the CDR criterion

is immune to this class of domain adaptation problems, meaning one can train a classifier as if the

source and target distributions were the same, and still optimize the CDR criterion when they are

different. Thus, no particularly novel algorithms are required to achieve optimal domain adaptation.

Our results lead to more general statements of optimality for covariate shift and FDLN than have

previously been established.

1.1. Notation

Let X ⊂ R
d denote the feature space and {0, 1} the label space. Let Q be a probability distribution

on X × {0, 1}. If the pair (X,Y ) are jointly distributed according to Q, let Qy , y ∈ {0, 1}, denote

the conditional distribution of X given Y = y. Q0 and Q1 are referred to as the “class-conditional

distributions.” Denote by πQ the marginal probability that Y = 1, and by ηQ(x) the conditional

probability that Y = 1 given X = x. In classification, Y may be viewed as an unknown parameter

that must be predicted from X, and in this spirit we refer to πQ and ηQ(x) as the “prior” and

“posterior” probabilities associated to Q. Finally, let QX := πQQ1 + (1 − πQ)Q0 be the marginal

distribution of X.

Throughout this work we assume that Q0 and Q1 have densities q0 and q1, defined w.r.t. some

dominating measure µ, and related to ηQ(x) via Bayes rule:

ηQ(x) =
πQq1(x)

(1− πQ)q0(x) + πQq1(x)
. (1)

We will often refer to a second distribution P on X × {0, 1} in addition to Q. The associated quan-

tities P0, P1, πP , ηP , PX , p0 and p1 are defined analogously. In this case the densities p0, p1, q0, q1
are assumed to have a common dominating measure. The choice µ = P0+P1+Q0+Q1 is always

valid, but typically µ is either the Lebesgue or counting measure.

1.2. Objective

In domain adaptation there are two distributions, P and Q, referred to as the source and

target distributions. We consider the semi-supervised setting where the learner observes

(X1, Y1), . . . , (Xm, Ym) ∼ P and Xm+1, . . . ,Xm+n ∼ QX , and must design a classifier whose

performance/optimality is assessed with respect to Q. The focus of this paper is to consider a par-

ticular optimality criterion, the CDR criterion, such that optimal classification is possible under a

class of domain adaptation problems now described.

1.3. Covariate Shift with Posterior Drift

The class of domain adaptation problems considered is a combination of two fundamental classes

that have been separately considered in prior work. The first, covariate shift, assumes

(CS) ηP = ηQ.
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In particular, under (CS), the source and target posteriors are the same, while PX and QX are

allowed to differ. Covariate shift has been studied extensively and related work is discussed in

Section 3. It arises, for instance, when there is a sample selection bias that causes source and target

feature vectors to follow different distributions (Heckman, 1979). For example, in developing a

classifier for a certain disease, source subjects may have volunteered for a clinical study, while

testing subjects are drawn from the general public. These two populations are different and hence

PX 6= QX , but presumably ηP = ηQ.

The second type of domain adaptation, which we call posterior drift, assumes

(PD) PX = QX , and there exists a strictly increasing function φ such that for all x, ηP (x) =
φ(ηQ(x)).

Posterior drift is a model for FDLN. In this work, label noise refers to a corruption of the labels of

the training data, and is in addition to any uncertainty in the optimal label arising from overlap of Q0

and Q1. Posterior drift may be viewed as a model for so-called “annotator” noise, which models the

way a human might (noisily) assign labels to unlabeled data (Urner et al., 2012). In particular, let

(X,Y, Ỹ ) be jointly distributed. Let Q be the distribution of (X,Y ), where X is the feature vector

and Y the true label. Let P be the distribution of (X, Ỹ ), where Ỹ is a noisy label assigned by the

annotator. Clearly PX = QX in this setting. Furthermore, ηQ is the true probabilistic labeller, while

ηP is the probabilistic labeller associated to the annotator. (PD) asserts that as the probability of the

true label being 1 increases, so too does the probability of the annotator’s label being 1. See Section

3 for more discussion of FDLN.

Finally, it is natural to combine these two assumptions, leading to the following.

(CSPD) There exists a strictly increasing function φ such that for all x, ηP (x) = φ(ηQ(x)).

In this model, the marginal distribution of X is allowed to shift, as in (CS), while the posterior is

simultaneously allowed to drift, as in (PD).

1.4. Contributions

To our knowledge, this work is the first to study the (CSPD) class of domain adaptation problems,

making it the largest class of domain adaptation problems for which immunity (and hence optimal

performance) has been established. Relative to prior work on covariate shift, we are the first to

establish optimal domain adaptation without requiring a high degree of similarity between P and Q
(see related work below). Relative to prior work on classification with FDLN, our work is the first

to establish optimal performance without overly restrictive assumptions on the label noise (again,

see related work). We also introduce a new family of optimality criteria that has not previously been

considered in machine learning. Finally, we introduce two algorithms for optimizing CDR in the

semi-supervised setting, including the first analysis of a level set method based on kernel logistic

regression.

1.5. Outline

In the next section we introduce a family of generalized Neyman-Pearson criteria for binary classi-

fication. Section 3 discusses related work. In Section 4, consistent estimators for the CDR criterion

are established, and in Section 5, we synthesize the results of prior sections to explain how optimal

domain adaptation is achieved under covariate shift with posterior drift. The final section concludes,

and proofs are found in an appendix.
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2. A Generalized Neyman-Pearson Criterion

We introduce a family of constrained criteria for classifier design, indexed by parameters 0 ≤ θ0 <
θ1 ≤ 1 and 0 ≤ α ≤ 1, and defined with respect to a distribution Q as described in Section 1.1.

The Neyman-Pearson (NP) criterion corresponds to the special case θ1 = 1 and θ0 = 0. After this

section, we will be particularly interested in the case θ1 = 1 and θ0 = πQ in the context of the

domain adaptation problems mentioned previously.

A classifier is a function g : X → [0, 1]. We view classifiers as potentially randomized, where

x is classified as 1 with probability g(x), independent of all other random variables. The power

BQ(g) of a classifier g is the probability that the predicted label is 1, given that the true label is one.

That is,

BQ(g) := EQ1
[g(X)] =

∫
g(x)q1(x)dµ(x).

The power is also referred to as 1 - Type II error, detection rate, true positive rate, sensitivity, or

recall. The size AQ(g) of a classifier g is the probability that a predicted label is 1, given that the

true label is zero. That is,

AQ(g) := EQ0
[g(X)] =

∫
g(x)q0(x)dµ(x).

Size is also known as the Type I error, false alarm rate, false positive rate, or 1 - specificity.

For the generalized Neyman-Pearson (GNP) criterion with parameters 0 ≤ θ0 < θ1 ≤ 1 and

0 < α < 1, a classifier g is optimal if it solves the following optimization problem:

max
g

θ1BQ(g) + (1− θ1)AQ(g) (2)

s.t. θ0BQ(g) + (1− θ0)AQ(g) ≤ α.

where the max is over all classifiers. Notice that BQ is an accuracy measure, whereas AQ is an error

quantity. The condition θ0 < θ1 ensures that the relative emphasis on acruracy in the objective,

and error in the constraint, lead to a meaningful criterion for classification. Indeed, the optimal

classifier is obtained by thresholding ηQ(x). Equivalently, the optimal classifier is a likelihood ratio

test (LRT), since ηQ(x) and q1(x)/q0(x) are monotonically related according to (1).

Theorem 1 Given 0 ≤ θ0 < θ1 ≤ 1, and 0 < α ≤ 1, there exist tQ,α ∈ [0, 1], qQ,α ∈ [0, 1), such

that a solution to (2) is

gQ,α(x) :=





1, ηQ(x) > tQ,α,
qQ,α, ηQ(x) = tQ,α,
0, ηQ(x) < tQ,α.

The proof uses an argument of Blanchard et al. (2016) to show that the GNP criterion can be viewed

as a conventional NP criterion with respect to two different contaminated versions of Q. Then, the

NP lemma is used to show that the optimal classifier is a LRT, and this result is transformed back to

the GNP criterion.

In this paper we are primarily concerned with the special case where θ1 = 1 and θ0 = πQ. The

expression in the constraint becomes DQ(g) := QX(g(X) = 1), which we refer to as the discovery

rate of g. In this case, we aim to solve

max
g

BQ(g)

s.t. DQ(g) ≤ α,
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which yields the most powerful classifier that predicts at most a fraction α of test instances as pos-

itive. We refer to this specific criterion as the controlled discovery rate (CDR) criterion. The CDR

criterion is desirable in applications where positively classified examples from the target domain

will be subjected to further scrutiny, and there is a limited budget to conduct follow-up investi-

gations. For example, in information retrieval it is common that only the top 100α% of the test

instances will be inspected by a user. In this context, the CDR criterion seeks the classifier with

maximum recall that assigns a positive label to 100α% of the test instances. Thus, CDR is similar

in spirit to criteria that aim to measure “accuracy at the top” (Boyd et al., 2012). Previous work

relating to the CDR criterion is discussed in the next section.

We show in this work that the CDR criterion can be optimally learned under (CSPD). The

intuition behind this fact, and the primary insight of this paper, is as follows. Consider the infinite

sample setting where P and QX are known. Since P is known, we know ηP , which is monotonically

equivalent to ηQ under (CSPD). By this monotone equivalence, the optimal classifier (for the target

domain) has the form g(x) = 1{ηP (x)≥t} for some t. This threshold t can be set to ensure that

DQ(g) = α (which must be satisfied by the optimal classifier) because DQ(g) depends on Q only

through QX . In the finite sample case, our algorithms naturally rely on estimates of ηP and DQ.

The details of this argument are worked out in the sequel.

3. Related Work

Target Shift: A kind of dual of covariate shift is target shift, where P0 = Q0 and P1 = Q1, but

πP 6= πQ. This form of domain adaptation arises frequently in applications where training and

testing data are gathered according to different sampling plans. For example, training data gathered

prospectively may have a user-determined πP , while testing data analyzed retrospectively may have

a πQ that is beyond the user’s control.

Target shift is a class of problems that satisfy neither (CS) nor (PD), but do satisfy (CSPD). To

see this, just note that PX = πPP1+(1−πP )P0 6= πQP1+(1−πQ)P0 = QX , so (PD) is violated,

and

ηP (x) =
1

1 + 1−πP

πP

p0(x)
p1(x)

6=
1

1 +
1−πQ

πQ

p0(x)
p1(x)

= ηQ(x),

so (CS) is violated. Yet clearly ηP and ηQ are monotonically equivalent, so (CSPD) holds.

Previous work on target shift has focused on estimating πQ in the semi-supervised

setting (Hall, 1981; Titterington, 1983; Latinne et al., 2001; Du Plessis and Sugiyama, 2012;

Sanderson and Scott, 2014). Since target shift is a special case of (CSPD), our methods optimize

the CDR criterion for such problems, notably without needing to estimate πQ. In fact, all GNP

criteria are immune to target shift.

Immunity: An optimality criterion is immune to a class of domain adaptation problems if

the optimal classifier is the same for both the source distribution and the target distribution (see

Appendix A for a more formal definition). Practically speaking, immunity implies that the learner

can ignore the possibility of domain adaptation (i.e., assume P = Q) and still be optimal when P 6=
Q. As an example, consider the probability of error as a performance measure (i.e., the risk with 0-1

loss). It is well known that the probability of error is immune to symmetric, feature-independent

label noise (Angluin and Laird, 1988; Kearns, 1993; Jabbari, 2010). To see this, suppose Q is

the “clean” distribution on (X,Y ), and P is the contaminated distribution on (X, Ỹ ), such that a

realization of (X, Ỹ ) is obtained by drawing (X,Y ) from Q, and replacing Y with 1 − Y with

5
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probability ν < 1
2 , independent of X. It follows that ηP (x) = (1 − ν)ηQ(x) + ν(1 − ηQ(x)).

This implies ηP (x)−
1
2 = (1 − 2ν)(ηQ(x) −

1
2), and therefore the optimal classifiers for P and Q

coincide. Thus, training a classifier to optimize probability of error on noisy training data leads to

an optimal classifier with respect to Q.

Immunity has been established for other types of label noise. The probability of error is im-

mune to symmetric, feature-dependent label noise, while the AUC is immune to a type of feature-

dependent annotator noise that implies (PD) (Menon et al., 2018). The balanced error rate (BER) is

immune to asymmetric label-dependent (but feature-independent) label noise (Menon et al., 2015).

Menon et al. (2015) also argue that BER is the only performance measure that is immune to label-

dependent label noise. The class of performance measures they study does not include the CDR

criterion, so there is no contradiction with our results which apply to label-dependent label noise

(see below).

Other instances of the GNP family also possess immunity for certain domain adaptation prob-

lems. For example, consider the target shift problem described above. Any GNP criterion is trivially

immune to target shift (when trained only on labeled training data from the source distribution) be-

cause it does not depend on the prior class probability in the first place. The same is obviously true

for other criteria that don’t involve the class priors, such as the balanced error rate or the min-max

criterion. The Neyman-Pearson criterion has further been shown to be immune to classification

with one-sided, label-dependent label noise, also known as learning with positive and unlabeled

examples (Blanchard et al., 2010). In Appendix A we argue that any GNP criterion with θ0 = 0 is

immune to one-sided, feature-dependent label noise. The immunity of NP for target shift has been

described by Xia et al. (2018).

In this work we show that, in the semi-supervised setting, the CDR criterion is immune to

(CSPD). To our knowledge, this is the most general class of problems for which immunity has been

established for some binary classification optimality criterion. For further discussion of immunity,

see Appendix A.

Covariate Shift and General Domain Adaptation: Previous work on covariate shift

(Shimodaira, 2000) has focused on performance measures that can be expressed as risks, that is,

as the expectation of a loss function with respect to P or Q. Because of this, many papers have

focused on the problem of estimating the ratio qX(x)/pX (x), where qX and pX are the densities of

QX and PX , respectively (Zadrozny, 2004; Huang et al., 2007; Cortes et al., 2008; Sugiyama et al.,

2008; Bickel et al., 2009; Kanamori et al., 2009). Unfortunately, this introduces an intermediate

(and potentially quite challenging) estimation problem into the learning pipeline. In contrast, learn-

ing with respect to the CDR criterion avoids estimation of the density ratio.

Several previous works have theoretically studied, under covariate shift as well as more general

domain adaptation settings, when a good classifier on the target domain can be learned. For exam-

ple, several papers have shown that the target risk can be bounded in terms of the source risk and

some notion of “discrepancy” between P and Q (and possibly other terms) (Ben-David et al., 2007,

2010; Blitzer et al., 2008; Mansour et al., 2009; Cortes et al., 2015; Germain et al., 2016), which

has led to the conclusion that in order “for generalization to be possible . . . Q and P must not be

too dissimilar” (Mansour et al., 2009). Ben-David and Urner (2012) argue that covariate shift alone

is insufficient to ensure good performance on the target domain. In particular, they argue that under

covariate shift, good performance on the target domain cannot be guaranteed even if the supports

are equal and densities qX and pX are mutually bounded.

6



OPTIMAL DOMAIN ADAPTATION

In the present work, we show that optimal domain adaptation is possible assuming that (CSPD)

holds, that the support of PX contains the support of QX , and two relatively benign nonparametric

conditions. In particular, optimal domain adaptation is possible even though PX and QX (and hence

P and Q) might be vastly different. Our results are not incompatible with previous results because

the settings are somewhat different. First, as mentioned previously, we consider a different opti-

mality criterion. Second, our focus is statistical consistency, whereas previous work often considers

a fixed hypothesis space. Third, our analysis concerns the error of a classifier relative to the best

possible classifier, whereas some previous work has addressed making the risk small in an absolute

sense.

Classification with Feature-Dependent Label Noise: Classification with label noise is a form

of domain adaptation, although it has not always been described as such. In this setting, (X,Y, Ỹ )
are jointly distributed. Q is the distribution of (X,Y ), where Y is the true label of X, and P is the

distribution of (X, Ỹ ), where Ỹ is a corrupted version of Y . We reiterate that in this discussion,

label noise is in addition to any uncertainty in the optimal label arising from overlap of the supports

of Q0 and Q1.

In the case of label-dependent label noise (LDLN), the probability that a training label is

flipped depends only on the true label. The label-dependent case is fairly well understood

(Blanchard et al., 2016; Natarajan et al., 2018; van Rooyen and Williamson, 2018) in the two-class

setting. In essence, the difference between the source and target domains can be reduced to two

parameters, ρi := Pr(Ỹ 6= i | Y = i), i ∈ {0, 1}, the label flip probabilities for each class. Given

knowledge of these proportions (which can be estimated), it is not difficult to modify a learning

algorithm to successfully adapt to the target domain. We also note that LDLN is a special case of

(PD) provided ρ0 + ρ1 < 1, see Appendix A.

A more challenging setting is feature-dependent label noise (FDLN), where the distribution of

the noisy label can also depend on the feature vector. In this case, the label noise is characterized by

functions ρi(x) = Pr(Ỹ 6= i |Y = i,X = x), i ∈ {0, 1}, which give the probability that a training

label is flipped, depending on the true class label and the feature vector x. These two functions are

potentially quite complex, and prior work has made strong assumptions on these functions or the

target distribution Q. Thus, Bootkrajang (2016) employs a parametric model for ρ0(x) and ρ1(x),
while Ghosh et al. (2015) provide a class of nonconvex losses that are robust to FDLN when the

Bayes Risk for Q is zero.

Menon et al. (2018) established immunity for the probability of error criterion under the con-

dition of symmetric FDLN, that is, ρ0(x) = ρ1(x) for all x, which is a strong assumption in

practice. Cannings et al. (2018) extend this result by establishing immunity when ρ0(x) and ρ1(x)
are approximately symmetric in a certain sense, approaching perfect symmetry near the decision

boundary.

Menon et al. (2018) make two other contributions to the study of FDLN problems. They intro-

duce a type of annotator noise called boundary-consistent noise (BCN) wherein ρ0(x) and ρ1(x)
obey certain monotonicity properties, and show that this noise model implies (PD). Under BCN,

they show that the area under the ROC curve (AUC) is immune to FDLN. It should be noted, how-

ever, that AUC is a criterion for ranking and not for binary classification. They also study a type

of generalized linear model under BCN and show that the Isotron algorithm is consistent in this

setting.

Cheng et al. (2017) assume that ρ0(x) and ρ1(x) are bounded by a number < 0.5. This seems

an unlikely model for annotator noise, since one would expect ρ1(x) → 1 as ηQ(x) → 0, and
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ρ0(x) → 1 as ηQ(x) → 1. Leveraging ideas from Northcutt et al. (2017), they describe a procedure

to find a subset of examples where the label is known to be correct. Knowledge of the bounds

on ρ0(x) and ρ1(x) are required as input to their algorithm. Their theory analyzes a method that

requires knowledge of ηQ(x), and a more practical algorithm requires access to, or an estimate of,

the same density ratio that arises in covariate shift.

Our contribution to the study of FDLN is as follows. We are the first to establish both con-

sistency and immunity of a learning algorithm, with respect to some optimality criterion, under a

realistic nonparametric model of annotator noise (namely, (PD)) and under general nonparametric

assumptions on the data distribution. Furthermore, our approach avoids the need to estimate ρ0(x)
or ρ1(x), or the density ratio mentioned previously.

Other Classes of Domain Adaptation: We mention two other types of domain adaptation.

Zhang et al. (2013) study an assumption that is dual to (CSPD) in a sense. Whereas (CSPD) allows

the marginal of X to shift arbitrarily, and the conditional of Y |X to shift in a monotone fashion, they

allow the marginal of Y to shift arbitrarily, and the conditional of X|Y to undergo a location-scale

shift. Tasche (2017) introduces problems with an “invariant density ratio,” where the likelihood

ratios of P and Q are equal. This problem is a special case of (CSPD) and a generalization of target

shift.

Optimality Criteria for Binary Classification: There has been interest in recent

years in cataloging different performance measures and optimality criteria for binary clas-

sification (Koyejo et al., 2014; Narasimhan et al., 2014; Kotlowski and Dembczyski, 2016;

Dembczyński et al., 2017), and establishing consistent learning rules for them. The GNP criteria

are evidently a new family of optimality criteria, thus expanding this literature. Tasche (2018) stud-

ies a different family of constrained optimization problems that also includes the CDR criterion as

a special case, providing an alternate proof of Theorem 1 in the case of CDR. The fact that the CDR

criterion is optimized by thresholding ηQ was noted by Clémencon and Vayatis (2007), see Remark

2.

NP Classification: We anticipate that several existing algorithms for Neyman-Pearson classifi-

cation (Scott and Nowak, 2005; Tong et al., 2016) and similar constrained criteria extend naturally

to CDR. To illustrate this point, later we present an adaptation of an algorithm of Lei (2014). In the

reverse direction, our algorithm and analysis based on kernel logistic regression should naturally

yield algorithms and analysis for Neyman-Pearson classification as well as other classification and

level-set criteria.

4. Estimators for the CDR Criterion

In this section we address consistent estimators for the optimal CDR classifier. Our goal is to

estimate the set

GQ,α := {x : ηQ(x) ≥ tQ,α} (3)

where tQ,α is the threshold associated to the CDR criterion at level α. In other words, QX(GQ,α) =
α. Note that this assumes the optimal classifier gQ,α is deterministic, which is formalized in our

distributional assumptions below. Also, we view deterministic classifiers and subsets of X inter-

changeably by viewing the classifier as an indicator on the subset.

8
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For greater generality that will be needed in the context of domain adaptation, we actually

consider the problem of estimating

GP,Q,α := {x : ηP (x) ≥ tP,Q,α} (4)

where tP,Q,α is such that QX(GP,Q,α) = α. Note that taking P = Q reduces to (4) to (3).

To preview Section 5, in the context of domain adaptation, GP,Q,α can be estimated since

we have data drawn from P and QX . Furthermore, under (CSPD), it is not hard to see that

GP,Q,α = GQ,α, meaning it is possible to consistently estimate the optimal CDR classifier on

the target domain.

After formalizing our distributional assumptions and the estimation problem, we present two

estimators with associated convergence results. The first assumes access to a sup-norm consistent

estimator of ηP , while the second uses kernel logistic regression to estimate ηP . Throughout this

section we assume X is a compact subset of Rd.

4.1. Distributional Assumptions

In addition to (CSPD), our analysis makes the following nonparametric assumptions on P and Q.

These assumptions allow P and Q to be quite different from one another according to essentially

any commonly used notion of distance or divergence between two distributions.

Define FP,Q(t) := QX({x : ηP (x) ≤ t}), the cumulative distribution function of the random

variable ηP (X) when X ∼ QX . We adopt the following two assumptions:

(A) There exists tP,Q,α ∈ (0, 1] such that

QX({x : ηP (x) ≥ tP,Q,α}) = α.

(B) There exist positive constants δ0, b1, b2 and κ such that for all δ ∈ [−δ0, δ0],

b1|δ|
κ ≤ |FP,Q(tP,Q,α + δ)− FP,Q(tP,Q,α)| ≤ b2|δ|

κ.

(A) ensures that randomized classifiers are not needed. (B) states that FP,Q has local growth

(in a neighborhood of tP,Q,α) characterized by the exponent κ, which characterizes the difficulty

of the estimation problem. The lower bound in (B) implies that tP,Q,α is unique, while the upper

bound implies that FP,Q is continuous at tP,Q,α. Under (A) and (B), GP,Q,α is well-defined, i.e., the

threshold tP,Q,α, which must satisfy QX(GP,Q,α) = α, exists and is unique.

The following assumption is widely adopted in the study of covariate shift.

(C) The support of QX is contained in the support of PX .

A strengthened form of this assumption is employed in the analysis of our second algorithm

(Yu and Szepesvari, 2012).

(C’) There exists c0 > 0 such that QX ≤ c0PX . Equivalently, QX is absolutely continuous with

respect to PX , and ∂QX/∂PX is essentially bounded by c0.
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4.2. The Estimation Problem

We focus on estimating GP,Q,α given the following data:

(X1, Y1) . . . , (Xm, Ym)
iid
∼ P

Xm+1, . . . ,Xm+n
iid
∼ QX .

The two samples are assumed to be independent of each other. Let ĜP,Q,α be an estimate of GP,Q,α.

We further focus on the performance measure

QX(ĜP,Q,α∆GP,Q,α),

where G∆G′ := (G\G′) ∪ (G′\G) is the symmetric difference of G and G′.

According to the following result, convergence with respect to the above measure implies con-

vergence of the objective and constraint functions for GNP criteria.

Proposition 2 Let g and g′ be two deterministic classifiers, and let G = {x : g(x) = 1} and

G′ = {x : g′(x) = 1} be the associated sets. For any ǫ ∈ [0, 1] and any Q,

∣∣ǫBQ(g) + (1− ǫ)AQ(g)− [ǫBQ(g
′) + (1− ǫ)AQ(g

′)]
∣∣ ≤

(
ǫ

πQ
+

1− ǫ

1− πQ

)
QX(G∆G′).

In what follows, let Pm denote the product measure governing (X1, Y1) . . . , (Xm, Ym), and Qn
X

denote the product measure governing Xm+1, . . . ,Xm+n. We use Pr to denote the product measure

Pm × Qn
X on (X × {0, 1})m × X n, which governs the combined draw of the two samples. The

goal is to show Pr(QX(ĜP,Q,α∆GP,Q,α)) → 0 in probability as m,n → ∞.

4.3. A result based on sup-norm consistent estimation of the posterior

The CDR criterion is sufficiently similar to NP classification and related problems that we can easily

modify existing algorithms and theory to our setting. To illustrate this, we begin by establishing

a consistent CDR estimator based on a sup-norm consistent estimate of ηP . The results in this

subsection translate ideas from Lei (2014), where a different generalization of the Neyman-Pearson

criterion was considered. Let η̂P denote an estimate, based on (X1, Y1), . . . , (Xm, Ym), of the

posterior ηP associated to the joint distribution P . Let δm, τm be two sequences of positive reals

numbers tending to 0.

Definition 3 An estimator η̂P is (δm, τm)-accurate if Pm(‖η̂P − ηP ‖∞ ≥ δm) ≤ τm as m → ∞.

Specific examples of (δm, τm)-accurate estimators are provided by Lei (2014), with explicit

rates (tending to 0) for δm and τm. In particular, Audibert and Tsybakov (2007) and van de Geer

(2008) give explicit rates for local polynomial regression and ℓ1-penalized logistic regression, re-

spectively. These estimators in turn yield explicit rates of convergence in our setting. We refer the

reader to Lei (2014) for details.

Remark: (δm, τm)-accurate estimators of ηP may require additional distributional assumptions

on P beyond what we have assumed so far. This is the case for the two examples mentioned above.

This does not change our conclusion that P and Q can still be substantially different. Also, our goal

10
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in this subsection is to demonstrate an estimator with a rate of convergence, but other consistent

estimators that do not require additional assumptions could also be adapted to CDR estimation.

Define ĜP,Q,α = {x : η̂P (x) ≥ t̂P,Q,α}, where t̂P,Q,α is the ⌊n(1−α)⌋th smallest value among

{η̂P (Xm+1), . . . , η̂P (Xm+n)}.

Theorem 4 Let P and Q be joint distributions, and let (X1, Y1) . . . , (Xm, Ym)
iid
∼ P and

Xm+1, . . . ,Xm+n
iid
∼ QX . Assume (A), (B), and (C) hold, and that η̂P is a (δm, τm)-accurate

estimator of ηP . For each r > 0, there exists a positive constant c such that for m and n large

enough, with probability at least 1− τm − n−r with respect to the draw of the training data,

QX(ĜP,Q,α∆GP,Q,α∗) ≤ c

{
δκm +

(
log n

n

)1/2
}
.

When this result is instantiated with the (δm, τm)-accurate estimator of Audibert and Tsybakov

(2007), and κ = 1, the rate above matches or is similar to known rates for related set estimation and

classification problems. See Lei (2014) for additional discussion.

4.4. A result for kernel logistic regression

In this section, we examine an estimator based on kernel logistic regression (KLR), which is perhaps

a more practical estimator for ηP than the methods mentioned in the previous subsection. Although

KLR is not known to be sup-norm consistent, we are able to establish an asymptotic convergence

result for our estimator based on theory developed by Steinwart (2003). We believe this is the first

such result for a set estimator based on KLR.

Let η̂P be the estimate of ηP resulting from KLR with symmetric, positive definite kernel k and

regularization parameter λ, based on (Xi, Yi), i = 1, . . . ,m. That is,

η̂P (x) =
1

1 + exp(−f̂P (x))

where f̂P solves

min
f∈H

λ

2
‖f‖2H +

1

m

m∑

i=1

log(1 + exp(−(2Yi − 1)f(Xi))).

Here H is a reproducing kernel Hilbert space of functions over Rd associated to kernel k. Later,

we will assume that k is a universal kernel, which means that H has nice approximation properties

(Steinwart and Christmann, 2008).

For a set G define Q̂X(G) = 1
n

∑m+n
i=m+1 1{Xi∈G}, the empirical measure with respect to the

second training sample. Let α be the user-specified constant defining the CDR criterion. Now define

the empirical estimate of tP,Q,α, with tuning parameters β and γ, as

t̂P,Q,α = inf{t | Q̂X({x : η̂P (x) ≥ t+ β}) ≤ α+ γ + ǫn} (5)

where ǫn = 4(log(n+ 1)/n)1/2, and define the estimator of GP,Q,α to be

ĜP,Q,α = {x : η̂P (x) ≥ t̂P,Q,α}. (6)

11
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Theorem 5 Assume (A), (B), and (C’) hold. Let k be a universal kernel and let λ = λm such that

λ → 0 and mλ2 → ∞. For all ǫ > 0, there exist β and γ such that

QX(ĜP,Q,α∆GP,Q,α) ≤ ǫ

in probability as m,n → ∞.

The proof hinges on a result of Steinwart (2003), who effectively shows that η̂P is uniformly close

to ηP , to arbitrary accuracy, on an event with probability tending to 1 as m → ∞. We then use

(B) to translate accuracy of η̂P to accuracy of the associated set estimate. The proof gives con-

structive choices for β and γ depending on ǫ and the constants appearing in (B). Concrete rates

of convergence are not available because the same is true of the result of Steinwart (2003) that we

leverage.

This result does not show consistency of a specific algorithm, since β and γ depend on ǫ.
Nonetheless it demonstrates the theoretical capacity of a KLR-based estimator to deliver arbitrarily

accurate estimates of GP,Q,α. In practice, of course, the threshold on η̂P would be determined in a

data-driven fashion (Tong et al., 2018).

5. Domain Adaptation for the CDR Criterion

Recall that the goal of domain adaptation with the CDR criterion is to recover

GQ,α = {x : ηQ(x) ≥ tQ,α}

given realizations of P and of QX . In the previous section, we saw that it is possible to consistently

estimate

GP,Q,α = {x : ηP (x) ≥ tP,Q,α}

under assumptions (A), (B), and (C) or (C’).

The key insight of this paper is that under (CSPD), GQ,α = GP,Q,α, and therefore GQ,α can be

consistently estimated. To see that GQ,α = GP,Q,α under (CSPD), simply recall the definition of

(CSPD) which assumes the existence of a strictly increasing function φ : [0, 1] → [0, 1] such that

for all x, ηP (x) = φ(ηQ(x)). Now, GQ,α = GP,Q,α follows by taking tQ,α = φ−1(tP,Q,α). Under

(A) and (B), tP,Q,α exists and is unique, and therefore the same is true of tQ,α.

In light of the above, we have the following:

Corollary 6 Assume (CSPD), (A), (B), and (C) (respectively, (C’)) hold. Then the estimator of

Section 4.3 (resp., Section 4.4) satisfies the conclusion of Theorem 4 (resp., Theorem 5), where now

the set being estimated is GQ,α.

6. Conclusions

We have introduced a family of generalized Neyman-Pearson optimality criteria, and shown that

a member of this family, the controlled discovery rate criterion, is immune to domain adaptation

under the model of covariate shift with posterior drift. Compared with prior work on domain adap-

tation, we do not require that the source and target distributions be close in some sense in order to

obtain optimal performance on the source domain. With respect to prior work on covariate shift,
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our approach does not require estimating a density ratio, and in fact allows the density ratio to be

unbounded under condition (C). Comparing to the literature on feature-dependent label noise, ours

is the first work to establish consistency/immunity under a general and flexible model for annotator

noise, without requiring knowledge of the specific annotator noise model. These results are enabled

by consideration of an optimality criterion different from the usual ones based on expected loss.
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Appendix A. Immunity

This appendix provides supplemental details and observations pertaining to immunity.

The immunity of an optimality criterion with respect to a class of domain adaptation problems

is formally defined as follows. We distinguish between the inductive setting, where the learner

has access only to labeled data from P , and the semi-supervised setting, where the learner has an

additional unlabeled sample from QX . Let P be some class of distributions of interest, e.g., all

distributions on X . A class of domain adaptation problems is a subset D ⊆ P × P where, for

(P,Q) ∈ D, P is the source domain and Q the target. At times we express a distribution Q as the

pair (ηQ, QX). The classifier (or set of classifiers) optimizing an optimality criterion for distribution

Q is denoted OPT(Q) in the inductive case, and OPT(ηQ, QX) in the semi-supervised case. We

say that an optimality criterion is immune to D if, for all (P,Q) ∈ D, OPT(Q) = OPT(P ) in the

inductive setting, or OPT(ηQ, QX) = OPT(ηP , QX) in the semi-supervised setting. Except for our

result on the CDR criterion, all of the immunity results mentioned in Section 3 are for the inductive

setting.

To see that LDLN is a special case of (PD) provided ρ0 + ρ1 < 1, observe

ηP (x) = Pr(Ỹ = 1 | X = x)

= Pr(Ỹ = 1 | Y = 1,X = x) Pr(Y = 1 | X = x)

+ Pr(Ỹ = 1 | Y = 0,X = x) Pr(Y = 0 | X = x)

= Pr(Ỹ = 1 | Y = 1)Pr(Y = 1 | X = x) + Pr(Ỹ = 1 | Y = 0)Pr(Y = 0 | X = x)

= (1− ρ1)ηQ(x) + ρ0(1− ηQ(x))

= (1− ρ0 − ρ1)ηQ(x) + ρ0.

We also note that (CSPD) is preserved by composition of domain adaptations, because the com-

position of strictly increasing functions is strictly increasing. For example, consider distributions P ,

Q, and R. Let D be the set of (P,R) such that there exists Q for which Q is related to R by target

shift, and P is generated from Q by LDLN (with ρ0+ρ1 < 1). Then there exist strictly increasing φ1

and φ2 such that, for all x, ηP (x) = φ1(ηQ(x)) and ηQ(x) = φ2(ηR(x)). Thus ηP (x) = φ(ηR(x))
where φ = φ1 ◦ φ2, which is strictly increasing, and therefore D satisfies (CSPD).

The focus of the paper has been immunity of the CDR criterion to (CSPD) in the semi-

supervised setting. We note that the CDR criterion is also immune to (PD) in the inductive setting.

Since PX = QX under (PD), QX is already estimable through the data drawn from P , and an unla-

beled sample from QX is not needed. Indeed, all of the results for (CSPD) in the semi-supervised

setting could also be stated for (PD) in the inductive setting.

Finally, we remark that a subset of GNP criteria (namely, when θ0 = 0) are immune to a subclass

of (PD) corresponding to one-sided feature-dependent label noise. In particular, define the domain

adaptation class

(PD’) PX = QX , ρ1 ≡ 0 and there exists a strictly increasing function ψ such that ρ0(x) =
ψ(ηQ(x)) for all x.
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Under (PD’), true labels of 1 are never corrupted to become 0. Furthermore we have the following.

Lemma 1 (PD’) implies (PD)

Proof We need to show that ηP (x) is a strictly increasing function of ηQ(x). For a posterior η(x),
define η̄(x) = 1− η(x). Arguing as we did previously, under (PD’),

η̄P (x) = Pr(Ỹ = 0 | X = x)

= Pr(Ỹ = 0 | Y = 1,X = x) Pr(Y = 1 | X = x)

+ Pr(Ỹ = 0 | Y = 0,X = x) Pr(Y = 0 | X = x)

= ρ1(x)(1− η̄Q(x)) + (1− ρ0(x))η̄Q(x)

= (1− ρ0(x)− ρ1(x))η̄Q(x) + ρ1(x)

= (1− ρ0(x))η̄Q(x) + ρ1(x)

= (1− ρ0(x))η̄Q(x).

This implies that

ηP (x) = 1− (1− ρ0(x))(1 − ηQ(x)).

The result now follows.

Then all GNP criteria with θ0 = 0 are immune to (PD’) in the inductive setting. This follows

by similar reasoning as for CDR. First, with θ0 = 0, the constraint in the GNP criterion depends

only on Q0, and Q0 = P0 because ρ1(x) ≡ 0. Second, ηP and ηQ are monotonically equivalent.

Therefore, the level set of ηP with P0-measure α is also the level set of ηQ with Q0-measure α.

Appendix B. Proofs

This appendix contains the proofs.

B.1. Proof of Theorem 1

Denote

q̃1(x) := θ1q1(x) + (1− θ1)q0(x), (7)

q̃0(x) := θ0q1(x) + (1− θ0)q0(x). (8)

Note that q̃1(x) and q̃0(x) are densities for the distributions Q̃1 := θ1Q1 + (1 − θ1)Q0 and

Q̃0 := θ0Q1 + (1 − θ0)Q0, respectively. Viewing these as the alternative and null distributions

in a hypothesis testing problem, the power and size of a classifier g are

B̃Q(g) := θ1BQ(g) + (1− θ1)AQ(g)

ÃQ(g) := θ0BQ(g) + (1 − θ0)AQ(g).

Thus, the optimization problem in (2) is equivalent to maximizing the power B̃Q(g), subject to the

constraint that the size ÃQ(g) ≤ α. By the Neyman-Pearson lemma, the optimal classifier has the

form

gα(x) =





1, Λ̃(x) > λα,

qα, Λ̃(x) = λα,

0, Λ̃(x) < λα.
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where Λ̃(x) = q̃1(x)/q̃0(x), and λα > 0 and qα ∈ [0, 1) are uniquely determined by

Q̃0(Λ̃(X) < λα) + qαQ̃0(Λ̃(X) = λα) = α.

Next, we apply Proposition 1 of Blanchard et al. (2016) which we restate in our notation for

convenience. (In their notation, π0 = 1− θ1, π1 = θ0.)

Lemma 2 Let q0 and q1 be probability density functions, let 0 ≤ θ0 < θ1 ≤ 1, and let q̃1 and q̃0 be

as in (7)-(8). For all γ ≥ 0 and all x such that q0(x) > 0,

q1(x)

q0(x)
> γ ⇐⇒

q̃1(x)

q̃0(x)
> λ,

where

λ =
1− θ1 + γθ1
1− θ0 + γθ0

. (9)

The result states that the “pure” and “contaminated” likelihood ratios are monotonically equivalent.

Before applying this result, we make the following observations. First, by inspecting (9), as γ
varies from 0 to ∞, λ varies between its extremes,

1− θ1
1− θ0

≤ λ ≤
θ1
θ0

.

Second, these extremes also bound the range of the contaminated likelihood ratio, which is evident

from the expression

Λ̃(x) =
θ1q1(x) + (1− θ1)q0(x)

θ0q1(x) + (1− θ0)q0(x)
=

θ1
q1(x)
q0(x)

+ 1− θ1

θ0
q1(x)
q0(x)

+ 1− θ0
.

Third, given λ in this range, one can solve for γ,

γ =
λ(1− θ0)− (1− θ1)

θ1 − λθ0
∈ [0,∞].

Putting these observations together, λα must satisfy 1−θ1
1−θ0

≤ λα ≤ θ1
θ0

, and therefore

gα(x) =





1, Λ(x) > γα,
qα, Λ(x) = γα,
0, Λ(x) < γα,

where Λ(x) = q1(x)/q0(x) and

γα =
λα(1− θ0)− (1− θ1)

θ1 − λαθ0
∈ [0,∞].

Finally, by

ηQ(x) =
πQq1(x)

πQq1(x) + (1− πQ)q0(x)
=

πQΛ(x)

πQΛ(x) + 1− πQ
,

we know that ηQ(x) is monotonically equivalent to Λ(x). This completes the proof.

19



OPTIMAL DOMAIN ADAPTATION

B.2. Proof of Proposition 2

By the triangle inequality,

∣∣ǫBQ(g) + (1− ǫ)AQ(g)− [ǫBQ(g
′) + (1− ǫ)AQ(g

′)]
∣∣

≤ ǫ
∣∣BQ(g)−BQ(g

′)
∣∣+ (1− ǫ)

∣∣AQ(g) −AQ(g
′)
∣∣ .

We claim that |BQ(g) −BQ(g
′)| ≤ Q1(G∆G′). To see this, observe

BQ(g)−BQ(g
′) = Q1(G)−Q1(G

′)

= Q1(G\G′)−Q1(G
′\G)

≤ Q1(G\G′) +Q1(G
′\G)

= Q1(G∆G′).

A similar argument shows that BQ(g)−BQ(g
′) ≥ −Q1(G∆G′) which establishes the claim.

Similarly, it can be shown that |AQ(g)−AQ(g
′)| ≤ Q0(G∆G′).

Since QX = πQQ1+(1−πQ)Q0, we know QX ≥ πQQ1 and QX ≥ (1−πQ)Q0 and therefore

Q1 ≤
1
πQ

QX and Q0 ≤
1

1−πQ
QX . Combining the above facts establishes the result.

B.3. Proof of Theorem 4

Since the support of Q is contained in the support of P , η̂P is (δm, τm)-accurate on the support of

Q.

Let F̂P,Q(t) be the empirical CDF of the random variable ηP (X), X ∼ QX , based on

Xm+1, . . . ,Xm+n. For r > 0, introduce the event

Er =
{
‖η̂P − ηP ‖∞ ≤ δm, sup

t
|FP,Q(t)− F̂P,Q(t)| ≤ cr(log n/n)

1/2
}
.

By the DKW inequality (Massart, 1990), there exists cr such that Er occurs with probability at least

1− τm − n−r.

Remark: The advantage of having the theorem hold for arbitrary r > 0 is that for some estima-

tors, e.g., the ℓ1-penalized logistic regression estimator studied by van de Geer (2008), r needs to

be sufficiently large for the estimator to be (δm, τm)-accurate with specific rates for δm and τm.

The proof hinges on the following lemma.

Lemma 3 There exists cr,κ > 0 such that for m and n large enough, on Er,

|t̂P,Q,α − tP,Q,α| ≤ δm + cr,κ

(
log n

n

)1/2κ

.

Proof Introduce the sets LP (t) = {x : ηP (x) ≤ t} and L̂P (t) = {x : η̂P (x) ≤ t}. Observe that

for any t ∈ [0, 1],

Q̂X(L̂P (t)) ≤ Q̂X(LP (t+ δm)) = F̂P,Q(t+ δm) ≤ FP,Q(t+ δm) + cr

(
log n

n

)1/2

.
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Now let t′P,Q,α := tP,Q,α − δm − {2crb1(log n/n)
1/2}1/κ, where b1 is from (B). For m and n

large enough, we have δm + {2crb1(log n/n)
1/2}1/κ ≤ tP,Q,α (so that t′P,Q,α ∈ [0, 1]), 1/n <

cr(log n/n)
1/2, and {2crb1(log n/n)

1/2}1/κ ≤ δ0 where δ0 is from (B). It follows that

Q̂X(L̂P (t
′
P,Q,α)) ≤ FP,Q(tP,Q,α − {2crb1(log n/n)

1/2}1/κ) + cr

(
log n

n

)1/2

≤ FP,Q(tP,Q,α)− cr

(
log n

n

)1/2

= 1− α− cr

(
log n

n

)1/2

< 1− α− n−1

≤ ⌊n(1− α)⌋/n

≤ Q̂X(L̂P (t̂P,Q,α)),

where the second inequality follows from (B). It follows that t̂P,Q,α ≥ t′P,Q,α = tP,Q,α − δm −

c1r,κ(log n/n)
1/2κ where c1r,κ = {2crb1}

1/κ.

The reverse inequality is similar with one slight change, in that we redefine LP (t) = {x :
ηP (x) < t} and L̂P (t) = {x : η̂P (x) < t}. Similar to before, for any t ∈ [0, 1],

Q̂X(L̂P (t)) ≥ Q̂P (L(t− δm)) = F̂P,Q(t− δm) ≥ FP,Q(t− δm)− cr

(
log n

n

)1/2

.

Now let t′P,Q,α := tP,Qα + δm + {2crb2(log n/n)
1/2}1/κ, where b2 is from (B). For m and n large

enough, we have δm + {2crb2(log n/n)
1/2}1/κ ≤ 1 − tP,Q,α (so that t′P,Q,α ∈ [0, 1]), 1/n <

cr(log n/n)
1/2, and {2crb2(log n/n)

1/2}1/κ ≤ δ0 where δ0 is from (B). It follows that

Q̂X(L̂P (t
′
P,Q,α)) ≥ FP,Q(tP,Q,α + {2crb2(log n/n)

1/2}1/κ)− cr

(
log n

n

)1/2

≥ FP,Q(tP,Q,α) + cr

(
log n

n

)1/2

= 1− α+ cr

(
log n

n

)1/2

> 1− α+ n−1

≥ ⌊n(1− α)⌋/n

≥ Q̂X(L̂P (t̂P,Q,α))

where the second inequality follows from (B). The modified definitions of LP and L̂P are needed

in the final step. It follows that t̂P,Q,α ≤ t′P,Q,α = tP,Q,α + δm + c2r,κ(log n/n)
1/2κ where c2r,κ =

{2crb2}
1/κ.

The result now follows by combining the above inequalities and taking cr,κ = max{c1r,κ, c
2
r,κ}.
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To prove the theorem, observe that on Er,

QX(ĜP,Q,α\GP,Q,α) = QX(η̂P (X) ≥ t̂P,Q,α, ηP (X) < tP,Q,α)

≤ QX

{
tP,Q,α − δm − cr,κ

(
log n

n

)1/2κ

< ηP (X) < tP,Q,α

}

= FP,Q(tP,Q,α)− FP,Q

{
tP,Q,α − δm − cr,κ

(
log n

n

)1/2κ
}

≤ b2

{
δm + cr,κ

(
log n

n

)1/2κ
}κ

≤ 2κb2

{
δκm + cκr,κ

(
log n

n

)1/2
}
,

where the next-to-last inequality follows from (B) and holds when m and n are large enough that

2δm + cr,κ(log n/n)
1/2κ ≤ δ0. The other term is handled similarly.

B.4. Proof of Theorem 5

The following result follows from a result of Steinwart (2003).

Lemma 4 Let k be a universal kernel and let λ = λm such that λ → 0 and mλ2 → ∞. For all

β, γ, ν ∈ (0, 1), for m sufficiently large,

PX({x : |ηP (x)− η̂P (x)| ≥ β}) ≤ γ

with probability at least 1− ν with respect to the draw of (Xi, Yi), i = 1, . . . ,m.

In words, the PX-measure of the set where η̂P deviates from ηP by more than β can be made

arbitrarily small, with arbitrarily high probability, by taking m large enough.

Proof Denote

Em(β) = {x : |ηP (x)− η̂P (x)| ≥ β}.

Define fP (x) = log(1 − ηP (x))/ηP (x) and observe that ηP (x) = τ(fP (x)) and η̂P (x) =
τ(f̂P (x)), where τ(f) = (1 + exp(−f))−1. Also define

Fm(β) = {x : |fP (x)− f̂P (x)| ≥ β}.

Notice that Em(β) ⊆ Fm(β) because τ is 1-Lipschitz. The result now follows from Theorem 35 of

Steinwart (2003) (see also Theorem 22 and Remark 24).

For any β, γ ∈ (0, 1), let Θm(β, γ) be the event on which PX({x : |η̂P (x)−ηP (x)| ≥ β}) ≤ γ.

By Lemma 4, Pr(Θm(β, γ)) can be made arbitrarily close to 1 by taking m sufficiently large.

Now consider the family of sets C = {Ct | t ≥ 0} where Ct = {x : η̂(x) ≥ t}. This family has

a shatter coefficient S(C, n) = n+ 1. By the VC inequality (Devroye et al., 1996),

|QX(Ct)− Q̂X(Ct)| ≤

√
8(log S(C, n) + log n)

n
≤ 4

√
log(n+ 1)

n
= ǫn (10)
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with probability at least 1 − 1/n. This follows by applying the VC inequality to the condi-

tional distribution of Xm+1, . . . ,Xm+n given (X1, Y1), . . . , (Xm, Ym), and then marginalizing over

(X1, Y1), . . . , (Xm, Ym).
Let Ωn denote the event on which the bound of (10) holds. Thus, Pr(Ωn) ≥ 1− 1/n.

Lemma 5 Fix β, γ > 0, and assume (A), (B), and (C) hold. On the event Θm(β, γ/c0) ∩ Ωn

t̂P,Q,α ≤ tP,Q,α.

Furthermore, if γ satisfies (3γ/b1)
1/κ < δ0, then for n sufficiently large, on the event Θm(β, γ/c0)∩

Ωn

tP,Q,α − t̂P,Q,α ≤ 2β + (3(γ + ǫn)/b1)
1/κ.

Proof Assume Θm(β, γ/c0) ∩ Ωn occurs. Recall

t̂P,Q,α := inf{t | Q̂X({x : η̂P (x) ≥ t+ β}) ≤ α+ γ + ǫn},

and

tP,Q,α := inf{t |QX({x : ηP (x) ≥ t}) ≤ α}.

To see that t̂P,Q,α ≤ tP,Q,α on Θm(β, γ/c0) ∩ Ωn, from the definition of tP,Q,α we have QX({x :
ηP (x) ≥ tP,Q,α}) ≤ α. By Θm(β, γ/c0) and (C’), it follows that QX({x : η̂P (x) ≥ tP,Q,α+β}) ≤

α+ γ, and by Ωn, we have that Q̂X({x : η̂P (x) ≥ tP,Q,α + β}) ≤ α+ γ + ǫn. The result follows

by definition of t̂P,Q,α.

For the reverse direction, let γ be small enough such that (3γ/b1)
1/κ < δ0. Assume n is large

enough that (3(γ + ǫn)/b1)
1/κ ≤ δ0.

Let t̃P,Q,α := tP,Q,α − q, where q = 2β + (3(γ + ǫn)/b1)
1/κ. On Θm(β, γ) ∩Ωn, we have that

Q̂X({x : η̂P (x) ≥ t̃P,Q,α + β}) = Q̂X({x : η̂P (x) ≥ tP,Q,α − q + β})

≥ QX({x : η̂P (x) ≥ tP,Q,α − q + β}) − ǫn

≥ QX({x : ηP (x) ≥ tP,Q,α − q + 2β}) − γ − ǫn

= 1− FP,Q(tP,Q,α − q + 2β)− γ − ǫn

≥ α+ 2γ + 2ǫn,

where the last step follows from (B) and FP,Q(tP,Q,α) = α. We conclude that t̂P,Q,α ≥ t̃P,Q,α, and

therefore tP,Q,α − t̂P,Q,α ≤ q = 2β + (3(γ + ǫn)/b1)
1/κ.

To prove the theorem, let ǫ > 0 and ξ > 0. We will show that for β, γ sufficiently small,

Pr(QX(ĜP,Q,α∆GP,Q,α) ≤ ǫ) ≥ 1 − ξ for m and n sufficiently large. Thus, select β and γ such

that (i) 3β + (3γ/b1)
1/κ < δ0, and (ii) b2β

κ + b2(3β + (3γ/b1)
1/κ)κ + 2γ < ǫ.

Having fixed β and γ, let n be sufficiently large such that (i) the conclusion of Lemma 5 holds,

(ii) 1/n < ξ/2, and (iii) b2β
κ + b2(3β + (3(γ + ǫn)/b1)

1/κ)κ + 2γ < ǫ. Also let m be sufficiently

large that Pr(Θm(β, γ/c0)) ≥ 1 − ξ/2. Thus, Θm(β, γ/c0) ∩ Ωn occurs with probability at least

1− ξ.
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Observe

QX(GP,Q,α∆ĜP,Q,α) = QX(ηP (X) ≥ tP,Q,α, η̂P (X) < t̂P,Q,α)

+QX(ηP (X) < tP,Q,α, η̂P (X) ≥ t̂P,Q,α).

The first term may be bounded on Θm(β, γ) ∩ Ωn as

QX(ηP (X) ≥ tP,Q,α, η̂P (X) < t̂P,Q,α) ≤ QX(ηP (X) ≥ tP,Q,α, η̂P (X) < tP,Q,α)

≤ QX(tP,Q,α ≤ ηP (X) ≤ tP,Q,α + β) + γ

= FP,Q(tP,Q,α + β)− FP,Q(tP,Q,α) + γ

≤ b2β
κ + γ,

where the first step follows from Lemma 5, the second from Θm(β, γ/c0), and the last from (B).

As for the second term, let q = 2β + (3(γ + ǫn)/b1)
1/κ. Then

QX(η̂P (X) ≥ t̂P,Q,α, ηP (X) < tP,Q,α) ≤ QX(η̂P (X) ≥ tP,Q,α − q, η̃P (X) < tP,Q,α)

≤ QX(tP,Q,α − q − β ≤ ηP (X) ≤ tP,Q,α) + γ

= FP,Q(tP,Q,α − q − β)− FP,Q(tP,Q,α) + γ

≤ b2(3β + (3(γ + ǫn)/b1)
1/κ)κ + γ.

with similar reasoning as the first case. The result now follows from the selected properties of

β, γ,m and n.
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