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Abstract— Neural decoding of human locomotion, 

including automated gait intention detection and continuous 
decoding of lower limb joint angles, has been of great interest 
in the field of Brain Machine Interface (BMI). However, neural 
decoding of gait in developing children has yet to be 
demonstrated. In this study, we collected physiological data 
(electroencephalography (EEG), electromyography (EMG)), 
and kinematic data from children performing different 
locomotion tasks. We also developed a state space estimation 
model to decode lower limb joint angles from scalp EEG. 
Fluctuations in the amplitude of slow cortical potentials of 
EEG in the delta band (0.1 – 3 Hz) were used for prediction. 
The decoding accuracies (Pearson’s r values) were promising 
(Hip: 0.71; Knee: 0.59; Ankle: 0.51). Our results demonstrate 
the feasibility of neural decoding of children walking and have 
implications for the development of a real-time closed-loop 
BMI system for the control of a pediatric exoskeleton. 
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I. INTRODUCTION 
Cerebral Palsy (CP), Spina Bifida (SB) and Spinal Cord 

Injury (SCI) are major causes of motor function disability in 
the pediatric population. These conditions can result in 
reduced mobility and can interfere with a child’s ability to 
achieve critical developmental milestones [1]. Moreover, the 
socio-economic burden imposed on patients, relatives, and 
caregivers can be substantial. Neurorehabilitation for the 
restoration of gait functions after locomotor deficits has been 
a long-standing focus of researchers and clinical 
professionals worldwide. Surprisingly, the current 
understanding of cortical activities during locomotor 
planning and execution in children is limited, even in 
typically developing individuals.  

Although the roles of central pattern generator networks 
(CPGs) in generation of the basic synergy of human gait 
patterns have been postulated [2-4], the roles of supraspinal 
networks (i.e., including the brainstem, cerebellum, and 
cortex) must also be involved in the neural control systems to 
meet additional demands imposed by gait-related tasks [5, 6]. 

These tasks are believed to include the modulation of human 
locomotion (e.g., gait initiation and termination, gait speed, 
direction, and spatial orientation), and the integration of 
multisensory information [7]. The insights into the cortical 
control of human locomotion gleaned from neuroimaging 
studies have been limited and lack sufficient temporal 
solutions for gait analysis. For example, the activation of the 
supplementary motor cortex and basal ganglia during mental 
imagery of walking was shown in early studies using blood-
oxygen-level dependent (BOLD) signals [8, 9]. 
Electrophysiological investigations using non-invasive, scalp 
EEG signals have shown the involvement of the 
sensorimotor cortex in the control of human gait [10, 11]. 
Recent non-invasive EEG studies have also revealed 
differences in electrocortical activities between uphill and 
level ground walking in humans [12] as well as active versus 
passive walking in a robotic device [13]. A non-invasive 
EEG study with an active treadmill demonstrated that user-
driven control increases cortical activity [14]. Recent studies 
have shown the feasibility of decoding lower limb 
kinematics from non-invasive EEG brain signals using 
fluctuations in the amplitude of slow cortical potentials in the 
delta band (0.1 – 3Hz) [15]. Recently, the feasibility of using 
a real-time, closed-loop BCI for learning to control a walking 
avatar in a virtual environment has been demonstrated [16-
19]. However, the involvement of the brain in locomotor 
intentions and execution in developing children has not yet 
been demonstrated. 

II. MATERIALS AND METHODS 

A. Experimental setup and protocol 

All experimental protocols and informed consent were 
approved by the Institutional Review Board (IRB) at the 
University of Houston (UH). Written informed consent and 
parental permission form were obtained from all participants. 
Five healthy children with ages between four and twelve-
year-old with no history of neurological disorder participated 
in this study. A 64-channel Ag/AgCl active electrode EEG 
setup (BrainAmp DC and MOVE, Brain Products GmbH, 
Germany) was used to record wirelessly at 1000 Hz from the 
face and scalp.  Channels TP9, PO9, PO10, and TP10 were 
removed from the cap and used for electrooculography 
(EOG) to capture blinks and eye movements; however, these 
data were excluded from all analyses in this study. The 
remaining 60 channels were arranged according to the 
modified 10-20 international system, which was used in our  
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Fig.  1. Experimental setup. Recorded data included EEG, EMG, and 
kinematics (motion capture system). 

previous study [20]. We used a 3-D electrode localization 
system (BrainVision Captrak, Brain Products GmbH, 
Germany) to record electrode positions. Surface EMG 
signals were recorded (Biometrics Ltd, Newport, UK) at 
1000 Hz from four sites bilaterally (tibialis anterior, 
gastrocnemius, rectus femoris, and bicep femoris longus). In 
addition to the EEG and EMG recordings, lower limb 
kinematic data were also recorded using a motion capture 
system (NaturalPoint, Inc. DBA OptiTrack, USA). EEG, 
EMG and kinematic data were synchronized using our 
custom hardware and software. Fig. 1. shows the 
experimental setup in this study. 

The participants were instructed to perform four different 
types of locomotion tasks (i.e., sitting and standing, start and 
stop overground walking). In the sitting and standing task, 
the participants completed 20 sit-to-stand and stand-to-sit 
transitions which were initiated by a visual cue placed in 
front of the subjects. The session began with the participant 
standing quietly in an upright posture for 15 seconds. After 
the quiet standing period, the participant began the self-
initiated sit-to-stand and stand-to-sit transitions. The waiting 
period between the transitions was approximately 10 
seconds. The participants were verbally informed when 20 
transitions were completed. In the start and stop overground 
walking session, the participants completed 20 walk-to-stand 
and stand-to-walk transitions. The session began with the 
participants standing still for 15 seconds. After the stationary 
standing period, the participant held the standing position for 
a period ranging randomly from 10 to 15 seconds before the 
stand-to-walk transition (indicated by a green light). The 
participants walked on a 10-meter walkway and were 
instructed to stop walking at the onset of a red light. The 
walk-to-stop transition completed a single trial and the 
participant returned to the starting position. The process 
continued until 20 trials were completed. 

B. Offline EEG signal processing and source localization 

The offline EEG analysis was performed using custom 
software written in Matlab R2016a (The MathWorks, MA) 
and EEGLAB [21]. Fig.  2 shows a flowchart for the EEG 

signal processing pipeline. EOG channels were first removed 
and the remaining EEG signals (60 channels) were high pass 
filtered at 0.1 Hz. Corrupted EEG channels were rejected 
based on criteria in [22]. The remaining EEG channels were 
then re-referenced by subtracting to their common average. 

 

Fig.  2. Flowchart illustrates offline EEG processing and Unscented 
Kalman Filter used in this study 

Next, artifact subspace reconstruction (ASR) was applied to 
remove high amplitude artifacts (e.g., eye blinks, muscle 
burst) [23]. After this step, EEG data were down-sampled to 
100 Hz and Infomax ICA was applied.  

EEG electrodes were aligned to a standard MNI brain 
model by using 3D position data obtained from a Captrak 
system. We then computed equivalent current dipole that 
matched to the scalp projection of each independent 
component (IC) source by using a standard three-shell 
boundary element head model included in the DIPFIT 
toolbox [21]. Only ICs in which the equivalent dipoles 
explained > 80% of the variance of the IC scalp projections 
were retained for further analysis. Next, we visually 
inspected each IC scalp projection, its equivalent dipole’s 
location, and its power spectra and removed ICs that related 
to non-brain artifacts (e.g., eye blink/movement, neck 
muscle). The remaining ICs’ activations were band-pass 
filtered (0.1 – 3 Hz) using a 4th order Butterworth filter. 
Thus, the EEG features correspond to time-domain 
amplitude modulated (AM) potentials in the delta band. The 
EEG data were then standardized by channel by subtracting 
the mean and dividing by the standard deviation (z-score). 
The EEG data from the past (60 – 70ms), lags = 6, were used 
to predict the joint angles. The joint angle data of the right 
leg were low-pass filtered (0 – 3 Hz) using a 2nd order 
Butterworth filter. This band is known to cover most power 
in joint angle signals [24, 25].  Angular velocities were also 
computed and used in state vector to train the UKF decoder. 
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C. Unscented Kalman Filter Decoder 

Linear decoders (e.g., Wiener filters and Kalman filters) 
are most commonly used in BCI applications [26, 27]. 
However, the nonlinearity between neural activities and 
lower limb movements cannot be captured by such models. 
The UKF was first introduced by Julier and Uhlman to 
improve the Kalman filter in the context of nonlinear 
estimation problems [28]. It handles the nonlinearities using 
unscented transform (UT), which estimates the statistics of a 
random variable propagating through a nonlinear function. In 
this study, the nonlinear system consisted of a movement 
model (state model) and a neural tuning model (observation 
model). Details of the UKF algorithm for neural decoding of 
human walking can be found in our previous studies [29-31]. 
The state model can be characterized by a matrix F and noise 
covariance matrix Q, and the observation model can be 
characterized by a mapping matrix B and noise covariance 
matrix R. These matrices were obtained by parameter fitting 
method using training data [32]. After the training process, 
the UKF was implemented to predict lower limb joint angles 
from EEG signals. The UKF algorithm started with a 
prediction step to estimate the current state in the state 
model: 

 ,' 1 ' 1and
T

x Fx P FP F Qt t t t     

where [ , , , , , ]Tx ra rat rh rk rh rk
      is the state variable 

at time t, xt’ and Pt’ are the predicted state and its covariance, 
xt-1 and Pt-1 are the previous state and its covariance.  

III. RESULTS 

A. EEG signal processing and artifact removal 

Fig.3. shows rejected ICs in which the equivalent dipoles 
explained less than 80% of the variance of the IC scalp 
projections. The number on top of each topoplot represents 
the index of the ICs and the percentage in parentheses next to 
the index shows the residual variance (RV) value. 

 
Fig.  3. An example of rejected ICs with a residual variance of more than 
20%. The number on the top of each topoplot shows the index of ICs, 
followed by the residual variance in brackets. 

Figs. 4-5. show rejected eye-related and muscle-related 
artifact ICs, respectively. The dipoles that represent eye-
related ICs appear close to the eyes in MRI images (Fig. 4A) 
and its activities demonstrated by the topoplot (Fig. 4B) are 
mainly focused on the frontal area. In addition, Fig. 4B 
shows strong PSD at low frequency and a smooth decreasing 
of PSD values. The dipoles that represent muscle-related 
artifacts locate close to the peripheral in the MRI images 
(Fig. 5A). The spectral power of muscle-related ICs is 
dominant at high frequencies. 

 
Fig.  4. An example of rejected eye-related artifacts ICs. A) MRI images 
overlayed with dipoles’ location and strength. B) Topoplot and power 
spectral density of an eye-related IC. 

 

Fig.  5. An example of rejected muscular related artifacts ICs in children 
EEG data. A) MRI images overlayed with dipoles’ location and strength. 
B) Topoplot and power spectral density of an EMG-related IC. 

B. Neural decoder’s performance 

The UKF decoder was able to predict lower limb joint 
angles in the sagittal plane from the scalp EEG signals with 
high accuracy. To quantify the level of accuracy for the 
neural decoding, Pearson’s r values between the measured 
and the predicted joint angles were computed. Fig. 6. shows 
the best decoding accuracies with the r values (Hip: 0.71; 
Knee: 0.59; Ankle: 0.51). 

IV. DISCUSSION 
In this study, we processed EEG signals and developed a 

neural decoder (UKF) to predict lower limb joint angles in 
children walking from EEG data. Our results suggest the 
feasibility of neural decoding of locomotion in developing 
children. EEG in the delta band (0.1 – 3 Hz) was used for 
neural decoding of children walking; thus, the EEG features  

A) B) 

B) A) 
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Fig.  6. Neural Decoding of Kinematics: Actual and predicted lower limb 

joint angles from EEG signals in children walking. Decoding accuracy r-

values for hip, knee, and ankle joint are 0.71, 0.59, 0.51, respectively. 

correspond to time-domain amplitude modulated (AM) 
potentials in the delta band. EEG signals in this band have 
been demonstrated to carry relevant information of human 
gait. For example, Gwin et al. showed that meaningful 
changes in EEG during walking or running occur at low 
frequencies (< 10 Hz) [33]. Slow cortical potentials in the 
delta band EEG have also been utilized to decode human gait 
during treadmill walking with a linear decoder and the results 
were comparable with invasive BCI approaches [26]. Recent 
studies from Luu et al., have shown high decoding accuracy 
of a real-time closed loop BCI for human treadmill walking 
from EEG signal in the delta band [17-19].  

The results from this study may lead to the development 
of a real-time closed-loop BMI for automated gait intention 
detection in children. The BMI system can be used for the 
control of an assistive exoskeleton for neurorehabilitation in 
children with gait deficits. Such novel systems allow 
volitional control and enhance the level of motor attention 
from the user during the training process. In this paradigm, 
the user is in control and engages in the training process, and 
the user is at the center of the intervention. The current 
proposal could potentially lead to the development of a novel 
training paradigm for improving the efficacy of neurological 
rehabilitation based on a top-down approach. Our future 
works aim to extend the proposed method to a larger 
population of typically developing children. 

Although promising results for neural decoding of 
walking in developing children have been demonstrated, 
several potential challenges must be addressed to develop 
robust and reliable EEG-based neural decoding of pediatric 
walking in real-time. First, scalp EEG signals are susceptible 
to many physiological and non-physiological artifacts (e.g., 
eye blinks, eye movements, cardiac signal, muscle artifact, 
and motion-related artifacts) which may impede the decoding 
accuracy. We used active EEG electrodes to allow higher 
signal to noise ratio (SNR) in EEG signals and to eliminate 
the mechanical artifacts induced by the movement of EEG 
wires and cables. In this study, we implemented ICA and 
DIPFIT algorithms to remove artifactual components in EEG 

signals. This approach is effective in the offline analysis but 
it is not applicable in real-time applications. To suppress eye-
related artifacts in real-time applications, we recommend 
using a robust filter with EOG signals as reference inputs 
[34]. Our study focus on slow speed walking at 1mph and the 
decoder will utilize neural features in the low-frequency 
band. This design eliminates the effects of muscle artifacts 
(occurs in 30-1k Hz), line noise (50-60 Hz), and motion 
artifacts (pronounced effects at normal and fast walking 
speed). Thus, our decoding methods are robust to the 
artifactual components of EEG signals.  

Second, EEG signals carry not only motor efferent 
control during human walking, but also multisensory afferent 
feedback. Extracting meaningful neural features from scalp 
EEG signals for the decoding of human gait is a non-trivial 
process. To address this, we use a causal model that predicts 
the current kinematics from EEG signals prior to the current 
motor command. Note that there are certain delays in 
feedback signals associated with the current motor 
command; therefore, the afferent feedback is modulated in 
future EEG signals which are not included as inputs in the 
designed causal model.  

Finally, neural signals are highly dynamic [35, 36] and 
neuroplasticity plays a critical role in developing a robust 
neural decoder  [37]. Neural decoders are typically trained 
offline by fitting neural signals against actual movements. 
This approach, however, ignores the neural dynamics from 
subjects when switching from open-loop to closed-loop BCI 
and typically results in decreased online performance. Based 
on previous studies [38, 39] showing that closed-loop 
decoder adaptation (CLDA) yields performance 
improvement, it is recommended to train and update the 
neural decoder at a fixed interval (e.g., one minute). 
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