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Abstract— Neural decoding of human locomotion,
including automated gait intention detection and continuous
decoding of lower limb joint angles, has been of great interest
in the field of Brain Machine Interface (BMI). However, neural
decoding of gait in developing children has yet to be
demonstrated. In this study, we collected physiological data
(electroencephalography (EEG), electromyography (EMG)),
and kinematic data from children performing different
locomotion tasks. We also developed a state space estimation
model to decode lower limb joint angles from scalp EEG.
Fluctuations in the amplitude of slow cortical potentials of
EEG in the delta band (0.1 — 3 Hz) were used for prediction.
The decoding accuracies (Pearson’s r values) were promising
(Hip: 0.71; Knee: 0.59; Ankle: 0.51). Our results demonstrate
the feasibility of neural decoding of children walking and have
implications for the development of a real-time closed-loop
BMI system for the control of a pediatric exoskeleton.
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I. INTRODUCTION

Cerebral Palsy (CP), Spina Bifida (SB) and Spinal Cord
Injury (SCI) are major causes of motor function disability in
the pediatric population. These conditions can result in
reduced mobility and can interfere with a child’s ability to
achieve critical developmental milestones [1]. Moreover, the
socio-economic burden imposed on patients, relatives, and
caregivers can be substantial. Neurorehabilitation for the
restoration of gait functions after locomotor deficits has been

a long-standing focus of researchers and clinical
professionals ~ worldwide.  Surprisingly, the current
understanding of cortical activities during locomotor

planning and execution in children is limited, even in
typically developing individuals.

Although the roles of central pattern generator networks
(CPGs) in generation of the basic synergy of human gait
patterns have been postulated [2-4], the roles of supraspinal
networks (i.e., including the brainstem, cerebellum, and
cortex) must also be involved in the neural control systems to
meet additional demands imposed by gait-related tasks [5, 6].
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These tasks are believed to include the modulation of human
locomotion (e.g., gait initiation and termination, gait speed,
direction, and spatial orientation), and the integration of
multisensory information [7]. The insights into the cortical
control of human locomotion gleaned from neuroimaging
studies have been limited and lack sufficient temporal
solutions for gait analysis. For example, the activation of the
supplementary motor cortex and basal ganglia during mental
imagery of walking was shown in early studies using blood-
oxygen-level dependent (BOLD) signals [8, 9].
Electrophysiological investigations using non-invasive, scalp
EEG signals have shown the involvement of the
sensorimotor cortex in the control of human gait [10, 11].
Recent non-invasive EEG studies have also revealed
differences in electrocortical activities between uphill and
level ground walking in humans [12] as well as active versus
passive walking in a robotic device [13]. A non-invasive
EEG study with an active treadmill demonstrated that user-
driven control increases cortical activity [14]. Recent studies
have shown the feasibility of decoding lower limb
kinematics from non-invasive EEG brain signals using
fluctuations in the amplitude of slow cortical potentials in the
delta band (0.1 — 3Hz) [15]. Recently, the feasibility of using
a real-time, closed-loop BCI for learning to control a walking
avatar in a virtual environment has been demonstrated [16-
19]. However, the involvement of the brain in locomotor
intentions and execution in developing children has not yet
been demonstrated.

II. MATERIALS AND METHODS

A. Experimental setup and protocol

All experimental protocols and informed consent were
approved by the Institutional Review Board (IRB) at the
University of Houston (UH). Written informed consent and
parental permission form were obtained from all participants.
Five healthy children with ages between four and twelve-
year-old with no history of neurological disorder participated
in this study. A 64-channel Ag/AgCl active electrode EEG
setup (BrainAmp DC and MOVE, Brain Products GmbH,
Germany) was used to record wirelessly at 1000 Hz from the
face and scalp. Channels TP9, PO9, PO10, and TP10 were
removed from the cap and used for electrooculography
(EOQG) to capture blinks and eye movements; however, these
data were excluded from all analyses in this study. The
remaining 60 channels were arranged according to the
modified 10-20 international system, which was used in our



Fig. 1. Experimental setup. Recorded data included EEG, EMG, and
kinematics (motion capture system).

previous study [20]. We used a 3-D electrode localization
system (BrainVision Captrak, Brain Products GmbH,
Germany) to record electrode positions. Surface EMG
signals were recorded (Biometrics Ltd, Newport, UK) at
1000 Hz from four sites bilaterally (tibialis anterior,
gastrocnemius, rectus femoris, and bicep femoris longus). In
addition to the EEG and EMG recordings, lower limb
kinematic data were also recorded using a motion capture
system (NaturalPoint, Inc. DBA OptiTrack, USA). EEG,
EMG and kinematic data were synchronized using our
custom hardware and software. Fig. 1. shows the
experimental setup in this study.

The participants were instructed to perform four different
types of locomotion tasks (i.e., sitting and standing, start and
stop overground walking). In the sitting and standing task,
the participants completed 20 sit-to-stand and stand-to-sit
transitions which were initiated by a visual cue placed in
front of the subjects. The session began with the participant
standing quietly in an upright posture for 15 seconds. After
the quiet standing period, the participant began the self-
initiated sit-to-stand and stand-to-sit transitions. The waiting
period between the transitions was approximately 10
seconds. The participants were verbally informed when 20
transitions were completed. In the start and stop overground
walking session, the participants completed 20 walk-to-stand
and stand-to-walk transitions. The session began with the
participants standing still for 15 seconds. After the stationary
standing period, the participant held the standing position for
a period ranging randomly from 10 to 15 seconds before the
stand-to-walk transition (indicated by a green light). The
participants walked on a 10-meter walkway and were
instructed to stop walking at the onset of a red light. The
walk-to-stop transition completed a single trial and the
participant returned to the starting position. The process
continued until 20 trials were completed.

B. Offline EEG signal processing and source localization

The offline EEG analysis was performed using custom
software written in Matlab R2016a (The MathWorks, MA)
and EEGLAB [21]. Fig. 2 shows a flowchart for the EEG
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signal processing pipeline. EOG channels were first removed
and the remaining EEG signals (60 channels) were high pass
filtered at 0.1 Hz. Corrupted EEG channels were rejected
based on criteria in [22]. The remaining EEG channels were
then re-referenced by subtracting to their common average.

EEG Processing
EEG data set Joint Angles
Processed s
(60-ch, Fs =1000 Hz) > - (Hip, Knee, Ankle,
EEG data Fs=6011z)
High-pass Filter ¢ ¢
h
(0.1 Hz, 4" order Down-sampling Low-pass Filter
Butterworth) (60 Hz) (0-3Hz)
Remove 4
Noisy Channels Band-pass Filter Compute
; (0.1-3Hz) Angular Velocity
Common Average
Reference (CAR)
$ Standardize State Vector
Artifact Subspace Across Channels xt = [0h, 0k, 0a, oh, ok, wa]
Reconstruction (ASR) i i
Independent Component Time Emljedding > UKF Decoder
Analysis (ICA) (lags=6) l
Dipoles Fitting Predicted Joint Angles
(DIPFIT)
Remove bad ICs and
non-brain artifacts

Fig. 2. Flowchart illustrates offline EEG processing and Unscented
Kalman Filter used in this study

Next, artifact subspace reconstruction (ASR) was applied to
remove high amplitude artifacts (e.g., eye blinks, muscle
burst) [23]. After this step, EEG data were down-sampled to
100 Hz and Infomax ICA was applied.

EEG electrodes were aligned to a standard MNI brain
model by using 3D position data obtained from a Captrak
system. We then computed equivalent current dipole that
matched to the scalp projection of each independent
component (IC) source by using a standard three-shell
boundary element head model included in the DIPFIT
toolbox [21]. Only ICs in which the equivalent dipoles
explained > 80% of the variance of the IC scalp projections
were retained for further analysis. Next, we visually
inspected each IC scalp projection, its equivalent dipole’s
location, and its power spectra and removed ICs that related
to non-brain artifacts (e.g., eye blink/movement, neck
muscle). The remaining ICs’ activations were band-pass
filtered (0.1 — 3 Hz) using a 4% order Butterworth filter.
Thus, the EEG features correspond to time-domain
amplitude modulated (AM) potentials in the delta band. The
EEG data were then standardized by channel by subtracting
the mean and dividing by the standard deviation (z-score).
The EEG data from the past (60 — 70ms), lags = 6, were used
to predict the joint angles. The joint angle data of the right
leg were low-pass filtered (0 — 3 Hz) using a 2™ order
Butterworth filter. This band is known to cover most power
in joint angle signals [24, 25]. Angular velocities were also
computed and used in state vector to train the UKF decoder.



C. Unscented Kalman Filter Decoder

Linear decoders (e.g., Wiener filters and Kalman filters)
are most commonly used in BCI applications [26, 27].
However, the nonlinearity between neural activities and
lower limb movements cannot be captured by such models.
The UKF was first introduced by Julier and Uhlman to
improve the Kalman filter in the context of nonlinear
estimation problems [28]. It handles the nonlinearities using
unscented transform (UT), which estimates the statistics of a
random variable propagating through a nonlinear function. In
this study, the nonlinear system consisted of a movement
model (state model) and a neural tuning model (observation
model). Details of the UKF algorithm for neural decoding of
human walking can be found in our previous studies [29-31].
The state model can be characterized by a matrix F and noise
covariance matrix O, and the observation model can be
characterized by a mapping matrix B and noise covariance
matrix R. These matrices were obtained by parameter fitting
method using training data [32]. After the training process,
the UKF was implemented to predict lower limb joint angles
from EEG signals. The UKF algorithm started with a
prediction step to estimate the current state in the state
model:

xp=Fx;_,and B = FPt_lFT +0

where x; =[9rh,t9r Ora» @ g O O ]T is the state variable

at time ¢, x, and P, are the predicted state and its covariance,
x..; and P,.; are the previous state and its covariance.

III. RESULTS

A. EEG signal processing and artifact removal

Fig.3. shows rejected ICs in which the equivalent dipoles
explained less than 80% of the variance of the IC scalp
projections. The number on top of each topoplot represents
the index of the ICs and the percentage in parentheses next to
the index shows the residual variance (RV) value.

25 (37%)

14 (45%) 23 (33%)

Fig. 3. An example of rejected ICs with a residual variance of more than
20%. The number on the top of each topoplot shows the index of ICs,
followed by the residual variance in brackets.
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Figs. 4-5. show rejected eye-related and muscle-related
artifact ICs, respectively. The dipoles that represent eye-
related ICs appear close to the eyes in MRI images (Fig. 4A)
and its activities demonstrated by the topoplot (Fig. 4B) are
mainly focused on the frontal area. In addition, Fig. 4B
shows strong PSD at low frequency and a smooth decreasing
of PSD values. The dipoles that represent muscle-related
artifacts locate close to the peripheral in the MRI images
(Fig. 5A). The spectral power of muscle-related ICs is
dominant at high frequencies.
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Fig. 4. An example of rejected eye-related artifacts ICs. A) MRI images
overlayed with dipoles’ location and strength. B) Topoplot and power
spectral density of an eye-related IC.
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Fig. 5. An example of rejected muscular related artifacts ICs in children
EEG data. A) MRI images overlayed with dipoles’ location and strength.
B) Topoplot and power spectral density of an EMG-related IC.

B. Neural decoder’s performance

The UKF decoder was able to predict lower limb joint
angles in the sagittal plane from the scalp EEG signals with
high accuracy. To quantify the level of accuracy for the
neural decoding, Pearson’s r values between the measured
and the predicted joint angles were computed. Fig. 6. shows
the best decoding accuracies with the r values (Hip: 0.71;
Knee: 0.59; Ankle: 0.51).

IV. DISCUSSION

In this study, we processed EEG signals and developed a
neural decoder (UKF) to predict lower limb joint angles in
children walking from EEG data. Our results suggest the
feasibility of neural decoding of locomotion in developing
children. EEG in the delta band (0.1 — 3 Hz) was used for
neural decoding of children walking; thus, the EEG features
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Fig. 6. Neural Decoding of Kinematics: Actual and predicted lower limb
joint angles from EEG signals in children walking. Decoding accuracy r-
values for hip, knee, and ankle joint are 0.71, 0.59, 0.51, respectively.

correspond to time-domain amplitude modulated (AM)
potentials in the delta band. EEG signals in this band have
been demonstrated to carry relevant information of human
gait. For example, Gwin et al. showed that meaningful
changes in EEG during walking or running occur at low
frequencies (< 10 Hz) [33]. Slow cortical potentials in the
delta band EEG have also been utilized to decode human gait
during treadmill walking with a linear decoder and the results
were comparable with invasive BCI approaches [26]. Recent
studies from Luu et al., have shown high decoding accuracy
of a real-time closed loop BCI for human treadmill walking
from EEG signal in the delta band [17-19].

The results from this study may lead to the development
of a real-time closed-loop BMI for automated gait intention
detection in children. The BMI system can be used for the
control of an assistive exoskeleton for neurorehabilitation in
children with gait deficits. Such novel systems allow
volitional control and enhance the level of motor attention
from the user during the training process. In this paradigm,
the user is in control and engages in the training process, and
the user is at the center of the intervention. The current
proposal could potentially lead to the development of a novel
training paradigm for improving the efficacy of neurological
rehabilitation based on a top-down approach. Our future
works aim to extend the proposed method to a larger
population of typically developing children.

Although promising results for neural decoding of
walking in developing children have been demonstrated,
several potential challenges must be addressed to develop
robust and reliable EEG-based neural decoding of pediatric
walking in real-time. First, scalp EEG signals are susceptible
to many physiological and non-physiological artifacts (e.g.,
eye blinks, eye movements, cardiac signal, muscle artifact,
and motion-related artifacts) which may impede the decoding
accuracy. We used active EEG electrodes to allow higher
signal to noise ratio (SNR) in EEG signals and to eliminate
the mechanical artifacts induced by the movement of EEG
wires and cables. In this study, we implemented ICA and
DIPFIT algorithms to remove artifactual components in EEG
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signals. This approach is effective in the offline analysis but
it is not applicable in real-time applications. To suppress eye-
related artifacts in real-time applications, we recommend
using a robust filter with EOG signals as reference inputs
[34]. Our study focus on slow speed walking at 1mph and the
decoder will utilize neural features in the low-frequency
band. This design eliminates the effects of muscle artifacts
(occurs in 30-1k Hz), line noise (50-60 Hz), and motion
artifacts (pronounced effects at normal and fast walking
speed). Thus, our decoding methods are robust to the
artifactual components of EEG signals.

Second, EEG signals carry not only motor efferent
control during human walking, but also multisensory afferent
feedback. Extracting meaningful neural features from scalp
EEG signals for the decoding of human gait is a non-trivial
process. To address this, we use a causal model that predicts
the current kinematics from EEG signals prior to the current
motor command. Note that there are certain delays in
feedback signals associated with the current motor
command; therefore, the afferent feedback is modulated in
future EEG signals which are not included as inputs in the
designed causal model.

Finally, neural signals are highly dynamic [35, 36] and
neuroplasticity plays a critical role in developing a robust
neural decoder [37]. Neural decoders are typically trained
offline by fitting neural signals against actual movements.
This approach, however, ignores the neural dynamics from
subjects when switching from open-loop to closed-loop BCI
and typically results in decreased online performance. Based
on previous studies [38, 39] showing that closed-loop
decoder  adaptation (CLDA) yields performance
improvement, it is recommended to train and update the
neural decoder at a fixed interval (e.g., one minute).
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