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ABSTRACT

Many runs of a computer simulation are needed to model
uncertainty and evaluate alternate design choices. Such an
ensemble of runs often contains many commonalities among the
different individual runs. Simulation cloning is a technique that
capitalizes on this fact to reduce the amount of computation
required by the ensemble. Granular cloning is proposed that
allows the sharing of state and computations at the scale of
simulation objects as small as individual variables, offering
savings in computation and memory, increased parallelism and
improved tractability of sample path patterns across multiple
runs. The ensemble produces results that are identical to
separately executed runs. Whenever simulation objects interact,
granular cloning will resolve their association to subsets of runs
though binary operations on tags. Algorithms and
computational techniques required to efficiently implement
granular cloning are presented. Results from an experimental
study using a cellular automata-based transportation simulation
model and a coupled transportation and land use model are
presented providing evidence the approach can yield significant
speed ups relative to brute force replicated runs.
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1. INTRODUCTION

Computer simulation shows its strength by its flexibility to
model a vast set of domains. However, its power is limited by
the accuracy of the underlying model and the computational
performance of the simulations. This paper focuses on
alleviating the latter constraint. State changes are either driven
by event-scheduling or by time-stepping though simulated time.
The method described in this paper, termed granular cloning,
can be utilized in both time-traversal modes, in both serial and
parallel computer architectures, and - for parallel systems — in
both optimistic and conservative synchronization protocols.
Granular cloning exploits redundant computations across
multiple runs of a model at the scale of individual simulation
objects. Since it only affects common computations the results
are equivalent to explicitly enumerating these runs. The runs are
differentiated by random inputs and/or variations in the model
scenarios.

In stochastic simulation, randomness is injected in input
variables to model uncertainty of the system under investigation
(SUI). The performance of granular cloning is improved with the
use of common random numbers because the pseudorandom
number steams can be shared by all the logical runs. If one
wishes to introduce variability, granular cloning can be further
improved by altering individual elements of the stream or
augmenting the stream with more elements.

In many simulation studies, the objective is to find a feasible
policy that leads to desirable output statistics. The number of
feasible configurations often grows exponentially with the
number of controllable discrete factors one is considering.
Consider a network with ten nodes where one wishes to place
one of three different router models at each node. The number
of possible configurations is 31°. While there are methods for
efficiently searching the often nonconvex configuration space,
many runs will still be required. For each scenario, it is also
desirable to complete many runs to obtain a point estimate of
the output statistic with low bias and spread.

When variation is introduced into a set of runs of a certain
model, the collective is referred to as an ensemble. An ensemble
study may have a set of objectives, including characterizing (e.g.,
for validation) or optimizing certain model parameters [15].
Whatever the way variation is introduced, random input or
scenario variation, granular cloning superimposes all runs of an
ensemble into one run and only explicitly stores the actual and
most granular state differences across these runs, rather than
larger supersets of state. Ensembles may be batched together
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based on a partitioning that is favorable for granular cloning.
These conditions are discussed later. For example, suppose we
model a particle p in a neighborhood of other particles and some
gaps of “empty” space. We wish to investigate the evolution of
the neighborhood for two different polarity values of p (two
different versions). If most of the simulation state remains the
same for both versions, it would be inefficient to explicitly store
two sets of the entire state. We only allocate memory for
neighboring particles if they are affected differently for a version
compared to the other version. The number of objects with state
differences for a given version in this example tends to grow
monotonically with simulated time. Explicit enumeration of all
runs would be wasteful because of the common states and
behaviors across the runs. The technique is generally applicable
for Monte-Carlo simulation, although one could construct
adversarial models where the runs are completely different at
model initialization, in which case the approach collapses into
explicit enumeration of runs. At the same time, the technique
incurs a small overhead whenever different simulation objects
interact with each other. However, there are heuristics that can
be used to reduce the overhead cost, which depend on the object
interactions of the underlying application.

The next section describes related work. In Section 3, we define
the notation and terminology from the simulation cloning
literature [1] along with cloning concepts. Section 4 describes
how cloning can be extended to state objects within LP’s. Section
5 brings attention to the quantitative conditions under which
computational performance can be harvested without loss in
output accuracy; this is expressed in a simple mathematical
inequality that is intuitive from a geometric view. Experimental
results of use cases are given in Section 6, varying key
parameters that affect the computational performance.

2. RELATED WORK

The concept of cloning memory segments has been used
extensively since Von Neumann introduced it for fault tolerance
in 1956 [3]. Since then, it has influenced modern relational
database systems, distributed memory management, and other
areas of computer systems. In addition to describing this
historical context in detail, [1] contains a survey of domain-
specific simulation models where cloning has been used
previously. Common themes in the relevant literature include
computation sharing (reuse of common state or events) and
incremental simulation.

Reducing the execution time and memory requirements of
replicated simulation instances without affecting the accuracy
of output statistics has been investigated in both domain specific
and general (yet, typically, simulation-engine-specific) settings.
Domain-specific use cases generally allow more state to be
logically shared by grouping together similar replications at
suitable times during the execution, and/or otherwise exploit the
underlying application’s specific characteristics for space/time
efficiency. Relevant examples include the following.

In [4], Pecher, Hunter, and Fujimoto present a lazy evaluation
and speculative execution scheme for physical cloning of vehicle
objects in microscopic traffic simulation. Vehicle objects that
are independent of output statistics propagate tags containing
the replication numbers they “touch.” Their numbers are
compared to vehicle objects that have a dependency on output
statistics. If there is a version match between the vehicle types,
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a physical clone must be launched via a rollback to a relevant
saved state for explicit computation. Lentz et al. [5] apply
incremental cloning to test different signature paths in a digital
logic simulation for potential faults. The “offspring” (clone) of a
“parent” is limited to four logical output values. Vakili [6] uses a
so-called standard clock scheme (an implementation of single-
clock multiple systems, or SCMS) approach to execute — on a
SIMD computer system - the same events simultaneously across
multiple synchronized replications, which are parametrized
differently (e.g., different service disciplines in a queue). The
injected positive correlation makes this approach especially
useful in simulation-based optimization (ranking & selection),
albeit for a restricted class of applications.

Unlike these prior efforts, the granular cloning approach
described here does not rely on domain-specific properties.
Although domain-specific methods can exploit knowledge of the
given application, general techniques are by definition more
flexible. As discussed next, more general techniques have been
developed. It is possible that combinations of these techniques
complement each other if they exploit different aspects of the
underlying application.

An example of a more general technique is the parallel cloning
scheme introduced by Hybinette and Fujimoto in [1] that applies
to the distributed LP event-scheduling paradigm. It is
summarized in Section 3 because our granular cloning scheme
will be described with similar terminology and notation. Just as
with parallel cloning, granular cloning also makes heavy use of
set-manipulation algorithms. Furthermore, the underlying
mechanism for both algorithms consists of sharing state
logically, while incrementally allocating physical memory.
However, granular cloning offers a much finer grained
mechanism that focuses on cloning individual objects rather
than entire logical processes, and is agnostic to the underlying
simulation executive paradigm. Chen, Turner, Cai et al. have
extended the distributed cloning algorithms for the High Level
Architecture (HLA) in [16] along with HLA’s data distribution
management (DDM) in [17].

Ferenci et al. [7] presents an incremental scheme termed
updatable simulation, where one first logs the events and sample
path of a baseline run and hopes to reuse the state modifications
from it for subsequent runs. Subsequent runs then determine
what horizon of logged events can be reused at a given timestep
where an event is to be processed. In the ideal case, a sequence
of r >> 1 events can be composed together, rather than
separately, to act on the current state. If the runs are sufficiently
different, the event horizon r will be zero at each event-
processing timestep and nothing can be reused. The staged
simulation technique discussed in Walsh and Sirer [8] caches
previous event invocations, decomposes them, reuses previously
computed and/or similar results, and reorders restructured
events for their efficient scheduling. Stoffers et al. [12] extends
automatic memoization to impure functions where side effects
are permitted (subject to a few constraints). Granular cloning
differs from these approaches in that it does not rely on reusing
previously computed results.

Granular cloning is perhaps most closely related to recent work
by Li, Cai, and Turner [18] which focuses on tree-based cloning
algorithms for agent-based models. A cloning tree contains
nodes that map to simulation instances (versions) that have a



Session: Model Execution (ii)

different parameter than their parents. Each such instance is
associated with two data structures: AgentPool and Context. The
former contains agents whose characteristics are unique to that
instance, while the latter contains references to shared agents in
ancestor nodes. During the execution of an instance, the relevant
agents from a child’s ancestors are copied. A child instance
performs clone condition checking as follows. If a Context agent
(shared with an ancestor node) senses a parameter variation or an
agent in the respective AgentPool, a clone is generated and moved
to the AgentPool. Execution of simulation instances within the
clone tree occur level-by-level in a breadth-first manner. In
contrast to this simulation instance-hierarchical scheme, granular
cloning does not use a tree hierarchy; rather, it associates tags
with object realizations and clone condition checking occurs by
comparing the tags of interacting objects. Granular cloning
accesses relevant objects in arrays rather than by tree traversal. A
bit masking scheme is used to efficiently implement version
management. Superficially, granular cloning applies to granular
subsets of state, while [18] applies to agent objects, though
potentially one could adapt the algorithm from [18] to encompass
the same scale. Furthermore, at any given timestep, the parallelism
in [18] is limited by the available nodes at any level of the clone
tree (batch-by-batch); in granular cloning, all objects may be
executed concurrently at any timestep.

Granular cloning utilizes a kind of data dependency detection
for interacting objects (or state variables thereof). Granular
cloning compares properties of versions associated with these
objects. Detecting various properties of data dependencies with
the end goal of accelerating simulation execution has been
studied in other works as well. Quaglia and Baldoni [19]
investigate data dependencies associated with a simulation
object over several events. The scheme can be used to accelerate
certain optimistic simulations by increasing event-level
parallelism. The definition of “intra-object parallelism” in [19]
differs from the usage in this paper and in [10]. In [19], the
parallelism refers to the state transitions (i.e., events) that an
object is exposed to, while here (and in [10]) it refers to the
variations in the object’s state. Marziale et al. [20] measure the
amount of data dependencies across processes in order to create
suitable groups of these processes (“granular LPs”) dynamically
in a Time Warp-based environment. The grouping that is
derived from dependencies in [20] applies to subsets of state
(logical processes), while they apply to subsets of runs in this
paper. Furthermore, the grouping sequence for granular cloning
is unique.

3. CLONING PARALLEL SIMULATIONS

Hybinette and Fujimoto [1] introduce the concept of simulation
cloning in the context of distributed and interactive simulations
where the analyst can intervene and dynamically evaluate
alternative futures (clones, identified by a version number that is
incremented chronologically: i = 1, 2, 3, ...) at decision points and
find a policy that offers advantages over others. A decision point
must specify how a given clone differs in its state from a given
reference version and at which timestep it occurs. However,
different courses of action may also be defined a priori to
evaluate different scenarios and inject uncertainty into certain
input variables; they can also be triggered by certain conditions
at runtime. Clones are generated by specifying them at decision
points or through certain interactions between logical processes
(LPs). The underlying system architecture used in [1] is based
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on distributed LPs and the executive operates with the event-
scheduling paradigm. The physical system is mapped into a
model in the computer and the state of this model is partitioned
into LPs (identified with j = A, B, C, ...). During runtime, LPs
exchange time-stamped messages to change their state and
schedule new events; an LP only changes its state after
processing an event (scheduled by itself or with a message
received from another LP). Consider a simulation that evaluates
two scenarios where, at some timestep f» > 0, some partial
component of the state differs among them.

Simulation cloning makes use of computation sharing because:

- the sample path up to the decision point is only
computed once. The set of virtual logical processes
(VLP) being mapped to by each clone are shared by a
shared memory region in the computer system,
namely the corresponding physical logical processes
(PLP), and

- only the VLP’s that differ in their state after the
decision point are explicitly duplicated (as a PLP) in
memory and processed separately and in parallel; the
VLP’s that are identical continue to be shared within a
corresponding PLP. As the given clone starts affecting
state in other VLP’s, further PLP’s will be
incrementally spawned. An important point with
respect to one key contribution of this paper is that the
algorithm in [1] clones an entire VLP, even if there is
just a small difference in a state object within the VLP.

VLP’s exchange virtual messages among each other, but each
virtual message maps to a single physical message and each VLP
maps to a single PLP. Whenever several virtual instances are
mapped to a particular physical instance (that is, if they have the
same state), computations are essentially shared. A given VLP is
identified by (i) the LP identifier and (ii) the version of the clone
it refers to. A given version is associated with a set of VLP’s for
every LP in the model.

It is useful to define some notation prior to delving into the
actual cloning algorithm. As mentioned before, the entire state
of a model is partitioned into LP’s (identified by j= A, B, C,...) and
each version (identified by i = 1, 2, 3, ...) maps to a set of VLP’s.
Subsequently, we will refer to a particular VLP as V(ij). If, for
fixed j, several VLP’s map to the same PLP (only if they share
the same state), the corresponding PLP is denoted P(i,j) and i is
the minimum version number of the VLP’s pointing to P(i, j).

To implement simulation cloning, one must alter the simulation
executive to incorporate (i) message cloning and (ii) process
cloning. Message cloning simply refers to a simple mechanism
whereby a message sent from a PLP (sharing several versions in
a set called VSendSet) and received by a PLP (sharing several
versions in a set called VRcvSef) must be forwarded to other
PLP’s mapped to from versions contained in VSendSet that are
not in VRevSet. Process cloning occurs when a PLP is mapped to
by versions not contained in a receiving message. The respective
message may cause a modification in the state of all versions
that the PLP represents, which would clearly be invalid for the
states that are not in the message’s VSendSet. The full process
cloning algorithm from [1] is (S¢ denotes the complement of set
S with respect to the universe of versions):
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Get VSendSet from message

Get VRcvSet from local state

VPsUnaffected = VSendSet® n VRcvSet

VPsMoveToClone = VPsUnaffected

VPsRequested = VSendSet n VRcvSet

If (!(PhysicalReceiver n VPsRequested)) then
VPsMoveToClone = VPsRequested

(7) If (VPsMoveToClone # {}) then

Cloned PLP = min(VPsMoveToClone)

W
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4. GRANULAR CLONING

4.1 Intuition

A straightforward extension to simulation cloning approach
from [1] is to replace the process cloning step with one that only
clones state differences. An associative map is maintained for
each PLP that maps a given version i to a record that contains
information regarding where and how a PLP differs from shared
state. In Figure 1, an LP modeling an airport initially shares the
state for versions 1 and 2 and receives an airliner arrival event
that only occurs in version 1. To maintain correctness for
version 2, simulation cloning now copies the entire LP state
prior to handling of the arrival. Granular cloning instead only
duplicates the state that the arrival event handler would modify.
These duplicated state variables are now valid for version 2
(airliner absent), while the variables they were copied from may
now be safely overridden for the version 1 arrival event.

Relative to the parallel cloning scheme from Section 3 granular
cloning should perform well if a given LP owns

1. asufficiently large partition of the entire state space,

2. event handlers where state changes tend to be fragmented
over the state variables, rather than over its entire state,

3. event handlers where unmodified state variables are
insensitive to the changes to the state variables that are
modified.

One could, of course, simply take the parallel cloning scheme
and redefine each LP to encompass only a single state object. In
doing so, however, one potentially increases the communication
between the LP’s which can significantly degrade performance.

@ Sim Cioning/ /

B =

Figure 1: Rather than duplicate the entire LP,
granular cloning only duplicates the state that changes.
©Free-Photos, Creative Commons 0
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If - instead of the event-scheduling based approach - the
simulation executive uses a timestepped agent-based model
(ABM), which may be part of a federation, one can associate each
agent, and any state object in general, with a set of versions (a
version set). This not only comes with all the benefits discussed
before (i.e., savings in space and time because of shared
computations), but also through increasing the parallelism in a
shared memory machine (under certain circumstances),
especially if the number of replications is a soft constraint. For a
given version v (out of V'total runs), an ABM typically executes,
over several iterations (depending on the input model), for each
timestep < T, the behavior of e < E agents. Within a fixed version,
timestep, and entity, a kernel (or, transition function) is typically
executed that reads from various state objects of the previous
timestep, and writes to the given agent’s state objects for the
current timestep.

Figure 2 shows a so-called time-space diagram (see [11]) for a
concrete example.

P A{1,2} f—
=112}
1
P AZ.. 'rc
Py
Pe’t
é 1:0 1:5 2:0 t

Figure 2: Time-space diagram for granular cloning
split.

The horizontal axis measures simulated time and the vertical
axis contains discrete state space objects (in memory). The lines
within the quadrants represent sample paths, here denoting
simply the presence of a given physical state object. The state
objects use a similar notation as that used for PLP’s in Section 3.
Here, the superscript refers to the versions mapping to the state
object and the subscript denotes the identifier for the state
object. At =15, the kernel of A for its sole version set {1, 2} is
executed, depicted as c1. A kernel is a sequence of instructions
computed for a version set of a single agent (called the kernel
object) and is not permitted to write to any other object. If any
write operation in the kernel depends on a read operation of
other objects, the intersection of the read sources’ version sets
is compared to the version set of the kernel object. If the kernel
object contains members not present in the intersection of the
read sources, the kernel object splits. If one were to not split the
kernel object, the state of the kernel object would be overwritten
for the versions that are contained in it, but not in the read
sources, potentially leading to errors.

4.2 Formulation
As summarized before, a timestepped ABM - from a high-level
view - typically has the following operational scheme:
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for s in scenarios
initialize_model(s)
for t in timesteps
for a in agents
a.kernel /*also called transition
or step */

Algorithm 1:
(traditional)

Agent-based model - operational outline

When granular cloning is applied to these kind of models, it
obviates the need to explicitly enumerate the scenarios (since all
of them are superimposed). However, at runtime, granular
cloning needs to perform some bookkeeping, in order to trace
dependencies between objects that are now associated with
versions (versioned objects). As the simulation progresses,
versioned objects that originally shared state across all versions
start to diverge from the shared state to a version-specific state.
From a high-level view, the operational scheme for granular
cloning applied to a timestepped ABM looks like:

initialize_model(scenarios)
for t in timesteps
for a in agents
for vo in a.versionedobjects
a.GC_interaction /*kernel with
granular cloning */

Algorithm 2: Agent-based model - operational outline (granular
cloning)

In some sense, the outermost loop in Algorithm 1 has been
logically replaced with the innermost loop in Algorithm 2.
However, we hope to iterate over fewer than scenarios.number
(the total number or runs, or versions) in the innermost loop of
Algorithm 2 by exploiting common state across the
versionedobjects. The degree of reduction (or state-sharing)
needs to be sufficiently high to offset the additional overhead
that occurs in a.GC_interaction (in Algorithm 2) relative to
akernel (in Algorithm 1).  Most of what follows in this
subsection is concerned with the details of the last line
(a.GC_interaction) in Algorithm 2. In fact, a.GC_interaction is
presented as Algorithm 3 and represents the high-level granular
cloning kernel management by ensuring that versioned objects
that diverge from any shared state have the kernel applied to
them as well. In order to (i) report potential diverging splits in
versioned objects and to (ii) dispatch the actual kernel function
on versioned objects, Algorithm 3 calls Algorithm 4
(GC_transition()). (i) is computed in Algorithm 5
(handle_conflicts()). The diagram in Figure 3 summarizes this
granular cloning mechanism.

Granular cloning for agent-based models is differentiated from
conventional execution in that it needs to preserve the integrity
of the superimposed sample path. Before executing any
transition function, granular cloning first ensures that no
version-specific state of the kernel object is being wrongly
overwritten for a dependency that does not match that version
(this check is done in a function called handle_conflicts()). If
there is a version conflict, the current kernel object needs to be
split. The split object is handled after the current kernel object.
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At a high level, the kernel management algorithm for a set of

kernel objects - here, versionedobjects, is as follows:

VersionObj[] split_versionedobjects
for VersionObj versioned_obj in versionedobjects
GC_transition(versioned_obj,
split_versionedobjects)
while split_versionedobjects.has_elements
GC_transition(split_versionedobjects.pop,
split_versionedobjects)

Algorithm 3: High-level granular cloning kernel management

* ABM executive with granular cloning
« Iterates over timesteps, agents, and intra-agent
realizations

Algorithm 2

* Calls Algorithm 3 to execute transitions correctly

—

* GC_interaction()

* Dispatches granular cloning-based transitions
existing versioned objects and for discovered
divergent versioned objects

* Calls Algorithm 4 to determine whether
divergence occurs and to exeucte the kernel

Algorithm 3

for

—

* GC_transition()
* Traces dependencies among versioned objects
and creates additional versioned objects if
necessary

objects
* Calls Algorithm 5 to track dependencies and
determine if divergence occurs.

Algorithm 4

* Executes the kernel for non-divergent versioned

—

« handle_conflicts()

* Tracks dependencies and determines whether
versioned objects with shared state would be
overridden by another version object which is
mapped to fewer versions

Algorithm 5

—

E
Vv

Figure 3: The granular cloning mechanism
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split_versionedobjects maintains potential split kernel objects
that fragment from the currently considered kernel object and
still need to be handled by the kernel. For example, suppose a
given kernel object, versioned_obj, is associated with versions 1
and 3, and the granular
GC_transition() determines that versioned_obj needs to be split
from the version set {1,3} into {1} and {3}. In this case,
GC_transition() will
corresponding to the intersection of the versions sets of all read

cloning transition manager

only override the kernel object
sources. Suppose, in our example, the intersection is {1}. Now,
the kernel object for {3} is still unhandled and still needs to be
processed. In the while-block of the granular cloning kernel
manager, we simply execute the kernel for all these split objects
until they are all handled.

A given object’s version set is encoded in unsigned integers
where bits are set for corresponding version indices; granular
cloning makes heavy use of bit manipulation. For example, the
following binary value encodes a mapping to versions 1 and 3

(1-based indexing) among 32 total versions:
0000 0000 0000 0000 0000 0000 0000 0101

The granular cloning-wrapped kernel function GC_transition()
performs the following steps:

GC_transition()(VersionObj vo, VersionObj[]
splits)
VersionObj[] potential_splits =
vo.handle_conflicts()

Versions unaffected_versions

if potential_splits.has_splits
splits.emplace_back(potential_splits)
unaffected_versions =

potential_splits.get_versions()
vo.skernel(unaffected_versions)

Algorithm 4: Low-level granular cloning kernel wrapping

As previously mentioned, splits is an output argument that will
store unhandled versioned objects in case we need to split the
current kernel object vo. Whether splitting will occur depends
on the comparison of the version set of vo and the versions of
all objects we read in the kernel (ie., all dependencies of the
kernel object vo). The handle_conflicts() method determines if
the version set intersection of all objects that are being read in
the kernel (all dependencies) are a strict subset of the kernel
object vo’s version set. If they represent a strict subset, the
unhandled split version objects need to be stored in splits. The
version set of the unhandled split version objects are maintained
in the unaffected_versions variable. Finally, we execute the
superimposed kernel, skernel(), for the kernel object vo, but only
for the versions that are not included in the unhandled splits -
that is, the logical complement of unaffected_versions. For the
complement of unaffected_versions we can be sure that we can
read the corresponding version sets from all the read sources
because handle_conflicts() already filtered out the maximal
version set we can manage (by the definition of set intersection).
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In handle_conflicts(), a tie breaker rule will determine what
version number serves as the foundation of integrity checking.
An arbitrary selector, like the filtering for the minimum version,
will denoted with SEL. Once that version is determined, one
must filter neighboring objects for corresponding sets. Consider
the following example:

{2}-Read—{1,2}«—Read-{1}
1
Read
|
{1.2}

In this case, the min-selector uses version 1. The intersection of
{1,2} and {1} is {1} and so we split {1,2} into {1} and {2}. We update
{1} with the kernel and leave the state mapped to version set {2}
unaffected; {2} will be handled in the while-loop of Algorithm 3
later. The state of the kernel object (after the split, only
associated with {1}) does not only depend on the state of the
versioned object to the right, but also on one on the bottom. The
while-loop of Algorithm 3 ensures that any fragment of the
current kernel object will be handled by the read sources that
are omitted (those fragments will potentially be split further).
Without an automated runtime that can inspect all object
identifiers of a kernel invocation, it is necessary for the user to
specify what objects the kernel accesses. In many ABM’s the
read sources consist of some neighborhood - in a given
coordinate system - around the kernel object. For example, in
Conway’s Game of Life [14], a given kernel object (a cell that
can assume a state of 1 or 0), which is located in a 2D grid, reads
from its eight neighbors. In the general handle_conflicts()
method (listed in Algorithm 5), it is assumed that one can access
the entire state of the previous timestep (OLD) as well as the
read sources relative to the kernel object (NBR) by some defined
addressing scheme (i.e., coordinate system for most ABM’s).
There are more general variants for handle_conflicts()and some
of them may be more efficient for a particular application. One
can also engineer optimized versions for specific application
where certain characteristics are exploited. For example, one
fairly common characteristic among cellular automata is that all
the versions are present (with mutual exclusivity) for each
element of NBR.
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VersionObj handle_conflicts()
Version ref_version = SEL(this.versions)
VersionObj[] read_sources =
get_sources(this, OLD, NBR)
VersionObj[] ref_vo = filter(read_sources,
ref_version)
Version working =
intrsct(getversions(ref_vo),this.versions)
For Version v in
working.get_onehots_except(ref_version)
working = intrsct(working,
getversions(filter(read_sources, v)))
if working != this.versions
VersionObj res(this.state, working)
res.set_splits(true)
return res
else
VersionObj res(WILDCARD_S, WILDCARD_V)
res.set_splits(false)
return res

Algorithm 5: One possible general variant of handle_conflicts()

Algorithm 5 first arbitrarily picks a reference version from the
kernel object’s version set with the selector function SEL. It then
proceeds to collect all the kernel dependencies and filters those
objects with the reference version that was just selected. A
working version set is then used to determine whether there is
version-consistency between the dependencies’ (ref_vo) and the
kernel object’s respective version sets. The intersection ensures
that we enter skernel() with the maximal version set that is still
common among all dependencies (and the kernel object itself)
and preservers correctness. The for-loop ensures that transitive
dependencies of non-reference versions are captured. To
crystalize this in a small example:

{2,4}-Read—{1,2,3}«—Read-{1,2}

Using a min-selector, we would have a reference version of 1.
working would capture {1,2}n{1,2,3}={1,2} before entering the
for-loop. If we did not have the for-loop intersections, the
skernel() would later only read the dependency on the right
(associated with version set {1,2}). However, the kernel object is
also associated with version 2. Version 2 depends on the left-
versioned object that is associated with {2,4}. Therefore, to
preserve correctness, one must include transitively linked
versions as well. The for-loop grabs all non-reference versions
from working and then tries to find these transitive
dependencies. The conditional branch at the end simply reports
back to the caller whether a split needs to occur. If there are
elements in the kernel object that are not present in the relevant
read sources, a split occurs. Otherwise, the version sets are
synchronized which is indicated by a flag in the returned object.
The skernel() method behaves exactly like the traditional kernel
with the exception that we have to filter for the version set of
the kernel object among the read sources, namely for
vo.get_versions() \ unaffected_versions (where \ is the set minus
operator) and separate out the split version set from the kernel
object. Read sources that are associated with version sets that
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represent a strict superset of the kernel object version set are
like those that are
vo.get_versions() \ unaffected_versions. The additional versions

treated exactly associated with
in the superset simply refer to state being shared with other
versions. Since we do not write to the read objects, the presence
of the additional versions is irrelevant.

For event-scheduled simulation executives, granular cloning is
with  both  optimistic

synchronization protocols. For the latter, each LP will proceed

compatible and  conservative
to execute local events up to the synchronization point without
violating local causality. The only difference compared to the
traditional approach is that messages and objects are associated
with versions and, whenever events are processed, the
comparison of “version set’-tags occurs (via the granular
cloning algorithms described). For situations in which the
lookahead value is state-dependent, local causality is guaranteed
if the lookahead values are derived across all versions of a given
LP (there may exist further optimizations whereby correctness
can be ensured if this is relaxed). For optimistic synchronization
protocols, the same granular cloning algorithms are used during
normal execution. However, during rollbacks one needs to
ensure that anti-messages annihilate messages with the same
version set and that state saving captures the version sets
associated with simulation objects (message acknowledgements
are also version set specific). A straggler message may trigger a
“global” rollback (i.e., for all versions) even if it only affects a
few versions. Although forward progress is guaranteed with a
global rollback (as in traditional Time Warp), it may cause
rollback thrashing. To counteract this, it may be possible to
modify the granular cloning rollback mechanism to
preemptively query arollback’s version dependencies across LPs
and only affect an isolated subset of the versions, while the
execution of unaffected versions can proceed in parallel (since
the rollback does not apply to them). These extensions are
beyond the scope of this paper.

4.3 Optimizations and Heuristics

As previously mentioned, it is possible to optimize the general
approach for handle_conflicts() for a specific kernel. For
example, sometimes a particular state value of the kernel object
determines that few other objects need to be read than if the
state of the current kernel object is assumed to be unknown.
However, it should be emphasized that this is not necessary for
granular cloning - unlike some other methods for computation
sharing. Algorithm 6 shows a simplified version of an optimized
handle_conflicts(). It exploits the application-specific fact that
the kernel reads from at most one object and that we can “look
ahead” which object will be read based on the current state of
the kernel object.
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VersionedObj handle_conflicts()
if this.state == STATEO
VersionedCell[] neighbor =
OLD[get_index()+NBR[0]]
for VersionedObj lvn in neighbor
/*assume neighbor is sorted by min
Version®/
if versions.has_a_match(
lvn.get_versions()) and
lversions.is_contained_in(
lvn.versions)
return VersionedCell(
this.state,
this.versions.diff(
this.versions.intersection(
lvn.versions
)
)
)
else if this.state == STATE1 /* remaining cases */
return VersionedCell() /no conflict

Algorithm 6: An application-specific variant of the
handle_conflicts() method (applied on the kernel object) that
exploits the property that there is at most one object dependency
by peeking at the kernel object’s state and then filtering the read
sources.

Algorithm 6 first decides where in the old state of the model
environment, OLD, it needs to look for the relevant object. As
mentioned, the correct location depends on the state of the
kernel object. In order to avoid displaying redundant code, only
one of the conditional branches is shown completely (the one
for STATEO). The algorithm then iterates over the versioned
instances of the object and tries to discern whether the relevant
instance is in (version-)conflict with the kernel object’s version
set. If so, it returns the split object. If not, the end of the function
will return an empty object. The caller will then be able to
discern whether the returned object is split or not.

This is just a small sample of possible optimizations. There are
many properties that can be exploited, ranging from (i) dense
and globally-sensitive version sets to (ii) sparse, localized, and
clustered version sets. In applications that fall under the former
category (i), it may be the case that explicitly enumerating
sample paths corresponding to single versions after the
branching point outperforms the general handle_conflicts()
scheme; in this case, the computations are only shared up to the
branching point. For applications in the latter category (ii),
where one wishes to simulate many versions, it may prove
fruitful to abandon the unsigned integer representation and
instead adopt a compressed representation of version sets.
Indices could be used to map to particular version sets in
aggregate data structures.

5. EXPECTED PERFORMANCE FOR
AGENT-BASED GRANULAR CLONING

Intuitively, one expects better performance (more shared
computation) if the state variation is introduced late and if there
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is a slow spread of version-differentiated sample path relative to
the entire state space. Better performance is also expected if the
overhead from granular cloning is much smaller than the
transition function.

Consider an agent based simulation (ABS) that simulates E
agents over T (>0) timesteps (¢ is a particular timestep) over R
runs (r is a particular run). At a given run, timestep, and for a
given agent, a kernel (or, transition function) with work Wkernel
is executed. Although the Wiemel for granular cloning is slightly
more complex than the one for traditional execution, the same
factor will be used for both: The only additional granular cloning
overhead is a potential split of the kernel object (which is a
constant-time operation). Both the traditional and the granular
cloning kernels access interacting objects in constant time. The
key for the former is the object id, while for the latter it consists
of both the object id and relevant version set. After p % of these
timesteps, decision points are injected whereby the state S(t)
differs from the baseline sample path (which is identified with
version id, r = ). At each timestep after /p*T/, each agent reads
the state of Eread (<E) agents. I < o(t) < R is a function that — for
granular cloning - returns the average number of version sets at
timestep ¢ across all agents E. Kconflicts (> 1) scales Wiemel by the
additional overhead from handle_conflicts().

The speedup of granular cloning vs. traditional replicated
execution is approximated by:

E xWiernet T xR 3 T xR
x Z’LO o(t) Kconflicts * ZZ;o o(t)

X : X
E Kconflicts Wkernel

Without a mechanism for re-merging split objects, o(t) is
monotonically increasing. Furthermore, o(t) cannot exceed R for
any t because a version number is the most atomic element of
an object and, by assumption, no more than R runs are
simulated. Therefore, T x R = Y,I_, o(t). Figure 4 shows three
example growth rates of p(t) with overlaid trendlines. The
fastest-rising curve p’(t) would not be expected to yield a
significant speedup and, depending upon the implementation of
handle_conflicts(), the scaling with kconflicts may even dominate
the payoff expression above the curve T x R - Y.7_ o(t). The
growth rates primarily depend on the percentage of the total
state space that is being read in an object’s kernel at a point in
time. A constant number (without any noticeable bias for
detecting certain types of state variables) would likely yield the
linear o”’(t) divergence pattern in Figure 4.

R_

e"()

Figure 4: Lower growth rates yield better
performance for granular cloning.
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6. EMPIRICAL EVALUATION

The performance of granular cloning is evaluated with two
models, both of which are described in more detail later. In brief,
they consist of:

(i) a cellular automaton- (CA-) based traffic simulation on
a 1D grid, which is a boundary case of the Nagel-Schreckenberg
traffic model [13].

(ii) a distributed setting that simulates a basic integrated
transportation and land use model (ITLUM), where one process
executes (i) and another process executes a land use model from
Lu et al. [2]. The execution of both processes occurs in a
synchronous fashion per timestep.

The ITLUM benchmark is a useful test case because in many
usage scenarios replicated runs will often only modify one
model, e.g., the land use or the transportation model, but not
both. As such, this is an interesting test case to explore the
benefits of cloning in general, and granular cloning in particular.
Further, ITLUM represents a class of simulations of practical
interest to communities concerned with urban planning and the
sustainable growth of cities.

For both models, the number of runs is limited to 32; the version
tags assigned to objects are 32-bit unsigned integers. In settings
with more runs, one could assign wider tags for even greater
speedups. The machine that generated these results uses an Intel
Core 17 6700 ™ (4 physical cores, 8 logical) and 32GB DDR4
memory. All programs were compiled from C++ and the
distributed implementation uses MSMPL Unit tests were
successfully completed to ensure that states of the granular
cloning match the explicit execution of the same runs.

The next three subsections discuss the conceptual models, and
the two subsections thereafter report the performance results.
Opportunities for attractive applications as well as limitations in
adversarial problems due to tradeoffs are highlighted.

6.1 Conceptual Model: CA Traffic

Simulation

A 1D CA models one road in a neighborhood. Each cell of the
array is either set or cleared, the former representing a cell by a
vehicle and the latter the absence of a vehicle. At discrete
timesteps every vehicle will move forward (towards the right)
by one cell if the cell ahead is clear. Vehicles “wrap around”
when they reach the rightmost cell. The initial array state is
populated randomly. This ruleset is referred to as Wolfram Rule
184 which is also used to model several other systems. However,
there is a slight modification relative to this behavior that is
described by Wolfram Rule 184. A vehicle will sample random
cells in front of it and not move forward if the perceived traffic
intensity is deemed too high, namely with probability p = 1-
[0.9+0.1"ESTIMATED_TRAFFIC_INTENSITY], where
ESTIMATED_TRAFFIC_INTENSITY is determined by the ratio
[number of sampled cells that are occupied]/[number of sampled
cells]. In the experimental design, the number of sampled cells is
varied with powers of two to illuminate its impact on the
speedup. The length of the 1D array and the number of timesteps
are also varied in the performance section.
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6.2 Conceptual Model: Land Use Model

The land use model used is a translation from the Netlogo model of
Lu et al. [2] into C++. A detailed description of the model is beyond
the scope of this paper, but can be found in the reference guide of
[2]. At a high level, the ABM maintains a 24x24 grid that represents
9 square miles of greenfield, which is developed with single-family
dwellings over a 30-year period. It also contains on the order of 100
input, output and state variables. The agents in the model include
homebuyers and developers, which interact with the local
government (taxation and infrastructure improvements) and the
grid. In each of the 30 time steps:

1. 1000 homebuyers bid on up to 10 properties,

2. property transactions are settled,

3. new properties are constructed, and

4. local taxes are collected to improve the infrastructure.

The model was developed to compare two stormwater
development policies against each other to find out how many
apartment homebuyers they would incentivize.

6.3 Conceptual Model: ITLUM

The two models from the previous subsections were coupled
into an ITLUM. During the 4th phase of the land use model of
[2], namely the tax collection and infrastructure improvement
phase, the transportation cost savings of a neighborhood are
derived from the degradation of the road infrastructure and
depreciation of public transit. However, these variables were
fixed in the original model. Using an actual transportation
simulation to determine these variables dynamically may
improve the credibility and validity of the results. The traffic
intensity of the neighborhood roads is understood to be
proportional to the population density of the neighborhood.
These communication ideas inspire the federation sequencing
pipeline for the ITLUM shown in Figure 5.

Land Use Federate with ntra-Epoch Process Components

0D S0 Yo T D X
Trafic Federate with Iira-Epuch Process Components Population & Funding

Figure 5: ITLUM Federation Sequencing Pipeline

As the ratio between (i) the execution time of one epoch of the
land use node and (ii) the execution time of one epoch of the
transportation node approaches 0, the speedup of the ABS
dominates the overall speedup.

6.4 Evaluation: CA Traffic Simulation on

a Single Process

Figure 6 shows the speedup of the granular cloning approach
executing 32 versions in one single replication, compared to the
traditional approach of executing a single version for each of 32
replications. Each of the 32 replications alters the state at a
uniformly drawn timestep at a uniformly drawn cell. The
speedups were determined using measured CPU times for a
single process executing the transport model only.
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Figure 6: Speedup of the transport model of three
different cell-to-timestep ratios

The three lines refer to three different scenarios differentiated
by the space-to-time ratio (the cell-count divided by the time-
step count). The speedup is less impressive if there are only a
few timesteps relative to the numbers of cells because a given
version has less time available to propagate its specific behavior
into the global state. The speedup increases with the
computational load in the transition function as the relative
overhead of the granular cloning algorithm diminishes. The
computational load is injected by enhancing the traffic intensity
sampling resolution of the given driver (see the description of
the transportation conceptual model above). It should be noted
that merging versions that share the same state together at
certain intervals in the granular cloning mode did not improve
the performance significantly.

Figure 7 shows, for the 10 space-to-time ratio, the speedup if one
realizes the differences among the replications late. As
mentioned above, the differences among the 32 replications are
uniformly drawn in the 1D grid space and across all timesteps.
However, if one restricts the realized timesteps to only be drawn
in the last 20% or 50% of timesteps, the version-specific local
state perturbations have fewer opportunities to propagate
through the global state space. This directly translates into
computational savings in memory and execution time. As can be
seen in the figure, the jump from the 50% scenario to the 20%
scenario is less dramatic. Early branches pose a significant
computational burden on granular cloning. In an adversarial
scenario, the speedup is less than 1 because the physical sample
path is equivalent to that in the traditional approach and one
cannot reap the benefits of shared computations up to the
decision point. The shared computations after the decision point
are out-shadowed by the granular cloning overhead. With
regard to the performance model from Section 5, o(t) for this
particular model would exhibit a linear growth trend based on
the kernel which attempts to detect collisions.
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Figure 7: Speedup of the transport model if uniform
scenario alterations are drawn in restricted time
intervals

6.5 Evaluation: ITLUM on Two Processes
The following tables show the speedup results of the combined
ITLUM model described above for 30 simulated years each. The
speedup quantities are not measured relative to sequential
execution of the two processes separately; rather, they are
relative to the parallel execution of the two processes where
only the transport model uses the traditional approach of
explicitly enumerating all the replications: S = Tparallel traditional /
Tparallel granular. A column headed by the expression Sti=ic denotes
speedup figures that were obtained from models where IC
instructions in the transition function for each object’s update
in the next timestep were computed. The data exchanged
between the two simulators in a synchronized/blocking fashion.
This is also why the speedup quantities in the following tables
are derived from wall-clock intervals. If they were based on CPU
time, they could be misleading as a result of the platform
context-switching from a blocking process. However, the
drawback is that platform-specific factors may pollute the times.
Nevertheless, a second set of replications confirmed that the
numbers were close to those in the first set.

Table 1: Speedup for cellcount/timesteps = 100 and
start of decision points commences at timestep=0

Cell St11=4 STI=32
count

1,000 0.93 1.03

10,000 1.04 3.39
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Table 2: Speedup for cellcount/timesteps = 100 and
start of decision points commences halfway through

Cell St1=4 STI=32
count

1,000 1.01 1.07
10,000 1.13 3.29

Table 3: Speedup for cellcount/timesteps = 10 and
start of decision points commences at timestep=0

Cell St1=4 STi=32
count

1,000 0.99 1.35
10,000 0.92 3.07

Table 4: Speedup for cellcount/timesteps = 10 and
start of decision points commences halfway through

Cell STI1=4 STi=32
count

1,000 1.00 1.66

10,000 1.11 4.11*

In the entry marked with * was also evaluated with a transition
function count of 64 and 128, which resulted in speedups of 4.89
and 5.96, respectively. Since the only speedups that can be
reaped in take place in the transport simulator, it determines the
overall speedup provided it takes longer per epoch than the land
use simulator. Because of reasons discussed before, the
instruction count of the driver’s transition function has a
significant impact on the overall speedup. In general, especially
high performance is expected when there is a large number of
runs, the variation is introduced late, the behavior (transition
function or event handler) is complex in relation to the
overhead, and/or when individual objects do not have the
opportunity to quickly affect the entire state space in a unique
fashion.

6.6 Evaluation: 2x4 XOR-HOLD (Event-
Scheduling on Eight Processes)

In addition to these agent-based and timestepped models,
granular cloning was also compared against traditional
simulation cloning in a distributed event-scheduling setting
(with 8 processes). The benchmark used here is 2x4 XOR-HOLD
(2 LPs, 4 versions each) using a conservative barrier
synchronization based approach. In addition to simply
processing and scheduling events (HOLD), LPs in XOR-HOLD
also own state variables (represented as an integer array) and
modify them in their (sole) event handler. More specifically, they
access their array at an index randomly sampled by the sender
and apply logical exclusive OR of the sender’s corresponding
value to their own value at that index. Versions are realized as
random variations in individual state variables (integers) at the
start of the simulation. When the array sizes are set to 100,000
and the number of total events processed per LP set to 300,000,
the obtained average speedup is 1.68 (standard error = 0.08). The
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speedup was again based on wallclock time until the simulation
terminates using each method.

7. CONCLUSION AND FUTURE WORK

The granular cloning framework offers performance
improvements without loss in accuracy for a broad range of
simulation applications where one wishes to execute several
runs that share similar sample paths. Instead of being restricted
to the scale of extended partitions of the state space, the explicit
state representation occurs at the exact minimal scale where
state differs. Our experimental results show order-of-magnitude
speedup in some cases and illustrate that performance is
increased when:

e the number of replications is large,

e the transition functions (in timestepped models) or
the event handlers (in event-scheduling models) are
relatively complex, and

e the state among runs is similar, especially at the
beginning of the run, so that the framework may
reuse more shared computations, rather than
duplicate redundant work. In many applications, the
replication-specific variation tends to explode
throughout the state space as simulated time
increases.

There are interesting further research questions related to
granular cloning. For example, how should one batch together
runs apply
optimization methods (scenarios vs. random input)? Another

of wvarious scenarios to simulation-based
research topic lies in approximate computing: one could reduce
the overhead of granular cloning interactions selectively, which
relaxes correctness; in this fashion, bias is traded off for
variance. It is also an open question of whether there are more
efficient algorithms to keep track of the state-version
associations, especially for common applications. Another open
research area is how different
techniques contribute to speedup when they are used in groups

across a broad range of benchmarks.

simulation acceleration

We plan to release a general-purpose library that allows users to
encapsulate their simulation objects into granular cloning
objects as well as the interactions among these objects into
granular cloning interactions. As in the simulation cloning
library of [1], the granular cloning runtime will manage the
bookkeeping of the varying state of a given object to the
replication number (version) internally.
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