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ABSTRACT 
Many runs of a computer simulation are needed to model 
uncertainty and evaluate alternate design choices. Such an 
ensemble of runs often contains many commonalities among the 
different individual runs. Simulation cloning is a technique that 
capitalizes on this fact to reduce the amount of computation 
required by the ensemble. Granular cloning is proposed that 
allows the sharing of state and computations at the scale of 
simulation objects as small as individual variables, offering 
savings in computation and memory, increased parallelism and 
improved tractability of sample path patterns across multiple 
runs. The ensemble produces results that are identical to 
separately executed runs. Whenever simulation objects interact, 
granular cloning will resolve their association to subsets of runs 
though binary operations on tags. Algorithms and 
computational techniques required to efficiently implement 
granular cloning are presented. Results from an experimental 
study using a cellular automata-based transportation simulation 
model and a coupled transportation and land use model are 
presented providing evidence the approach can yield significant 
speed ups relative to brute force replicated runs. 
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1. INTRODUCTION 
Computer simulation shows its strength by its flexibility to 
model a vast set of domains. However, its power is limited by 
the accuracy of the underlying model and the computational 
performance of the simulations. This paper focuses on 
alleviating the latter constraint. State changes are either driven 
by event-scheduling or by time-stepping though simulated time. 
The method described in this paper, termed granular cloning, 
can be utilized in both time-traversal modes, in both serial and 
parallel computer architectures, and – for parallel systems – in 
both optimistic and conservative synchronization protocols. 
Granular cloning exploits redundant computations across 
multiple runs of a model at the scale of individual simulation 
objects. Since it only affects common computations the results 
are equivalent to explicitly enumerating these runs. The runs are 
differentiated by random inputs and/or variations in the model 
scenarios. 

In stochastic simulation, randomness is injected in input 
variables to model uncertainty of the system under investigation 
(SUI). The performance of granular cloning is improved with the 
use of common random numbers because the pseudorandom 
number steams can be shared by all the logical runs. If one 
wishes to introduce variability, granular cloning can be further 
improved by altering individual elements of the stream or 
augmenting the stream with more elements. 

In many simulation studies, the objective is to find a feasible 
policy that leads to desirable output statistics. The number of 
feasible configurations often grows exponentially with the 
number of controllable discrete factors one is considering. 
Consider a network with ten nodes where one wishes to place 
one of three different router models at each node. The number 
of possible configurations is 310. While there are methods for 
efficiently searching the often nonconvex configuration space, 
many runs will still be required.  For each scenario, it is also 
desirable to complete many runs to obtain a point estimate of 
the output statistic with low bias and spread.  

When variation is introduced into a set of runs of a certain 
model, the collective is referred to as an ensemble. An ensemble 
study may have a set of objectives, including characterizing (e.g., 
for validation) or optimizing certain model parameters [15]. 
Whatever the way variation is introduced, random input or 
scenario variation, granular cloning superimposes all runs of an 
ensemble into one run and only explicitly stores the actual and 
most granular state differences across these runs, rather than 
larger supersets of state. Ensembles may be batched together 
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based on a partitioning that is favorable for granular cloning. 
These conditions are discussed later. For example, suppose we 
model a particle p in a neighborhood of other particles and some 
gaps of “empty” space. We wish to investigate the evolution of 
the neighborhood for two different polarity values of p (two 
different versions). If most of the simulation state remains the 
same for both versions, it would be inefficient to explicitly store 
two sets of the entire state. We only allocate memory for 
neighboring particles if they are affected differently for a version 
compared to the other version. The number of objects with state 
differences for a given version in this example tends to grow 
monotonically with simulated time. Explicit enumeration of all 
runs would be wasteful because of the common states and 
behaviors across the runs. The technique is generally applicable 
for Monte-Carlo simulation, although one could construct 
adversarial models where the runs are completely different at 
model initialization, in which case the approach collapses into 
explicit enumeration of runs. At the same time, the technique 
incurs a small overhead whenever different simulation objects 
interact with each other. However, there are heuristics that can 
be used to reduce the overhead cost, which depend on the object 
interactions of the underlying application. 

The next section describes related work. In Section 3, we define 
the notation and terminology from the simulation cloning 
literature [1] along with cloning concepts. Section 4 describes 
how cloning can be extended to state objects within LP’s. Section 
5 brings attention to the quantitative conditions under which 
computational performance can be harvested without loss in 
output accuracy; this is expressed in a simple mathematical 
inequality that is intuitive from a geometric view.  Experimental 
results of use cases are given in Section 6, varying key 
parameters that affect the computational performance. 

2. RELATED WORK 
The concept of cloning memory segments has been used 
extensively since Von Neumann introduced it for fault tolerance 
in 1956 [3]. Since then, it has influenced modern relational 
database systems, distributed memory management, and other 
areas of computer systems. In addition to describing this 
historical context in detail, [1] contains a survey of domain-
specific simulation models where cloning has been used 
previously. Common themes in the relevant literature include 
computation sharing (reuse of common state or events) and 
incremental simulation. 

Reducing the execution time and memory requirements of 
replicated simulation instances without affecting the accuracy 
of output statistics has been investigated in both domain specific 
and general (yet, typically, simulation-engine-specific) settings. 
Domain-specific use cases generally allow more state to be 
logically shared by grouping together similar replications at 
suitable times during the execution, and/or otherwise exploit the 
underlying application’s specific characteristics for space/time 
efficiency. Relevant examples include the following. 

In [4], Pecher, Hunter, and Fujimoto present a lazy evaluation 
and speculative execution scheme for physical cloning of vehicle 
objects in microscopic traffic simulation.  Vehicle objects that 
are independent of output statistics propagate tags containing 
the replication numbers they “touch.” Their numbers are 
compared to vehicle objects that have a dependency on output 
statistics. If there is a version match between the vehicle types, 

a physical clone must be launched via a rollback to a relevant 
saved state for explicit computation. Lentz et al. [5] apply 
incremental cloning to test different signature paths in a digital 
logic simulation for potential faults. The “offspring” (clone) of a 
“parent” is limited to four logical output values. Vakili [6] uses a 
so-called standard clock scheme (an implementation of single-
clock multiple systems, or SCMS) approach to execute – on a 
SIMD computer system - the same events simultaneously across 
multiple synchronized replications, which are parametrized 
differently (e.g., different service disciplines in a queue). The 
injected positive correlation makes this approach especially 
useful in simulation-based optimization (ranking & selection), 
albeit for a restricted class of applications.  

Unlike these prior efforts, the granular cloning approach 
described here does not rely on domain-specific properties. 
Although domain-specific methods can exploit knowledge of the 
given application, general techniques are by definition more 
flexible. As discussed next, more general techniques have been 
developed. It is possible that combinations of these techniques 
complement each other if they exploit different aspects of the 
underlying application. 

An example of a more general technique is the parallel cloning 
scheme introduced by Hybinette and Fujimoto in [1] that applies 
to the distributed LP event-scheduling paradigm. It is 
summarized in Section 3 because our granular cloning scheme 
will be described with similar terminology and notation. Just as 
with parallel cloning, granular cloning also makes heavy use of 
set-manipulation algorithms. Furthermore, the underlying 
mechanism for both algorithms consists of sharing state 
logically, while incrementally allocating physical memory. 
However, granular cloning offers a much finer grained 
mechanism that focuses on cloning individual objects rather 
than entire logical processes, and is agnostic to the underlying 
simulation executive paradigm. Chen, Turner, Cai et al. have 
extended the distributed cloning algorithms for the High Level 
Architecture (HLA) in [16] along with HLA’s data distribution 
management (DDM) in [17]. 

Ferenci et al. [7] presents an incremental scheme termed 
updatable simulation, where one first logs the events and sample 
path of a baseline run and hopes to reuse the state modifications 
from it for subsequent runs. Subsequent runs then determine 
what horizon of logged events can be reused at a given timestep 
where an event is to be processed. In the ideal case, a sequence 
of r >> 1 events can be composed together, rather than 
separately, to act on the current state. If the runs are sufficiently 
different, the event horizon r will be zero at each event-
processing timestep and nothing can be reused. The staged 
simulation technique discussed in Walsh and Sirer [8] caches 
previous event invocations, decomposes them, reuses previously 
computed and/or similar results, and reorders restructured 
events for their efficient scheduling. Stoffers et al. [12] extends 
automatic memoization to impure functions where side effects 
are permitted (subject to a few constraints). Granular cloning 
differs from these approaches in that it does not rely on reusing 
previously computed results. 

Granular cloning is perhaps most closely related to recent work 
by Li, Cai, and Turner [18] which focuses on tree-based cloning 
algorithms for agent-based models. A cloning tree contains 
nodes that map to simulation instances (versions) that have a 
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different parameter than their parents. Each such instance is 
associated with two data structures: AgentPool and Context. The 
former contains agents whose characteristics are unique to that 
instance, while the latter contains references to shared agents in 
ancestor nodes. During the execution of an instance, the relevant 
agents from a child’s ancestors are copied. A child instance 
performs clone condition checking as follows. If a Context agent 
(shared with an ancestor node) senses a parameter variation or an 
agent in the respective AgentPool, a clone is generated and moved 
to the AgentPool. Execution of simulation instances within the 
clone tree occur level-by-level in a breadth-first manner. In 
contrast to this simulation instance-hierarchical scheme, granular 
cloning does not use a tree hierarchy; rather, it associates tags 
with object realizations and clone condition checking occurs by 
comparing the tags of interacting objects. Granular cloning 
accesses relevant objects in arrays rather than by tree traversal. A 
bit masking scheme is used to efficiently implement version 
management. Superficially, granular cloning applies to granular 
subsets of state, while [18] applies to agent objects, though 
potentially one could adapt the algorithm from [18] to encompass 
the same scale. Furthermore, at any given timestep, the parallelism 
in [18] is limited by the available nodes at any level of the clone 
tree (batch-by-batch); in granular cloning, all objects may be 
executed concurrently at any timestep.  

Granular cloning utilizes a kind of data dependency detection 
for interacting objects (or state variables thereof). Granular 
cloning compares properties of versions associated with these 
objects. Detecting various properties of data dependencies with 
the end goal of accelerating simulation execution has been 
studied in other works as well. Quaglia and Baldoni [19] 
investigate data dependencies associated with a simulation 
object over several events. The scheme can be used to accelerate 
certain optimistic simulations by increasing event-level 
parallelism. The definition of “intra-object parallelism” in [19] 
differs from the usage in this paper and in [10]. In [19], the 
parallelism refers to the state transitions (i.e., events) that an 
object is exposed to, while here (and in [10]) it refers to the 
variations in the object’s state. Marziale et al. [20] measure the 
amount of data dependencies across processes in order to create 
suitable groups of these processes (“granular LPs”) dynamically 
in a Time Warp-based environment. The grouping that is 
derived from dependencies in [20] applies to subsets of state 
(logical processes), while they apply to subsets of runs in this 
paper. Furthermore, the grouping sequence for granular cloning 
is unique. 

3. CLONING PARALLEL SIMULATIONS 
Hybinette and Fujimoto [1] introduce the concept of simulation 
cloning in the context of distributed and interactive simulations 
where the analyst can intervene and dynamically evaluate 
alternative futures (clones, identified by a version number that is 
incremented chronologically: i = 1, 2, 3, …) at decision points and 
find a policy that offers advantages over others. A decision point 
must specify how a given clone differs in its state from a given 
reference version and at which timestep it occurs. However, 
different courses of action may also be defined a priori to 
evaluate different scenarios and inject uncertainty into certain 
input variables; they can also be triggered by certain conditions 
at runtime. Clones are generated by specifying them at decision 
points or through certain interactions between logical processes 
(LPs). The underlying system architecture used in [1] is based 

on distributed LPs and the executive operates with the event-
scheduling paradigm. The physical system is mapped into a 
model in the computer and the state of this model is partitioned 
into LPs (identified with j = A, B, C, …). During runtime, LPs 
exchange time-stamped messages to change their state and 
schedule new events; an LP only changes its state after 
processing an event (scheduled by itself or with a message 
received from another LP). Consider a simulation that evaluates 
two scenarios where, at some timestep tb > 0, some partial 
component of the state differs among them. 

Simulation cloning makes use of computation sharing because: 

- the sample path up to the decision point is only 
computed once. The set of virtual logical processes 
(VLP) being mapped to by each clone are shared by a 
shared memory region in the computer system, 
namely the corresponding physical logical processes 
(PLP), and  

- only the VLP’s that differ in their state after the 
decision point are explicitly duplicated (as a PLP) in 
memory and processed separately and in parallel; the 
VLP’s that are identical continue to be shared within a 
corresponding PLP. As the given clone starts affecting 
state in other VLP’s, further PLP’s will be 
incrementally spawned. An important point with 
respect to one key contribution of this paper is that the 
algorithm in [1] clones an entire VLP, even if there is 
just a small difference in a state object within the VLP.  

VLP’s exchange virtual messages among each other, but each 
virtual message maps to a single physical message and each VLP 
maps to a single PLP. Whenever several virtual instances are 
mapped to a particular physical instance (that is, if they have the 
same state), computations are essentially shared. A given VLP is 
identified by (i) the LP identifier and (ii) the version of the clone 
it refers to. A given version is associated with a set of VLP’s for 
every LP in the model. 

It is useful to define some notation prior to delving into the 
actual cloning algorithm. As mentioned before, the entire state 
of a model is partitioned into LP’s (identified by j= A, B, C,…) and 
each version (identified by i = 1, 2, 3, …) maps to a set of VLP’s. 
Subsequently, we will refer to a particular VLP as V(i,j). If, for 
fixed j, several VLP’s map to the same PLP (only if they share 
the same state), the corresponding PLP is denoted P(i,j) and i is 
the minimum version number of the VLP’s pointing to P(i, j). 

To implement simulation cloning, one must alter the simulation 
executive to incorporate (i) message cloning and (ii) process 
cloning. Message cloning simply refers to a simple mechanism 
whereby a message sent from a PLP (sharing several versions in 
a set called VSendSet) and received by a PLP (sharing several 
versions in a set called VRcvSet) must be forwarded to other 
PLP’s mapped to from versions contained in VSendSet that are 
not in VRcvSet. Process cloning occurs when a PLP is mapped to 
by versions not contained in a receiving message. The respective 
message may cause a modification in the state of all versions 
that the PLP represents, which would clearly be invalid for the 
states that are not in the message’s VSendSet. The full process 
cloning algorithm from [1] is (SC denotes the complement of set 
S with respect to the universe of versions): 
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(1) Get VSendSet from message 
(2) Get VRcvSet from local state 
(3) VPsUnaffected = VSendSetC ∩ VRcvSet 
(4) VPsMoveToClone = VPsUnaffected 
(5) VPsRequested = VSendSet ∩ VRcvSet 
(6) If (!(PhysicalReceiver ∩ VPsRequested)) then 

VPsMoveToClone = VPsRequested 
(7) If ( VPsMoveToClone ≠ {}) then 

Cloned PLP = min(VPsMoveToClone) 
 

4. GRANULAR CLONING 
4.1 Intuition 
A straightforward extension to simulation cloning approach 
from [1] is to replace the process cloning step with one that only 
clones state differences. An associative map is maintained for 
each PLP that maps a given version i to a record that contains 
information regarding where and how a PLP differs from shared 
state. In Figure 1, an LP modeling an airport initially shares the 
state for versions 1 and 2 and receives an airliner arrival event 
that only occurs in version 1. To maintain correctness for 
version 2, simulation cloning now copies the entire LP state 
prior to handling of the arrival. Granular cloning instead only 
duplicates the state that the arrival event handler would modify. 
These duplicated state variables are now valid for version 2 
(airliner absent), while the variables they were copied from may 
now be safely overridden for the version 1 arrival event.   

Relative to the parallel cloning scheme from Section 3 granular 
cloning should perform well if a given LP owns 

1. a sufficiently large partition of the entire state space, 

2. event handlers where state changes tend to be fragmented 
over the state variables, rather than over its entire state, 

3. event handlers where unmodified state variables are 
insensitive to the changes to the state variables that are 
modified. 

One could, of course, simply take the parallel cloning scheme 
and redefine each LP to encompass only a single state object. In 
doing so, however, one potentially increases the communication 
between the LP’s which can significantly degrade performance. 

 

Figure 1: Rather than duplicate the entire LP, 
granular cloning only duplicates the state that changes. 

©Free-Photos, Creative Commons 0 

If - instead of the event-scheduling based approach - the 
simulation executive uses a timestepped agent-based model 
(ABM), which may be part of a federation, one can associate each 
agent, and any state object in general, with a set of versions (a 
version set). This not only comes with all the benefits discussed 
before (i.e., savings in space and time because of shared 
computations), but also through increasing the parallelism in a 
shared memory machine (under certain circumstances), 
especially if the number of replications is a soft constraint. For a 
given version v (out of V total runs), an ABM typically executes, 
over several iterations (depending on the input model), for each 
timestep < T, the behavior of e < E agents. Within a fixed version, 
timestep, and entity, a kernel (or, transition function) is typically 
executed that reads from various state objects of the previous 
timestep, and writes to the given agent’s state objects for the 
current timestep. 

Figure 2 shows a so-called time-space diagram (see [11]) for a 
concrete example. 

 

Figure 2: Time-space diagram for granular cloning 
split. 

The horizontal axis measures simulated time and the vertical 
axis contains discrete state space objects (in memory). The lines 
within the quadrants represent sample paths, here denoting 
simply the presence of a given physical state object. The state 
objects use a similar notation as that used for PLP’s in Section 3. 
Here, the superscript refers to the versions mapping to the state 
object and the subscript denotes the identifier for the state 
object. At t=15, the kernel of A for its sole version set {1, 2} is 
executed, depicted as c1. A kernel is a sequence of instructions 
computed for a version set of a single agent (called the kernel 
object) and is not permitted to write to any other object. If any 
write operation in the kernel depends on a read operation of 
other objects, the intersection of the read sources’ version sets 
is compared to the version set of the kernel object. If the kernel 
object contains members not present in the intersection of the 
read sources, the kernel object splits. If one were to not split the 
kernel object, the state of the kernel object would be overwritten 
for the versions that are contained in it, but not in the read 
sources, potentially leading to errors. 

4.2 Formulation 
As summarized before, a timestepped ABM - from a high-level 
view - typically has the following operational scheme: 
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for s in scenarios 
    initialize_model(s) 
    for t in timesteps 
        for a in agents 
            a.kernel /*also called transition  
                      or step */ 

Algorithm 1: Agent-based model - operational outline 
(traditional) 

 

When granular cloning is applied to these kind of models, it 
obviates the need to explicitly enumerate the scenarios (since all 
of them are superimposed). However, at runtime, granular 
cloning needs to perform some bookkeeping, in order to trace 
dependencies between objects that are now associated with 
versions (versioned objects). As the simulation progresses, 
versioned objects that originally shared state across all versions 
start to diverge from the shared state to a version-specific state. 
From a high-level view, the operational scheme for granular 
cloning applied to a timestepped ABM looks like: 

 

initialize_model(scenarios) 
for t in timesteps 
    for a in agents 
        for vo in a.versionedobjects 
            a.GC_interaction /*kernel with    
                             granular cloning */ 

Algorithm 2: Agent-based model - operational outline (granular 
cloning) 

 

In some sense, the outermost loop in Algorithm 1 has been 
logically replaced with the innermost loop in Algorithm 2. 
However, we hope to iterate over fewer than scenarios.number 
(the total number or runs, or versions) in the innermost loop of 
Algorithm 2 by exploiting common state across the 
versionedobjects. The degree of reduction (or state-sharing) 
needs to be sufficiently high to offset the additional overhead 
that occurs in a.GC_interaction (in Algorithm 2) relative to 
a.kernel (in Algorithm 1).   Most of what follows in this 
subsection is concerned with the details of the last line 
(a.GC_interaction) in Algorithm 2. In fact, a.GC_interaction is 
presented as Algorithm 3 and represents the high-level granular 
cloning kernel management by ensuring that versioned objects 
that diverge from any shared state have the kernel applied to 
them as well. In order to (i) report potential diverging splits in 
versioned objects and to (ii) dispatch the actual kernel function 
on versioned objects, Algorithm 3 calls Algorithm 4 
(GC_transition()). (i) is computed in Algorithm 5 
(handle_conflicts()). The diagram in Figure 3 summarizes this 
granular cloning mechanism.  

Granular cloning for agent-based models is differentiated from 
conventional execution in that it needs to preserve the integrity 
of the superimposed sample path. Before executing any 
transition function, granular cloning first ensures that no 
version-specific state of the kernel object is being wrongly 
overwritten for a dependency that does not match that version 
(this check is done in a function called handle_conflicts()). If 
there is a version conflict, the current kernel object needs to be 
split. The split object is handled after the current kernel object. 

At a high level, the kernel management algorithm for a set of 
kernel objects – here, versionedobjects, is as follows: 
 
VersionObj[] split_versionedobjects 
for VersionObj versioned_obj in versionedobjects 
    GC_transition(versioned_obj,  
      split_versionedobjects) 
while split_versionedobjects.has_elements 
    GC_transition(split_versionedobjects.pop,  
      split_versionedobjects)         

Algorithm 3: High-level granular cloning kernel management 

 
 

 
Figure 3: The granular cloning mechanism 

 

 

Algorithm 2

• ABM executive with granular cloning

• Iterates over timesteps, agents, and intra-agent 
realizations

• Calls Algorithm 3 to execute transitions correctly

Algorithm 3

• GC_interaction()

• Dispatches granular cloning-based transitions for 
existing versioned objects and for discovered 
divergent versioned objects

• Calls Algorithm 4 to determine whether 
divergence occurs and to exeucte the kernel

Algorithm 4

• GC_transition()

• Traces dependencies among versioned objects 
and creates additional versioned objects if 
necessary

• Executes the kernel for non-divergent versioned 
objects

• Calls Algorithm 5 to track dependencies and 
determine if divergence occurs.

Algorithm 5

• handle_conflicts() 

• Tracks dependencies and determines whether 
versioned objects with shared state would be 
overridden by another version object which is 
mapped to fewer versions
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split_versionedobjects maintains potential split kernel objects 
that fragment from the currently considered kernel object and 
still need to be handled by the kernel. For example, suppose a 
given kernel object, versioned_obj, is associated with versions 1 
and 3, and the granular cloning transition manager 
GC_transition() determines that versioned_obj needs to be split 
from the version set {1,3} into {1} and {3}. In this case, 
GC_transition() will only override the kernel object 
corresponding to the intersection of the versions sets of all read 
sources. Suppose, in our example, the intersection is {1}. Now, 
the kernel object for {3} is still unhandled and still needs to be 
processed. In the while-block of the granular cloning kernel 
manager, we simply execute the kernel for all these split objects 
until they are all handled.  
A given object’s version set is encoded in unsigned integers 
where bits are set for corresponding version indices; granular 
cloning makes heavy use of bit manipulation. For example, the 
following binary value encodes a mapping to versions 1 and 3 
(1-based indexing) among 32 total versions: 
 
0000 0000 0000 0000 0000 0000 0000 0101 
 
The granular cloning-wrapped kernel function GC_transition() 
performs the following steps: 
 
GC_transition()(VersionObj vo, VersionObj[]    
  splits) 
    VersionObj[] potential_splits =  
      vo.handle_conflicts() 
    Versions unaffected_versions 
    if potential_splits.has_splits            
        splits.emplace_back(potential_splits) 
        unaffected_versions =  
          potential_splits.get_versions() 
    vo.skernel(unaffected_versions) 

Algorithm 4: Low-level granular cloning kernel wrapping 

 
As previously mentioned, splits is an output argument that will 
store unhandled versioned objects in case we need to split the 
current kernel object vo. Whether splitting will occur depends 
on the comparison of the version set of vo and the versions of 
all objects we read in the kernel (i.e., all dependencies of the 
kernel object vo). The handle_conflicts() method determines if 
the version set intersection of all objects that are being read in 
the kernel (all dependencies) are a strict subset of the kernel 
object vo’s version set. If they represent a strict subset, the 
unhandled split version objects need to be stored in splits. The 
version set of the unhandled split version objects are maintained 
in the unaffected_versions variable. Finally, we execute the 
superimposed kernel, skernel(), for the kernel object vo, but only 
for the versions that are not included in the unhandled splits – 
that is, the logical complement of unaffected_versions.  For the 
complement of unaffected_versions we can be sure that we can 
read the corresponding version sets from all the read sources 
because handle_conflicts() already filtered out the maximal 
version set we can manage (by the definition of set intersection). 

In handle_conflicts(), a tie breaker rule will determine what 
version number serves as the foundation of integrity checking. 
An arbitrary selector, like the filtering for the minimum version, 
will denoted with SEL. Once that version is determined, one 
must filter neighboring objects for corresponding sets. Consider 
the following example: 
 

{2}-Read→{1,2}←Read-{1} 
↑ 

Read 
| 

{1,2} 
 
In this case, the min-selector uses version 1. The intersection of 
{1,2} and {1} is {1} and so we split {1,2} into {1} and {2}. We update 
{1} with the kernel and leave the state mapped to version set {2} 
unaffected; {2} will be handled in the while-loop of Algorithm 3 
later. The state of the kernel object (after the split, only 
associated with {1}) does not only depend on the state of the 
versioned object to the right, but also on one on the bottom. The 
while-loop of Algorithm 3 ensures that any fragment of the 
current kernel object will be handled by the read sources that 
are omitted (those fragments will potentially be split further). 
Without an automated runtime that can inspect all object 
identifiers of a kernel invocation, it is necessary for the user to 
specify what objects the kernel accesses. In many ABM’s the 
read sources consist of some neighborhood – in a given 
coordinate system - around the kernel object. For example, in 
Conway’s Game of Life [14], a given kernel object (a cell that 
can assume a state of 1 or 0), which is located in a 2D grid, reads 
from its eight neighbors. In the general handle_conflicts() 
method (listed in Algorithm 5), it is assumed that one can access 
the entire state of the previous timestep (OLD)  as well as the 
read sources relative to the kernel object (NBR) by some defined 
addressing scheme (i.e., coordinate system for most ABM’s). 
There are more general variants for handle_conflicts()and some 
of them may be more efficient for a particular application. One 
can also engineer optimized versions for specific application 
where certain characteristics are exploited. For example, one 
fairly common characteristic among cellular automata is that all 
the versions are present (with mutual exclusivity) for each 
element of NBR. 
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VersionObj handle_conflicts() 
    Version ref_version = SEL(this.versions) 
    VersionObj[] read_sources =  
      get_sources(this, OLD, NBR) 
    VersionObj[] ref_vo = filter(read_sources,  
      ref_version) 
    Version working =  
      intrsct(getversions(ref_vo),this.versions) 
    For Version v in  
      working.get_onehots_except(ref_version) 
        working = intrsct(working,    
          getversions(filter(read_sources, v))) 
    if working != this.versions 
        VersionObj res(this.state, working) 
        res.set_splits(true) 
        return res 
    else 
        VersionObj res(WILDCARD_S, WILDCARD_V) 
        res.set_splits(false) 
        return res 

Algorithm 5: One possible general variant of handle_conflicts()  

 
Algorithm 5 first arbitrarily picks a reference version from the 
kernel object’s version set with the selector function SEL. It then 
proceeds to collect all the kernel dependencies and filters those 
objects with the reference version that was just selected. A 
working version set is then used to determine whether there is 
version-consistency between the dependencies’ (ref_vo) and the 
kernel object’s respective version sets. The intersection ensures 
that we enter skernel() with the maximal version set that is still 
common among all dependencies (and the kernel object itself) 
and preservers correctness. The for-loop ensures that transitive 
dependencies of non-reference versions are captured. To 
crystalize this in a small example: 
 

{2,4}-Read→{1,2,3}←Read-{1,2} 
 
Using a min-selector, we would have a reference version of 1. 
working would capture {1,2}∩{1,2,3}={1,2} before entering the 
for-loop. If we did not have the for-loop intersections, the 
skernel() would later only read the dependency on the right 
(associated with version set {1,2}). However, the kernel object is 
also associated with version 2. Version 2 depends on the left-
versioned object that is associated with {2,4}. Therefore, to 
preserve correctness, one must include transitively linked 
versions as well. The for-loop grabs all non-reference versions 
from working and then tries to find these transitive 
dependencies. The conditional branch at the end simply reports 
back to the caller whether a split needs to occur. If there are 
elements in the kernel object that are not present in the relevant 
read sources, a split occurs. Otherwise, the version sets are 
synchronized which is indicated by a flag in the returned object. 
The skernel() method behaves exactly like the traditional kernel 
with the exception that we have to filter for the version set of 
the kernel object among the read sources, namely for 
vo.get_versions() \ unaffected_versions (where \ is the set minus 
operator) and separate out the split version set from the kernel 
object.  Read sources that are associated with version sets that 

represent a strict superset of the kernel object version set are 
treated exactly like those that are associated with 
vo.get_versions() \ unaffected_versions. The additional versions 
in the superset simply refer to state being shared with other 
versions. Since we do not write to the read objects, the presence 
of the additional versions is irrelevant. 
For event-scheduled simulation executives, granular cloning is 
compatible with both optimistic and conservative 
synchronization protocols. For the latter, each LP will proceed 
to execute local events up to the synchronization point without 
violating local causality. The only difference compared to the 
traditional approach is that messages and objects are associated 
with versions and, whenever events are processed, the 
comparison of “version set”-tags occurs (via the granular 
cloning algorithms described). For situations in which the 
lookahead value is state-dependent, local causality is guaranteed 
if the lookahead values are derived across all versions of a given 
LP (there may exist further optimizations whereby correctness 
can be ensured if this is relaxed). For optimistic synchronization 
protocols, the same granular cloning algorithms are used during 
normal execution. However, during rollbacks one needs to 
ensure that anti-messages annihilate messages with the same 
version set and that state saving captures the version sets 
associated with simulation objects (message acknowledgements 
are also version set specific). A straggler message may trigger a 
“global” rollback (i.e., for all versions) even if it only affects a 
few versions. Although forward progress is guaranteed with a 
global rollback (as in traditional Time Warp), it may cause 
rollback thrashing. To counteract this, it may be possible to 
modify the granular cloning rollback mechanism to 
preemptively query a rollback’s version dependencies across LPs 
and only affect an isolated subset of the versions, while the 
execution of unaffected versions can proceed in parallel (since 
the rollback does not apply to them). These extensions are 
beyond the scope of this paper. 
 

4.3 Optimizations and Heuristics 
As previously mentioned, it is possible to optimize the general 
approach for handle_conflicts() for a specific kernel. For 
example, sometimes a particular state value of the kernel object 
determines that few other objects need to be read than if the 
state of the current kernel object is assumed to be unknown. 
However, it should be emphasized that this is not necessary for 
granular cloning - unlike some other methods for computation 
sharing. Algorithm 6 shows a simplified version of an optimized 
handle_conflicts(). It exploits the application-specific fact that 
the kernel reads from at most one object and that we can “look 
ahead” which object will be read based on the current state of 
the kernel object. 
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VersionedObj handle_conflicts() 
    if this.state == STATE0 
        VersionedCell[] neighbor =  
          OLD[get_index()+NBR[0]] 
        for VersionedObj lvn in neighbor   
            /*assume neighbor is sorted by min  
            Version*/ 
            if versions.has_a_match(    
              lvn.get_versions()) and     
              !versions.is_contained_in( 
              lvn.versions)  
                return VersionedCell( 
                    this.state,  
                    this.versions.diff(                     
                     this.versions.intersection(  
                       lvn.versions 
                        ) 
                    ) 
                ) 
    else if this.state == STATE1 /* remaining cases */  
    return VersionedCell() //no conflict 

Algorithm 6: An application-specific variant of the 
handle_conflicts() method (applied on the kernel object) that 
exploits the property that there is at most one object dependency 
by peeking at the kernel object’s state and then filtering the read 
sources.  

 
Algorithm 6 first decides where in the old state of the model 
environment, OLD, it needs to look for the relevant object. As 
mentioned, the correct location depends on the state of the 
kernel object. In order to avoid displaying redundant code, only 
one of the conditional branches is shown completely (the one 
for STATE0). The algorithm then iterates over the versioned 
instances of the object and tries to discern whether the relevant 
instance is in (version-)conflict with the kernel object’s version 
set. If so, it returns the split object. If not, the end of the function 
will return an empty object. The caller will then be able to 
discern whether the returned object is split or not. 
This is just a small sample of possible optimizations. There are 
many properties that can be exploited, ranging from (i) dense 
and globally-sensitive version sets to (ii) sparse, localized, and 
clustered version sets. In applications that fall under the former 
category (i), it may be the case that explicitly enumerating 
sample paths corresponding to single versions after the 
branching point outperforms the general handle_conflicts() 
scheme; in this case, the computations are only shared up to the 
branching point. For applications in the latter category (ii), 
where one wishes to simulate many versions, it may prove 
fruitful to abandon the unsigned integer representation and 
instead adopt a compressed representation of version sets. 
Indices could be used to map to particular version sets in 
aggregate data structures. 
 

5. EXPECTED PERFORMANCE FOR 
AGENT-BASED GRANULAR CLONING 
Intuitively, one expects better performance (more shared 
computation) if the state variation is introduced late and if there 

is a slow spread of version-differentiated sample path relative to 
the entire state space. Better performance is also expected if the 
overhead from granular cloning is much smaller than the 
transition function. 

Consider an agent based simulation (ABS) that simulates E 
agents over T (>0) timesteps (t is a particular timestep) over R 
runs (r is a particular run). At a given run, timestep, and for a 
given agent, a kernel (or, transition function) with work Wkernel 
is executed. Although the Wkernel for granular cloning is slightly 
more complex than the one for traditional execution, the same 
factor will be used for both: The only additional granular cloning 
overhead is a potential split of the kernel object (which is a 
constant-time operation). Both the traditional and the granular 
cloning kernels access interacting objects in constant time. The 
key for the former is the object id, while for the latter it consists 
of both the object id and relevant version set. After p % of these 
timesteps, decision points are injected whereby the state S(t) 
differs from the baseline sample path (which is identified with 
version id, r = 1). At each timestep after ⌈p*T⌉, each agent reads 
the state of Eread (≤E) agents. 1 ≤ ϱ(t) ≤ R is a function that – for 
granular cloning - returns the average number of version sets at 
timestep t across all agents E. κconflicts (> 1) scales Wkernel by the 
additional overhead from handle_conflicts(). 
The speedup of granular cloning vs. traditional replicated 
execution is approximated by: 

𝐸 × 𝑊𝑘𝑒𝑟𝑛𝑒𝑙 × 𝑇 × 𝑅 

𝐸 × 𝜅𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑠 × 𝑊
𝑘𝑒𝑟𝑛𝑒𝑙

× ∑ 𝜚(𝑡)𝑇
𝑡=0

 =
𝑇 × 𝑅 

𝜅𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑠 × ∑ 𝜚(𝑡)𝑇
𝑡=0

 

Without a mechanism for re-merging split objects, ϱ(t) is 
monotonically increasing. Furthermore, ϱ(t) cannot exceed R  for 
any t because a version number is the most atomic element of 
an object and, by assumption, no more than R runs are 
simulated. Therefore, 𝑇 × 𝑅 ≥ ∑ 𝜚(𝑡)𝑇

𝑡=0 . Figure 4 shows three 
example growth rates of ϱ(t) with overlaid trendlines. The 
fastest-rising curve ϱ’(t) would not be expected to yield a 
significant speedup and, depending upon the implementation of 
handle_conflicts(), the scaling with κconflicts may even dominate 
the payoff expression above the curve 𝑇 × 𝑅 − ∑ 𝜚(𝑡)𝑇

𝑡=0 . The 
growth rates primarily depend on the percentage of the total 
state space that is being read in an object’s kernel at a point in 
time. A constant number (without any noticeable bias for 
detecting certain types of state variables) would likely yield the 
linear ϱ’’(t) divergence pattern in Figure 4.   

 
Figure 4: Lower growth rates yield better 
performance for granular cloning. 
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6. EMPIRICAL EVALUATION 
The performance of granular cloning is evaluated with two 
models, both of which are described in more detail later. In brief, 
they consist of: 

(i) a cellular automaton- (CA-) based traffic simulation on 
a 1D grid, which is a boundary case of the Nagel-Schreckenberg 
traffic model [13]. 

(ii) a distributed setting that simulates a basic integrated 
transportation and land use model (ITLUM), where one process 
executes (i) and another process executes a land use model from 
Lu et al. [2]. The execution of both processes occurs in a 
synchronous fashion per timestep.  

The ITLUM benchmark is a useful test case because in many 
usage scenarios replicated runs will often only modify one 
model, e.g., the land use or the transportation model, but not 
both. As such, this is an interesting test case to explore the 
benefits of cloning in general, and granular cloning in particular. 
Further, ITLUM represents a class of simulations of practical 
interest to communities concerned with urban planning and the 
sustainable growth of cities. 

For both models, the number of runs is limited to 32; the version 
tags assigned to objects are 32-bit unsigned integers. In settings 
with more runs, one could assign wider tags for even greater 
speedups. The machine that generated these results uses an Intel 
Core i7 6700 ™ (4 physical cores, 8 logical) and 32GB DDR4 
memory. All programs were compiled from C++ and the 
distributed implementation uses MSMPI. Unit tests were 
successfully completed to ensure that states of the granular 
cloning match the explicit execution of the same runs. 

The next three subsections discuss the conceptual models, and 
the two subsections thereafter report the performance results. 
Opportunities for attractive applications as well as limitations in 
adversarial problems due to tradeoffs are highlighted.  

6.1 Conceptual Model: CA Traffic 
Simulation 
A 1D CA models one road in a neighborhood. Each cell of the 
array is either set or cleared, the former representing a cell by a 
vehicle and the latter the absence of a vehicle.  At discrete 
timesteps every vehicle will move forward (towards the right) 
by one cell if the cell ahead is clear. Vehicles “wrap around” 
when they reach the rightmost cell. The initial array state is 
populated randomly. This ruleset is referred to as Wolfram Rule 
184 which is also used to model several other systems. However, 
there is a slight modification relative to this behavior that is 
described by Wolfram Rule 184. A vehicle will sample random 
cells in front of it and not move forward if the perceived traffic 
intensity is deemed too high, namely with probability p = 1-
[0.9+0.1*ESTIMATED_TRAFFIC_INTENSITY], where 
ESTIMATED_TRAFFIC_INTENSITY is determined by the ratio 
[number of sampled cells that are occupied]/[number of sampled 
cells]. In the experimental design, the number of sampled cells is 
varied with powers of two to illuminate its impact on the 
speedup. The length of the 1D array and the number of timesteps 
are also varied in the performance section. 

6.2 Conceptual Model: Land Use Model 
The land use model used is a translation from the Netlogo model of 
Lu et al. [2] into C++. A detailed description of the model is beyond 
the scope of this paper, but can be found in the reference guide of 
[2]. At a high level, the ABM maintains a 24x24 grid that represents 
9 square miles of greenfield, which is developed with single-family 
dwellings over a 30-year period. It also contains on the order of 100 
input, output and state variables. The agents in the model include 
homebuyers and developers, which interact with the local 
government (taxation and infrastructure improvements) and the 
grid. In each of the 30 time steps: 

1. 1000 homebuyers bid on up to 10 properties,  

2. property transactions are settled,  

3. new properties are constructed, and  

4. local taxes are collected to improve the infrastructure.  

The model was developed to compare two stormwater 
development policies against each other to find out how many 
apartment homebuyers they would incentivize. 

6.3 Conceptual Model: ITLUM 
The two models from the previous subsections were coupled 
into an ITLUM. During the 4th phase of the land use model of 
[2], namely the tax collection and infrastructure improvement 
phase, the transportation cost savings of a neighborhood are 
derived from the degradation of the road infrastructure and 
depreciation of public transit. However, these variables were 
fixed in the original model. Using an actual transportation 
simulation to determine these variables dynamically may 
improve the credibility and validity of the results. The traffic 
intensity of the neighborhood roads is understood to be 
proportional to the population density of the neighborhood. 
These communication ideas inspire the federation sequencing 
pipeline for the ITLUM shown in Figure 5. 

 
Figure 5: ITLUM Federation Sequencing Pipeline 

As the ratio between (i) the execution time of one epoch of the 
land use node and (ii) the execution time of one epoch of the 
transportation node approaches 0, the speedup of the ABS 
dominates the overall speedup. 

6.4 Evaluation: CA Traffic Simulation on 
a Single Process 
Figure 6 shows the speedup of the granular cloning approach 
executing 32 versions in one single replication, compared to the 
traditional approach of executing a single version for each of 32 
replications. Each of the 32 replications alters the state at a 
uniformly drawn timestep at a uniformly drawn cell. The 
speedups were determined using measured CPU times for a 
single process executing the transport model only. 

Session: Model Execution (ii) SIGSIM-PADS'18, May 23-25, 2018, Rome, Italy

173



 

 
Figure 6: Speedup of the transport model of three 

different cell-to-timestep ratios 

The three lines refer to three different scenarios differentiated 
by the space-to-time ratio (the cell-count divided by the time-
step count). The speedup is less impressive if there are only a 
few timesteps relative to the numbers of cells because a given 
version has less time available to propagate its specific behavior 
into the global state. The speedup increases with the 
computational load in the transition function as the relative 
overhead of the granular cloning algorithm diminishes. The 
computational load is injected by enhancing the traffic intensity 
sampling resolution of the given driver (see the description of 
the transportation conceptual model above). It should be noted 
that merging versions that share the same state together at 
certain intervals in the granular cloning mode did not improve 
the performance significantly. 

Figure 7 shows, for the 10 space-to-time ratio, the speedup if one 
realizes the differences among the replications late. As 
mentioned above, the differences among the 32 replications are 
uniformly drawn in the 1D grid space and across all timesteps. 
However, if one restricts the realized timesteps to only be drawn 
in the last 20% or 50% of timesteps, the version-specific local 
state perturbations have fewer opportunities to propagate 
through the global state space. This directly translates into 
computational savings in memory and execution time. As can be 
seen in the figure, the jump from the 50% scenario to the 20% 
scenario is less dramatic. Early branches pose a significant 
computational burden on granular cloning. In an adversarial 
scenario, the speedup is less than 1 because the physical sample 
path is equivalent to that in the traditional approach and one 
cannot reap the benefits of shared computations up to the 
decision point. The shared computations after the decision point 
are out-shadowed by the granular cloning overhead. With 
regard to the performance model from Section 5, ϱ(t) for this 
particular model would exhibit a linear growth trend based on 
the kernel which attempts to detect collisions. 

 
Figure 7: Speedup of the transport model if uniform 
scenario alterations are drawn in restricted time 

intervals 

6.5 Evaluation: ITLUM on Two Processes 
The following tables show the speedup results of the combined 
ITLUM model described above for 30 simulated years each. The 
speedup quantities are not measured relative to sequential 
execution of the two processes separately; rather, they are 
relative to the parallel execution of the two processes where 
only the transport model uses the traditional approach of 
explicitly enumerating all the replications: S = Tparallel,traditional / 
Tparallel,granular. A column headed by the expression STI=IC denotes 
speedup figures that were obtained from models where IC 
instructions in the transition function for each object’s update 
in the next timestep were computed. The data exchanged 
between the two simulators in a synchronized/blocking fashion. 
This is also why the speedup quantities in the following tables 
are derived from wall-clock intervals. If they were based on CPU 
time, they could be misleading as a result of the platform 
context-switching from a blocking process. However, the 
drawback is that platform-specific factors may pollute the times. 
Nevertheless, a second set of replications confirmed that the 
numbers were close to those in the first set. 
 
 

Table 1: Speedup for cellcount/timesteps = 100 and 
start of decision points commences at timestep=0 

Cell 
count 

STI=4 STI=32 

1,000 0.93 1.03 
10,000 1.04 3.39 
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Table 2: Speedup for cellcount/timesteps = 100 and 
start of decision points commences halfway through 

Cell 
count 

STI=4 STI=32 

1,000 1.01 1.07 
10,000 1.13 3.29 

 

Table 3: Speedup for cellcount/timesteps = 10 and 
start of decision points commences at timestep=0 

Cell 
count 

STI=4 STI=32 

1,000 0.99 1.35 
10,000 0.92 3.07 

 

Table 4: Speedup for cellcount/timesteps = 10 and 
start of decision points commences halfway through 

Cell 
count 

STI=4 STI=32 

1,000 1.00 1.66 
10,000 1.11 4.11* 

 
In the entry marked with * was also evaluated with a transition 
function count of 64 and 128, which resulted in speedups of 4.89 
and 5.96, respectively. Since the only speedups that can be 
reaped in take place in the transport simulator, it determines the 
overall speedup provided it takes longer per epoch than the land 
use simulator. Because of reasons discussed before, the 
instruction count of the driver’s transition function has a 
significant impact on the overall speedup. In general, especially 
high performance is expected when there is a large number of 
runs, the variation is introduced late, the behavior (transition 
function or event handler) is complex in relation to the 
overhead, and/or when individual objects do not have the 
opportunity to quickly affect the entire state space in a unique 
fashion. 

6.6 Evaluation: 2x4 XOR-HOLD (Event-
Scheduling on Eight Processes) 
In addition to these agent-based and timestepped models, 
granular cloning was also compared against traditional 
simulation cloning in a distributed event-scheduling setting 
(with 8 processes). The benchmark used here is 2x4 XOR-HOLD 
(2 LPs, 4 versions each) using a conservative barrier 
synchronization based approach. In addition to simply 
processing and scheduling events (HOLD), LPs in XOR-HOLD 
also own state variables (represented as an integer array) and 
modify them in their (sole) event handler. More specifically, they 
access their array at an index randomly sampled by the sender 
and apply logical exclusive OR of the sender’s corresponding 
value to their own value at that index. Versions are realized as 
random variations in individual state variables (integers) at the 
start of the simulation. When the array sizes are set to 100,000 
and the number of total events processed per LP set to 300,000, 
the obtained average speedup is 1.68 (standard error = 0.08). The 

speedup was again based on wallclock time until the simulation 
terminates using each method.  

7. CONCLUSION AND FUTURE WORK 
The granular cloning framework offers performance 
improvements without loss in accuracy for a broad range of 
simulation applications where one wishes to execute several 
runs that share similar sample paths. Instead of being restricted 
to the scale of extended partitions of the state space, the explicit 
state representation occurs at the exact minimal scale where 
state differs. Our experimental results show order-of-magnitude 
speedup in some cases and illustrate that performance is 
increased when: 
 

• the number of replications is large, 
• the transition functions (in timestepped models) or 

the event handlers (in event-scheduling models) are 
relatively complex, and  

• the state among runs is similar, especially at the 
beginning of the run, so that the framework may 
reuse more shared computations, rather than 
duplicate redundant work. In many applications, the 
replication-specific variation tends to explode 
throughout the state space as simulated time 
increases. 
 

There are interesting further research questions related to 
granular cloning. For example, how should one batch together 
runs of various scenarios to apply simulation-based 
optimization methods (scenarios vs. random input)? Another 
research topic lies in approximate computing: one could reduce 
the overhead of granular cloning interactions selectively, which 
relaxes correctness; in this fashion, bias is traded off for 
variance. It is also an open question of whether there are more 
efficient algorithms to keep track of the state-version 
associations, especially for common applications. Another open 
research area is how different simulation acceleration 
techniques contribute to speedup when they are used in groups 
across a broad range of benchmarks. 
We plan to release a general-purpose library that allows users to 
encapsulate their simulation objects into granular cloning 
objects as well as the interactions among these objects into 
granular cloning interactions. As in the simulation cloning 
library of [1], the granular cloning runtime will manage the 
bookkeeping of the varying state of a given object to the 
replication number (version) internally. 
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