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ABSTRACT 

Middleware is required to support and interface multi-modal Dynamic Data Driven Application Systems 
(DDDAS) with back-end and other computing facilities. Middleware is also needed to support distributed 

simulations and emulations needed in earlier phases of system development. This work describes the Green 
Runtime Infrastructure (G-RTI), an energy-efficient client server based middleware developed to support 
distributed DDDAS simulation, emulation and deployment. G-RTI eases and accelerates the development 
and testing of multi-modal studies, testbeds and DDDAS systems. It serves as a platform for research in 
energy reduction techniques for middleware services. The services implemented by G-RTI are described 
and results of benchmarking studies are reported. Its application is demonstrated through a use-case for an 

end-to-end implementation of a connected vehicle application. G-RTI is open source. 

1 INTRODUCTION 

The past decade has seen an enormous increase in the development and adoption of sensors in all walks of 
life. This has been in conjunction with the widespread deployment and adoption of wireless networks and 
the Internet leading to an explosion of interest in systems composed of sensors or sensory data of various 
types and modalities. Such multi-modal systems can perceive the physical world better than ever before. 

Paradigms such as the Internet of Things (IoT), fog computing, cyber-physical systems, and dynamic data 
driven application systems are examples of some areas born out of these developments. These emerging 
systems differ substantially from the systems of the past, both in terms of the possibilities they offer as well 
as their requirements, especially regarding scale and energy efficient operation.  

For example, connected vehicle systems include travelers’ mobile devices, in-vehicle onboard 
computing systems, roadside infrastructure embedded in traffic signal controller cabinets and signs, and 

centralized local and regional traffic management centers coupled through vehicle-to-vehicle (V2V) and 
vehicle-to-infrastructure (V2I) communications. Such systems are transforming urban transportation. A 
wide variety of applications exist or are under development that will improve safety (e.g., hazard warning 
or collision avoidance), reduce congestion and traveler delays (e.g., route recommendation, adaptive signal 
control, event management), and enhance traveler experiences (e.g., entertainment, traveler information 
systems). Disruptive technologies such as automated vehicles and commercial drones as well as new 

paradigms such as ride-share systems create new opportunities and challenges for mobile sensor networks 
in connected vehicle deployments. An amalgamation of these can improve the efficiency or robustness of 
the system and lead to improved safety and quality of life for citizens. 

These systems may utilize predictive simulations and data analytics software to control and manage the 
system. The simulations will use historical data stored in back-end databases and rely on dynamic real-time 
data from in-vehicle and road-side sensor networks to derive information about the current and future states 
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of the transportation network to inform and evaluate decisions. Such an ensemble of technologies and 
devices enable better informed decisions and allow for more autonomous systems with little or in some 
cases no human supervision to manage the transportation network. 

Dynamic Data Driven Application Systems (DDDAS) (Darema 2004) are systems that can dynamically 
change their behavior based on the state of the environment in which they operate by incorporating real-
time data into computations used for decision making. The evolving and sometimes unpredictable nature 

of systems such as power grids and vehicular traffic make them well suited to exploit the DDDAS paradigm. 
Example DDDAS applications utilizing computations embedded within the physical system were described 
in DDDAS (2018). Tools are needed to support both the development and deployment of systems such as 
these. The goal of the G-RTI project is to develop a common middleware platform to support research, 
development and deployment. In the early phases of design, simulation models are used to represent system 
components. Development of hardware devices and software to be deployed within the system itself 

requires an emulation capability where real-world devices are intermixed with simulation models and 
execute in real time. For example, new apps executing on mobile devices must be tested in the laboratory 
under realistic operating conditions that include aspects such as packet loss in wireless networks. Replacing 
the simulated elements with operational systems provides a natural pathway to transition the system 
developed in the laboratory to a system that can be deployed in the field. The system development can be 
greatly accelerated if a single software environment and tool suite can be used to support all aspects of 

simulation, emulation, and deployment. Such an interfacing of real and simulated worlds arises in agile 
system development. As an application is being developed, simulations can be used to consider what if 
scenarios to inform designers regarding reversions of the system (Fujimoto et al. 2018).  

These systems are composed of multiple sub-systems that must be integrated to form a single seamless 
system. It is not uncommon to find such systems are composed of components ranging from small 
individual sensors and hand held mobile devices to large stationary back-end infrastructure. Middleware is 

required to support the wide variety of devices and technologies that are needed. Such middleware should 
provide a means to quickly and easily interface the components of the system. Such an array of devices 
utilizing static and real time data makes development and study of such systems difficult. Any study 
involving such systems would involve multiple simulators, testbeds and data sources. For example, a 
connected vehicle application might need a mobility (traffic) simulator, a road-side sensor network 
operating in the laboratory, and a wireless communication network simulator. Hence there is a need to 

connect and interface these individual components to enable them to interoperate.  
Further, many devices, e.g., mobile devices, operate using batteries as their source of power. As such, 

energy consumption is a major concern. Middleware software and algorithms should be designed to 
minimize the energy consumption of these devices as well as support techniques for reducing energy use 
in computation, communications and synchronization. The Green Runtime Infrastructure (G-RTI) 
middleware was developed to address these challenges. It is intended to support all phases of system 

development including distributed simulation, emulation, and deployment, while providing a common, 
simple interface to support a wide variety of devices and services. An implementation of G-RTI is available 
as open-source software. We envision the use of G-RTI would allow for a growth in number of cross 
boundary connected application and studies by making it simple to develop and test systems that can derive 
intelligence, actuation and data from a wide variety of sources and simulations. 
 G-RTI is differentiated from other middleware in several respects. First, G-RTI is designed to support 

a wide array of heterogeneous systems including IOT and fog or edge computing systems. This introduces 
several considerations. It must provide flexibility to system developers to dynamically choose the amount 
of resource an end point possess, allowing the system to be heterogeneous and aware.  The system must 
support both pub/sub and pull/push based communications. In addition the server should be able to support 
on-server applications. As mentioned earlier G-RTI aims to support all phases of the system development 
including simulation, emulation, and deployment. As such, G-RTI represents a different category of the 

middleware compared to those listed in Ngu et al. (2017). G-RTI maintains the advantages of the classes 
listed in this survey while remaining application independent. Finally, G-RTI allows dynamic addition and 
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removal of clients (simulations or data sources) and objects. This is of importance for interfacing and 
maintaining simulation models supporting/simulating dynamic systems, which are continuously evolving. 

The section that follows presents an overview of G-RTI. This is followed by a description of its 
architecture and implementation. Results from a benchmarking study are presented both in terms of 
communication performance and energy efficiency. A case study of a vehicle mounted sensor network 
emulation using G-RTI is presented. This is followed by a discussion of related work, concluding remarks, 

and directions for future research. 

2 G-RTI OVERVIEW 

A runtime infrastructure (RTI) is middleware that implements services to interconnect sensors, databases, 
simulations and other elements in a distributed computing environment. This term is often used in the 
context of distributed simulation systems such as those realized using the High Level Architecture for 
Modeling and Simulation (IEEE standard 1516). Systems such as these are intended to support as-fast-as-

possible and real-time distributed simulations that combine simulated and hardware components. 
The Green Runtime Infrastructure (G-RTI) middleware was designed to be applicable to different 

contexts and applications. It supports interconnecting simulations and operational devices and software 
through a set of services for data exchange, time synchronization, and system management. G-RTI supports 
interoperability among a wide variety of platforms, operating systems, and programming languages that are 
interconnected through different mediums, e.g., private as well as public wireless and wired networks. The 

middleware was designed to be scalable to accommodate many such devices and provide all the 
functionalities that are expected by distributed simulation and other computation components to execute 
and exchange data. G-RTI was designed to reduce the effort required to develop a DDDAS, necessitating 
that application development be straightforward. Specifically, G-RTI utilizes web services and standard 
protocols to leverage existing software development tools. 

Both push and pull based messaging are supported. In push-based messaging the receiver need not be 

aware of the sources producing messages nor when data will be produced. It is suitable for event based 
messaging, e.g. a triggered sensor sending data to a service (to save energy) or a simulator listening for 
events. This kind of messaging is also referred to as publish/subscribe communications. (Cugola et al. 2002; 
Souto et al. 2004) argue the importance of this type of messaging to support mobile and sensor networks in 
general. By contrast, in pull based messaging the receiver actively queries the sender for the message. This 
is suitable for scenarios with on demand message requirements, e.g., a client requesting data from a 

continuously operating sensor or a database. Use of G-RTI as a middleware for a wireless sensor network 
controlled by a centralized routing protocol such as Base Station Controlled Dynamic Clustering Protocol 
(Muruganathan et al. 2005) to conserve energy of the sensors thereby maximizing the lifetime of the sensor 
network is an example of such a system. 

An important aspect of G-RTI that distinguishes it from other RTI implementations is its emphasis on 
reducing the energy needed to interconnect mobile devices, an obvious requirement for many wireless 

sensor networks. Such systems are generally composed of sensors which are battery operated and are 
generally not accessible after they are installed (Schwiebert et al. 2002). The energy constraint determines 
the operation time of each of these devices. It these scenarios, it is beneficial if the middleware itself 
considers the energy constrained nature of the system and seamlessly makes the system energy efficient 
without any specific intervention of the system developer(s). An important consideration is to allow for the 
use of G-RTI as a platform for development and implementation of such energy conservation strategies. 

This is discussed in greater detail later. 

3 G-RTI SERVICES 

G-RTI uses a client-server architecture. In the following it is assumed G-RTI executes at a computational 
node called the G-RTI server. G-RTI is not restricted to requiring a central server, however, this simplifies 
the discussion. A multi-layered server implementation may be used to meet scalability requirements. 
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Extending the client server paradigm, each of the computational nodes interacting with G-RTI, be it a data 
source (e.g. sensor or databases), a distributed simulation entity or other element is referred to as a client.
 The functionalities implemented by the G-RTI server are referred to as services. The functionalities 
implemented at the client are referred to as callbacks. Finally, a client storing a data object is called the 
owner of the data object and all other clients are referred to as non-owners with respect to that data object. 

As with any RTI there are rules that guides the implementation and use of the RTI. Three rules apply 

to the current implementation of G-RTI. First, unlike the HLA, data objects can be updated by non-owners. 
This has two major implications: it allows for an inclusion of clients such as sensors that have limited 
computation and storage capabilities; the data objects reflecting the state of the physical object sensed by 
such a sensor can be stored in a remote client. Further, this allows for multiple components of the system 
to operate on a shared data object. Second, the ownership of data objects can be transferred among the 
clients. This allows for migration of data among the clients and hence for a change in ownership where the 

hand-offs are seamless and invisible to other clients. The third design rule is the thin-as-required approach. 
This philosophy is in line with G-RTI’s goal to implicitly allow for development and inclusion of clients 
with different constraints regarding computation and energy. This allows the clients to individually 
(independent of other clients in the system), choose to be as computationally and storage intensive as 
required. In other words, a client can choose how “thin” it wishes to be. 

There are at present three major classes of services provided by the G-RTI: Management, Data Exchange 

and Time Management Services. Management Services inform G-RTI about the components of the 
distributed system. The Join service notifies the G-RTI server of the arrival of a new client in the system. 
The Leave service notifies the G-RTI server of the departure of a client. The Register Object service allows 
the client to register their data objects with the G-RTI server. Registration of objects allow other entities in 
the system to discover and interact with the data object. 

Data exchange services allow for exchange of data among the participating system entities. The Update 

Object Value service allows a client to notify other clients of an updated value for the object. A client can 
request/read the value of an object owned by some other client using Query Object Value service. This falls 
under the Pull Based data exchange mechanism. G-RTI also allows for a subscription based data exchange 
mechanism which allows for the client to be notified of any updates to the subscribed data object. This type 
of data exchange, as mentioned earlier, is referred to as Push based data exchange. The Subscribe Object 
Value service allows clients to subscribe to data objects. As part of the push based data exchange, the Notify 

Object service allows the owner of a data object to notify G-RTI of updates to the object. The Query Reply 
service allows the client to reply to a read object value request. 

The time management services allows G-RTI to support synchronization of simulations based on logical 
time among the distributed simulations and emulations in the system and are similar to the services defined 
in HLA. The Time Advance Request service is intended for time stepped simulations. The Next Message 
Request service is intended for event driven simulations to request for the next available message in logical 

time. It implicitly synchronizes the client with other simulations in the system. The Time Advance Grant 
callback notifies simulation clients that it is safe for them to advance to the requested logical time. 

There are four other call back functions that are implemented by clients. Read Object Value callback is 
initiated by G-RTI as a response to a Query Object Value service invocation. G-RTI expects a value in 
return (the form of a query reply) which is passed to the client requesting the value. The Reply callback is 
initiated when the client’s query has been answered by the object owner. The Revise Object Value call back 

is initiated by G-RTI as a response to an Update Object Value request, to the owner of the object. This 
callback is required by a client only if it owns a data object. G-RTI initiates the Reflect callback for all the 
subscribers of a data object, whenever there is a notification of an update to the data object. This callback 
is required by a client only if it is subscribed to the data object. 

In keeping with the philosophy of allowing the clients to be as thin-as-required, these call back functions 
are not required, depending on the functionality of the client. For example a sensor or a simulator which is 

only sending data to other clients will not need any of these call back functions. On the other hand a data 
base client might implement all of these callbacks with cases specific to each object it owns or is interested 
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in receiving. To illustrate typical usage of these services, consider the system depicted in Figure 1. As 
discussed earlier, G-RTI supports push and pull based messaging. Figure 1 shows a push based messaging 
scenario. In this scenario, client 1 is a vehicle mounted mobile sensor relaying real-time location and 
velocity information while client 2 is one of several aerial drones in a swarm responsible for monitoring 
traffic. Client 3 includes a database that records updates and executes a predictive simulation using 
historical and online data. Finally x denoted an object containing vehicle information that is generated 

sporadically in an unpredictable fashion that is of interest to clients 2 & 3.  
All clients join the system (asynchronously). Client 3 owns the data object and maintains its state. It 

informs G-RTI of its ownership of object x using the Register service. Client 2 is interested in updates to 
object x but does not own the object, so it subscribes to any updates to x. Finally client 1 is a source of 
generation of data object x. So whenever client 1 wants to convey a new value for x, it uses the Update 
service to inform the G-RTI of an update. G-RTI then forwards the update to the appropriate client (client 

3). In addition, G-RTI also reflects the updated value to any subscriber (client 1). 
Another scenario illustrating the push mechanism arises when the owner of the object itself generates 

an update for a data object. In the example scenario, the predictive simulation might want to fill in for any 
missing update. Using the previous mechanism that uses the update service of G-RTI would trigger a revise 
callback, which is redundant and might require extra effort on the application developer of client 3 to 
remove a possible update loop. G-RTI’s notify service handles these cases. Client 3 notifies G-RTI of an 

update for object x and G-RTI reflects the update to all the subscribed clients. 
We extend this scenario to illustrate use of pull based messaging. Client 2 would like to know the value 

of x. It queries G-RTI for this value, which then relays a read request to the owner of the object (client 3). 
The owner replies to G-RTI using the query_reply service. G-RTI then relays the reply to the requesting 
client. All these steps are executed asynchronously, which allows flexibility in the application development. 

It might be noted that client 1 in this example may be resource constrained. The client only requires 

resources to sense/gather the required data and make an http request. Client 2 may be able to support 
more extensive computation, but might be constrained by providing only a limited amount of storage. Client 
3 might be executing on a server with extensive computation and storage resources. Allowing the clients to 
be thin-as-required independent of other clients allows them to co-exist and form symbiotic relationships 
with other clients. 

4 IMPLEMENTATION 

Design choices in implementing the system were governed by the goals discussed earlier. Web interfaces 
were used to place minimal requirements and restrictions on clients and to simplify client-side application 
development. All services can be accessed using a URI, hence allowing for any device capable of 
connecting to the Internet to become a client. Apache was used because of its proven ability to scale to large 
deployments. CPPCMS is a C++ based framework which allows a native, high performance interface for 
inclusion of on-server applications. It was used to provide high performance and scalability. Popular 

packages and simulation applications used for development and study of networked and distributed systems 
are based on C++. Finally Apache and CPPCMS are both free and open-source software platforms, 
simplifying widespread distribution of G-RTI. Apache is released under Apache License 2.0 and CPPCMS 
with an LGPLv3 license and alternative Commercial License as an alternative for proprietary software 
development. 

Push based messaging is a not a native operation for network communication be it socket or web based. 

G-RTI implements push based messaging using continuous polling. Simply put, continuous polling is 
maintaining at least an instance of client request for each client in G-RTI. As can be easily seen, with finite 
resource there will be a time the server runs out of instants for a client. The state for the client must be reset 
to polling before any further messages can be pushed to the client. We call this period the resetting period 
and discuss it further in the benchmarking section. 

Another feature of G-RTI is a dynamic web-dashboard. The dashboard allows remote monitoring of the 

system components and eases system development and debugging. Currently the dash board provides two 
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views, a client level view that list all the information pertaining to a client, and a data object level view that 
presents information organized by objects. 

5 BENCHMARKING EXPERIMENTS 

We next present results from micro-benchmarking experiments to evaluate the performance of the G-RTI 
services. This study focused on two major performance metrics of the middleware implementation. One is 
the latencies of the messaging primitives provided by G-RTI. The second concerns the maximum bandwidth 

of communications for each G-RTI client to update a shared object.  
The setup for the benchmarking experiments consisted of an implementation of G-RTI executing on a 

Lenovo ThinkPad T410s laptop with a Ubuntu 14.04 LTS operating system. The setup also included two 
(three in case of subscription latency) python clients, on the same system. The choice was made to avoid 
time synchronization issues for computing subscription latency. All other results were replicated on the 
same platform to maintain uniformity for comparison purposes. All the experimental values presented 

represent the average of 100 trials. 
We define subscription latency as the time between the instants when an update is sent until a subscribed 

client receives the update. The subscription latency was computed by using three clients in a scenario as 
shown in Figure 1. The implementation follows the first push based message scenario described earlier. 
Briefly, client 1 sends an update to an object owned by client 3 and client 2 is subscribed to the object and 
hence receives a reflect call back. The subscription latency is computed as the difference in the time instant 

when the update request to the object starts in client 1 and the instant when client 2 successfully completes 
receiving the reflect callback. As the clients are on the same system the time difference is not affected by 
any clock synchronization. This is then repeated for varying sizes of update messages. 

We define the query round trip latency as the minimum time from when a client sends out a query for 
an object until the time it receives a reply from the G-RTI server. As noted earlier, query is an asynchronous 
operation and hence the query latency can vary depending on how the clients are set up. For computing the 

query latency the experimental setup and the implementation is the same as described in the scenario for 
pull based messaging discussed earlier. Briefly, client 2 queries G-RTI for the value of the object owned 
by client 3, which then receives a read callback from G-RTI and replies back to the query. Finally client 2 
receives a reply from G-RTI. The latency is computed as the time difference between the instants when 
client 2 starts sending the query and the instant when it finishes receiving a reply back. Again this is repeated 
for varying sizes of object values. 

We define update round trip latency as the time between the instant when a client sends an update to a 
peer client and the instant when the client receives an update from the peer client. To compute the latency, 
client 1 sends an update to an object owned by client 2 and vice-versa. The round-trip includes an instance 
of the resetting period. The resetting period was empirically determined to be approximately 4 milliseconds. 
Again the update length was varied. 

Figure 2 shows the results of the latency benchmarking experiments. The subscription latency is the 

least and this can be attributed to the fact that it requires one way communication. Both query and update 
round-trip times include one resetting period which is a constant irrespective of the message size. 
Furthermore, the change in size of the message affects only the reply path of the query latency, i.e., the size 
of the reply changes. The other path is not affected as the size of the query requests stay constant. This 
explains a lower slope of the line for the query latency with respect to the update round-trip latency and a 
comparable slope for subscription latency. Finally the difference in the slopes for update-round trip latency 

and the query latency can be easily accounted for when the resetting period is considered as a constant in 
both. The constant slopes signify a linear increase in latency as the message size is varied. These results 
show a very predictable behavior for G-RTI with respect to the latency for the messaging services. Because 
the subscriptions, objects and clients are managed as hash maps which provide a constant time look up, an 
increase in the number of any of these is not expected to affect the latencies.  

The maximum bandwidth excluding http and lower layer headers was measured to be approximately 

3.7 Mbps (and 2.21 Mbps when the resetting period is taken into account). These were computed without 
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any manipulation of the default settings of the Apache web-server, so should be considered to be 
conservative values. The bandwidth is currently limited by the size of the request that Apache and 
FASTCGI allows. Theoretically the request size can be set to any arbitrary number. In that case the limiting 
factor is the network hardware and software stack. Even so, the bandwidth is comparable with other web-
based RTIs (Möller and Dahlin 2006). 
 The throughput and latency is implementation dependent, making direct comparison difficult. 

However, widely used micro benchmarks are reported in the literature. E.g. one can compare the results 
presented here with those presented in Cardoso et al. (2017). G-RTI performs significantly better than the 
presented middleware implementations on all counts. 
  

 
6 ENERGY CONSUMPTION 

Space does not permit extensive discussion of the energy consumption characteristic of G-RTI here, 
however we cite on-going work in this area. Our previous work (Fujimoto et al. 2017) presented an 
experimental study to examine the use of message aggregation to reduce energy consumption in clients. In 
this study a cellular automata based traffic simulation was used (Rickert et al. 1996), that was configured 
to model several road segments of Peachtree Street in midtown Atlanta. The simulation (executing on a 
smartphone) sends a stream of vehicle position data via G-RTI over Wi-Fi to a server (executing on a 

laptop). To study the effect of the aggregating messages on the energy consumption of the client we 
compute the energy consumed for varying level of aggregation. In each experimental run, the number of 
updates, and the size of the data in each update remains constant and the only variable is the number of 
updates aggregated to form a message. Figure 4 shows the amount of energy consumed per byte of 
transmitted data. As expected, an initial reduction in the energy consumed is observed as message 
aggregation increases. Thus, from the standpoint of energy consumption, a rule of thumb could be that data 

aggregation is very effective. It shall be noted that depending on the message aggregation strategy used, it 
can introduce latency in message delivery. 

Other recent work (Biswas and Fujimoto 2018) examines energy-efficient implementation of the time 
management services. In particular, a low energy version of the well-known YAWNS synchronization 
algorithm termed LEY as developed. Preliminary experimental data using benchmark simulations indicate 
that LEY uses significantly less energy than an energy-oblivious implementation of YAWNS, and requires 

only a modest amount of energy beyond the minimum required to execute the distributed simulation. 

7 CASE STUDY: DDDAS USING G-RTI 

Crowd sourcing, mobile computing and a wide variety of public sensor based intelligent/smart systems 
have made a many varieties of data available for transportation systems. Combined with the emergence of 

 

 

 

 

 

 

 

 

 
 
 
 

 
 

Figure 2: G-RTI messaging primitive latencies. 

 

 
 

 
 
 
 
 
 

 
           

 
Figure 1: Push based message service usage scenario. 
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autonomous vehicles and smart cities (Shueh 2018), intelligent and feedback based systems for 
transportation system operations and management are gaining in importance. A recent development in the 
field is the standardization of a message set for the DSRC (Dedicated Short Range Communication) to 
provide interoperability among DSRC applications. DSRC as defined (Sill 2018) by the United States 
Department of Transportation (DoT), is a two-way short- to- medium-range wireless communications 
capability that permits very high data transmission critical in communications-based active safety 

applications. One of the messages defined in the message set dictionary is the basic safety message (BSM).  
Applications such as that proposed in [DSRC app 2018] derive weather information from mobile sensors 

on the vehicles transmitted as part of the BSM message to assist the management of the roads under adverse 
weather conditions. Also the vehicle operation information present in Part A of the BSM message can be 
utilized for user applications such as vehicle emission modeling proposed in Guensler et al. (2017) and 
energy efficient route prediction. These applications use the vehicle mounted sensors as a network of mobile 

sensors to generate an understanding of a larger system, which is then used to provide added benefits to the 
users. Similar DDDAS based traffic systems were studied in (Fujimoto et al. 2006; Hunter et al. 2009). 

Development of these applications is not straightforward. Because they rely on the BSM message to 
capture and predict future states of the system, it is important to understand and consider the uncertainties 
of mobile wireless communications. Packet drops, e.g., due to network congestion, can greatly affect the 
services built on top of such networks. Early evaluation and development coupled with the need for 

reproducible results necessitate the use of simulations operating in controlled environments such as the 
developer’s laboratory. Simulation models of vehicle traffic and wireless communication are needed, but 
detailed, high resolution models of both are seldom available within the same simulation package, calling 
for an integrated approach. And to natively test software applications the developers must also interface the 
application with the set of simulators which can be time consuming. This is further complicated if the 
application needs to be studied in a real-time environment where an emulation capability is needed. Often 

these efforts are specific to the study at hand and cannot be reused. 

 Figure 3 depicts a DDDAS application for transportation system management. In this system a traveler 
assistance app is depicted that executes on a smartphone. It utilizes updates from a back-end server 

 
 
 

 
 

 
 

 

 

 

 

 

 
 
 

 
 

  
Figure 3: Notional diagram of DDDAS for case study. (V2X image: © Zoloo777) CC BY-SA 4.0 license. 
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application. The server application relies on BSM data communicated among a network of mobile sensors 
mounted on the vehicles augmented with other inputs such as weather data to deliver information relevant 
to the app’s user, e.g., data such as travel time and fuel consumption concerning the driver’s planned route 
as well as that for alternate routes. 

In this study we simulate/emulate a road network with connected vehicles, communicating BSM 
messages. In addition to showing an end-to-end implementation using GRTI, this study also provides a 

close to real world example of how G-RTI can be used to integrate different simulations. The traffic 
simulator models the mobility of the vehicles. A communications network simulator models information 
exchanged between vehicles and roadside base stations. Here, we utilize two widely used simulators, 
SUMO (SUMO 2018) a traffic simulator suite  and NS3  (NS3 2018) a network simulator. The road network 
(Sumo Network 2018)  has a total edge length of 17.84 Km and a total lane length of 49.53 Km. The 
network has four origins, four destinations and two intersections. Each road for outbound traffic has three 

lanes. U-turns are prohibited at all intersections. A higher priority has been given to eastbound and 
westbound traffic. Vehicle data is output in real-time in floating car data format. The format includes the 
location of all the vehicles in the simulation in addition to other vehicle data. The simulation using NS3 
models moving nodes (vehicles) on a “dynamically specified” path, communicating BSM messages over 
WAVE. This can be broken down to two major parts, first the mobility simulation for the nodes in NS3 and 
second the BSM communication simulation.  

The mobility for the nodes in NS3 was implemented using NS3’s waypoint mobility model augmented 
with support for dynamic inclusion and removal of vehicle during the simulation. The waypoint mobility 
model requires the position of the vehicle and the time-stamp at which the vehicle’s position was recorded 
(in this case provided by traffic simulation using SUMO). The waypoint mobility model can be thought of 
as a list of vehicle position and timestamp data. Hence it requires at least one time-step into the future. This 
was achieved by simulating SUMO a time-step ahead of NS3 (Eichler et al. 2005). Another constrain of 

NS3 is that it does not allow dynamic creation of nodes. The dynamic inclusion and removal was made 
possible by recycling of NS3 nodes and assuming the number of vehicles in the simulation at an instant has 
an upper bound. This was facilitated by the max-num-vehicles argument of SUMO. Another part of the 
implementation was that the requirement of dynamic paths for the nodes required the vehicle trace to stream 
to NS3 in real-time from SUMO. This was achieved by using TAP device, which is exposed on one end as 
a kernel net device and on the other end as a file descriptor in user space. The user space file descriptor can 

then be passed on to FdNetDevice of NS3. 
The next part is to model BSM communication for the nodes. The BSM communication was simulated 

with a packet size of 200 bytes (Sung et al. 2013) with a frequency of 1 Hz with an expected range of 1000m 
(Cronin 2018) without channel switching and with a max random delay of 10ms before transmitting over 
WAVE. The simulation was implemented using the WaveBSMhelper application class of NS3. Figure 5 
shows the effect of increasing the number of nodes in NS3, the vertical axis presents the wall clock time 

taken by NS3 to simulate one simulation second. The quadratic behavior of the curve can be explained by 
the nature of the broadcast. In this scenario the limiting factor for achieving real-time performance is the 
execution time of NS3. This system was developed and tested on Ubuntu 14.04 LTS. It must be noted that 
the simulations can be executing on other Operating systems as well e.g. VISSIM a proprietary windows 
based simulator could be used to replace SUMO in this study. A view of the simulated road network is 
shown in Figure 6. Traces for the vehicles on the emulated road network were generated by SUMO. They 

are parsed by a python script and passed on to another python script through G-RTI which then relays it to 
NS3 through the FD-TAP interface. Figure 7 illustrates one frame in an animation of the mobility 
simulation and network simulation outputs. Although the simulations are run in real-time and concurrently, 
the NS3 visualization was captured offline due to the lack of a good online visualization program for NS3. 

8 RELATED WORK 

Many middleware approaches have been proposed in the past. Some support specific types of scenarios and 

some are more generic (Aberer et al. 2006; Yu et al. 2004). Middleware approaches such as Aberer et al. 
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(2006) allow reconfiguration of nodes in a live system but require an XML interface to interface the nodes, 
restricting dynamic changes in the computational resources of the nodes. These middleware approaches 
assume sensors are very resource constrained; the approach proposed here assumes a mix of devices with 
varying degrees of resources available to them. It is up to the system developer to assign computational 
tasks depending on resource availability, which can be static or vary dynamically.  

 

 

 

Figure 7: Graphical outputs of SUMO (left) and 
NS3 (right) at same simulation time. 

 
Approaches such as (Cugola et al. 2002; Soini et al. 2007) present middleware that are based on a 

publish/subscribe method for communication rather than pull-based messaging. (Heinzelman et al. 2004; 

Yu et al. 2004) proposed a peer-to-peer middleware approach for sensor networks. Soini et al. (2007) 
investigates and argues the advantages of a centralized approach over peer-to-peer middleware for sensor 
networks, citing reasons such as faster synchronization, discovery, routing, and data dissemination. Our 
experiences thus far with both centralized and peer-to-peer middleware are consistent with these comments. 
In addition, the centralized approach is better able to support thin-as-required clients compared to peer-to-
peer approaches. Another advantage of a centralized middleware is it is more natural in supporting the 

integration of on-server applications. 

9 CONCLUSION AND FUTURE WORK 

This work described G-RTI, a middleware to support DDDAS developments consisting of heterogeneous 
components. G-RTI provides a common platform for research, emulation and deployment of systems. 
Major design goals include support of a wide variety of devices and application contexts, reduced 

 

 

 

 

 

 

 

Figure 4: Effect of energy consumed by a client 
as the number of messages aggregated is altered. 
 

Figure 6: View of simulated road network (not 
drawn to scale) 

 
 

 

 

 

 

 

 

 

 
 

 
 

  Figure 5: Effect of changing number of Nodes in NS3    
  on wallclock time versus simulation time. 
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development effort, providing a platform for energy efficient deployment and the possibility of thin-as-
required clients. The suite of services offered by G-RTI was developed from our experience in the design 
and implementation of distributed systems ranging from purely analytical system to systems with real world 
components. We consider G-RTI as toolbox where the system developer has the choice of using the tools 
that they find most efficient for the specific system development. The services offered by G-RTI and the 
expected callbacks were described as well as implementation details and usage scenarios. Performance 

measurements from a benchmarking study characterize the delays required for various messaging services 
and some energy consumption properties. An important goal for G-RTI is to improve energy efficient 
transparent to the application. Toward this end strategies to reduce energy consumption and integrate it in 
the G-RTI platform are under development. Current work is also focusing on developing energy efficient 
approaches to realizing time management services for distributed simulation. Finally, another area of future 
work aims at making a testbed based on G-RTI available for researchers to study and develop application 

that interact with real-world components. 
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