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ABSTRACT

Value prediction holds the promise of significantly improving the
performance and energy efficiency. However, if the values are pre-
dicted incorrectly, significant performance overheads are observed
due to execution rollbacks. To address these overheads, value ap-
proximation is introduced, which leverages the observation that
the rollbacks are not necessary as long as the application-level
loss in quality due to value misprediction is acceptable to the user.
However, in the context of Graphics Processing Units (GPUs), our
evaluations show that the existing approximate value predictors
are not optimal in improving the prediction accuracy as they do
not consider memory request order, a key characteristic in deter-
mining the accuracy of value prediction. As a result, the overall
data movement reduction benefits are capped as it is necessary to
limit the percentage of predicted values (i.e., prediction coverage)
for an acceptable value of application-level error.

To this end, we propose a new Address-Stride Assisted Approxi-
mate Value Predictor (ASAP) that explicitly considers the memory
addresses and their request order information so as to provide high
value prediction accuracy. We take advantage of our new obser-
vation that the stride between memory request addresses and the
stride between their corresponding data values are highly corre-
lated in several applications. Therefore, ASAP predicts the values
only for those requests that have regular strides in their addresses.
We evaluate ASAP on a diverse set of GPGPU applications. The
results show that ASAP can significantly improve the value pre-
diction accuracy over the previously proposed mechanisms at the
same coverage, or can achieve higher coverage (leading to higher
performance/energy improvements) under a fixed error threshold.

CCS CONCEPTS

·Computer systems organization→ Single instruction,mul-
tiple data;

KEYWORDS

GPU, Value Prediction, Approximation, Scheduling

ACM Reference Format:

Haonan Wang, Mohamed Ibrahim, Sparsh Mittal, and Adwait Jog. 2019.
Address-Stride Assisted Approximate Load Value Prediction in GPUs. In
2019 International Conference on Supercomputing (ICS ’19), June 26–28, 2019,

Phoenix, AZ, USA. ACM, New York, NY, USA, 11 pages. https://doi.org/10.
1145/3330345.3330362

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICS ’19, June 26–28, 2019, Phoenix, AZ, USA

© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6079-1/19/06. . . $15.00
https://doi.org/10.1145/3330345.3330362

1 INTRODUCTION

Graphics Processing Units (GPUs) are capable of providing very
high peak throughput and memory bandwidth at a competitive
power budget [9ś11, 43, 45]. However, continuous scaling of GPU
performance and energy efficiency is challenging primarily because
of the high system energy consumption [12] caused by excessive
data movement across different levels of the memory hierarchy,
and limited memory bandwidth. To address these bottlenecks, pre-
vious works have proposed several techniques such as data com-
pression [42], warp scheduling for better cache and memory per-
formance [8, 9, 11, 32], and cache management [30, 31]. Another
promising strategy for reducing data movement is value prediction,
whereby the values are not necessarily required to be fetched from
memory as they can be predicted at the core. In the context of CPUs,
previous techniques [3, 4, 17, 26ś28, 38, 39] used to both predict
and fetch the data. The predicted values are later compared with
the fetched values. If the prediction turns out to be correct, the data-
dependent stall cycles are reduced significantly. However, in the
case of a misprediction, the execution is rolled back leading to the
flushing of the dependent instructions in the pipeline. Such perfor-
mance and data movement overheads are the critical impediments
towards leveraging the benefits of value prediction. To address the
challenges of precise value prediction, recent research has explored
approximate value usage [13, 20, 35, 36, 44, 45], which leverages
the observation that for approximable applications the requirement
of rollbacks can be omitted as long as the application-level loss in
quality is within an acceptable range.

While rollback-free value approximation has received signifi-
cant attention in the context of CPUs [13, 20, 35, 36, 41], only a few
works have explored it in the context of GPUs [44, 45]. Applica-
tion execution in GPUs relies on multi-threading, where associated
threads are scheduled on GPU cores at the granularity of warps,
where a warp usually consists of 32 threads. Each load instruction
in a warp can generate one or more cache block request depending
on how well the data is coalesced across threads within the warp.
As hundreds of warps can concurrently execute and cache sizes in
GPUs are much smaller than CPUs [22], data movement between
caches and memory is a serious performance and energy efficiency
bottleneck [8, 9, 11, 42]. If values of these requests can be correctly
predicted at the core, the data movement and stall cycles can be
significantly reduced thereby improving latency tolerance, perfor-
mance, and energy efficiency. However, if the predictor predicts
incorrectly, each mispredicted cache line leads to a certain level
of quality loss in the application’s final output. This quality loss is
dependent on many factors such as the prediction coverage (defined
as the ratio of predicted load requests to the total load requests), the
magnitude of error in value prediction, and the error resilience of
instructions that use erroneous values as their operands. Therefore,
if values can be predicted more accurately, higher coverage can be
applied for better performance and energy efficiency.
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