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ABSTRACT

Memory (DRAM) energy consumption is one of the major

scalability bottlenecks for almost all computing systems, includ-

ing throughput machines such as Graphics Processing Units

(GPUs). A large fraction of DRAM dynamic energy is spent on

fetching the data bits from a DRAM page (row) to a small-sized

hardware structure called as the row buffer. The data access

from this row buffer is much less expensive in terms of energy

and latency. Hence, it is preferred to reuse the buffered data as

much as possible before activating another row and bringing

its data to these row buffers. Our thorough characterization of

several GPGPU applications shows that these row buffers are

poorly utilized leading to sub-optimal energy consumption. To

address this, we propose a novel memory scheduling for GPUs

that exploits latency and error tolerance properties of GPGPU

applications to reduce row energy by 44% on average.

Index Terms—GPUs, Scheduling, Approximate Computing

I. INTRODUCTION

Graphics Processing Unit (GPU)-based architectures are

becoming the default accelerator choice for a large number

of data-parallel applications ranging from high-performance

computing (HPC) workloads to cryptographic applications.

Because of their ability to provide high compute throughput at a

competitive power budget, they are being employed into almost

all kinds of computing systems, including many machines

on Top500 [1] and Green500 lists [2]. One of the biggest

impediments towards the continuous scaling of GPUs is the

memory system energy consumption [3]. A large fraction of

DRAM access energy is related to the fact that multiple high-

energy consuming DRAM operations such as row activations

and precharges must be performed, so as to access data from a

DRAM row (page). These operations are required to ensure the

data from the correct row is present in the row buffer, which

is a limited-sized hardware structure attached to each DRAM

bank. If accesses to the same row can be scheduled together

without switching in and out the row buffer data (i.e., row

buffer locality can be enhanced), they can incur much less row

energy. Quantitatively, this energy can be around 25-50% of

the total DRAM energy [4]–[7] and is dependent on the row

buffer locality workloads (higher the row buffer locality, the

lower the DRAM energy). Hence, it is preferred to reuse the

buffered data of a row as much as possible to improve the row

buffer locality and reduce the energy consumption.

We observe that several GPGPU applications suffer from

poor row buffer reuse (also referred to as row thrashing).

It can happen even with the popular First-Row First-Come-

First-Serve (FR-FCFS) scheduler that leverages a large re-

order pending request queue and an open-row policy which is

typically employed to maximize the row buffer locality. This is

not only caused by the GPU scheduling policies at the core but

is also dependent on the applications’ algorithms and their data

placement mechanisms. Moreover, the multi-threading nature

of the GPUs can cause severe contention and interleaving of

requests at the memory controller, which can also lead to poor

row buffer locality. To address this problem, we performed a

detailed characterization of row buffer locality in GPUs and

revealed two key insights. First, the current GPU memory

scheduling policies are too aggressive in reducing latencies

of requests: requests in the pending queue are issued to their

destined DRAM banks as soon as these DRAM banks finish

serving the previous requests. Second, the current memory

scheduling policies are too strict in terms of fetching only

the exact values from the DRAM banks. Therefore, an entire

DRAM row has to be fetched into the row buffer even if it

is poorly reused. We argue that these aggressive and strict

policies are sub-optimal towards improving row buffer locality.

Our lazy memory scheduler relaxes the aforementioned

constraints by leveraging the fact that several GPGPU ap-

plications are latency and error tolerant [8], [9]. Specifically,

our proposed memory scheduler works in two modes: delayed

and approximate. The delayed memory scheduling (DMS)

carefully delays (i.e., increases the access latency) the issuing

of both read and write pending memory accesses so that more

requests can be accumulated in the FR-FCFS pending queue.

This helps the memory scheduler to find more requests (i.e.,

will have more visibility) that can be co-scheduled back to

back to the same DRAM row leading to improved row buffer

locality. Because several GPGPU applications are inherently

latency tolerant as they spawn thousands of threads to hide

the long memory access latencies (which is not the case for

most of the workloads executed on CPUs), we find that the

additional delay does not affect performance significantly for

many GPGPU applications. However, for certain applications

that cannot tolerate latency significantly, DMS is also able to

find an appropriate delay to avoid severe loss in performance.

The approximate memory scheduling (AMS) is based on our

observation that a large portion of row activations is caused

by only a small portion of memory accesses. To this end, the
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III. MOTIVATION AND ANALYSIS

Our goal is to improve the average row buffer locality

(i.e., Avg-RBL) by reducing the number of poorly reused

rows. To this end, we propose two mechanisms: a) delayed

memory scheduling (DMS), which trade-off scheduling delay

(and potentially performance) for better Avg-RBL and b)

approximate memory scheduling (AMS) which trade-off output

quality for better Avg-RBL. In this section, we will motivate

these trade-offs and show their effectiveness. We will also

discuss how both these scheduling techniques can work together

for even higher improvements in the Avg-RBL.

A. Delayed Memory Scheduling (DMS)

The baseline FR-FCFS scheduler attempts to schedule

pending memory requests to the DRAM bank as soon as

it is idle. Interestingly, we find that such timely scheduling

of requests by the memory controllers actually disallows

optimal reuse of data present in row buffers. To understand

this observation, consider an illustrative example shown in

Figure 3. The first scenario in Figure 3(a) depicts the baseline

case of FR-FCFS scheduling. As shown in the figure, there

are currently four pending requests in the memory controller’s

pending queue and these four requests belong to four different

DRAM rows (R1, R2, R3, R4) of the same bank. Also, there

are many more requests destined to the same bank but have

not yet arrived at the pending request queue. Among such

requests, there are four more requests that belong to the same

four DRAM rows (R1, R2, R3, R4). For the baseline scheduler

that timely issues all these requests, we find that the first

four requests in the pending queue are issued back to back

to the DRAM bank, leading to 4 activations for R1 through

R4. When the remaining four requests arrive at the pending

queue, four additional activations will also be required to serve

them. Therefore, eight activations are required to serve all eight

requests of R1 through R4, leading to an Avg-RBL of 1.

…… ……

requests currently

In the pending queue

oldest

request

R1R2R3R4

future

requests

R2

request

X cycles away

R4 R3 R1

For R1 through R4:

Activations = 8

Requests = 8

Locality = 8/8 = 1

(a) Pending queue with the baseline FR-FCFS scheduling.

…… ……

requests currently

In the pending queue

request stalled

for X cycles

R1R2R3R4

future

requests

R2R4 R3 R1

For R1 through R4:

Activations = 4

Requests = 8

Locality = 8/4 = 2

(b) Pending queue with DMS.

Fig. 3: An example illustrating the benefits of delayed memory
scheduling due to increased visibility to the memory controller.
Eight requests are shown in total destined to four DRAM rows
(R1, R2, R3, R4).

In order to improve the Avg-RBL, we propose the delayed

memory scheduling (DMS). DMS carefully delays the issuing

of each pending memory request in the hope that more requests

destined to the same row of a bank will show up in the

pending queue. To illustrate this, consider the case as shown

in Figure 3(b) where the issuing of all requests have been

delayed for X cycles. Hence, by the time the other four requests

have reached the pending queue, the first four requests to R1

through R4 are still in the pending queue. Therefore, only four

activations are required to serve all eight requests, leading to

an Avg-RBL of 2 (twice of the baseline case).

Figure 4(a) shows the normalized number of activations

across a variety of GPGPU applications. For all of these

applications, each of their requests (that does not lead to

a row hit) is delayed by X cycles in the pending queue,

denoted by DMS(X), before it can be served by a DRAM

bank (more details are explained in Section IV). We show the

results for when X is equal to 64, 128, 256, 512, 1024, and

2048 cycles. We find that many applications are sensitive to

delay – the higher the delay, the higher the chance of finding

requests destined to the same rows, which leads to fewer row

activations. On average, the activation reduction can be as high

as 31%, when a delay of 2048 cycles is used. Figure 5 shows

the distribution of row activations based on their RBLs with

different delays for two applications. As we observe, for both

applications, the proportion of row activations with RBL(1)

(i.e., only one request accesses the activated row before it is

closed – Section II-D) reduces significantly with the increase

of delay. Meanwhile, the proportions of row activations with

higher RBLs have increased. This shift in the RBL of row

activations effectively shows how DMS can help to improve

the Avg-RBL for real applications.

On the negative side, the increase in delay can degrade the

overall performance. Thanks to the latency tolerance of GPGPU

applications, the increase of delay has a limited impact on the

performance as shown in Figure 4(b). Many applications retain

their baseline performance up to 95% even at very large delays

(e.g., 1024 cycles). However, IPC’s sensitivity to delay varies

for different applications and hence it is critical to determine an

appropriate value of delay to carefully trade-off the activation

reduction with the performance.

B. Approximate Memory Scheduling (AMS)

In order to further improve the Avg-RBL, we determine

which pending requests have low RBLs and propose to return

these requests immediately instead of issuing them to the

DRAM banks. Subsequently, their values are approximated

using existing techniques on their way back to the cores.

Our proposal is motivated by the observation that for many

GPGPU applications, a small portion of memory requests

contributes to a high proportion of total row activations. The

cause of this is multi-fold as it depends not only on the

applications’ algorithms and data placement mechanisms but

also on the runtime behaviors driven by the warp or thread-

block scheduling techniques. Nevertheless, as we will discuss

further, our proposed techniques are also complementary to

other optimizations that may improve Avg-RBL separately.

AMS works on row activations that only contain memory

read accesses, as memory write accesses are typically not the
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TABLE II: List of evaluated GPGPU applications. See Table III for more details.

Abbr. Description Input Group
Thrashing Delay Related Approximation Related

Level Delay Tol. Act. Sens. T hRBL Sens. Err. Tol.

RAY [13] Ray Tracing Matrix 3 High High High Low High

inversek2j [24] Inverse kinematics for 2-joint arm Coordinates 3 High High High Low High

newtonraph [24] Equation solver Image 4 High High High Low Low

FWT [13] Fast Walsh Tranform Matrix 4 High Medium High High Low

MVT [25] Matrix Vector Product and Transpose Matrix 2 High Medium High Low High

jmeint [24] Triangle intersection detection Coordinates 2 High Medium High Low Medium

ATAX [25] Matrix Transpose, Vector Multiplication Matrix 4 High Medium High Low Low

3DCONV [25] 3D Convolution Matrix 2 High Medium High Low Medium

CONS [25] 1D Convolution Matrix 4 High Medium High Low Low

srad [13] Speckle Reducing Anisotropic Diffusion Image 4 High Medium High Low Low

LPS [13] 3D Laplace Solver Matrix 1 High Medium Low High High

BICG [25] BiCGStab Linear Solver Matrix 1 High Low High High Medium

SCP [13] scalar products Matrix 1 High Low High High Medium

GEMM [25] Matrix Multiplication Matrices 4 High Low Medium High Low

blackscholes [24] Black-Scholes Option Pricing Matrix 4 Medium Medium High High Low

2MM [25] 2 Matrix Multiplications Matrices 4 Medium Medium Medium Low Low

3MM [25] 3 Matrix Multiplications Matrices 3 Low High High Low High

SLA [13] Scan of Large Arrays Matrix 4 Low High Medium Low Low

meanfilter [24] Convolution Filter for Noise Reduction Image 3 Low High Low Low High

laplacian [24] Image sharpening filter Images 3 Low Medium Low Low Medium

TABLE III: Application features and intensity classifications. The thresholds are used only to facilitate the discussion in Section V.

Feature Description
Categories (by X Range)

Low Medium High

Thrashing Level
The application has X% requests in rows with RBL(1 - 8).

[0,3) [3,10) [10,100)

Delay Tolerance
The application has a MTD of X .

[0,256) [256,1024) [1024,+∞)

Activation Sensitivity
The application’s activation reduction is X% compared to the baseline when 2048 cycles delay

is applied to the FR-FCFS pending queue.
[0,10) [10,20) [20,100)

T hRBL Sensitivity
The application’s maximum activation reduction is X% compared to the baseline when reducing

its T hRBL from 8 to lower values.
[0,5) NA [5,100)

Error Tolerance
The application shows X% application error when using our proposed value approximation

technique (Section IV-D) at 10% coverage or its maximum available coverage less than 10%.
[20,+∞) [5,20) [0,5)

user-defined coverage again in consecutive 4096-cycle windows.

These steps are repeated until the end of application execution.

D. Value Prediction Unit

The Value Prediction Unit (VP unit) is responsible for

approximating the values of requests that are dropped by

the AMS unit. Since the VP unit works independently and

is orthogonal to the memory scheduling schemes, we can

support a large variety of previously proposed value prediction

mechanisms such as [10]–[12], [26]. Similar to prior works,

AMS uses programmer annotations to bound the approximation

errors as the criticality of instructions presumably could only

be identified by the programmer [27]–[31]. AMS requires the

following information from the programmer, as shown in the

example of Listing 1: a) the approximable loads which are

error tolerant, and b) the prediction coverage which limits the

total number of approximations.

#pragma pred_coverage{10%}

#pragma pred_var{B}

C[i] = A[i] + B[i];

Listing 1: Example of Code Annotation

To demonstrate how AMS works, we designed a simple but

effective VP unit that is based on the intuition that nearby

addresses may store similar values and hence the value of

a cache line can be approximated by a nearby cache line

with limited error [10]. In order to predict the values for

the dropped requests, we search in the nearby cache sets

of the L2 cache and use the values from cache lines with

nearest addresses as their approximate values.2 To minimize

the searching overhead, we carefully choose the search radius

of nearby sets and take advantage of the existing associative

search hardware to search in the cache ways of a set. We

find that the searching overhead is negligible compared to the

performance improvement introduced by value approximation.

We will discuss the performance and output quality results in

Section V. Note that we first warm up the L2 cache with a

sufficient number of requests to prepared for the searches, and

thus AMS is initially disabled until the cache is ready.

E. Hardware Overhead

The DMS unit requires one comparator and one adder to

do comparisons for the functionalities of DMS. One 16-bit

counter is required for Static-DMS and Dyn-DMS to store

the current delay value of X. For Dyn-DMS, the DMS unit

requires one 32-bit counter to store the baseline BWUTIL,

one 32-bit counter to store the current BWUTIL, one 16-bit

counter to store the cycles during profiling, one 8-bit counter to

store the number of windows during profiling. The AMS unit

requires one multiplier, one adder and one comparator for the

2In this simple model, we did not consider the error propagation caused by
the reuse of approximated cache lines. However, we have tested with a more
advanced model (that considers reuse) and have observed similar application
error results.
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