
Analyzing and Leveraging Remote-core Bandwidth

for Enhanced Performance in GPUs

Mohamed Assem Ibrahim∗, Hongyuan Liu∗, Onur Kayiran†, Adwait Jog∗

∗William & Mary †Advanced Micro Devices, Inc.

Email: {maibrahim,hliu08}@email.wm.edu, onur.kayiran@amd.com, ajog@wm.edu

Abstract—Bandwidth achieved from local/shared caches and
memory is a major performance determinant in Graphics
Processing Units (GPUs). These existing sources of bandwidth
are often not enough for optimal GPU performance. Therefore,
to enhance the performance further, we focus on efficiently
unlocking an additional potential source of bandwidth, which
we call as remote-core bandwidth. The source of this bandwidth
is based on the observation that a fraction of data (i.e., L1 read
misses) required by one GPU core can also be found in the local
(L1) caches of other GPU cores. In this paper, we propose to
efficiently coordinate the data movement across cores in GPUs
to exploit this remote-core bandwidth. However, we find that its
efficient detection and utilization presents several challenges.
To this end, we specifically address: a) which data is shared
across cores, b) which cores have the shared data, and c)
how we can get the data as soon as possible. Our extensive
evaluation across a wide set of GPGPU applications shows
that significant performance improvement can be achieved at
a modest hardware cost on account of the additional bandwidth
received from the remote cores.

Keywords-Bandwidth; GPUs; Network-on-Chip

I. INTRODUCTION

Graphics Processing Unit (GPU) architectures are be-

coming an inevitable part of every computing system [1]

because of their ability to provide orders of magnitude faster

execution. They have become the default choice for accel-

erating innovations in various fields [2]–[10] such as high-

performance computing (HPC), artificial intelligence, deep

learning, and virtual/augmented reality. Traditionally, GPUs

have relied on bandwidth to achieve high throughput [11]–

[16]. However, the current sources of bandwidth such as

local/shared caches, scratchpad, and memory are often not

sufficient for achieving the peak GPU throughput [11], [17]–

[21]. In this paper, we focus on dynamically identifying

and exploiting an additional source of bandwidth in GPUs,

which we call as remote-core bandwidth. The source of this

additional bandwidth stems from inter-core locality [22]–

[25] that allows the data required by one of the GPU cores

(i.e., L1 read misses) to be also found in the local L1

caches of remote GPU cores. Our analysis shows that this

additional source of bandwidth leads to significant improve-

ment in performance, however, can only be leveraged if

an efficient inter-core communication is enabled. However,

there are several challenges towards designing efficient inter-

core communication, which have not been addressed by

prior works. In particular, this paper addresses the following

research questions.

I) How to determine which data can also be found in

the local caches of remote cores? Traditionally, a cache line

requested by a core is always found in the GPU memory,

as it stores the data required by the kernel(s). However, the

requested data may or may not be found in the L1 cache of

the remote cores due to static data sharing characteristics

or runtime state of the caches [22]–[26]. A mechanism

that correctly predicts if the data is shared would reduce

unnecessary inter-core communication.

II) How to determine which cores have the data of the

requester core? Even if it is known that the data is shared

across cores, determining which cores have the shared data

is critical. A naive approach of sending request probes to all

the cores to fetch the data can incur significant latency and

consume interconnect bandwidth. Therefore, it is important

to determine which cores are likely to have the requested

data to reduce the communication overhead.

III) How to get the data as soon as possible without

congesting the interconnect? Finally, it is important to search

the cores such that we do not saturate the interconnect

bandwidth while still reducing the search latency. This

latency can be tolerated to a certain extent; however, long

latencies can hurt performance [11]. Moreover, long search

delays decrease the probability of finding the shared data

due to cache evictions at the remote core.

To the best of our knowledge, this is the first work that

systematically addresses these questions. Specifically, this

paper makes the following contributions:

• We observe a bi-modal distribution of inter-core locality

across different load instructions – some instructions use

data that is shared across cores and some do not. We leverage

this observation and use the program counter (PC) to predict

which L1 read misses are likely to be satisfied by the L1

caches of remote cores.

• We develop a low-overhead mechanism that can locally

predict which cores are likely to have the shared data. It is

based on our key observation that the data required by a

core is generally shared across only a few cores, which can

be detected via sampling a limited number of core replies.

• We develop a novel two-level probing mechanism that

searches the identified cores in parallel while considering

the interconnect bandwidth consumption.

• Our combined schemes take advantage of the untapped

remote-core bandwidth, leading to 21% improvement (up to

40%) in performance if the data is a priori known to be

shared, and 10% (up to 26%) with our PC-based predictor.

These results are averaged across 11 diverse GPGPU ap-

plications that exhibit inter-core locality and achieved at a

modest area overhead of 0.058 mm2 per core (determined by













might be due to several reasons related to NoC congestion

and queuing. We need a failsafe mechanism to ensure

forward progress. Therefore, for every read miss predicted

as shared, a corresponding L2 request is also generated, and

placed into Selective L2 Requests queue. Every cycle, the

Timeout Handler checks if the head of the queue timed out.

Timeout means that the injected probe(s) failed to retrieve

the data from the target cores in a timely manner. In that

case, the head of the Selective L2 Requests queue competes

for injection to be sent to L2 B .

Handling Other Cores’ Probes. On receiving an incoming

probe from a remote core, the probe is added to a queue (In-

coming Probe Requests) in the Probe Handler module C1 .

The forwarded probe is processed to differentiate between a

leader probe, a scout probe, or a received NACK. In case of

a leader or a scout, the Probe Handler consults the L1 Cache

Arbitration module that prioritizes the local cache accesses

over remote reads.3 In case of no local cache access, the L1

Cache Arbitration module informs the Probe Handler C2 to

check the L1 cache if the required data is cached.

If the incoming probe is a leader, and the data is not found,

the probe is added to a queue (Forwarded Incoming Probes)

to forward it to the next target core (or the requester if no

more target cores). However, if the data is found locally,

then a probe reply is added to a queue (Replies to Incoming

Probes) holding the replies to be sent to the requester cores.

The rationale behind this queue is to mitigate the head-of-

line blocking that can occur in the Incoming Probe Requests

queue if the reply failed to find space for injection into the

reply NoC. The head of the Replies to Incoming Probes is

pushed into the reply NoC C3 . On the other hand, a scout

probe updates its candidate supplier list if the data is found,

and is always added to the Forwarded Incoming Probes

queue to be sent to the next target core (or the requester if

no more target cores). The head of the Forwarded Incoming

Probes contends for injection into the request NoC C4 .

In case of a returning own leader/scout, the Probe Handler

notifies the Two-level Probing module D1 to keep track of

the injected probes per request. If all outstanding probes are

received without data reply or candidate suppliers, then the

Two-level Probing module informs the Timeout Handler D2 .

If the timeout of the failed request has not fired yet, it is

retrieved from the Selective L2 Requests queue to compete

for injection to be sent to L2 D3 .

Injection Arbitration. Our design supports different types

of messages to be injected into the request NoC. Conse-

quently, to keep the system stable, we must maintain the

injection rate into the NoC. We do so by arbitrating between

five different request types (ordered from the highest to the

lowest priority): non-shared requests, selective L2 requests,

forwarded probes, processed NACKs, and outgoing probes.

The Injection Arbitration selects the winner of the arbitration

3Dual ported caches may be needed for applications where L1 bandwidth
is not sufficient [36]. However, we do not observe L1 bandwidth as a
bottleneck in our applications and hence arbitration is sufficient.

to be injected into the request NoC based on the priorities

of the competing requests E .

Deflection of Incoming Probes. To control the queuing

delay at the core, a mechanism is required to limit the

number of probes received by a given core. If the Incoming

Probe Requests queue is full, we deflect the incoming probes

at the NoC level by passing a signal from the core to the

NoC router to convey the unavailability of queue space F .

The router then deflects the probe request to its next target

cores or to its requester if no more target cores exist.

Overhead. The PC-based Sharing Predictor supports up to

64 PC values. We empirically select the values of W , S, and

T based on the following, Wi = 32×2i, Si = Wi/4
i, Ti =

ceil(Si/8), where 0 ≤ i ≤ 3. Both Timeout Handler and

the Two-level Probing modules track up to 32 outstanding

requests, which is the MSHR size. The Supplier-based Core

Selector monitors the replies from 27 remote cores (in our

28-core baseline GPU) over a period of 8192 cycles. Finally,

we empirically choose 2048 cycles as the timeout value in

the Timeout Handler. Under this timeout, only 0.7% of the

probe requests fail to return with a reply (or a NACK).

To estimate the area overhead, we differentiate between

the hardware used to enable inter-core communication

(shaded components in Figure 12), and the hardware used

to optimize such communication (gray components in Fig-

ure 12). We faithfully synthesized the RTL design of the

hardware required for the inter-core communication and our

schemes using the 65nm TSMC libraries in the Synopsys

Design Compiler. We use these synthesized Verilog mod-

els for the area and leakage power. Additionally, we use

DSENT [37] to estimate the NoC dynamic power assuming

a 45nm technology. The area overhead for inter-core com-

munication is 0.089 mm2 per core, while the area overhead

for our schemes is 0.058 mm2 per core. The total leakage

power overhead is 2.022 mW per core. The difference in

the dynamic power compared to the baseline is 0.05794 W .

In terms of communication overhead, we add 1-bit in the

request to mark as a probe, and 1-bit to identify as a leader or

scout. A 32-bit group identifier is added to uniquely identify

the probes belonging to the same request. Additionally, up

to fifteen target cores need to be searched, and each core

needs ceil(log227) bits, that is 75 bits required in total. All

this overhead in the request fits in the baseline flit size of

32 bytes.

IV. EXPERIMENTAL EVALUATION

A. Evaluation Methodology

We model our schemes and inter-core communication

using a cycle-level simulator – GPGPU-Sim v.3 [12]. A

detailed platform configuration is described in Table II. We

use sixteen applications from five benchmarks suites (CUDA

SDK (C) [38], Rodinia (R) [39], SHOC (S) [40], Lonestar

(L) [41], and PolyBench (P) [42]) for evaluation. Eleven out

of sixteen applications have inter-core locality greater than

7









We observe that our schemes can boost IPC in all systems.

Even in a large (68,32) system, IP(C=25%,1,1) achieves

17% IPC improvement over the baseline 10× 10 mesh.

Comparison against a Crossbar-based Baseline. In Fig-

ure 15(c), we observe that our schemes perform better than

a crossbar-based baseline in terms of both IPC and reply

bandwidth under (56,8), (48,16), and (84,16) systems. Under

a large (68,32) system, a crossbar-based baseline performs

close to, but still not as good as, our schemes. Note that for

such large systems, the complexity of the crossbar is high.

Also, the performance difference between the mesh-based

baseline and the crossbar-based baseline is in line with a

simple bisection bandwidth analysis for both systems.5

We conclude that our design is robust and can perform

well across a wide range of hardware mechanisms and

system configurations, such as CTA scheduling policies,

L2/memory bandwidth, and core to memory partition ratio.

It also outperforms the crossbar-based baseline.

V. RELATED WORK

In this section, we briefly discuss works that are the most

relevant to this paper.

Intra-core Locality in GPUs. There is a large body of work

that focuses on exploiting the locality that exists within a

GPU core [11], [13], [17]–[19], [27], [31], [45]–[52]. In

this work, we specifically focus on the locality that exists

across cores. Multiple prior CTA schedulers [26], [53]–[56]

used different heuristics to exploit the locality across CTAs.

However, as shown by prior works [54], [57], [58], there

is no single ideal CTA scheduling policy that benefits all

applications. This is because inter-CTA locality, data access

pattern, and execution time of CTAs are hard to know at

compile time, which increases the complexity of the CTA

scheduling problem. Hence, we choose the round-robin CTA

scheduler as it is the most commonly used. Our analysis

shows that the data sharing across L1 caches is pervasive

and hence our solutions are effective.

Inter-core Locality in GPUs. Prior works proposed mech-

anisms to exploit inter-core locality in GPUs by allowing

communication between multiple L1s by connecting the

cores via a ring NoC [24] or using the L2 cache to forward

the read request to a supplier L1 [44]. Other works proposed

coherence-like mechanisms [59] to enable communication

across L1 caches. Inter-core locality information has also

been used to propose a packet coalescing mechanism to

reduce NoC pressure [25]. Although these works either iden-

tify inter-core locality, propose architectures to enable inter-

core communication, or utilize coherence-like mechanisms,

they do not provide a way to (1) probe multiple L1 caches

in parallel, and (2) identify which L1 caches to probe for

high probe success rate. Our schemes allow the inter-core

communication to be low-latency due to parallel probes, and

5For the systems we consider in this paper, the ratio of crossbar bisection
bandwidth to 2D mesh bisection bandwidth is equal to the ratio of the
number of memory partitions to twice the mesh dimension.

low bandwidth-demanding due to the reduced number of

useless probes sent. Finally, previous works studied coher-

ence communication predictors based on address [60], [61],

instruction [62], or both [63], [64]. These works focused on

tracking coherence events at the directories. Our work uses

an effective PC-based predictor to filter the read misses that

have less probability of sharing across the GPU cores.

VI. CONCLUSIONS

Traditionally, GPUs have been depending on the band-

width from local/shared caches and memory to achieve high

performance. Going forward, other sources of bandwidth

need to be explored and leveraged given that the issue of

bandwidth is going to be even more critical in large-scale

GPU-based systems. Our detailed analysis in this paper

shows that remote-core bandwidth can significantly improve

the GPU performance within a single GPU node. However,

there are several challenges in unlocking this remote-core

bandwidth, which this paper systematically addresses. First,

we leverage the bi-modal distribution of inter-core locality

across PCs to determine which data is expected to be shared

across cores. Second, we dynamically generate an inter-

core locality map that guides the probing mechanism to

determine which cores to probe for increasing the probability

of finding the shared data. Finally, we develop a novel two-

level probing technique to get the data as soon as possible

without saturating the interconnect. We conclude that our

efficient inter-core communication provides a significant

improvement in performance and on-chip bandwidth at a

modest hardware cost.

ACKNOWLEDGMENT

The authors thank Nuwan Jayasena, Jieming Yin, the

anonymous reviewers, and members of the Insight Computer

Architecture Lab at William & Mary for their feedback.

This material is based upon work supported by the National

Science Foundation (NSF) grants (#1657336 and #1750667).

This work was performed in part using computing facilities

at William & Mary. AMD, the AMD Arrow logo, and

combinations thereof are trademarks of Advanced Micro

Devices, Inc. Other product names used in this publication

are for identification purposes only and may be trademarks

of their respective companies.

REFERENCES

[1] TOP500, “Top500 Supercomputer Sites,” June 2019. [Online].
Available: http://www.top500.org/lists/2019/06/

[2] A. Eklund, P. Dufort, D. Forsberg, and S. M. LaConte,
“Medical Image Processing on the GPU-Past, Present and
Future,” Medical Image Analysis Journal, 2013.

[3] G. Pratx and L. Xing, “GPU Computing in Medical Physics:
A Review,” The Journal of Medical Physics Research and
Practice, 2011.

11



[4] S. S. Stone, J. P. Haldar, S. C. Tsao, W. mei W. Hwu,
B. P. Sutton, and Z.-P. Liang, “Accelerating Advanced MRI
Reconstructions on GPUs,” The Journal of Parallel and
Distributed Computing, 2008.

[5] NVIDIA, “How to Harness Big Data for
Improving Public Health.” [Online]. Avail-
able: http://www.govhealthit.com/news/how-harness-big-
data-improving-public-health

[6] I. Schmerken, “Wall street accelerates options analysis
with GPU technology,” 2009. [Online]. Available:
https://www.hpcwire.com/2009/03/12/wall street accelerates

options analysis with gpu technology/

[7] NVIDIA, “NVIDIA Tesla GPUs Used by J.P. Morgan Run
Risk Calculations in Minutes, Not Hours,” 2011. [Online].
Available: https://nvidianews.nvidia.com/news/nvidia-tesla-
gpus-used-by-j-p-morgan-run-risk-calculations-in-minutes-
not-hours

[8] NVIDIA, “Computational Finance.” [Online]. Available:
https://www.nvidia.com/object/computational finance.html

[9] NVIDIA, “Researchers Deploy GPUs to Build World’s
Largest Artificial Neural Network,” 2013. [Online].
Available: https://nvidianews.nvidia.com/news/researchers-
deploy-gpus-to-build-world-s-largest-artificial-neural-network

[10] S. I. Park, S. P. Ponce, J. Huang, Y. Cao, and F. Quek, “Low-
Cost, High-Speed Computer Vision Using NVIDIAs CUDA
Architecture,” in Proceedings of the Applied Imagery Pattern
Recognition Workshop (AIPR), 2008.

[11] A. Jog, O. Kayiran, N. C. Nachiappan, A. K. Mishra, M. T.
Kandemir, O. Mutlu, R. Iyer, and C. R. Das, “OWL: Coop-
erative Thread Array Aware Scheduling Techniques for Im-
proving GPGPU Performance,” in Proceedings of the Interna-
tional Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2013.

[12] A. Bakhoda, G. Yuan, W. Fung, H. Wong, and T. Aamodt,
“Analyzing CUDA Workloads Using a Detailed GPU Sim-
ulator,” in Proceedings of the International Symposium on
Performance Analysis of Systems and Software (ISPASS),
2009.

[13] A. Jog, E. Bolotin, Z. Guz, M. Parker, S. W. Keckler, M. T.
Kandemir, and C. R. Das, “Application-aware Memory Sys-
tem for Fair and Efficient Execution of Concurrent GPGPU
Applications,” in Proceedings of the Workshop on General
Purpose Processing Using GPU (GPGPU), 2014.

[14] A. Jog, O. Kayiran, T. Kesten, A. Pattnaik, E. Bolotin,
N. Chatterjee, S. Keckler, M. T. Kandemir, and C. R. Das,
“Anatomy of GPU Memory System for Multi-Application
Execution,” in Proceedings of the International Symposium
on Memory Systems (MEMSYS), 2015.

[15] B. Wu, Z. Zhao, E. Z. Zhang, Y. Jiang, and X. Shen, “Com-
plexity Analysis and Algorithm Design for Reorganizing Data
to Minimize Non-coalesced Memory Accesses on GPU,” in
Proceedings of the Symposium on Principles and Practice of
Parallel Programming (PPoPP), 2013.

[16] G. Chen, B. Wu, D. Li, and X. Shen, “Porple: An extensible
optimizer for portable data placement on gpu,” in Proceedings
of the International Symposium on Microarchitecture (MI-
CRO), 2014.

[17] O. Kayiran, A. Jog, M. T. Kandemir, and C. R. Das, “Neither
More Nor Less: Optimizing Thread-level Parallelism for
GPGPUs,” in Proceedings of the International Conference
on Parallel Architecture and Compilation Techniques (PACT),
2013.

[18] A. Pattnaik, X. Tang, A. Jog, O. Kayiran, A. K. Mishra,
M. T. Kandemir, O. Mutlu, and C. R. Das, “Scheduling Tech-
niques for GPU Architectures with Processing-In-Memory
Capabilities,” in Proceedings of the International Conference
on Parallel Architecture and Compilation Techniques (PACT),
2016.

[19] T. G. Rogers, M. O’Connor, and T. M. Aamodt, “Cache-
Conscious Wavefront Scheduling,” in Proceedings of the In-
ternational Symposium on Microarchitecture (MICRO), 2012.

[20] G. Koo, Y. Oh, W. W. Ro, and M. Annavaram, “Access
Pattern-Aware Cache Management for Improving Data Uti-
lization in GPU,” in Proceedings of the International Sympo-
sium on Computer Architecture (ISCA), 2017.

[21] N. Agarwal, D. Nellans, M. O’Connor, S. W. Keckler, and
T. F. Wenisch, “Unlocking Bandwidth for GPUs in CC-
NUMA Systems,” in Proceedings of the International Sympo-
sium on High-Performance Computer Architecture (HPCA),
2015.

[22] G. Koo, H. Jeon, and M. Annavaram, “Revealing Critical
Loads and Hidden Data Locality in GPGPU Applications,”
in Proceedings of the International Symposium on Workload
Characterization (IISWC), 2015.

[23] D. Li and T. M. Aamodt, “Inter-Core Locality Aware Memory
Scheduling,” IEEE Computer Architecture Letters (CAL),
2016.

[24] S. Dublish, V. Nagarajan, and N. Topham, “Cooperative
Caching for GPUs,” ACM Transactions on Architecture and
Code Optimization (TACO), 2016.

[25] K. H. Kim, R. Boyapati, J. Huang, Y. Jin, K. H. Yum, and
E. J. Kim, “Packet Coalescing Exploiting Data Redundancy
in GPGPU Architectures,” in Proceedings of the International
Conference on Supercomputing (ICS), 2017.

[26] A. Li, S. L. Song, W. Liu, X. Liu, A. Kumar, and H. Corpo-
raal, “Locality-Aware CTA Clustering for Modern GPUs,” in
Proceedings of the International Conference on Architectural
Support for Programming Languages and Operating Systems
(ASPLOS), 2017.

[27] A. Jog, O. Kayiran, A. K. Mishra, M. T. Kandemir, O. Mutlu,
R. Iyer, and C. R. Das, “Orchestrated Scheduling and
Prefetching for GPGPUs,” in Proceedings of the International
Symposium on Computer Architecture (ISCA), 2013.

[28] W. Jia, K. A. Shaw, and M. Martonosi, “MRPB: Memory
Request Prioritization for Massively Parallel Processors,”
in Proceedings of the International Symposium on High-
Performance Computer Architecture (HPCA), 2014.

12



[29] H. Wang, F. Luo, M. Ibrahim, O. Kayiran, and A. Jog,
“Efficient and Fair Multi-programming in GPUs via Effective
Bandwidth Management,” in Proceedings of the Interna-
tional Symposium on High-Performance Computer Architec-
ture (HPCA), 2018.

[30] A. Bakhoda, J. Kim, and T. M. Aamodt, “Throughput-
Effective On-Chip Networks for Manycore Accelerators,” in
Proceedings of the International Symposium on Microarchi-
tecture (MICRO), 2010.

[31] O. Kayiran, N. C. Nachiappan, A. Jog, R. Ausavarungnirun,
M. T. Kandemir, G. H. Loh, O. Mutlu, and C. R. Das,
“Managing GPU Concurrency in Heterogeneous Architec-
tures,” in Proceedings of the International Symposium on
Microarchitecture (MICRO), 2014.

[32] J. Zhan, O. Kayran, G. H. Loh, C. R. Das, and Y. Xie,
“OSCAR: Orchestrating STT-RAM Cache Traffic for Hetero-
geneous CPU-GPU Architectures,” in Proceedings of the In-
ternational Symposium on Microarchitecture (MICRO), 2016.

[33] A. Pattnaik, X. Tang, O. Kayiran, A. Jog, A. Mishra, M. T.
Kandemir, A. Sivasubramaniam, and C. R. Das, “Opportunis-
tic Computing in GPU Architectures,” in Proceedings of the
International Symposium on Computer Architecture (ISCA),
2019.

[34] G. Yuan, A. Bakhoda, and T. Aamodt, “Complexity Effective
Memory Access Scheduling for Many-core Accelerator Ar-
chitectures,” in Proceedings of the International Symposium
on Microarchitecture (MICRO), 2009.

[35] Cerebras, “Cerebras Wafer Scale Engine,” August
2019. [Online]. Available: https://www.cerebras.net/wp-
content/uploads/2019/08/Cerebras-Wafer-Scale-Engine-
Whitepaper.pdf

[36] J. Kloosterman, J. Beaumont, M. Wollman, A. Sethia,
R. Dreslinski, T. Mudge, and S. Mahlke, “WarpPool: Sharing
Requests with Inter-Warp Coalescing for Throughput Pro-
cessors,” in Proceedings of the International Symposium on
Microarchitecture (MICRO), 2015.

[37] C. Sun, C. H. O. Chen, G. Kurian, L. Wei, J. Miller,
A. Agarwal, L. S. Peh, and V. Stojanovic, “DSENT - A Tool
Connecting Emerging Photonics with Electronics for Opto-
Electronic Networks-on-Chip Modeling,” in Proceedings of
the International Symposium on Networks-on-Chip (NOCS),
2012.

[38] NVIDIA, “CUDA C/C++ SDK Code Samples,” 2011.
[Online]. Available: http://developer.nvidia.com/cuda-cc-sdk-
code-samples

[39] S. Che, M. Boyer, J. Meng, D. Tarjan, J. Sheaffer, S.-H.
Lee, and K. Skadron, “Rodinia: A Benchmark Suite for Het-
erogeneous Computing,” in Proceedings of the International
Symposium on Workload Characterization (IISWC), 2009.

[40] A. Danalis, G. Marin, C. McCurdy, J. S. Meredith, P. C. Roth,
K. Spafford, V. Tipparaju, and J. S. Vetter, “The Scalable
HeterOgeneous Computing (SHOC) Benchmark Suite,” in
Proceedings of the Workshop on General Purpose Processing
Using GPU (GPGPU), 2010.

[41] M. Burtscher, R. Nasre, and K. Pingali, “A Quantitative
Study of Irregular Programs on GPUs,” in Proceedings of
the International Symposium on Workload Characterization
(IISWC), 2012.

[42] L.-N. Pouchet, “Polybench: The Polyhedral
Benchmark Suite,” 2012. [Online]. Available:
http://web.cs.ucla.edu/ pouchet/software/polybench/

[43] Hynix, “Hynix GDDR5 SGRAM Part H5GQ1H24AFR
Revision 1.0,” 2009. [Online]. Available:
http://www.hynix.com/datasheet/pdf/graphics/H5GQ1H24AF
R(Rev1.0).pdf

[44] X. Zhao, Y. Liu, A. Adileh, and L. Eeckhout, “LA-LLC: Inter-
Core Locality-Aware Last-Level Cache to Exploit Many-
to-Many Traffic in GPGPUs,” IEEE Computer Architecture
Letters (CAL), 2017.

[45] T. G. Rogers, M. O’Connor, and T. M. Aamodt, “Divergence-
Aware Warp Scheduling,” in Proceedings of the International
Symposium on Microarchitecture (MICRO), 2013.

[46] A. Sethia and S. Mahlke, “Equalizer: Dynamic Tuning of
GPU Resources for Efficient Execution,” in Proceedings of
the International Symposium on Microarchitecture (MICRO),
2014.

[47] D. Li, M. Rhu, D. R. Johnson, O. Mike, M. Erez, D. Burger,
D. S. Fussell, and S. W. Redder, “Priority-Based Cache
Allocation in Throughput Processors,” in Proceedings of
the International Symposium on High-Performance Computer
Architecture (HPCA), 2015.

[48] O. Kayiran, A. Jog, A. Pattnaik, R. Ausavarungnirun, X. Tang,
M. T. Kandemir, G. H. Loh, O. Mutlu, and C. R. Das, “µC-
States: Fine-grained GPU Datapath Power Management,”
in Proceedings of the International Conference on Parallel
Architecture and Compilation Techniques (PACT), 2016.

[49] V. Narasiman, M. Shebanow, C. J. Lee, R. Miftakhutdinov,
O. Mutlu, and Y. N. Patt, “Improving GPU Performance via
Large Warps and Two-level Warp Scheduling,” in Proceedings
of the International Symposium on Microarchitecture (MI-
CRO), 2011.

[50] S.-Y. Lee and C.-J. Wu, “CAWS: Criticality-aware Warp
Scheduling for GPGPU Workloads,” in Proceedings of the
International Conference on Parallel Architecture and Com-
pilation Techniques (PACT), 2014.

[51] U. Milic, O. Villa, E. Bolotin, A. Arunkumar, E. Ebrahimi,
A. Jaleel, A. Ramirez, and D. Nellans, “Beyond the Socket:
NUMA-Aware GPUs,” in Proceedings of the International
Symposium on Microarchitecture (MICRO), 2017.

[52] V. Young, A. Jaleel, E. Bolotin, E. Ebrahimi, D. Nellans,
and O. Villa, “Combining HW/SW Mechanisms to Improve
NUMA Performance of Multi-GPU Systems,” in Proceedings
of the International Symposium on Microarchitecture (MI-
CRO), 2019.

[53] M. Lee, S. Song, J. Moon, J. Kim, W. Seo, Y. Cho, and
S. Ryu, “Improving GPGPU Resource Utilization Through
Alternative Thread Block Scheduling,” in Proceedings of
the International Symposium on High-Performance Computer
Architecture (HPCA), 2014.

13



[54] A. Arunkumar, E. Bolotin, B. Cho, U. Milic, E. Ebrahimi,
O. Villa, A. Jaleel, C.-J. Wu, and D. Nellans, “MCM-
GPU: Multi-Chip-Module GPUs for Continued Performance
Scalability,” in Proceedings of the International Symposium
on Computer Architecture (ISCA), 2017.

[55] A. Tabbakh, M. Annavaram, and X. Qian, “Power Efficient
Sharing-Aware GPU Data Management,” in Proceedings of
the International Parallel and Distributed Processing Sympo-
sium (IPDPS), 2017.

[56] L. Wang, X. Zhao, D. Kaeli, Z. Wang, and L. Eeckhout,
“Intra-Cluster Coalescing to Reduce GPU NoC Pressure,”
in Proceedings of the International Parallel and Distributed
Processing Symposium (IPDPS), 2018.

[57] N. Vijaykumar, E. Ebrahimi, K. Hsieh, P. B. Gibbons,
and O. Mutlu, “The Locality Descriptor: A Holistic Cross-
Layer Abstraction to Express Data Locality In GPUs,” in
Proceedings of the International Symposium on Computer
Architecture (ISCA), 2018.

[58] X. Zhao, A. Adileh, Z. Yu, Z. Wang, A. Jaleel, and L. Eeck-
hout, “Adaptive Memory-Side Last-Level GPU Caching,” in
Proceedings of the International Symposium on Computer
Architecture (ISCA), 2019.

[59] D. Tarjan and K. Skadron, “The Sharing Tracker: Using Ideas
from Cache Coherence Hardware to Reduce Off-Chip Mem-

ory Traffic with Non-Coherent Caches,” in Proceedings of the
International Conference for High Performance Computing,
Networking, Storage and Analysis (SC), 2010.

[60] S. S. Mukherjee and M. D. Hill, “Using Prediction to Acceler-
ate Coherence Protocols,” in Proceedings of the International
Symposium on Computer Architecture (ISCA), 1998.

[61] A.-C. Lai and B. Falsafi, “Memory Sharing Predictor: The
Key to a Speculative Coherent DSM,” in Proceedings of the
International Symposium on Computer Architecture (ISCA),
1999.

[62] S. Kaxiras and J. R. Goodman, “Improving CC-NUMA Per-
formance Using Instruction-Based Prediction,” in Proceed-
ings of the International Symposium on High-Performance
Computer Architecture (HPCA), 1999.

[63] M. M. K. Martin, P. J. Harper, D. J. Sorin, M. D. Hill, and
D. A. Wood, “Using Destination-Set Prediction to Improve
the Latency/Bandwidth Tradeoff in Shared-Memory Multi-
processors,” in Proceedings of the International Symposium
on Computer Architecture (ISCA), 2003.

[64] S. Kaxiras and C. Young, “Coherence Communication Predic-
tion in Shared-Memory Multiprocessors,” in Proceedings of
the International Symposium on High-Performance Computer
Architecture (HPCA), 2000.

14


