Quasi-Polynomial Algorithms for Submodular Tree Orienteering and
Other Directed Network Design Problems

Rohan Ghuge*

Abstract

We consider the following general network design problem
on directed graphs. The input is an asymmetric metric
(V,¢), root r* € V, monotone submodular function f :
2Y — R, and budget B. The goal is to find an r*-rooted
arborescence T of cost at most B that maximizes f(T).

Our main result is a very simple quasi-polynomial time

(log k
log log k
k < |V] is the number of vertices in an optimal solution.

)-approximation algorithm for this problem, where

To the best of our knowledge, this is the first non-trivial
approximation ratio for this problem. As a consequence we

: log? k
obtain an O(325.%
(polymatroid) Steiner tree in quasi-polynomial time. We also

)-approximation algorithm for directed

extend our main result to a setting with additional length

log? k
lozglog k)-
approximation algorithms for the single-source buy-at-bulk

bounds at vertices, which leads to improved O(

and priority Steiner tree problems. For the usual directed
Steiner tree problem, our result matches the best previous
approximation ratio [15], but improves significantly on
the running time: our algorithm takes nC0oe" k) time
whereas the previous algorithm required nO0oe” k) time. For
polymatroid Steiner tree and single-source buy-at-bulk, our
result improves prior approximation ratios by a logarithmic
factor. For directed priority Steiner tree, our result seems to
be the first non-trivial approximation ratio. Under certain
complexity assumptions, our approximation ratios are best
possible (up to constant factors).

1 Introduction

Network design problems, involving variants of the min-
imum spanning tree (MST) and traveling salesman prob-
lem (TSP), are extensively studied in approximation al-
gorithms. These problems are also practically important
as they appear in many applications, e.g. networking
and vehicle routing. Designing algorithms for problems
on directed networks is usually much harder than their
undirected counterparts. This difference is already ev-
ident in the most basic MST problem: the undirected
case admits a simple greedy algorithm whereas the di-

Industrial and Operations Engineering Department, University
of Michigan. Supported in part by NSF CAREER grant CCF-
1750127. Email: rghuge@umich.edu, viswa@umich.edu.

Viswanath Nagarajan*

rected case requires a much more complex algorithm [11].
Indeed, one of the major open questions in network de-
sign concerns the directed Steiner tree problem. Given
a directed graph with edge costs and a set of terminal
vertices, the goal here is a minimum cost arborescence
that contains all terminals. No polynomial-time poly-
logarithmic approximation is known for directed Steiner
tree. This is in sharp contrast with undirected Steiner
tree, for which a 2-approximation is folklore and there
are even better constant approximation ratios [2,22].
In this paper, we consider a variant of directed
Steiner tree, where the goal is to find an arborescence
maximizing the number (or profit) of vertices subject to
a hard constraint on its cost. We call this problem
directed tree orienteering (DTO). To the best of
our knowledge, this problem has not been studied
explicitly before. An «-aproximation algorithm for
DTO implies an (« - In k)-approximation algorithm for
directed Steiner tree, using a set-covering approach.
No approximation preserving reduction is known in
the reverse direction: so approximation algorithms for
directed Steiner tree do not imply anything for DTO. In
this paper, we obtain a quasi-polynomial time O(1olgo1go g 7)-
approximation algorithm for DTO, where k is the number
of vertices in an optimal solution. This also implies an

2
O(lgzglogkk
tree (in quasi-polynomial time) where k denotes the
number of terminals.

In contrast to DTO, the “path” or “tour” version
of directed orienteering, where one wants a path/tree
of maximum profit subject to the cost limit, is much
better understood. There are polynomial time approxi-
mation algorithms with guarantees O(logn) [20,25] and
O(log® k) [8]. However, these results do not imply any-
thing for DTO. Unlike undirected graphs, in the directed
case, we cannot go between trees and tours by doubling
edges.

Our algorithm for DTO in fact follows as a special
case of a more general algorithm for the submodular tree
orienteering (STO) problem. Here, we are also given a
monotone submodular function f: 2" — R, on the ver-
tex set, and the goal is to find an arborescence containing
vertices T' C V' that maximizes f(T') subject to a cost

)-approximation algorithm for directed Steiner

Copyright © 2020 by SIAM
Unauthorized reproduction of this article is prohibited

limit B. The “tour” or “path” version of submodular
orienteering was studied previously in [9], where a quasi-
polynomial time O(logi ’; ;-)-approximation algorithm
was obtained. While we rely on many ideas from [9], we
also need a number of new ideas- as discussed next.

Interestingly, our techniques can be easily extended
to obtain tight quasi-polynomial time approximation
algorithms for several other directed network design
problems such as polymatroid Steiner tree, single-source
buy-at-bulk and priority Steiner tree.

1.1 Results and Techniques Our main result is:
Theorem 1.1 There is an O(log)igk)—appmximation
algorithm forlfubmodular tree orienteering that runs in
(nlog B)°Ues " k) time for any constant € > 0.

The high-level approach here is the elegant “recursive
greedy” algorithm from [9] for the submodular path
orienteering problem, which in turn is similar to the
recursion used in Savitch’s theorem [24]. In order to
find an approximately optimal s — ¢ path with budget B,
the algorithm in [9] guesses the “middle node” v on the
optimal s — ¢ path as well as the cost B’ of the optimal
path segment from s to v. Then, it solves two smaller
instances recursively and sequentially:

1. find an approximately optimal s — v path P with
budget B’.

2. find an approximately optimal v —t path P,;gn¢ with
budget B — B’ that augments P ;.

Clearly, the depth of recursion is log, k where k denotes
the number of nodes in an optimal path. The key step
in the analysis is to show that the approximation ratio
is equal to the depth of recursion. In the tree version
that we consider there are two additional issues:

e Firstly, there is no middle node v in an arborescence.
A natural choice is to consider a balanced separator
node as v: it is well known that any tree has a % — %
balanced separator. Indeed, this is what we use.
Although, this leads to an imbalanced recursion
(not exactly half the nodes in each subproblem), the
mazimum recursion depth is still O(log k) and we
show that the approximation ratio can be bounded

by this quantity.

e Secondly (and more importantly), we cannot sim-
ply concatenate the solutions to the two subprob-
lems. If r is the root of the original instance, the
two subproblems involve arborescences rooted at
r and v respectively. In order to finally obtain
an r-arborescence, we need to additionally ensure

that the subproblem with root r returns an arbores-
cence containing the separator node v, and such
requirements can accumulate recursively! Fortu-
nately, there is a clean solution to this issue. We
generalize the recursion by also specifying a “respon-
sibility” subset Y C V for each subproblem, which
means that the resulting arborescence must contain
all nodes in Y. Crucially, we can show that the
size of any responsibility subset is bounded by the
recursion depth d = O(log k). This allows us to im-
plement the recursive step by additionally guessing
how the responsibility subset Y is passed on to the
two subproblems. The number of such guesses is at
most 2¢ = poly(k), and so the overall time remains
quasi-polynomial. The responsibility subset Y is
empty at the highest level of recursion and has size
at most one at the lowest level of recursion: |Y| may
increase and decrease in the intermediate levels.

A direct consequence of Theorem 1.1 is an
(—o2k_)_approximation algorithm for DTO and an

loglogk

O(lézglzgk)—approximation for directed Steiner tree in
quasi-polynomial time. This matches the previous best
bound (in quasi-polynomial time) for directed Steiner
tree [15]. However, our approach is much simpler and
also achieves a better exponent in the running time:
our time is no(jogHe k) whereas the previous algorithm
required n°1°8" k) time. [15] also showed that one can-
not obtain an o(log? k/ log log k)-approximation ratio
for directed Steiner tree in quasi-polynomial time as-
suming the Projection Game Conjecture and NP ¢
Nocec1 ZPTIME(2"™"). Hence Theorem 1.1 is also tight
under the same assumptions.

Another application of Theorem 1.1 is to the
directed polymatroid Steiner tree problem, where there
is a matroid with groundset V (same as the vertices)
and one needs to find a minimum cost arborescence
that visits some base of the matroid. We obtain an
O(log? k/ log log k)-approximation, which improves over
the previous best O(log® k) bound [3].

We also extend our main result (Theorem 1.1) to a
setting with additional length constraints. In addition
to the input to STO, here we are given a length function
{:FE — Z, and a bound L. The goal here is to find
an arborescence on vertices T maximizing f(7') where
(i) the cost of edges in T is at most B and (ii) the sum
> wer Ir(v) < L where £7(v) is the length of the r —v
path in 7. We assume that the lengths are polynomially
bounded. Our technique can be extended to:

Theorem 1.2 There is an O(log)ﬁ)’;k)—appmximation

algorithm that runs in quasi-polynomial time for the
submodular tree orienteering problem with length con-
straints.

Copyright © 2020 by SIAM
Unauthorized reproduction of this article is prohibited

This algorithm follows a similar recursive structure as
for STO, where we guess and maintain some additional
quantities: the length budget L’ available to the
subproblem and a bound D(v) on the length of the
r — v path for each vertex v in the responsibility subset
Y. This idea can also be used to obtain an O(lolgolgogk)—
approximation for the variant of STO with hard deadlines
on length (see Section 4.2 for details).

As a direct application of Theorem 1.2, we obtain
an O(lgzglzgkk)-approximation for single-source buy-at-
bulk network design. This improves over the previous
best O(log® k)-approximation [1]. Buy-at-bulk network
design is a well-studied generalization of Steiner tree that
involves concave cost-functions on edges. See Section 4.3
for more details. Our result holds for the harder “non
uniform” version of the problem, where cost-functions
may differ across edges.

Another application of Theorem 1.2 is to the
priority Steiner tree problem, where edges/terminals
have priorities (that represent quality-of-service) and the
path for each terminal must contain edges of at least its
priority. We obtain a quasi-polynomial time O(l;‘g’glzg’?k)-
approximation even for this problem. We are not aware
of any previous result for directed priority Steiner tree.

It follows from the hardness result in [15] that
all our approximation ratios are tight (up to constant
factors) assuming the Projection Game Conjecture and
NP Z Noccc1 ZPTIME(2™).

1.2 Related Work The first approximation algo-
rithm for directed Steiner tree was obtained by [26] which
gave an O (k¢(log k)/€) approximation in n®1/9) time,
for any € > 0. This result was improved by [4], where
an O(log3 k)-approximation ratio was obtained in quasi-
polynomial time: this was the first poly-logarithmic
approximation ratio. This was a recursive algorithm
with a very different structure than ours: the idea here
was to solve (approximately) the “density” problem that
finds a partial Steiner tree minimizing the ratio of the
cost to the number of terminals. In contrast, we obtain a
recursive approximation algorithm for the “orienteering”
problem that finds a bounded-cost Steiner tree maxi-
mizing the number of terminals. Using a set-covering
approach along with an algorithm for either the density
or orienteering problem, it is straightforward obtain an
algorithm for directed Steiner tree (at the loss of an
additional In k approximation factor). We note that the
recursion used in [4] relies on an explicit bound on the
tree depth, which results in the loss of an additional log-
factor (which we save). Moreover, the approach of [4]
is not applicable to the orienteering problem (DTO),
whereas any approximation algorithm for DTO immedi-
ately implies one for the density problem.

The natural cut-covering LP relaxation of directed
Steiner tree was shown to have an Q(v/k) integrality
gap by [27]. Later, [12] showed that one can also
obtain an O(log® k)-approximation ratio relative to the
O(log k)-level Sherali-Adams lifting of the natural LP.
(Previously, [23] used the stronger Lasserre hierarchy to
obtain the same approximation ratio.) Very recently, [15]
improved the approximation ratio to O(log? k/loglog k),
still in quasi-polynomial time. Their approach was to
reduce directed Steiner tree to a new problem, called
“label consistent subtree” for which they provided an
O(log? k/ log log k)-approximation algorithm (in quasi-
polynomial time) by rounding a Sherali-Adams LP. In
contrast, we take a simpler and more direct approach
by extending the recursive-greedy algorithm of [9]. Our
algorithm is easier to implement and has a much better
running time. The approach in [12,15,23] is also not
applicable to the (harder) tree orienteering problem that
we solve.

A well-known special case of directed Steiner tree is
the group Steiner tree problem [14], for which the best
polynomial-time approximation ratio is O(log2 klogn).
This is relative to the natural LP relaxation. A com-
binatorial algorithm with slightly worse approximation
ratio was given by [6]. In quasi-polynomial time, there is
an O(log? k/ log log k)-approximation algorithm, which
follows from [9]. There is also an Q(log?~ k)-hardness of
approximation for group Steiner tree [17]. Recently, [15]
showed that this reduction can be refined to prove an
Q(log? k/loglog k)-hardness of approximation (under
stronger assumptions).

[3] considered a polymatroid generalization of both
undirected and directed Steiner tree. For the directed
version, they obtained an O(log® k)-approximation in
quasi-polynomial time by extending the approach of [4].
We improve this ratio to O(log? k/loglog k), which is
also the best possible. It is unclear if one can use LP-
based methods such as [12,15,23] to address this problem.

Buy-at-bulk network design problems, that involve
concave cost-functions, have been studied extensively
as they model economies of scale (which is common
in several applications). In the undirected case, a
constant-factor approximation algorithm is known for
uniform single-source buy-at-bulk [16] and an O(log k)-
approximation algorithm is known for the non-uniform
version [19]. The non-uniform problem is also hard
to approximate better than O(loglogn) [10]. For the
directed case that we consider, the only prior result
is [1] which implies a quasi-polynomial time O(log® k)-
approximation for the non-uniform version. Buy-at-bulk
problems have also been studied for multi-commodity
flows [7], which we do not consider in this paper.

The priority Steiner problem was introduced to

Copyright © 2020 by SIAM
Unauthorized reproduction of this article is prohibited

model quality-of-service requirements in networking [5].
It is fairly well-understood in the undirected setting: the
best approximation ratio known is O(logn) [5] and it is
Q(loglogn) hard-to-approximate [10].

The DTO problem in undirected graphs has also
received significant attention [13,18,21], in particular a
2-approximation algorithm is known for it [21].

1.3 Preliminaries The input to the submodular tree
orienteering (STO) problem consists of (i) a directed
graph G = (V| E) with edge costs ¢: E — Z, (ii) root
vertex r* € V, (iii) a budget B > 0 and (iv) a monotone
submodular function f: 2" — R, on the power set of
the vertices. As usual, we may assume (without loss of
generality) that the underlying graph is complete and the
costs ¢ satisfy triangle inequality. We assume throughout
that all edge costs are integer valued. We also use the
standard value-oracle model for submodular functions,
which means that our algorithm can access the value
f(S) for any S C V in constant time. Finally, we assume
(for simplicity) that for all S C V', f(S) is polynomially
bounded in n = |V|. Using standard scaling arguments,
we can handle arbitrary submodular functions at the loss
of an additional constant-factor in the approximation.
The goal in STO is to find an out-directed arbores-
cence T that is rooted at r* and maximizes f(V(T%))
such that the cost of edges in T™ is less than B, i.e.
Yeen(r) cle) < B. Henceforth, we will use f(V(T))
and f(7T) interchangeably to mean f evaluated at the
vertex set of 7.
Submodular Tree

2 Algorithms for

Orienteering

We first descibe the basic algorithm that leads to an
(nB)PU°ek) time O(log k)-approximation algorithm for
STO in Section 2.1. This already contains the main
ideas. Then, in Section 2.2 we show how to make the
algorithm truly quasi-polynomial time by implementing
it in (nlogB)°0°¢*) time. Finally, in Section 2.3
we show how to obtain a slightly better O(—28k_)

log log k
)O(IoglJrE

approximation ratio in (nlog B k) time.

2.1 The Main Algorithm The
RG(r,Y, B, X,i) implements the algorithm.

procedure

e The parameters r € V and B > 0 denote that we
are searching for an r-rooted arborescence with cost
at most B.

e Y C V is a set of vertices that must be visited from
r. We refer to set Y as the responsibilities for this
subproblem.

e The parameter X C V indicates that we aim

to maximize the function fx(T) = f(T U X) —
f(X); that is we seek to find an arborescence that
augments a given set X.

e The parameter ¢ > 1 indicates that the arborescence
returned can contain at most (%)l vertices excluding
the root; that is, it controls the depth of the
recursion.

Algorithm 1 RG(r,Y, B, X,)
if (|Y| > (2)?) then return Infeasible
if i =1 then
if (JY]|=0) then > No responsibility for r
pick v € V : ¢(r,v) < B that maximizes
fx(v), and return {(r,v)}. > Guess base-case vertex
if (JY| =1) then © r must visit vertex v € Y
if (¢(r,v) < B) then return {(r,v)}
else return Infeasible
T+ 0
m < fx(0)
10: for each v € V do
11: for SCY do
left /right subtrees

=

> Guess separator vertex
> Guess responsibilities for

12: for 1 < By < B do > Guess subtree budget

13: T, + RG(r,(SU{vH \{r},B1,X,i—1)

14: T + RG(v, Y\ (SU{v}),B—B,X U
V(T1)7i - 1)

15: if (fX (Tl @] TQ) > m) then

16: T+ T,UT,

17: m <— fx(T)

18: return T

Remark 2.1 Given a valid input to the STO problem,
our solution is T < RG(r*,0, B,0,d) for d > logs,s k
where k is the number of vertices in an optimal solution.

Fact 2.1 Any tree on n vertices has a vertex v whose
removal leads to each connected components having size
at most n/2. These components can be clubbed together
to form two connected components (both containing v),
each of size at most 2n/3.

Proposition 2.1 The mazimum size of set Y in any
subproblem of RG(r,0, B,0,d) is d.

Proof. To prove the above statement, we argue that
the invariant |Y| 4+ ¢ < d holds in every subproblem of
RG(r,0, B, 0, d) of the form RG(r,Y, B, X,i). We prove
this by induction on ¢. For the base case, let : = d. In
this case, |Y'| = 0, and thus the aforementioned invariant
clearly holds. Inductively, assume that the invariant

Copyright © 2020 by SIAM
Unauthorized reproduction of this article is prohibited

holds at some depth 7 > 1 for some responsibility set
Y. Let RG(r',Y',B’, X’ i — 1) be a subproblem of
RG(r,Y, B, X,i). From the description of the algorithm,
we can see that the size of Y increases by at most 1
in any subproblem: so |Y’| < 1+ |Y|. Combining this
observation with the induction hypothesis |Y| + ¢ < d,
we get |[Y'|+i—1<|Y|+1+¢—1 < d which completes
the induction.

Finally, as ¢ > 1, we have |Y| < d in any subproblem
of RG(r,0, B, 0, d). [|

Proposition 2.2 The running time of the procedure
RG(r,Y, B, X,i) is O((nB - 24+2)%).

Proof. We prove the above claim by induction on i. Let
us denote the running time of RG(r,Y, B, X, i) by T'(i).
We want to show that T(i) < ¢ (nB - 2¢72)? for some
fixed constant c. For the base case, let i = 1. From the
description of the procedure, we can see that when ¢ = 1,
it only performs a linear number of operations. Thus
T(1) = O(n) which proves the base case. Inductively,
assume that the claim holds for all values i’ < i. From
the description of the procedure, we have the following
recurrence relation: T'(i) = nB - 24(2T(i — 1) + O(n)).
This follows from the fact that we have n guesses for
the separator vertex, B guesses for the split in the cost
of the left and right subtree and at most 2¢ guesses on
the responsibility set assigned to each subtree (since
|Y'| < d). For every combination of the guesses, we make
2 recursive calls. Applying the induction hypothesis,
we get T(i) = nB - 242 (c- (nB-24+2)i=1) + O(n)) <
c- (nB - 292)" which completes the induction. [

Lemma 2.1 Let T be the arborescence returned by
RG(r,Y,B, X,i). Let T* be a compatible arborescence
for the parameters (r,Y, B, X, 1), i.e. T* is an r-rooted
arborescence that visits all vertices in 'Y, and contains at
most (%)’ non-root vertices with a total cost of at most
B . Then fx(T) = fx(T™)/i.

Proof. We prove the lemma by induction on ¢. For the
base case, let ¢ = 1. Since T is feasible for ¢ = 1, T*
is either empty or contains a single edge. If |Y| = 0,
then we guess the base-case vertex and return the one
that maximizes fx subject to the given budget: so
fx(T) > fx(T*) in this case. If |Y| = 1, then T* has a
single edge, say (r,v). Our procedure here will return the
arborescence with (r,v), and so fx(T') = fx(T*). Thus,
in either case, we get fx(T) > fx(T*) which proves the
base case.

Suppose that ¢ > 1. Let v be the vertex in T
obtained from Fact 2.1 such that we can separate T™*
into two connected components: T} containing r and

T3 =T\ Ty, where max(|[V(I7)], [V(T3)]) < 3[V(T)].

Note that T} is an r-rooted arborescence that contains
v and T3 is a v-rooted arborescence. Let Y2 C Y \ {v}
be those vertices of Y \ v that are contained in Ty,
and let Y1 = Y \ Y5. Because T* contains Y, it is
clear that {v} UY; UY2 D Y. Finally, let ¢(T}) = B
and ¢(Ty) = By < B — By. Note also that |V(T™) \
{r}| < (2)". By the property of the separator vertex
o, max(VA LIV < V)| < ()i + 2.
Excluding the root vertex in 77 and Ty, the number of
non-root vertices in either arborescence is < (%)i_l. We
can thus claim that:
T} is compatible with

(2.1) (r,Yyu{o}\{r},B1,X,i—1) and

T5 is compatible with
(2.2)

Now consider the call RG(r,Y, B, X,i). Since we
iteratively set every vertex to be the separator vertex, one
of the guesses is v. Moreover, we iterate over all subsets
S C Y, and thus some guess must set S = Y;. Since
B;1 < B, we also correctly guess B; in some iteration.
Thus, we see that one of the set of calls made is

(v, Y\ (Y1 U{v}),B— By, X UV(T}),i — 1).

T «+RG(r, Y1 U{v}\ {r}, B1,X,i—1) and

T> + RG(v, Y\ (Y1 U{v}),B— B1,XUV(Ty),i — 1)
We now argue that T'= T37 U T3 has the property that
Ix(T) > fx(T*)/i. By (2.1) and induction,

(2.3) fx(Th) > Z._%fx(Tf‘)

Let X' = X U V(Ty).

induction, we have

Similarly, by (2.2) and

1 *
(2-4) fX’(T2) > me’(TQ)
The rest of this proof is identical to a corresponding
result in [9]. We have fx/(Ty) = f(T5y UThUX)— f(Th U
X)=fx(ThUTy) — fx(T1). Using this in (2.4), we get

V

fr(Ty) 2 —(fx (T UTS) = fx(T3)

i—
1

(2.5) > —

(fx(T3) = fx(T))

where the last inequality follows from the monotonicity
of the function f. We see that fx(T) = fx(Th UTs) =
fMUuLUuX) - f(X)+ f(uX) - f(UX) =
fx(T1) + fx/(T2). Thus using (2.3) and (2.5), we get

FX(T) > () + Fx(T5) ~ fx(T))

> Uk (T) ~ fx(T))

Copyright © 2020 by SIAM
Unauthorized reproduction of this article is prohibited

where the last inequality follows by the submodularity
of fx. On rearranging the terms, we get

1 *

fx(T) = ;fX(T)
which concludes the induction. [|
Remark 2.1, Proposition 2.2 and Lemma 2.1 imply:

Theorem 2.1 There is a (log, 5 k)-approximation algo-
rithm for the submodular tree orienteering problem that

runs in time O(nB)CUogk)

2.2 Quasi-Polynomial Time Algorithm Here we
show how our algorithm can be implemented more

efficiently in (nlog B)?1°8*) time. The idea here is
the same as [9], but applied on top of Algorithm 1.

Algorithm 2 RG-QP(r,Y, B, X, i)
if (]Y]| > (2)?) then return Infeasible
if (i=1) then
if (JY|=0) then > No responsibility for r
pick v € V : ¢(r,v) < B that maximizes
fx(v), and return {(r,v)} > Guess base-case vertex
if ([Y|=1)then > r must visit vertex v € Y
if (¢(r,v) < B) then return {(r,v)}
else return Infeasible
T+ ¢
s m < fx(9)
10: for each v € V do
11: for SCY do
left /right subtrees

[y

> Guess separator vertex
> Guess responsibilities for

12: for 1 <u < U do > Guess subtree function
value

13: By + min(RG-QP(r, (S U {v}) \
{r},b,X,1—1) > u) > Binary search for By

14: if (B; = o0) then continue

15: Ty <+ RG-QP(r, (SU{v})\{r}, B1,X,i—
1

16: Ty + RG-QP(v, Y\ (SU{v}), B— By, XU
V(Ty),i—1)

17: if (fx(Th UTs) > m) then

18: T+ Ty UTy

19: m <+ fx(T)

20: return T’

The key idea here is that we no longer iterate through

all values in [1, B] to guess the recursive budget B;.

Instead, the step B; <« miny(RG-QP(r, (S U {v}) \
{r},b,X,i—1) > u) is implemented as a binary search
over the range [1, B]. We assume that U is an upper
bound on the function value. The following results are
straightforward extensions of those in Section 2.1.

Proposition 2.3 The running time of the procedure
RG-QP(r,Y, B, X,i) is O((nU - 2% - log B)?).

Lemma 2.2 Let T be the arborescence returned by
RG-QP(r,Y,B,X,i). Let T* be a compatible arbores-
cence for the parameters (r,Y, B, X, 1), and fx(T*) < U.
Then fx(T) = fx(T™)/i.

The proof of this lemma is similar to Lemma 2.1 and can
be found in the appendix. Combining Proposition 2.3
and Lemma 2.2 and using polynomially bounded profits,
we obtain:

Theorem 2.2 There is an O(log k)-approximation al-
gorithm for the submodular tree orienteering problem
that runs in time O(nlog B)©Uogk),

2.3 Improved Approximation Ratio Here we
show how to reduce the depth of our recursion at the
cost of additional guessing. The high-level idea is the
same as a similar result in [9], but we need some more
care because our recursion is more complex.

Let s = e-loglog k where ¢ > 0 is some fixed constant.
At each level of recursion, our new algorithm will guess
all relevant quantities in s levels of the recursion in
Algorithm 1. So the new recursion depth will be
d/s = O(log)lgogk) where d = O(log k) was the old depth.
Recall that the number of subproblems generated at
each level of recursion in Algorithm 1 is 2n2¢B. Since
we want to generate all subproblems in the next s levels
of Algorithm 1, each subproblem in the new algorithm
generates (2n2?B)?" many subproblems. As d = O(log k)
and s = e-loglog k, the overall running time for the new
algorithm is at most (2n2¢B)%" @ < (nB)CUes™ k),

Next, we will prove a lemma bounding the ob-
jective value at each level of the recursion. Below,
i€ {1,2,---d/s} denotes the depth allowed in any sub-
problem of the new recursion.

Lemma 2.3 Let T be the arborescence returned by
the improved approrimation algorithm for parameters
(r,Y,B,X,i). Let T* be some arborescence compatible
with the same parameters. Then fx(T) > fx(T%)/i.

Proof. We will prove the claim by induction on i. For
the base case, let i = 1. This is equivalent to the s'"
level of the earlier algorithms, which implies that T*
contains at most (%)‘s vertices excluding the root vertex.
Since we guess all parameters for s levels of recursion,
there exist guesses such that we can write 7" = U?S:OT;
such that each T is either empty or contains a single
edge. Since the edges in 7} are compatible with our
guesses, and we will pick the best possible edge for 7,

Copyright © 2020 by SIAM
Unauthorized reproduction of this article is prohibited

we can conclude that fx(T) > fx(T*) which proves the
base case.

Fix some ¢ > 1. Consider the call to the new
algorithm with the parameters (r,Y, B, X i) where i
denotes the new depth. Since T™ is compatible with the
given parameters, one can iteratively obtain a choice
of separator node v, responsibility set S and budget B’
at each subproblem in the next s levels (exactly as in
Lemma 2.1). This allows us to write T = U?;ITJ’-k such
that each T} is compatible with some subproblem at new
depth (i —1). For each j = 1,...2° let T; denote the
solution returned by the j** subproblem. The solution
to the current subproblem is then T = U2_,T;. By
induction, we have that fx(7};) > fx,(T})/(i—1) where
X; = X U(U'Z1T,). Let h = 2% We will show below
that

(2.6)

h
Z Ix;(T}) = fx(T%) — fx(T).

This would imply

oy U ()~ £x(@),

~—

which upon rearranging terms yields fx(T) > fx(T%)/i
as desired.
To prove (2.6) consider

=" £ (T + Fx (T3) + fx (D)

h—1
(1)) + (T ux u (1)
j=0
h—1
— X))+ AT UX) - f(X)
§=0

applying submodularity to the 2"% and 4" term

h—1
> (X, 1) + (T U X UT)

h—1

h—1
+rxu(Jm) - rxulm)) - f(X)
j=0

j=0
h—1
= (X2, (I) + F@ VX UT) - F(X)

inductively for all K =h —1,---1,0 using the

same steps as above

k h

> (Y f @)+ 1 U THUXUT) - f(X)
Jj=1 j=k+1
f(IrruTuX) - f(X)
f

>
2 f(T"UX) - f(X) = fx(T7).

where the last inequality follows from the monotonicity
of f. This completes the proof. [|

We further improve the runtime by applying the
binary-search idea described in Section 2.2. Combining
this with Lemma 2.3 and using polynomially bounded
profits, we obtain Theorem 1.1.

3 Applications

Directed tree orienteering (DTO) This is the
special case of STO when the reward function is linear,
i.e. of the form f(S) = > cgp» Where each v € V
has reward p, € Z. So Theorem 1.1 applies directly to
yield a quasi-polynomial time O(%)—approximation
algorithm. To the best of our knowledge, no non-trivial
approximation ratio followed from prior techniques.

Directed Steiner tree Here, we are given a graph
(V,E) with edge costs ¢ € R¥, root r and a subset
U C V of terminals. The goal is to find an r-rooted
arborescence that contains all of U and minimizes the
total cost. By shortcutting over non-terminal vertices
of degree at most two, we can assume that there is an
optimal solution where every non-terminal vertex has
degree at least three. So there is an optimal solution
containing at most 2k vertices where k = |U]| is the
number of terminals. We can use a standard set-covering
approach to solve directed Steiner tree using DTO. We
first guess (up to factor 2) a bound B on the optimal cost.
Then we iteratively run the DTO algorithm with budget
B and a reward of one for all uncovered terminal vertices.
Assuming that the bound B is a correct guess, the
optimal value of each DTO instance solved above equals
k', the number of uncovered terminals in the current
iteration. As we use a p = O(%) approximation
for DTO, the number of iterations before covering all
terminals is at most O(p - logk). When all terminals

Copyright © 2020 by SIAM
Unauthorized reproduction of this article is prohibited

have been covered, we return a min-cost arborescence
in the union of all arborescences found so far. Using
Theorem 1.1, this implies:

Theorem 3.1 There is a deterministic O(liggfzglck)-
approximation algorithm for directed Steiner tree in
nOlog’ ™ k) time, for any constant € > 0.

Our approximation ratio matches that obtained re-
cently [15]. Our algorithm is deterministic and has
a better running time: the algorithm in [15] requires
nOog” k) time, Moreover, our approach is much simpler.
However, we note that an LP relaxation based approach
as in [15] may have other advantages.

Polymatroid Directed Steiner tree This prob-
lem was introduced in [3] with applications in sensor
networks. As before, we are given a directed graph
(V, E) with edge costs ¢ € RY and root r. In addition,
there is a matroid defined on groundset V (same as
the vertices) and the goal is to find a min-cost arbores-
cence rooted at r that contains some base of the matroid.
As matroid rank functions are submodular (and inte-
ger valued), we can apply Theorem 1.1 to obtain an

(log)i g ;-)-approximation algorithm for the correspond-
ing STO instance (reward-maximization), where k < |V/|
is the rank of the matroid. We then use a set-covering
approach as outlined above, that iteratively solves STO
instances until the set of covered vertices contains a
base of the matroid. Crucially, the contraction of any
matroid is another matroid: so the function f used in
each such STO instance is still a matroid rank function.
This yields an O(lgzglo gk -)-approximation algorithm for
polymatroid Steiner tree as well. This result improves
over the O(log® k) ratio in [3].

4 Extensions of Submodular Tree Orienteering

In this section, we will consider two extensions of STO
that involve additional length constraints. We then use
this extension to obtain an improved approximation
algorithm for directed buy-at-bulk network design and
priority Steiner tree. Complete details and proofs can
be found in the full version [].

4.1 STO with Length Constraints For the first
extension, along with the input to STO, we are given a
length function ¢ : £ — Z,, and an additional bound
L. Note that in an arborescence, given a vertex v, there
is a unique path from the root to v. Let pr(v) denote
the path from the root r* to vertex v in arborescence
T, and Ip(v) = > e, (v {(€) represents the length of
this path. The length constraint requires the sum of
path lengths Ir(v) to be at most L. More formally,
the goal now is to find an out-directed arborescence T*

rooted at r* maximizing f(7™*) such that ¢(T*) < B and
> oy lr<(v) < L. We will refer to this problem as STO
with length constraints.

Theorem 4.1 There is an O(log k)-approzimation algo-
rithm for the submodular tree orienteering problem with
length constraints that runs in time O(nBL?)OUogk),

As mentioned in Section 2.2, since f(-) is assumed
to be polynomially bounded in n, we can guess an
upper bound U on the maximum function value. We
can then guess the bound B; using binary search
instead of enumerating through all values in the range
[1, B]. Moreover, we will assume that L is polynomially
bounded. This assumption will become clear when we
use STO with distance constraints to solve the buy-at-
bulk problem in directed graphs.

Moreover, as in Section 2.3, we can reduce the depth
of our recursion at the cost of additional guessing to
obtain Theorem 1.2.

4.2 STO with Deadlines For the second extension,
along with the input to STO, we have a length function
{: E — Z,, and deadlines {d,},cv. We are able to
claim the reward of a vertex v in arborescence T" only
if i7(v) < d,. The goal of the problem is to find an
out-directed arborescence T* rooted at r* maximizing
f(S(T*)) such that ¢(T*) < B where S(IT*) ={veV:
Ir«(v) <d,}. We call this problem STO with Deadlines.
Note that I7(v) and r* are as defined in Section 4.1. We
obtain the following result.

Theorem 4.2 There is an O(log’]golgck)-appmwimation
algorithm that runs in quasi-polynomial time for the
submodular tree orienteering problem with deadlines.

4.3 Single source Buy-at-Bulk Here we use the
approximation algorithm for STO with length constraints
to obtain an approximation algorithm for the single
source buy-at-bulk problem in directed graphs. In this
problem, we are given a directed graph G(V, E), a set
of terminals S and a source/root r*. Moreover, each
edge e € FE is associated with a monotone concave cost
function ¢g. : Ry — R,. The goal is to route a unit
of flow from 7* to each terminal in S while minimizing
the total cost) . ge(z.) where x. denotes the total
flow through edge e. It is straightforward to show
(using concavity) that the edges carrying non-zero flow
must form an r-arborescence. We adopt an alternative
representation of the buy-at-bulk problem (at the loss
of a constant factor in approximation) as described
in [7,19]. The input to the problem is now a directed
multi-graph G(V, E), a cost function ¢ : E — Ry, a
length function ¢ : E — R, a set of terminals S, and a

Copyright © 2020 by SIAM
Unauthorized reproduction of this article is prohibited

source r. The goal is to find an r-rooted arborescence
T that has a directed path to all terminals such that
Y oecrcle) + 22 cqlr(v) is minimized. Here too, the
function ¢7(-) denotes the length of the path from r to
v. Following a set covering approach as in Section 3
and Theorem 1.2 we obtain:

Theorem 4.3 There is a
O(log? k

Tog logk)—appmximation algorithm for the single-source
buy-at-bulk problem in directed graphs.

quasi-polynomial time

4.4 Priority Steiner tree This is a generalization
of Steiner tree that has been used to model quality-of-
service (QoS) considerations [5]. In the priority Steiner
tree problem, we are given a directed graph G(V, FE)
with edge-costs {c. : e € E}, a set of terminals S and a
root 7*. There are p priority levels, with 1 denoting the
lowest and p denoting the highest priority levels. Each
edge e has a priority 6. which denotes its QoS capability.
Each terminal ¢ € S also has a priority A; which denotes
its QoS requirement. The goal is to find a minimum cost
r*-arborescence where the r* — ¢ path for each terminal
t € S has all edges with priority at least \;. Following a
set covering approach as in Section 3 and a variant of
Theorem 1.2 we obtain:

Theorem 4.4 There is
2
O(lolgglogkk)—appmximation algorithm for the priority

Steiner tree problem in directed graphs.

a quasi-polynomial time

References

[1] Spyridon Antonakopoulos. Approximating directed buy-
at-bulk network design. In Approzimation and Online
Algorithms, pages 13-24, 2011.

[2] Jaroslaw Byrka, Fabrizio Grandoni, Thomas Rothvo8,
and Laura Sanita. Steiner tree approximation via
iterative randomized rounding. J. ACM, 60(1):6:1-6:33,
2013.

[3] Gruia Cilinescu and Alexander Zelikovsky. The
polymatroid steiner problems. J. Comb. Optim.,
9(3):281-294, 2005.

[4] Moses Charikar, Chandra Chekuri, To-Yat Cheung,
Zuo Dai, Ashish Goel, Sudipto Guha, and Ming Li.
Approximation algorithms for directed steiner problems.
J. Algorithms, 33(1):73-91, 1999.

[5] Moses Charikar, Joseph Naor, and Baruch Schieber.
Resource optimization in qos multicast routing of real-
time multimedia. IEEE/ACM Trans. Netw., 12(2):340-
348, 2004.

[6] Chandra Chekuri, Guy Even, and Guy Kortsarz. A
greedy approximation algorithm for the group steiner
problem. Discrete Applied Mathematics, 154(1):15-34,
2006.

(7l

(8]

(9]

[10]

(11]

[12]

(13]

(14]

[15]

[16]

(17]

18]

(19]

[20]

Chandra Chekuri, Mohammad Taghi Hajiaghayi, Guy
Kortsarz, and Mohammad R. Salavatipour. Approxi-
mation algorithms for nonuniform buy-at-bulk network
design. SIAM J. Comput., 39(5):1772-1798, 2010.
Chandra Chekuri, Nitish Korula, and Martin Pal. Im-
proved algorithms for orienteering and related problems.
ACM Trans. Algorithms, 8(3):23:1-23:27, 2012.
Chandra Chekuri and Martin Pal. A recursive greedy
algorithm for walks in directed graphs. In /6th Annual
IEEE Symposium on Foundations of Computer Science
(FOCS 2005), 23-25 October 2005, Pittsburgh, PA,
USA, Proceedings, pages 245253, 2005.

Julia Chuzhoy, Anupam Gupta, Joseph Naor, and
Amitabh Sinha. On the approximability of some
network design problems. ACM Trans. Algorithms,
4(2):23:1-23:17, 2008.

Jack Edmonds. Optimum branchings. J. Res. Nat. Bur.
Standards, 71(B):233-240, 1967.

Zachary Friggstad, Jochen Koénemann, Young Kun-
Ko, Anand Louis, Mohammad Shadravan, and Madhur
Tulsiani. Linear programming hierarchies suffice for
directed steiner tree. In Integer Programming and Com-
binatorial Optimization - 17th International Conference,
IPCO 2014, Bonn, Germany, June 23-25, 2014. Pro-
ceedings, pages 285-296, 2014.

Naveen Garg. Saving an epsilon: a 2-approximation
for the k-mst problem in graphs. In Proceedings of the
87th Annual ACM Symposium on Theory of Computing,
Baltimore, MD, USA, May 22-24, 2005, pages 396-402,
2005.

Naveen Garg, Goran Konjevod, and R. Ravi. A
polylogarithmic approximation algorithm for the group
steiner tree problem. J. Algorithms, 37(1):66-84, 2000.
Fabrizio Grandoni, Bundit Laekhanukit, and Shi Li.
O(log2k/log log k)-approximation algorithm for di-
rected steiner tree: A tight quasi-polynomial-time al-
gorithm. CoRR, abs/1811.03020, 2018 (to appear in
STOC 2019).

Sudipto Guha, Adam Meyerson, and Kamesh Munagala.
A constant factor approximation for the single sink edge
installation problem. SIAM J. Comput., 38(6):2426—
2442, 2009.

Eran Halperin and Robert Krauthgamer. Polylogarith-
mic inapproximability. In Proceedings of the 35th An-
nual ACM Symposium on Theory of Computing, June
9-11, 2003, San Diego, CA, USA, pages 585-594, 2003.
David S. Johnson, Maria Minkoff, and Steven Phillips.
The prize collecting steiner tree problem: theory and
practice. In Proceedings of the Eleventh Annual ACM-
SIAM Symposium on Discrete Algorithms, January 9-
11, 2000, San Francisco, CA, USA., pages 760-769,
2000.

Adam Meyerson, Kamesh Munagala, and Serge A.
Plotkin. Cost-distance: Two metric network design.
SIAM J. Comput., 38(4):1648-1659, 2008.

Viswanath Nagarajan and R. Ravi. The directed
orienteering problem. Algorithmica, 60(4):1017-1030,
2011.

Copyright © 2020 by SIAM
Unauthorized reproduction of this article is prohibited

[21] Alice Paul, Daniel Freund, Aaron Ferber, David B.
Shmoys, and David P. Williamson. Budgeted Prize-
Collecting Traveling Salesman and Minimum Spanning
Tree Problems. Mathematics of Operations Research
(to appear), 2019.

Gabriel Robins and Alexander Zelikovsky. Tighter
bounds for graph steiner tree approximation. SIAM J.
Discrete Math., 19(1):122-134, 2005.

Thomas Rothvof}. Directed steiner tree and the lasserre
hierarchy. CoRR, abs/1111.5473, 2011.

Walter J. Savitch. Relationships between nondetermin-
istic and deterministic tape complexities. J. Comput.
Syst. Sci., 4(2):177-192, 1970.

Ola Svensson, Jakub Tarnawski, and Lészl6 A. Végh.
A constant-factor approximation algorithm for the
asymmetric traveling salesman problem. In Proceedings
of the 50th Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2018, Los Angeles, CA,
USA, June 25-29, 2018, pages 204-213, 2018.
Alexander Zelikovsky. A series of approximation
algorithms for the acyclic directed steiner tree problem.
Algorithmica, 18(1):99-110, 1997.

Leonid Zosin and Samir Khuller. On directed steiner
trees. In Proceedings of the Thirteenth Annual ACM-
SIAM Symposium on Discrete Algorithms, January 6-8,
2002, San Francisco, CA, USA., pages 59-63, 2002.

22]

23]

(24]

(25]

[26]

27]

Proof of Lemma 2.2

Proof. We prove the lemma by induction on i. For the
base case, let i = 1. Since T* is feasible for ¢ = 1, T*
is either empty or contains a single edge. If |Y| = 0,
then we guess the base-case vertex and return the one
that maximizes fx subject to the given budget: so
fx(T) > fx(T*) in this case. If |Y'| = 1, then T* has a
single edge, say (r,v). Our procedure here will return the
arborescence with (r,v), and so fx(T) = fx(T*). Thus,
in either case, we get fx(T') > fx(T*) which proves the
base case.

Suppose that ¢ > 1. Let v be the vertex in T
obtained from Fact 2.1 such that we can separate T™*
into two connected components: T} containing r and
T3 = T\ T}, wheve max(|V (T7)], [V(T3)]) < 2[V(T7).
Note that 77 is an r-rooted arborescence that contains
v and T3 is a v-rooted arborescence. Let Yo C Y \ {v}
be those vertices of Y \ v that are contained in Ty,
and let Y7 = Y \ Y;. Because T* contains Y, it is
clear that {v} UY; UY; D Y. Finally, let ¢(T}) = By
and ¢(Ty) = B < B — Bf. Note also that |V(T™) \
{r}| < (2)". By the property of the separator vertex
o, max(V(T)LIV(TE)) < 2V(T)| < (3)i + 2.
Excluding the root vertex in T} and T3, the number
of non-root vertices in either arborescence is < (%)i_l.
Let fx(Ty) = U;. We set By in the algorithm using a
binary search approach. Since we iterate over all values
in [1, U], one of the guesses, say u', is = [U1/(i—1)]. By

the induction hypothesis, the value of the arborescence
returned by RG-QP(r, Y1 U {v}\ {r}, B}, X,i —1) >
Ui/(i —1). Also notice that RG-QP(r,Y,b, X,i — 1) is
an increasing function in the parameter b (this allows
us to use binary search to find By). Thus, the value
By + min,(RG-QP(r, Y1 U {v} \ {r},b,X,i — 1) > /)
has the property that B; < Bj.
We can thus claim that: T} is compatible with

(1)

Ty is compatible with

(2)

Now consider the call RG(r,Y,B,X,i). Since we
iteratively set every vertex to be the separator vertex,
one of the guesses is v. Moreover, we iterate over all
subsets S C Y, and thus some guess must set S = Y7.
From the above argument, one of the guesses u € [1, B]
gives us By < Bf. Thus, we see that one of the set of
calls made is

(r,Yo U {v}\ {r}, B;,X,i—1) and

(v,Y\(Y1U{v}),B— By, XUV(T1),i—1).

T, + RG(r,Yy U{v}\ {r}, B1,X,i—1) and

TQ «— RG(U,Y \ (Yl @] {’U}),B — Bl,X U V(Tl),l —].)
We now argue that T = T} U T has the property
that fx(T) > fx(T*)/i. By (.1) and induction,

(.3) fx(Th) > %fx(TD

Let X’ = XUV/(Ty). Similarly, by (.2) and induction,

we have
1 *

(4) fx(Tz) = mfx’(Tﬂ

The rest of this proof is identical to the proof of Lemma
2.1.]

Copyright © 2020 by SIAM
Unauthorized reproduction of this article is prohibited

	Introduction
	Results and Techniques
	Related Work
	Preliminaries

	Algorithms for Submodular Tree Orienteering
	The Main Algorithm
	Quasi-Polynomial Time Algorithm
	Improved Approximation Ratio

	Applications
	Extensions of Submodular Tree Orienteering
	STO with Length Constraints
	STO with Deadlines
	Single source Buy-at-Bulk
	Priority Steiner tree

