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ABSTRACT

In order to diversify metal-organic framework (MOF) structures beyond traditional Euclidean geometries
and to create new charge delocalization pathways beneficial for electrical conductivity, we constructed a
novel double-helical MOF (dhMOF) by introducing a new butterfly-shaped electron-rich m-extended
tetrathiafulvalene ligand equipped with four benzoate groups (EXTTFTB). The face-to-face oriented convex
EXTTFTB ligands connected by Zn,(COO)4 paddlewheel nodes formed ovoid cavities suitable for guest
encapsulation, while n—n-interaction between the EXTTFTB ligands of neighboring strands helped create
new charge delocalization pathways in iodine-mediated partially oxidized dhMOF. lodine vapor diffusion
led to oxidation of half of the EXTTFTB ligands in each double helical strand to EXTTFTB™ radical cations,
which putatively formed intermolecular EXTTFTB/EXTTFTB™ m-donor/acceptor charge-transfer chains
with the neutral EXTTFTB ligands of an adjacent strand, creating supramolecular wire-like charge
delocalization pathways along the helix seams. In consequence, the electrical conductivity of diMOF
surged from 10 S/m up to 10 S/m range after iodine treatment. Thus, the introduction of electron rich
ExTTFTB ligand with a distinctly convex m-surface not only afforded a novel double helical MOF
architecture featuring ovoid cavities and unique charge delocalization pathways, but more importantly,
delivered new tool and design strategy for future development of electrically conducting stimuli-responsive

MOFs.

Keywords: double-helical MOFs * n-donor/acceptor interaction ¢ electrical conductivity * n-extended

tetrathiafulvalene ¢ radical cation
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INTRODUCTION

Owing to their diverse structures, compositions, and properties, metal-organic frameworks (MOFs)'* have
emerged as one of the most versatile functional materials with variety of applications ranging from size and

shape selective separation,’ storage,* and delivery® of guest entities to highly sophisticated electronic and

6-10 15-19 20,21

ionic conduction,”'? energy storage,'' ' light-harvesting, catalysis,”*?' and sensing”* . Despite having
tantalizing structural similarities with inorganic semiconductors, electrical conductivity (o) remains one the
most coveted but challenging features of porous MOFs.®’ The presence of high charge-carrier concentration
and effective long-range charge-transport pathways are two essential prerequisites of this electronic
property. Furnishing MOFs with redox-active building blocks* containing accessible electrons and holes
is the vital first step toward engineering this desired property and may lead to remarkable conductivity when
the resulting frameworks can support facile charge movement,”*>” however, their presence alone does not
necessarily guarantee electronic conductivity because insulating metal-cluster nodes and large inter-ligand
distances often hinder long-range charge diffusion in porous MOFs. On the other hand, the porosity of
MOFs could be exploited to manufacture this elusive property by introducing suitable guest molecules,’!

32-38

which could either oxidize or reduce the frameworks, producing mobile charge carriers, or help create

3943

new charge delocalization pathways that may not have been present in pristine materials.

Although tailoring MOF structures and properties for specific applications has always been a major
focus of this burgeoning field, nearly all existing MOFs possessed classical Euclidean geometries defined
by mostly linear and planar ligands.'* Parallel studies elsewhere have demonstrated that large redox-active
molecules with distinctly curved n-surfaces, such as fullerenes, carbon nanotubes, and corannulenes, enjoy
relatively small electronic reorganization energy, i.e., they can accommodate additional charges acquired
upon oxidation or reduction processes more easily than planar aromatics, a feature that is quite beneficial
for various molecular electronics applications.* Yet, such ligands are extremely rare, and their potential
benefits in MOFs remain practically unexplored. In an attempt to explore and exploit potential benefits of
curved ligands in MOFs, Shustova and coworkers have recently introduced pyridyl-functionalized
corannulene® and fullerene*® ligands. However, only a shallow bowl-shaped tetrapyridyl-corannulene
ligand yielded a clamshell Ag(I) coordination polymer,*’ while all other ligands essentially served as linear
pillars in traditional MOF architectures. Therefore, there is a growing interest in easily accessible and
scalable ligands with distinctive curved n-surfaces that could not only afford novel MOF architectures, but
also help create novel charge delocalization pathways suitable for electrical conductivity and other

fascinating properties.
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Herein, we introduced for the first time a new butterfly-shaped electron rich zn-extended
tetrathiafulvalene ligand equipped with four benzoic acid units (ExXTTFTB) to construct a novel double-
helical MOF (dhMOF), which possessed large ovoid cavities capable of guest encapsulation and
supramolecular wire-like charge delocalization pathways suitable for electrical conductivity (Figure 1a,b).
Unlike planar TTF ligands containing four terminal benzoate or pyridyl groups that have been used in a
number of different semiconducting MOFs,* 2% 338 the EXTTF core*’* has a distinctly convex m-surface
defined by a boat-shaped anthracene core bearing two 1,3-dithiolene rings at 9 and 10 positions located at
a dihedral angle of ~81°.* Such a unique shape of EXTTFTB ligand not only led to the formation of a novel
double-helical framework, but also helped create an unusual intermolecular n—r interaction between 1,3-
dithiolene rings of neighboring double helical strands, which was distinct from those found in any other
existing MOFs. In addition, unlike planar TTF compounds, which undergo stepwise one-electron
oxidations to corresponding radical cations and dications, free and symmetrical ExXTTF compounds undergo
facile one-step two-electron oxidation to planar EXTTF*" dications.* However, in solid-state hqMOF, the
convex shape of EXTTFTB ligands became highly constrained and its electron distribution become
unsymmetrical due to non-symmetrical coordination environment of four carboxylate groups, which made
the elusive EXTTFTB™ radical cation state accessible. The EPR, XPS, electrochemical, and elemental
analyses together demonstrated that iodine vapor diffusion oxidized half of the ExXTTFTB ligands of each
double helix to paramagnetic EXTTFTB™ radical cations, which putatively formed intermolecular
EXTTFTB/EXTTFTB"™ n-donor/acceptor chains (i.e., AEDAmers**) with the neutral EXTTFTB ligands of
an adjacent strand (Figure 1c). Such n-donor/acceptor interactions not only mitigated the electrostatic
repulsion between the partially oxidized dhMOF strands, but also facilitated through-space charge
delocalization. As a result, the electrical conductivity of iodine-treated diMOF surged to 2.6 x 10*S/m, a

10*-fold improvement over that of pristine ZAaMOF (2 x 10°* S/m).
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Figure 1. (a) Synthetic scheme and (b) SXRD structure of ExXTTFTB-based dhMOF (C, grey; O, red; S,
yellow; Zn, cyan; H-atoms and solvent molecules were omitted for clarity). The green arrows in (b) depict
intermolecular distances between the EXTTFTB ligands of adjacent strands. (c) A proposed model of
iodine-induced partially oxidized dhMOF depicting n-donor/acceptor chains made of neutral EXTTFTB
ligands (orange space-filled) and EXTTFTB™ radical cations (green space-filled) of neighboring strands
that could facilitate charge delocalization and the possible location of I counterions (purple spheres, drawn

to scale) inside the cavities.
RESULTS AND DISCUSSIONS

Synthesis and Structural Characterization of EXTTFTB-Based dhiMOF. The orange colored EXTTFTB
ligand was synthesized by a Pd-catalyzed cross-coupling reaction between ExTTF*’ core and ethyl-4-
bromobenzoate,’! followed by saponification of all four ester groups (Scheme S1). The EXTTF core was
furnished with four benzoate groups because bidentate carboxylate groups usually form more stable and
versatile multinuclear metal-cluster nodes than monodentate pyridyl groups, which should lead to

chemically and structurally more robust MOF formation.
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Solvothermal reaction between ExXTTFTB ligand and Zn>(NO3),-6H>0 (~1:4 molar ratio) in a 3:3:2
DMEF/EtOH/H,0 mixture (65 °C, 24 h) yielded orange plate-like diMOF crystals (Figure 1). Single-crystal
X-ray diffraction (XRD) analysis revealed a neutral double-helical MOF architecture

Zn3(EXTTFTB),(H,0),-6EtOH (Figure 1) with P1 space group. It contains large ovoid cavities (19.6 x 16.1
A) surrounded by two face-to-face oriented EXTTFTB ligands linked by two Zn»(COO)4 paddlewheel nodes
and a tetrahedral Zn(Il) center in each loop. Only two opposite (C-trans) carboxylate groups of each
ExTTFTB ligand are involved in the Zn,(COQ)4 nodes formation, while the third one is singly coordinated
to a tetrahedral Zn(II) and the fourth remains free and in the acid form. As a result of such coordination and
rigidification of convex ExTTFTB ligand, its curvature became further accentuated in diMOF, as the
dihedral angle between the two 1,3-dithiolene rings shrunk to 62°. The parallel double-helical strands are
aligned along the a-axis and packed in such a way that the convex ExXTTF cores of a given strand bulge into
the concave grooves of the two neighboring strands creating short intermolecular S---S distances (~3.8 A)
and m—m-interaction between the EXTTFTB ligands of adjacent strands. As demonstrated below, such

supramolecular n—m-interactions between the ExTTFTB ligands in pristine dhMOF turned into

intermolecular EXTTFTB/EXTTFTB™ n-donor/acceptor chains upon iodine-mediated partial framework
oxidation (Figure 1c), which further facilitated charge delocalization and improved its electrical

conductivity.

The experimental powder X-ray diffraction (PXRD) pattern of activated pristine dZMOF (called 1
hereafter) was consistent with the simulated pattern (Figure 2a), confirming that the bulk material was
phase-pure and retained its structural integrity upon activation thanks to the rigidity of convex EXTTFTB
ligand. Like other iodine doped MOFs,**%*? most of the PXRD peaks (Figure 2a) of iodine-treated and
subsequently hexane-washed and evacuated material (called 1a hereafter) appeared at the same positions
as those displayed by pristine 1, but became broader and weaker, suggesting that the framework remained

mostly crystalline after iodine-mediated partial oxidation (vide infra).

Thermogravimetric analysis (TGA) coupled with differential scanning calorimetry (DSC) showed
(Figure 2b) that 1 lost only 10% of initial weight before 200 °C due to the loss of residual solvent and then
remained steady until 350 °C. Similarly, 1a also lost only 10% of initial weight between 50-100 °C and
then maintained a plateau until 350 °C, confirming that no excess iodine was present in this partially
oxidized dhiMOF beyond the requisite number of I anions to balance EXTTFTB™" charges. In comparison,
an iodine-treated and subsequently air-exposed but not washed material (called 1b hereafter) suffered 17%
weight loss between 50—150 °C indicating the loss of residual iodine, before holding steady until 350 °C.
The DSC profiles showed no major phase transition in any of these materials before 350 °C. The Brunauer-

Emmett-Teller (BET) surface area (66 m?/g) and pore volume (5.1 x 102 cm?/g) determined from CO,-
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sorption isotherms (Figure S1) indicated that dAMOF could host small guest molecules or ions. In contrast,
the BET surface area and pore volume of iodine-treated partially oxidized 1a diminished significantly (1.7
m?/g and 2.4 x 102 cm?/g, respectively) possibly because I" counterions occupied the ovoid pores (vide
infra). Nevertheless, based on PXRD data, the crystalline structure of iodine-treated dAMOF (1a) remained

mostly intact.
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Figure 2. (a) PXRD patterns of pristine and iodine-treated dAMOFs. (b) TGA (solid) and DSC (dotted)
profiles of pristine and iodine-treated dhAMOF.

Electrochemical Behavior of Pristine and Iodine-Treated dhMOFs. Like other ExXTTF compounds,®
free EXTTFTB ligand also underwent (Figure 3a) a pseudoreversible one-step two-electron oxidation to
ExTTFTB*" dication displaying an anodic peak at 0.66 and a cathodic peak at 0.34 V (Eox = 0.50 V vs.
Ag/AgCl in 0.1 M BuuNPF¢ / DMF). In contrast, the cyclic voltammogram (CV) of pristine dAMOF (1)
thin-film drop-cast on a glassy carbon electrode displayed (Figures 3b and c) two distinct anodic peaks at
0.50 and 0.66 V (vs. Ag/AgCl, 0.1 M BusNPF¢ in MeCN), indicating stepwise one-electron oxidation of
the MOF-bound EXTTFTB ligand to EXTTFTB™" radical cation and EXTTFTB?" dication. These results
demonstrate that although free EXTTFTB™ radical cation was not accessible in solution, the
nonsymmetrical coordination environment of four carboxylate groups of EXTTFTB ligands in diMOF (two
trans carboxylate groups formed Zn, paddlewheel nodes, the third one coordinated with a tetrahedral Zn(II)
site, and the fourth remained free and protonated) desymmetrized its electron distribution, which led to
separation of the two oxidation steps and rendered the EXTTFTB™ radical cation state accessible.
Furthermore, in diMOF, the convex EXTTFTB ligands were rigidified and their curvature became more

pronounced, which likely impacted their redox behavior. Although free EXTTF compounds turn into planar

49,50 51,52

ExTTFTB*" dication upon two-electron oxidation, previous studies showed that symmetrical
metallocages consisting of two convex tetrapyridyl-ExXTTF (TPEXTTF) ligands connected by four
bis(diphenylphosphino)ferrocene-capped Pt(Il) or Pd(II) centers remained intact even after two-electron

oxidation of both TPEXTTF ligands to corresponding dications, suggesting that it is also possible for
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dhMOF to retain its structure after oxidation of EXTTFTB ligands. The anodic peaks of iodine-treated 1a
(Figures 3b and d) appeared at more positive potentials (0.53 and 0.74 V vs. Ag/AgCl, 0.1 M BusNPFg in
MeCN) than pristine 1, suggesting that iodine-mediated oxidation of some ExXTTFTB ligands to EXTTFTB™
radical cations and ensuing intermolecular EXTTFTB/EXTTFTB™ charge-transfer interaction (Figure 1¢)
made electrochemical oxidation of this partially oxidized material more difficult than the free ligand and
pristine dhiMOF. To probe framework stability during electrochemical oxidation, multiple CV cycles of 1
and la were recorded, which displayed good agreement among the repetitive cycles (Figures S2),

suggesting that both materials were stable under these conditions.

EXTTFTBO2* EXTTFTBO"

/” — Pristine 1

— l-treated 1a

Free EXTTFTB
ligand

00 02 04 06 08 10 00 02 04 06 08 10
Potential (V) Potential (V)
Figure 3. The cyclic voltammograms of (a) free EXTTFTB ligand (vs. Ag/AgCl, 0.1 M BusNPF¢ in DMF)
and (b—d) pristine 1 (black traces) and iodine-treated 1a (red traces) (vs. Ag/AgCl, 0.1 M BusNPF¢ in

MeCN). The repetitive cycles in (¢) and (d) indicate framework stability during electrochemical oxidation.

EPR and XPS Analyses of Pristine and Iodine-Treated Partially Oxidized dhMOFs. The presence of
paramagnetic EXTTFTB™ radical cations and I" counterions in iodine-mediated partially oxidized 1a was
revealed by EPR and X-ray photoemission spectroscopies, respectively. The solid-state EPR spectrum of 1
showed a negligible signal (Figure 4a), indicating that the majority of EXTTFTB ligands remained in the
neutral state, although few may have been partially oxidized by air, as found in other tetrathiafulvalene-
based MOFs.22% 353 In contrast, 1a displayed (Figure 3b) a strong EPR signal (g = 2.005), demonstrating
that a large number of EXTTFTB ligands were indeed oxidized to paramagnetic EXTTFTB™ radical cations.
The EPR data further confirmed that iodine oxidized some EXTTFTB ligands only to EXTTFTB™ radical
cations, not to diamagnetic EXTTFTB?" dications. The iodine-mediated oxidation of EXTTFTB ligands to
EXTTFTB™ radical cations should also generate I" counterions to complete the redox reaction and to
maintain charge balance in partially oxidized dAMOF (1a). The XPS analysis of 1a displayed (Figure 4b)
characteristic I peaks at 617.6 (I 3ds») and 628.9 (I 3ds») €V,** but no such peak was displayed by 1.
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Figure 4. (a) Solid-state EPR spectra of pristine 1 (black) and iodine-treated 1a (red). (b) The survey XPS
and high resolution I 3d XPS (inset) show characteristic I” peaks in 1a (red) but not in 1 (black).

Elemental Analysis of Pristine and Iodine-Treated dhMOFs. The amount of EXTTFTB™ radical cations
in 1a, which must be accompanied by an equal number of charge-balancing I” counterions, was estimated
from elemental analysis. This insight, together with the crystal structure of dhMOF, allowed us to depict
the most plausible arrangement of these species and a potential charge delocalization pathway in 1a (Figure
Ic). The elemental analysis data of 1a (C 52.78%, H 3.59%, S 10.84%, and I 5.91%) corresponds to an
empirical formula of Zn3Ci00H73026Ssl. Based on the S:I ratio, 1a contains one I” anion for each pair of
ExTTTB ligands, i.e., the EXTTFTB to I ratio is 2:1. That means only half of the EXTTFTB ligands,
possibly one in each loop is oxidized to an EXTTFTB™ radical cation, which is accompanied by an I
counterion. The crystal structure of diMOF (Figure 1) shows that the ovoid cavities are large enough to
accommodate one 1™ anion (diameter 3.96 A) inside each cavity, whereas the gaps between double helical
strands (~3.8 A) are too narrow for them, suggesting that the ovoid cavities are the most likely location of
I” counterions in 1a (Figure 1c). Attempt to determine the single crystal structure of iodine-treated diMOF
(1a) was not successful as the crystals diffracted poorly, however, the PXRD pattern and physical

appearance suggested that it remained crystalline.

Taken together, these experimental results suggested that about half of the EXTTFTB ligands in 1a
were oxidized to EXTTFTB™ radical cations, which were accompanied by an equal number of I anion.
Based on this information and the crystal structure of dhiMOF, we postulated that the iodine-generated
ExTTFTB™ radical cations of a given strand and the neutral EXTTFTB ligands of an adjacent strand, which
are technically located only ~3.8 A apart, would form extended n-donor/acceptor chains along the seams
of the neighboring strands (Figure 1¢). Such intermolecular EXTTFTB/EXTTFTB™ n-donor/acceptor CT
interactions would not only stabilize the partially oxidized diMOF and hinder the oxidation of all EXTTFTB
ligands, but also create unique charge delocalization pathways along the seams of adjacent stands that could

be beneficial for long-range charge delocalization and electrical conductivity of iodine-treated dAMOF.
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While we considered other possible arrangements of EXTTFTB™ in 1a, the proposed model (Figure 1c)
depicting the formation of supramolecular EXTTFTB/EXTTFTB™ chains along the seams of diMOF
strands is the most plausible one since it provides the greatest stabilization to partially oxidized dAMOF by
minimizing the electrostatic repulsion between EXTTFTB™ radical cations more effectively than any other
arrangements. For instance, the convex EXTTFTB ligands in a given double helical strand are located too
far apart to allow any meaningful stabilizing interaction between the neutral and oxidized ligands. Similarly,
an alternating arrangement of neutral and singly oxidized EXTTFTB ligands between the left and right sides
of a given double helical strand of 1a (as opposed to all neutral ligands being one side and all EXTTFTB™
on the other) would create electrostatic repulsion between the adjacent EXTTFTB™ radical cations of

neighboring strands, leaving the proposed model depicted in Figure 1c the most reasonable one.

Optical Spectra and Band Gaps of Pristine and Iodine-Treated dhMOFs. The UV-Vis absorption
spectrum of free EXTTFTB ligand (Figure 5a) displayed the longest wavelength absorption peak at 445 nm.
From the onset of this peak, its optical band gap was estimated to be 2.6 eV. The diffuse reflectance spectra
(DRS) of 1 and 1a (Figure 5b) featured the longest wavelength absorption peaks at 480 and 630 nm,
respectively, from which their respective optical band gaps of 2.2 and 1.7 eV were estimated. Thus, the
optical band gaps of both 1 and 1a were much narrower than that of free EXTTFTB ligand, which can be
attributed to intermolecular n—t and n-donor/acceptor interactions in pristine and iodine-mediated partially
oxidized dhMOFs, respectively. The corresponding Tauc plots provided further insights into their
respective direct and indirect band gaps (Figures 5S¢ and d),”” which were in good agreement with those
determined from DRS and confirmed that partially oxidized 1a indeed enjoyed ~0.5 eV narrower band gap
than neutral 1 possibly due to intermolecular EXTTFTB/EXTTFTB™ n-donor/acceptor interaction in the

former.
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Figure 5. (a) UV-Vis absorption spectrum of free EXTTFTB ligand in DMF. (b) Diffusion reflectance
spectra of 1 (black) 1a (red). (c, d) The Tauc plots of 1 (black) 1a (red) revealed their respective direct (c)
and indirect (d) band gaps.

Electrical Conductivity of Pristine and lodine-Treated dhMOFs. Finally, the electrical conductivities
of pristine and iodine-treated diMOFs were determined from dc-sweep and EIS measurements performed
on in-situ pressed MOF pellets sandwiched between two conductive-C or Ag-coated stainless-steel
electrodes (Table 1).'*°* Irrespective of the electrodes, all three materials (i.e., 1, 1a, and 1b) displayed
linear current-voltage (I-V) profiles between —1 to +1 V (Figure 6), confirming electrical current and ohmic
contact between the pellets and electrodes. Based on the slopes of respective I-V plots, the electrical
conductivity of 1b (~10* S/m) was found to be 10* times greater than that of 1 (~10"® S/m), while that of
1a (~10°° S/m) lied between the two materials. Fully consistent with these results, the Nyquist plots (Figure
S3) obtained from EIS measurements also revealed the same trend and similar c-values of the respective
materials (Table 1). The electrical conductivities of 1a and 1b were 10-1000 times greater than that of
iodine (10”7 S/m), confirming that the iodine-treated dAMOFs were indeed responsible for electrical
conduction. The iodine-induced ~100-fold conductivity enhancement in 1a (devoid of excess iodine except
I” counterions needed to balance the EXTTFTB™ charge) could be attributed to partial framework oxidation,
which not only increased the charge-carrier concentration, but also facilitated charge delocalization through
the proposed EXTTFTB/EXTTFTB™ chains formed along the seams of neighboring strands (Figure 1¢). In

contrast, 1b contained additional iodine molecules (based on the TGA data), which likely contributed to its

10
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even higher conductivity by facilitating electron movement across the grain boundaries. Thus, the unique
structural features of dAMOF enabled us to engineer a desired feature through guest infiltration, which was
not fully expressed in the pristine material. It is worth noting that the bulk electrical conductivity value
measured with pelletized sample is usually underestimated from the intrinsic conductivity of the material
due to undeterminable contributions of grain-boundary and contact resistance. The PXRD patterns of
pelletized 1 and 1a recorded before and after electrical measurements were in good agreement (Figure S4),

indicating that these materials remained stable under these conditions.

Table 1. Electrical conductivity (S/m) of 1, 1a, and 1b measured by direct-current (dc) sweep and
electrochemical impedance spectroscopy (EIS) using MOF pellets sandwiched between two stainless-

steel electrodes coated with conductive-C* and Ag® paints.

1 1a 1b
de-sweep® | 3.0x10°  1.3x10° 3.2x10™*
de-sweep® | 1.9x10° 2.4x107 2.6x10™*
EIS® 2.5x10°% 1.8x10° 2.7x107*
1.0 1.0
a. 1: Pristine b 1: Pristine
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Figure 6. The linear /-V relationships of 1 (black), 1a (red), and 1b (blue) measured using conductive-C

(left panel) and Ag-coated (right panel) stainless-steel electrodes.
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CONCLUSIONS

In summary, we have developed a novel double-helical MOF architecture by introducing a new electron
rich convex EXxXTTFTB ligand, which helped create a unique through-space charge-delocalization pathway
suitable for electrical conductivity. The iodine-mediated partial framework oxidation boosted its electrical
conductivity up to 10 S/m range, over 10* times above the pristine ZzMOF’s, which could be attributed
to facile charge delocalization through EXTTFTB/EXTTFTB™ n-donor/acceptor chains formed along the
seams of dhAMOF strands. Most importantly, by introducing ExTTF ligand, this work presents new tools
and design strategies for the development of other double-helical MOFs with unique through-space charge

movement pathways, which could be useful for myriad molecular electronics applications.
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