
PHYSICAL REVIEW C 100, 034903 (2019)

Dijet azimuthal correlations and conditional yields in pp and p + Pb collisions at
√

sNN = 5.02 TeV
with the ATLAS detector

M. Aaboud et al.∗
(ATLAS Collaboration)

(Received 30 January 2019; published 6 September 2019)

This paper presents a measurement of forward-forward and forward-central dijet azimuthal angular cor-
relations and conditional yields in proton-proton (pp) and proton-lead (p + Pb) collisions as a probe of the
nuclear gluon density in regions where the fraction of the average momentum per nucleon carried by the parton
entering the hard scattering is low. In these regions, gluon saturation can modify the rapidly increasing parton
distribution function of the gluon. The analysis utilizes 25 pb−1 of pp data and 360 μb−1 of p + Pb data,
both at

√
sNN = 5.02 TeV, collected in 2015 and 2016, respectively, with the ATLAS detector at the Large

Hadron Collider. The measurement is performed in the center-of-mass frame of the nucleon-nucleon system
in the rapidity range between −4.0 and 4.0 using the two highest transverse-momentum jets in each event,
with the highest transverse-momentum jet restricted to the forward rapidity range. No significant broadening of
azimuthal angular correlations is observed for forward-forward or forward-central dijets in p + Pb compared to
pp collisions. For forward-forward jet pairs in the proton-going direction, the ratio of conditional yields in p + Pb
collisions to those in pp collisions is suppressed by approximately 20%, with no significant dependence on the
transverse momentum of the dijet system. No modification of conditional yields is observed for forward-central
dijets.

DOI: 10.1103/PhysRevC.100.034903

I. INTRODUCTION

Studies of particle collisions at accelerators have con-
tributed significantly to an improved understanding of the
strong interaction in quantum chromodynamics (QCD) and
to the knowledge of the parton distribution functions (PDFs)
of the proton. Global QCD analyses of structure functions
in deep-inelastic lepton-nucleon scattering at HERA, as well
as jet and hadron cross sections at the Large Hadron Col-
lider (LHC), Tevatron, and Relativistic Heavy Ion Collider
(RHIC) were performed in a wide kinematic range, providing
several new sets of PDFs with the highest degree of preci-
sion reached so far [1–4]. These analyses constrain quark
and gluon contributions over a wide range of the Bjorken
variable x: The longitudinal-momentum fraction of a nucleon
carried by its constituent partons. From these measurements,
the gluon distribution in the proton is found to rise rapidly
for decreasing x. Unitarity requires that the first moment of
the gluon-momentum distribution remains finite. Therefore,
the steep rise at low x must change at some x value; this
phenomenon is known as saturation [5].

The search for the onset of saturation was a major scientific
goal with deuteron-gold and gold-gold collisions at RHIC
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[6–8], where the sensitivity to saturation effects was increased
due to the enhancement of the nuclear gluon density in the
Lorentz-contracted nucleus [9]. These measurements were
able to probe the parton longitudinal-momentum fraction of
the nucleon in the nucleus down to xA ∼ 10−3. Currently,
the gluon nuclear PDFs have large uncertainties at low xA

[10,11], and additional data in this region would help to
further constrain them. A midrapidity measurement of jet-
production rates at RHIC found no significant modification
in deuteron-gold collisions compared to proton-proton (pp)
collisions [12]. Recent analyses at the LHC have been per-
formed in the proton-going direction of proton-lead (p + Pb)
collisions and at higher center-of-mass energies, allowing
a lower value of xA to be probed for the lead nucleus.
The ALICE measurements of cross sections for charged-
jet production and dijet azimuthal angular correlations at
midrapidity did not find significant modifications in p + Pb
collisions compared to pp collisions [13,14]. The ATLAS and
CMS analyses of inclusive jet production also did not find
significant evidence of nuclear modification [15,16]. Another
approach to probe gluon saturation in nuclear gluon densities
was proposed in the framework of the color glass condensate
(CGC) model [17] by studying the modifications of dijet
azimuthal angular distributions in pp and p + Pb collisions at
forward rapidities at xA down to 10−5 [18]. For back-to-back
dijets, the gluon field in the lead nucleus is probed at low
momentum where saturation effects are expected to be large
[19,20].

In this paper, a measurement of azimuthal correlations
between leading and subleading jets in pp and p + Pb
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collisions at
√

sNN = 5.02 TeV is presented. The measurement
is performed in intervals of the jet center-of-mass rapidity1

y∗ = y − �y, where y is the jet rapidity in the laboratory
frame, and �y is the rapidity shift of the center-of-mass frame
relative to the laboratory frame. This shift results from the
different energy of the proton-beam with respect to the Pb
beam in p + Pb collisions. The leading jet has the highest
transverse momentum (pT,1) in the event and is required to
be in the forward proton-going direction; otherwise, the event
is not considered. The subleading jet has the second-highest
transverse momentum (pT,2) in the event and its rapidity
range is not restricted. The center-of-mass rapidities of the
leading and subleading jets are y∗

1 and y∗
2, respectively. This

measurement of dijets can probe the xA range between 10−4

and 10−3 in the lead nucleus. The azimuthal angular corre-
lation distributions C12, which are normalized to the number
of forward (2.7 < y∗

1 < 4.0) leading jets N1 in a given pT,1

interval, are defined as:

C12(pT,1, pT,2, y∗
1, y∗

2 ) = 1

N1

dN12

d�φ
,

where N12 is the number of dijets and �φ is the azimuthal
angle between the leading and subleading jets. The C12

distributions are fitted and their widths W12 defined by the
root-mean-square of the fit function: W12(pT,1, pT,2, y∗

1, y∗
2 ) =

RMS(C12).
In addition to dijet azimuthal angular distributions, the dijet

conditional yields I12 are measured and defined as:

I12(pT,1, pT,2, y∗
1, y∗

2 ) = 1

N1

d4N12

dy∗
1dy∗

2d pT,1d pT,2
.

The azimuthal angular correlations and conditional yields
evaluated in p + Pb and pp collisions are compared and the
ratios in W12 and I12 between the two systems are calculated
as:

ρ
pPb
W (pT,1, pT,2, y∗

1, y∗
2 ) = W pPb

12

W pp
12

,

ρ
pPb
I (pT,1, pT,2, y∗

1, y∗
2 ) = IpPb

12

Ipp
12

.

To define a phase space that better suits next-to-leading-order
calculations, a minimum �pT = pT,1 − pT,2 is required for
the dijets [21–23]. However, techniques such as Sudakov
resummation [24] can take into account the absence of �pT

1ATLAS uses a right-handed coordinate system with its origin at
the nominal interaction point (IP) in the center of the detector and the
z axis along the beam pipe. The x axis points from the IP to the center
of the LHC ring, and the y axis points upward. Cylindrical coordi-
nates (r, φ) are used in the transverse plane, φ being the azimuthal
angle around the beam pipe. For the p + Pb collisions, the incident
Pb beam traveled in the +z direction. The pseudorapidity is defined
in terms of the polar angle θ as η = − ln tan(θ/2). Angular distance
is measured in units of �R ≡ √

(�η)2 + (�φ)2 with �η and �φ

defined as the differences between two directions in pseudorapidity
and azimuth. Rapidity is defined in terms of energy and momentum
of a particle or jet as y = (1/2) ln[(E + pz )/(E − pz )].

requirements. Also, comparisons with fixed-order calcula-
tions and soft-gluon resummation, which involve transverse-
momentum-dependent PDFs, instead of collinear PDFs, are
better suited to scenarios not placing any minimum �pT

requirement on the dijets. The results of the measurement are
therefore presented both without any requirement on �pT and
with a requirement of �pT > 3 GeV.

II. EXPERIMENTAL SETUP

The measurements presented here are performed using
the ATLAS calorimeter, trigger, and data acquisition sys-
tems [25]. The calorimeter system consists of a sampling
lead/liquid argon (LAr) electromagnetic calorimeter covering
|η| < 3.2, a steel/scintillator sampling hadronic calorime-
ter covering |η| < 1.7, a LAr hadronic calorimeter covering
1.5 < |η| < 3.2, and two LAr forward calorimeters (FCal)
covering 3.2 < |η| < 4.9. The electromagnetic calorimeters
are segmented longitudinally in shower depth into three layers
plus an additional presampler layer and have a granularity that
varies with the layer and pseudorapidity and which is also
much finer than that of the hadronic calorimeter. The hadronic
calorimeter has three longitudinal sampling layers and com-
prises the tile barrel and extended barrel hadronic calorime-
ters covering |η| < 1.7, and the hadronic endcap calorimeter
(HEC) covering 1.5 < |η| < 3.2. The minimum-bias trigger
scintillators detect particles over 2.1 < |η| < 3.9 using two
azimuthally segmented counters placed at z = ±3.6 m. There
are 12 measurements per counter. Each counter provides
measurements of both the pulse heights and the arrival times
of energy deposits from each segment.

A two-level trigger system was used to select the pp and
p + Pb collisions. The first level is the level-1 (L1) hardware-
based trigger implemented with custom electronics. The sec-
ond level is the software-based high-level trigger (HLT). Jet
events were selected by the HLT with input from the L1 jet and
transverse-energy triggers in pp collisions and minimum-bias
trigger in p + Pb collisions. The two L1 transverse-energy
triggers used in pp collisions required the total transverse
energy measured in the calorimeters to be greater than 5 and
10 GeV, respectively. The L1 jet trigger used in pp collisions
required a jet to exceed transverse-energy thresholds ranging
from 12 to 20 GeV. The L1 minimum-bias trigger selected
p + Pb events with at least one hit in the minimum-bias trigger
scintillator counters on each side of the IP. The HLT jet trigger
employed a jet reconstruction algorithm similar to that applied
in the offline analysis and selected events containing jets that
exceeded a transverse-energy threshold of 15 GeV in p + Pb
collisions and thresholds ranging from 25 to 85 GeV in pp
collisions. In both the pp and p + Pb collisions, the highest-
threshold jet trigger sampled the full delivered luminosity,
and jet triggers with lower thresholds were prescaled2 and
sampled a fraction of delivered luminosity. Both the forward

2The prescale indicates which fraction of events that passed the
trigger selection was selected for recording by the data acquisition
system.
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FIG. 1. (Left) Jet energy scale and (right) jet energy resolution evaluated in (top) pp and (bottom) p + Pb MC samples in different
generator-level jet pseudorapidity intervals and shown as a function of the generator-level jet transverse momentum ptruth

T .

(3.2 < |η| < 4.9) and central (|η| < 3.2) jet triggers are used
in this measurement.

III. DATA SETS AND EVENT SELECTION

A total of 25 pb−1 of
√

s = 5.02-TeV pp data from 2015
with two equal-energy proton beams is used. During pp data
taking, the average number of interactions per bunch crossing
varied from 0.6 to 1.3.

TABLE I. The transverse-momentum intervals (pT,1, pT,2) of the
leading and subleading jets and the center-of-mass rapidity intervals
(y∗

2) of the subleading jet. In all cases the center-of-mass rapidity
interval of the leading jet is 2.7 < y∗

1 < 4.0.

Bins in pT,1 (GeV) Bins in pT,2 (GeV) Bins in y∗
2

28 < pT,1 < 35 28 < pT,2 < 35 2.7 < y∗
2 < 4.0

35 < pT,1 < 45 35 < pT,2 < 45 1.8 < y∗
2 < 2.7

45 < pT,1 < 90 45 < pT,2 < 90 0.0 < y∗
2 < 1.8

−1.8 < y∗
2 < 0.0

−4.0 < y∗
2 < −1.8

The p + Pb data used in this analysis were recorded in
2016 with the LHC configured with a 4-TeV proton-beam and
a 1.57-TeV-per-nucleon Pb beam, producing collisions with√

sNN = 5.02 TeV and �y = 0.465. The polar angle θ was π

for the proton-beam and zero for the Pb beam. However, in
order to be consistent with previous measurements [15,26],
the proton-going direction is defined to have positive rapidity
in this measurement. The total p + Pb integrated luminosity is
360 μb−1. During the p + Pb data taking the average number
of p + Pb interactions per bunch crossing was 0.03. In p + Pb
and pp collisions, events are required to have a reconstructed
vertex. Only events taken during stable beam conditions
and satisfying detector and data-quality requirements are
considered.

The performance of ATLAS in measuring azimuthal
angular correlations and conditional yields in both the pp
and p + Pb data samples was evaluated with a 5.02-TeV pp
Monte Carlo (MC) sample simulated using PYTHIA8.212 [27].
Hard-scattering pp events generated with the A14 [28] set of
tuned parameters and the NNPDF23LO PDF set [29] were
used. The detector response was simulated using GEANT4
[30,31]. The pp MC samples used for this analysis contain
approximately 12 million events. Corresponding p + Pb
MC samples were obtained by overlaying signal from pp
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FIG. 2. Relative systematic uncertainties of values of (left) W12 and (right) I12 in (top) pp and (bottom) p + Pb collisions. The uncertainty
associated with the disabled HEC region is labeled as the “Acceptance” uncertainty. Uncertainty values are presented for the center of the bin
and with no �pT requirement.

MC simulation with minimum-bias data events from p + Pb
collisions. These simulated 5.02-TeV pp events used in the
overlay procedure were generated with the same set of tuned
parameters as for the pp MC sample but with a rapidity shift
equivalent to that in the p + Pb collisions. The simulated
hits are combined with those from the data event and used
as input to the jet reconstruction. Additionally, a HERWIG++
[32] MC simulation of approximately 5.6 million 5.02-TeV
pp events was used for performance studies. The p + Pb MC
samples are weighted at the event level to reproduce the FCal
ET distribution in the p + Pb data.

IV. JET SELECTION AND RECONSTRUCTION

Jets in pp and p + Pb collisions are reconstructed using
the techniques described in Refs. [15,33], which are briefly
summarized here. The jet reconstruction is first run in the
four-momentum recombination mode on �η × �φ = 0.1 ×
0.1 calorimeter towers with the anti-kt algorithm [34] with
radius parameter R = 0.4. Energies in the towers are ob-
tained by summing the energies of calorimeter cells at the
electromagnetic energy scale within the tower boundaries.
Then an iterative procedure is used to estimate the layer-
and η-dependent underlying event (UE) transverse-energy
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FIG. 3. Relative systematic uncertainties of values of (left) ρ
pPb
W and (right) ρ

pPb
I . The uncertainty associated with the disabled HEC region

is labeled as the “Acceptance” uncertainty. Uncertainty values are presented for the center of the bin and with no �pT requirement.

density, while excluding the regions populated by jets. The UE
transverse energy is subtracted from each calorimeter tower
and the four-momentum of the jet is updated accordingly.
Then a jet η- and pT -dependent correction factor derived from
the simulation samples is applied to correct for the calorimeter
response. An additional correction based on in situ studies
of the transverse-momentum balance of jets recoiling against
photons, Z bosons, and jets in other regions of the calorimeter
is applied [35,36].

Jets are selected in the transverse-momentum range 28 <

pT < 90 GeV and the center-of-mass rapidity range |y∗| <

4.0. These selections guarantee the largest symmetric overlap
between the two colliding systems for which most forward
jets can be reconstructed using the FCal with full coverage
for R = 0.4 jets. All reconstructed jets are required to have
a pT > 28 GeV such that the jet trigger efficiency is greater
than 99%. As a result, no trigger efficiency correction is
applied. During the p + Pb data taking, part of the HEC
was disabled in the pseudorapidity and azimuthal intervals
1.3 < η < 3.2 and −π < φ < −π/2. Reconstructed dijets
where the subleading jet area overlaps with the disabled HEC
region are excluded from the analysis in p + Pb data and MC
samples.

The MC samples are used to evaluate the jet reconstruction
performance and to correct the measured distributions for
detector effects. This is done independently for pp and p + Pb
collisions. In the MC samples, the generator-level jets are
reconstructed from stable particles3 excluding muons and
neutrinos, with the anti-kt algorithm with radius parameter
R = 0.4. Using the pseudorapidity and azimuthal angles ηtruth,

3Stable particles are defined as particles with a mean lifetime τ >

0.3 × 10−10 s.

φtruth, ηreco, and φreco of the generated and reconstructed jets,
respectively, generator-level jets are matched to reconstructed
jets by requiring �R < 0.2.

The efficiency for reconstructing jets in pp and p + Pb
collisions is evaluated using the PYTHIA8 MC samples by
determining the probability of finding a reconstructed jet
associated with a generator-level jet. The jet reconstruction
efficiency is greater than 99% for jets with pT > 30 GeV and
decreases to 95% at a jet pT = 28 GeV. The jet reconstruction
efficiency exhibits a small variation with rapidity.

The jet energy reconstruction performance is characterized
using the ratios of transverse momenta of reconstructed jets
to generated jets, preco

T and ptruth
T , respectively, to determine

the relevant jet energy scale (JES) and jet energy resolution
(JER) corresponding to the mean and width of the jet response
(preco

T /ptruth
T ). The values of JES and JER are shown in Fig. 1 as

a function of ptruth
T , in intervals of generated jet pseudorapidity

ηtruth, for pp and p + Pb MC samples. The JES shows a very
small dependence on ηtruth, with a maximum deviation of
±3% from unity. Jet angular reconstruction performance has
been studied in terms of mean angular differences between
the reconstructed and generator-level jet direction in pseu-
dorapidity and azimuthal angle, 〈�η〉 and 〈�φ〉, and their
resolutions, σ (�η) and σ (�φ). The mean angular differences
are consistent with zero, and the jet angular resolutions (JAR)
decrease from approximately 17% to 10% as a function of
ptruth

T for both the pp and p + Pb MC samples.

V. ANALYSIS PROCEDURE

The two-highest pT jets in each event are used to measure
the azimuthal angular correlation distributions, which are
evaluated as a function of �φ relative to the leading jet in
the center-of-mass rapidity interval 2.7 < y∗

1 < 4.0, and in
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FIG. 4. Unfolded C12 distributions in (red squares) pp and (black circles) p + Pb collisions for different selections of pT,1, pT,2, y∗
1, and

y∗
2 as a function of �φ. The lines represent values of the fit function. The data points are shifted horizontally for visibility and do not reflect

an actual shift in �φ. The vertical size of the open boxes represents systematic uncertainties and error bars indicate statistical uncertainties.
The horizontal size of the open boxes does not represent the width of the bins. Results are shown with no �pT requirement, where �pT =
pT,1 − pT,2.

different intervals of y∗
2, pT,1, and pT,2. Table I lists the trans-

verse momenta and center-of-mass rapidity intervals used
in the measurement. The C12 distributions are then fitted to
extract their widths.

The effects of migration due to the jet energy and an-
gular resolutions as well as the jet reconstruction efficiency
affecting the leading-jet pT spectra and C12 distributions in pp
and p + Pb collisions are corrected for by using a bin-by-bin
unfolding procedure. For each of the affected distributions,
correction factors that are applied to data are derived from
the ratio between two corresponding MC distributions; one
evaluated using generator-level jets and the other evaluated
using jets reconstructed after the detector simulation. To ac-
count for the jets excluded due to the disabled HEC region
in p + Pb data and MC samples, an acceptance correction is
applied using the same procedure because generator-level jets
are not excluded from the affected region. Thus, the correction
factors used in the unfolding account for the missing jets at
reconstruction level. The bin-by-bin unfolding procedure is

sensitive to differences in the shapes of distributions between
the data and the MC samples. Thus, the jet pT and C12

distributions in the MC reconstructed samples are reweighted
to match the shapes in the data. Weights are derived by
evaluating the data-to-MC ratios of the reconstructed distri-
butions. The reweighting is done in two steps: (1) weights are
evaluated for the jet pT spectra; (2) when deriving weights
for the C12 distributions, the dependence of the ratio between
data and MC on the jet pT spectra is removed by applying
the weights evaluated in the previous step. The final weight
is the product of the two weights. Jet weights of the jet pT

spectra are within 10% of unity for pp and p + Pb collisions,
and the �φ weights are within 15% of unity near the peak
of the C12 distributions, where the effect of reweighting is
largest.

The unfolded jet pT and dN12/d�φ distributions are used
to evaluate the C12 distributions both in pp and in p + Pb
collisions. The C12 distributions are then fitted as a function
of �
 = �φ − π by a symmetric exponential distribution
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FIG. 5. Comparison of (left) W12 and (right) I12 values in pp (open symbols) and p + Pb (closed symbols) collisions for different selections
of pT,1 and pT,2 as a function of y∗

2. The y∗
2 intervals are separated by dotted vertical lines. The data points are shifted horizontally for visibility,

and do not reflect an actual shift in rapidity. The vertical size of the shaded and open boxes represents systematic uncertainties for pp and
p + Pb, respectively, and the error bars indicate statistical uncertainties. The horizontal size of the shaded and open boxes does not represent
the width of the bins. Some points are not presented due to large statistical uncertainties. Results are shown with no �pT requirement, where
�pT = pT,1 − pT,2.

convolved with a Gaussian function:

C12(�φ) =
∫ ∞

−∞
dδ

e−δ2/2σ 2

√
8πσ 2τ 2

e−|�
−δ|/τ ,

where τ is the parameter of the exponential component and σ

is the width of the Gaussian distribution. All parameters are
required to be positive. The resulting fit function is

C12(�φ) = A
eσ 2/2τ 2

2τ

(
1

2
e�
/τ Erfc

[
1√
2

(
�


σ
+ σ

τ

)]

+ e−�
/τ

{
1 − 1

2
Erfc

[
1√
2

(
�


σ
− σ

τ

)]})
,

where A is a normalization factor. The width W12 is chosen
to be represented by the analytic root-mean-square of the τ

and σ parameters resulting from the fit, W12 = RMS(C12) =√
2τ 2 + σ 2. The fitting procedure is performed in the range

2.5 < �φ < π . The convolution of the Gaussian and sym-
metric exponential functions is found to better describe the
data around the peak of the C12 distributions than a pure
exponential function.

VI. SYSTEMATIC UNCERTAINTIES

Systematic uncertainties originate from the JES, JER, JAR,
the fitting procedure, acceptance correction, and unfolding
procedure. For each source of systematic uncertainty, the
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FIG. 6. Ratios (top) ρ
pPb
W of W12 and (bottom) ρ

pPb
I of I12 values between p + Pb collisions and pp collisions for different selections of pT,1

and pT,2 as a function of y∗
2. The data points are shifted horizontally for visibility and do not reflect an actual shift in rapidity. The vertical size

of the open boxes represents systematic uncertainties and the error bars indicate statistical uncertainties. The horizontal size of the open boxes
does not represent the width of the bins. Some points are not presented due to large statistical uncertainties. Results are shown with no �pT

requirement, where �pT = pT,1 − pT,2.

values of W12 and I12 and the ratios ρ
pPb
W and ρ

pPb
I in p + Pb

and pp collisions are re-evaluated. The absolute difference
between the varied and nominal values is used as an estimate
of the uncertainty.

The systematic uncertainty due to the JES is determined
from in situ studies of the calorimeter response [33,35–37],
and studies of a relative energy-scale difference between the
heavy-ion jet reconstruction procedure [37] and the procedure
used in 13-TeV pp collisions [38]. The JES uncertainty de-
pends on the jet pT and jet η and is applied as a modifi-
cation to the reconstructed jet pT and varied separately by
±1 standard deviation. The bin-by-bin correction factors are
recomputed accordingly and the data are unfolded with them.
The resulting uncertainty from the JES is typically less than
15% for the values of both W12 and I12. An additional source
of systematic uncertainty for the JES in p + Pb collisions
originates from differences between detector response and
its simulation compared to pp collisions. These differences
are about 1%, and their resulting systematic uncertainties are
added to the total JES systematic uncertainty in quadrature.

The uncertainty due to the JER is evaluated by repeating
the unfolding procedure with modified bin-by-bin correction
factors, where an additional contribution is added to the
resolution of the simulated jet pT using a Gaussian smearing

procedure [38]. The smearing factor is evaluated with an in
situ technique developed for 13 TeV pp data involving studies
of dijet transverse-momentum balance [39]. An additional
uncertainty is included to account for differences between the
heavy-ion jet reconstruction and that used in the analyses of
13-TeV pp data. The resulting uncertainty is symmetrized.
The size of the uncertainty due to the JER for the values of I12

is as large as 30% and is typically below 10% for the values
of W12.

The systematic uncertainty from the JAR originates in
differences in the angular resolution between the data and MC
samples. The uncertainty is derived as the difference between
the angular resolutions evaluated using the two different MC
generators, HERWIG++ and PYTHIA8. Distributions are un-
folded with modified bin-by-bin correction factors where the
reconstructed jet η and φ are smeared to reflect an up to ∼5%
uncertainty of the JAR. The size of the resulting uncertainty
on W12 and I12 is typically below 6%.

A systematic uncertainty related to a possible dependence
of the result on the fit range is considered. This systematic
uncertainty is present only for the values of W12 and ρ

pPb
W . The

uncertainty is evaluated by modifying the fit interval from the
default of 2.5 < �φ < π to a fit range of 2.1 < �φ < π . In
different ranges of pT,1 and pT,2, the resulting uncertainties
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FIG. 7. Comparison of (left) W12 and (right) I12 values in pp (open symbols) and p + Pb (closed symbols) collisions for different selections
of pT,1 and pT,2 as a function of y∗

2. The y∗
2 intervals are separated by dotted vertical lines. The data points are shifted horizontally for visibility

and do not reflect an actual shift in rapidity. The vertical size of the shaded and open boxes represents systematic uncertainties for pp and
p + Pb, respectively, and the error bars indicate statistical uncertainties. The horizontal size of the shaded and open boxes does not represent
the width of the bins. Some data points in the rapidity interval of −4.0 < y∗

2 < 1.8 are not presented due to large statistical uncertainties.
Results are shown with the requirement of �pT > 3 GeV, where �pT = pT,1 − pT,2.

are fitted to a constant function over the range |y∗| < 4.0.
The systematic uncertainty is smoothed by a fit in order to
minimize the impact of the statistical fluctuations. The size of
the resulting uncertainty of W12 is less than 7%.

The systematic uncertainty from the bin-by-bin unfolding
procedure is associated with differences in the shapes of
distributions between the data and MC samples. To achieve
better correspondence with the data, the simulated values are
reweighted to match the shapes in the data. The entire change
in the unfolded values induced by the use of reweighted
bin-by-bin correction factors is taken as the systematic uncer-
tainty, which is below 5% for C12 and I12.

The systematic uncertainty associated with the acceptance
correction for the disabled part of the HEC during p + Pb data

taking is evaluated by increasing the size of the excluded re-
gion by 0.1 in azimuth and pseudorapidity, which corresponds
to the size of the calorimeter towers. The resulting uncertainty
is symmetrized to account for no reduction in the size of the
excluded region due to the simultaneous overlap of the jet
area with the regions covered by the enabled and disabled
HEC. The uncertainty only affects the rapidity region −4.0 <

y∗
2 < −1.4. The resulting uncertainty of W12 is negligible. The

yields I12 have an uncertainty of up to 10%.
For these measurements, the systematic uncertainties in the

values of W12 and I12 are presented in Fig. 2. The systematic
uncertainties from each source are assumed to be uncorrelated
and are thus combined in quadrature to obtain the total sys-
tematic uncertainty.
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FIG. 8. Ratios (top) ρ
pPb
W of W12 and (bottom) ρ

pPb
I of I12 values between p + Pb collisions and pp collisions for different selections of pT,1

and pT,2 as a function of y∗
2. The data points are shifted horizontally for visibility and do not reflect an actual shift in rapidity. The vertical size

of the open boxes represents systematic uncertainties and the error bars indicate statistical uncertainties. The horiztonal size of the open boxes
does not represent the width of the bin. Some data points in the rapidity interval of −4.0 < y∗

2 < 1.8 are not presented due to large statistical
uncertainties. Results are shown with the requirement of �pT > 3 GeV, where �pT = pT,1 − pT,2.

In evaluating the p + Pb to pp ratios, the correlations be-
tween the various systematic uncertainties are considered. The
uncertainties associated with unfolding, fitting, the acceptance
correction, and the additional JES uncertainties associated
with the differences between the detector response and its
simulations in p + Pb collisions compared to pp collisions
are taken to be uncorrelated between the two collision systems
and are added in quadrature. All other uncertainties associated
with the JES, JER, and JAR are taken to be correlated. To
account for correlations, the ratios are reevaluated by apply-
ing variations to both collision systems simultaneously. The
resulting variations of the ratios from their central values are
used as the correlated systematic uncertainty from a given
source. Examples of systematic uncertainties for the values
of ρ

pPb
W and ρ

pPb
I are presented in Fig. 3, where the systematic

uncertainty from the JES (up to 20%) is dominant.

VII. RESULTS

This section presents values of W12 and I12 and the ratios
ρ

pPb
W and ρ

pPb
I in p + Pb and pp collisions. Examples of

unfolded C12 distributions in different intervals of pT,1 and
pT,2 evaluated in pp and p + Pb collisions are shown in Fig. 4
together with the fit results. The C12 distributions have a
characteristic peak at �φ = π .

The results of measurements of W12 in p + Pb and pp
collisions for different ranges of pT,1 and pT,2 as a func-
tion of y∗

2 are presented in left panels of Fig. 5. The value
of W12 decreases with decreasing rapidity separation (|y∗

1 −
y∗

2|) between the leading and subleading jets in both the
pp and p + Pb collisions. The value of W12 increases with
imbalance in pT between the leading and subleading jets.
The results of the measurement of conditional yields I12

in p + Pb and pp collisions are shown in the right panels
of Fig. 5. Initially, the value of I12 increases with decreas-
ing separation in rapidity between the two jets, reaching a
maximum for subleading jets in the interval 0.0 < y∗

2 < 1.8
and then decreases for smaller rapidity separations between
the two jets. This is attributed to the decrease of the dijet
cross section at large rapidity being faster than that of the
inclusive jet cross section. The distributions of I12 have similar
shapes in pp and p + Pb collisions for all pT,1 and pT,2

combinations.
The ratios ρ

pPb
W between p + Pb collisions and pp colli-

sions for different ranges of pT,1 and pT,2 as a function of
y∗

2 are consistent with unity and are presented in the top panel
of Fig. 6. The ratios ρ

pPb
I between p + Pb collisions and pp

collisions in the same bins of rapidity and transverse momen-
tum are shown in the bottom panel of Fig. 6. The uncertainty
of this ratio is dominated by systematic uncertainties, which
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are correlated in jet pT and y∗. The ratios ρ
pPb
I are consistent

with unity for subleading jets in the lead-going direction and
for central-forward dijets. The ratio of conditional yields of
jet pairs when both the leading and subleading jets are in
the proton-going direction is suppressed by approximately
20% in p + Pb collisions compared to pp collisions, with no
significant dependence on jet pT . In the most forward-forward
configuration, with both jets in the lowest jet-pT interval 28 <

pT,1, pT,2 < 35 GeV, the xA range probed is between 10−4

and 10−3. The suppression indicates a reduction in the nuclear
gluon density per nucleon relative to the unbound nucleon in a
region where nuclear shadowing and saturation are predicted
[20].

Results for the values of W12 and I12 from pp collisions
and p + Pb collisions with the requirement of �pT > 3 GeV
are shown in Fig. 7. The ratios of the two W12 and I12 values,
ρ

pPb
W and ρ

pPb
I , are shown in Fig. 8. The values of W12 and

ρ
pPb
W are observed to be unaffected by the �pT requirement.

The conditional yields I12 are smaller than the results with no
�pT requirement, while the conditional yield ratios ρ

pPb
I are

unaffected by the �pT requirement.

VIII. SUMMARY

This paper presents measurements of dijet azimuthal angu-
lar correlations and the conditional yields of leading and sub-
leading jets in pp and p + Pb collisions at

√
sNN = 5.02 TeV.

The data, recorded by the ATLAS experiment at the Large
Hadron Collider, correspond to 25 pb−1 and 360 μb−1 of pp
and p + Pb collisions, respectively. The measurement utilizes
pairs of R = 0.4 anti-kt jets in the transverse-momentum
range 28 < pT < 90 GeV and center-of-mass rapidity range
−4.0 < y∗ < 4.0. The shapes of the azimuthal angular cor-
relation functions for forward-forward and forward-central
dijets and conditional yields are sensitive to possible effects
of gluon saturation at low xA. Dijets with a large separation in
rapidity and where both jets have small transverse-momentum
probe an approximate xA range between 10−4 and 10−3.

The widths of the azimuthal correlation functions are found
to be smaller for pairs of jets with higher pT,1, pT,2, but larger
for large rapidity interval between the jets. No significant
broadening of azimuthal angular correlations is observed for
forward-forward and forward-central dijets in p + Pb com-
pared to pp collisions. The measurement of conditional yields
of forward-forward dijets in p + Pb collisions compared to pp
collisions shows a suppression of approximately 20%, with no

significant dependence on jet pT . The observed suppression
can be interpreted in terms of the nuclear gluon density in a
low-x region where it is not well known. It may therefore be
used to constrain possible nuclear effects including saturation.
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