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Abstract

This paper investigates the ability of artificial
neural networks to judge the grammatical
acceptability of a sentence, with the goal of
testing their linguistic competence. We intro-
duce the Corpus of Linguistic Acceptability
(CoLA), a set of 10,657 English sentences
labeled as grammatical or ungrammatical from
published linguistics literature. As baselines,
we train several recurrent neural network mod-
els on acceptability classification, and find that
our models outperform unsupervised models
by Lau et al. (2016) on CoLA. Error-analysis
on specific grammatical phenomena reveals
that both Lau et al.’s models and ours learn
systematic generalizations like subject-verb-
object order. However, all models we test per-
form far below human level on a wide range
of grammatical constructions.

1 Introduction

Artificial neural networks (ANNs) achieve a high
degree of competence on many applied natural
language understanding tasks, but it does not
follow that they have knowledge of grammar. A
key property of a human’s linguistic competence
is the ability to identify in one’s native language,
without formal training in grammar, a contrast
in acceptability! between pairs of sentences like
those in (1). Acceptability judgments like these
are the primary behavioral measure that generative
linguists use to observe humans’ grammatical knowl-
edge (Chomsky, 1957; Schiitze, 1996).

(1) a. What did Betsy paint a picture of?
b. *What was a picture of painted by Betsy?

* Current affiliation. This work was completed when the
author was at New York University.

'Following terminological conventions in linguistics, a
sentence’s grammaticality is determined by a grammatical
formalism, and its acceptability is determined by introspec-
tive judgments of native speakers (Schiitze, 1996).
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We train neural networks to perform accept-
ability judgments—following work by Lawrence
et al. (2000), Lau et al. (2016), and others—in
order to evaluate their acquisition of the kinds of
grammatical concepts linguists identify as central
to human linguistic competence. This contributes
to a growing effort to test ANNs’ ability to make
fine-grained grammatical distinctions (Linzen
et al., 2016; Adi et al.,, 2017; Conneau et al.,
2018; Ettinger et al., 2018; Marvin and Linzen,
2018). This research program seeks to provide new
informative ways to evaluate ANN models popular
with engineers. Furthermore, it has the potential
to address foundational questions in theoretical
linguistics by investigating how well unbiased
learners can acquire grammatical knowledge.

In this paper we make four concrete contribu-
tions: (i) We introduce the Corpus of Linguistic
Acceptability (CoLA), a collection of sentences
from the linguistics literature with expert accept-
ability labels which, at over 10k examples, is by
far the largest of its kind. (ii) We train several
semi-supervised neural sequence models to do
acceptability classification on CoLA and com-
pare their performance with unsupervised models
from Lau et al. (2016). Our best model outper-
forms unsupervised baselines, but falls short of
human performance on CoLA by a wide mar-
gin. (iii) We analyze the impact of supervised
training on acceptability classifiers by varying the
domain and quantity of training data. (iv) We
assess our models’ performance on acceptability
classification of specific linguistic phenomena.
These experiments illustrate how acceptability
classification and CoLLA can give detailed insights
into what grammatical knowledge typical neural
network models can acquire. We find that our
models do not show evidence of learning non-
local dependencies related to agreement and ques-
tions, but do appear to acquire knowledge about
basic subject-verb-object word order and verbal
argument structure.
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Resources CoLA can be downloaded from the
corpus Web site.> The code for training our
baselines is available as well.> There are also
two competition sites for evaluating acceptability
classifiers on CoLA’s in-domain* and out-of-
domain’ test sets (unlabeled). Finally, CoLA is
included in the GLUE benchmark® (Wang et al.,
2018), which also hosts CoLA training data, un-
labeled test data, and a leaderboard.

2 Acceptability Judgments

2.1 In Linguistics

Our investigation of acceptability classification
builds on decades of established scientific knowl-
edge in generative linguistics, where acceptability
judgments are studied extensively. In his founda-
tional work on generative syntax, Chomsky (1957)
defines an empirically adequate grammar of a lan-
guage L as one that generates all and only those
strings of L which native speakers of L judge
to be acceptable. Evaluating grammatical theo-
ries against native speaker judgments has been
the dominant paradigm for research in generative
syntax over the last sixty years (Schiitze, 1996).
Linguists generally provide evidence in the text
of their papers in the form of constructed example
sentences annotated with Boolean acceptability
judgments from themselves or native speakers.

2.2 The Acceptability Classification Task

Although acceptability classification has been
explored previously in computational linguistics,
there is no standard approach to this task. Fol-
lowing common practice in generative linguistics,
our study focuses on the Boolean acceptability
classification task. This approach is also taken in
earlier computational work on this task (Lawrence
et al., 2000; Wagner et al., 2009; Linzen et al.,
2016). By contrast, other computational work
aims to model gradient acceptability judgments
(Heilman et al., 2014; Lau et al., 2016). Though
Lau et al. argue that acceptability judgments are
gradient in nature, we consider Boolean judgments
in published examples sufficient for our purposes,

’https://nyu-mll.github.io/CoLA/.
Shttps://github.com/nyu-mll/CoLA-
baselines.
“https://www.kaggle.com/c/cola—in-
domain-open-evaluation
Shttps://www.kaggle.com/c/cola-out—
of-domain-open-evaluation.
Shttps://gluebenchmark.com/tasks.
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since linguists generally design these examples to
be unambiguously acceptable or unacceptable.

Data sets for acceptability classification require
a source of unacceptable sentences, which are not
generally found in naturalistic speech or writing
by native speakers. The sentences in CoL A consist
entirely of examples from the linguistics literature.
Lawrence et al. (2000) and Lau et al. (2016) build
data sets similar in this respect. However, at over
10k sentences, CoLA is by far the largest data
set of this kind, and represents the widest range
of sources. Prior work in this area also obtains
unacceptable sentences by programmatically gen-
erating fake sentences that are unlikely to be
acceptable. Wagner et al. (2009) distort real sen-
tences by, for example, deleting words, inserting
words, or altering verbal inflection. Lau et al.
(2016) use round-trip machine-translation from
English into various languages and back. We also
generate fake sentences to pre-train our baselines
before further training on CoLA.

We see several advantages in using linguis-
tics example sentences. First, they are labeled for
acceptability by the authors, thereby simplifying
the annotation process. Second, because linguists
present examples to motivate arguments, these
sentences isolate a particular grammatical con-
struction while minimizing superfluous content.
Hence, unacceptable sentences in CoLA tend to
be maximally similar to acceptable sentences and
are unacceptable for a single identifiable reason.

We note that Gibson and Fedorenko (2010)
express concern about standard practices around
acceptability judgments. They call for theoretical
linguists to quantitatively measure the reliability
of the judgments they report, sparking an ongoing
dialog about the validity and reproducibility of
these judgments (Sprouse and Almeida, 2012,
2017; Sprouse et al., 2013; Mahowald et al., 2016).
We take no position on this general question,
but perform a small human evaluation to gauge
the reproducibility of the judgments in CoLA
(Section 3).

2.3 The Role of Minimal Pairs

Acceptability judgments can alternatively be
framed as a forced choice between minimal pairs,
that is, pairs of minimally different sentences
contrasting in acceptability as in (1), where the
classifier or subject selects the sentence with
greater (predicted) acceptability. This kind of


https://nyu-mll.github.io/CoLA/
https://github.com/nyu-mll/CoLA-baselines
https://github.com/nyu-mll/CoLA-baselines
https://www.kaggle.com/c/cola-in-domain-open-evaluation
https://www.kaggle.com/c/cola-in-domain-open-evaluation
https://www.kaggle.com/c/cola-out-of-domain-open-evaluation
https://www.kaggle.com/c/cola-out-of-domain-open-evaluation
https://gluebenchmark.com/tasks

Morphological Violation (a)

*Maryann should leaving.

Included Syntactic Violation (b) *What did Bill buy potatoes and _?
Semantic Violation (c) *Kim persuaded it to rain.
Pragmatical Anomalies (d) *Bill fell off the ladder in an hour.
Unavailable Meanings (e) *He; loves John,. (intended: John loves himself.)
Excluded .. .\ .
Prescriptive Rules (f)  Prepositions are good to end sentences with.
Nonce Words (g) *This train is arrivable.

Table 1: Our informal classification of unnacceptable sentences, shown with their presence or

absence in CoLA.

judgment has been taken as a standard for rep-
licability of reported judgments in syntax arti-
cles (Sprouse and Almeida, 2012; Sprouse et al.,
2013; Linzen and Oseki, 2018). It is also increas-
ingly used in computational linguistics (Linzen
et al., 2016; Marvin and Linzen, 2018; Futrell
et al., 2018; Wilcox et al., 2018, 2019). This
task is often used to evaluate language models
because the outputted probabilities for a pair of
minimally different sentences are directly com-
parable, while the output for a single sentence
cannot be taken as a measure of acceptability
without some kind of normalization (Lau et al.,
2016).

We leave a comparison of this methodology
with our own for future work. We settle on the
single-sentence judgment task because it is di-
rectly comparable with methodology in generative
linguistics. Although some work in theoretical lin-
guists presents acceptability judgments as a rank-
ing of two or more sentences (Schiitze, 1996,
pp- 77-81), Boolean judgments are still the norm,
and the dominant current theories still make
Boolean predictions about whether a sentence is or
is not grammatical (Chomsky, 1995, pp. 12-16).
Accordingly, CoLA, but not data sets based solely
on preferences between minimal pairs, may be
used to evaluate models’ ability to make judg-
ments that align with both native speaker judg-
ments and the predictions of generative theories.

2.4 Defining (Un)acceptability

Not all linguistics examples are suitable for accept-
ability classification. Although all acceptable sen-
tences can be included, we exclude four types of
unacceptable sentences from the task (examples
in Table 1):

Pragmatic anomalies Examples like (d) are in-
terpretable, but in odd scenarios distinguishable
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from plausible scenarios only with access to real-
world knowledge unrelated to grammar.

Unavailable meanings Examples like (e) are
often used to illustrate that a sentence cannot
express a particular meaning. This example can
only express that someone other than John loves
John. We exclude these examples because there is
no simple way to force an acceptability classifier
to consider only the interpretation in question.

Prescriptive rules Examples like (f) violate
rules that are generally explicitly taught rather
than being learned naturally, and are therefore not
considered a part of native speaker grammatical
knowledge in linguistic theory.

Nonce words Examples like (g) illustrate im-
possible affixation or lexical gaps. Because these
words will not appear in the vocabularies of typical
word-level NLP models, they will be impossible
for these models to judge.

The acceptability judgment task as we define it
still requires identifying challenging grammatical
contrasts. A successful model needs to recognize
(a) morphological anomalies such as mismatches
in verbal inflection, (b) syntactic anomalies such
as wh-movement out of extraction islands, and (c¢)
semantic anomalies such as violations of animacy
requirements of verbal arguments.

3 ColLA

This paper introduces the Corpus of Linguistic
Acceptability (CoLA), a set of example sentences
from the linguistics literature labeled for accept-
ability. See Table 3 for sample data. CoL.A is avail-
able online, alongside source code for our baseline
models, and a leaderboard showing model perfor-
mance on test data using privately held labels
(see footnotes 2—6 for links).



Sources We compile CoLA with the aim of rep-
resenting a wide variety of phenomena of interest
in theoretical linguistics. We draw examples from
linguistics publications spanning a wide time
period, a broad set of topics, and a range of target
audiences. Table 2 enumerates our sources. By
way of illustration, consider the three largest
sources in the corpus: Kim & Sells (2008) is a re-
cent undergraduate syntax textbook, Levin (1993)
is a comprehensive reference detailing the lexical
properties of thousands of verbs, and Ross (1967)
is an influential dissertation focusing on wh-movement
and extraction islands in English syntax.

Preparing the data The corpus includes all
usable examples from each source. We manually
remove unacceptable examples falling into any of
the excluded categories described in Section 2.4.
The labels in the corpus are the original authors’
acceptability judgments whenever possible. When
examples appear with non-Boolean judgments
(this occurs in less than 3% of cases), we either
exclude them (for labels ‘?” or ‘#’), or label them
unacceptable (‘7?7 and ‘*?°). We also expand
examples with optional or alternate phrases into
multiple data points, for example, Betsy buttered
(*at) the toast becomes Betsy buttered the toast
and *Betsy buttered at the toast.

In some cases, we change the content of ex-
amples slightly. To avoid irrelevant complications
from out-of-vocabulary words, we restrict CoLA
to the 100k most frequent words in the British
National Corpus, and edit sentences as needed
to remove words outside that set. For example,
That new handle unscrews easily is replaced
with That new handle detaches easily to avoid
the out-of-vocabulary word unscrews. We make
these alterations manually to preserve the author’s
stated intent, in this case selecting another verb
that undergoes the middle voice alternation.

Finally, we define acceptability classification
as a sentence classification task. To ensure that
all examples in CoL A are sentences, we augment
fragmentary examples, replacing, for example,
*The Bill’s book with *The Bill’s book has a red
cover.

Splitting the data In addition to the train/
development/test split used to control overfitting
in standard benchmark data sets, CoLLA is further
divided into an in-domain set and an out-of-
domain set, as specified in Table 2. The out-of-
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Source N %  Topic
Adger (2003) 948 719  Syntax Textbook
Baltin (1982) 96 66.7 Movement
Baltin and Collins (2001) 880 66.7 Handbook
Bresnan (1973) 259 69.1 Comparatives
Carnie (2013) 870 80.3  Syntax Textbook
Culicover and Jackendoff 233 59.2  Comparatives
(1999)
Dayal (1998) 179 754  Modality
Gazdar (1981) 110  65.5 Coordination
Goldberg and Jackendoff 106 77.4  Resultative
(2004)
Kadmon and Landman 93  81.7 Negative
(1993) Polarity
Kim and Sells (2008) 1965 71.2  Syntax Textbook
Levin (1993) 1459  69.0 Verb
alternations
Miller (2002) 426 84.5  Syntax Textbook
Rappaport Hovav and 151  69.5 Dative
Levin (2008) alternation
Ross (1967) 1029  61.8  Islands
Sag et al. (1985) 153 68.6  Coordination
Sportiche et al. (2013) 651 70.4  Syntax Textbook
In-Domain 9515 713
Chung et al. (1995) 148 669  Sluicing
Collins (2005) 66 68.2  Passive
Jackendoff (1971) 94 67.0 Gapping
Sag (1997) 112 57.1 Relative clauses
Sag et al. (2003) 460 709  Syntax Textbook
Williams (1980) 169  76.3  Predication
Out-of-Domain 1049  69.2
Total 10657  70.5

Table 2: The contents of CoL.A by source. N is the
number of sentences in a source. % is the percent
of sentences labeled acceptable. Sources listed
above In-Domain are included in the training,
development, and test sets, whereas those above
Out-of-Domain appear only in the development
and test sets.

domain set is constructed to be about 10% the size
of CoLA and to include sources of varying sizes,
degrees of domain specificity, and time period.’
The in-domain set is split three ways into training
(8551 examples), development (527), and test sets
(530), all drawn from the same 17 sources. The
out-of-domain set is split into development (516)
and a test sets (533), drawn from another 6 sources.
We split CoLA in this way in order to monitor two

7In Section 6 we consider several alternate splits of CoLA.



Label Sentence Source

* The more books I ask to whom he will give, the more he reads. Culicover and Jackendoff (1999)
v I said that my father, he was tight as a hoot-owl. Ross (1967)

v The jeweller inscribed the ring with the name. Levin (1993)

* many evidence was provided. Kim and Sells (2008)

v They can sing. Kim and Sells (2008)

v The men would have been all working. Baltin (1982)

* Who do you think that will question Seamus first? Carnie (2013)

* Usually, any lion is majestic. Dayal (1998)

v The gardener planted roses in the garden. Miller (2002)

v I wrote Blair a letter, but I tore it up before I sent it. Rappaport Hovav and Levin (2008)

Table 3: CoLA random sample, drawn from the in-domain training set (v = acceptable, * = unacceptable).

types of overfitting during training: overfitting
to the specific sentences in the training set (in-
domain), and overfitting to the specific sources
and phenomena represented in the training set
(out-of-domain).

Phenomena in CoLA CoLA has wide coverage
of syntactic and semantic phenomena. To quantify
the distribution of phenomena represented, we
annotate the entire CoLA development set for
the presence of constructions falling into 15 broad
classes, of which 8 are discussed here, for brevity.®
Briefly, simple labels sentences with no marked
syntactic structures; adjunct labels sentences that
contain adjuncts of nouns and verb phrases; comp
clause labels sentences with embedded or com-
plement clauses; fo- VP labels sentences with non-
finite embedded verb phrase; arg altern labels
sentences with non-canonical argument structures
such as passives; binding labels sentences with
pronouns and binding phenomena; guestion labels
sentences with interrogative clauses and relative
clauses; and violations labels sentences with mor-
phological or semantic violations, or an extra/
missing word. The average sentence is labeled
with 3.22 features.

Figure 1 shows the frequency of these 8§ features
in the development set. Argument alternations are
the best represented phenomenon and appear in
over 40% of sentences in this sample. This is
due both to the high frequency of these construc-
tions as well as the inclusion of several sources
directly addressing this topic (Levin, 1993; Collins,
2005; Rappaport Hovav and Levin, 2008). Most

8The annotated data also includes 63 fine-grained fea-
tures. The annotated data is available for download on the
CoLA website, and Warstadt and Bowman (2019) document
annotation guidelines and conduct additional analysis.
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Figure 1: Frequencies of phenomenon types in the
CoLA development set.

other constructions appear in about 10-20% of
sentences, indicating that CoL A is fairly balanced
according to this annotation scheme. There are
likely biases in CoLLA that other annotation schemes
could detect. However, it is open to debate what
a balanced data set for acceptability judgments
should look like. There is no agreed-upon set of
key phenomena in linguistics and any attempt
to create one is likely to be controversial and
overly simplistic. Furthermore, if such a set of
phenomena did exist, the builders of a balanced
data set must decide whether it should be balanced
equally across phenomena, or weighted by either
the frequency in broad coverage corpora of English
or the number of distinguishing syntactic contrasts
associated with each phenomenon. We assume
that CoLA skews towards the latter, as a major
goal of linguistics articles is to document key
unique facts about some phenomenon without
excessive repetition.

Human Performance We measure human perfor-
mance on a subset of CoLA to set an approximate
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Model Embeddines Encoder  Classifier In-domain Out-of-domain

& Training Training Ace. MCC Acc. MCC
CBOW BNC - CoLA 0.502 0.063 0.482 0.096
LSTM LM WLPM BNC - CoLA Thresh. 0.652 0.253 0.711 0.238
4-gram LM WLPM - - CoLA Thresh. 0.474 0.000 0.645 0.042
3-gram LM WLPM - - CoLA Thresh. 0.428 0.142 0.681 0.141
2-gram LM WLPM - - CoLA Thresh. 0.452 0.094 0.707 0.180
Pooling Classifier BNC Real/Fake Real/Fake 0.728 0.196 0.707 0.180
Pooling Classifier GloVe Real/Fake Real/Fake 0.766  0.302 0.660 0.063
Pooling Classifier ELMo-Style Real/Fake Real/Fake 0.758 0.265 0.702 0.177
Pooling Classifier ELMo-Style  CoLA CoLA 0.726  0.278 0.651 0.155
Pooling Classifier BNC Real/Fake CoLA 0.723  0.261 0.679 0.186
Pooling Classifier GloVe Real/Fake CoLA 0.706  0.300 0.608 0.135
Pooling Classifier ELMo-Style Real/Fake CoLA 0.772  0.341 0.732 0.281
Human Average - - - 0.850 0.644 0.872 0.738
Human Aggregate = — - - 0.870 0.695 0.910 0.815

Table 4: Results for acceptability classification on the CoLA test set. The first group is the
CBOW baseline. The second group is the LSTM and n-gram LMs with Lau et al.’s metrics. The
third group is pooling classifiers trained end-to-end on the real/fake objective. The fourth group
is pooling classifiers with training on CoLA, mostly with encoders transferred from real/fake
classifiers. The fifth group is the small human evaluations (Section 3). CoLA-Thresh. is threshold
tuning on CoL A, and WLPM is Lau et al.’s Word LogProb Min-1 metric.

upper bound for machine performance on accept-
ability classification and to estimate the repro-
ducibility of the judgments in CoLA. We have
five linguistics PhD students, all native English
speakers, perform a forced-choice single-sentence
acceptability judgment task on 200 sentences from
CoLA, divided evenly between the in-domain and
out-of-domain development sets. These human
judgments are available alongside on the corpus
site.

Results appear in Table 4. Average annota-
tor agreement with CoL A is 86.1%, and average
Matthews Correlation Coefficient (MCC)? is 0.697.
Selecting the majority decision from our annota-
tors gives us a rough upper bound on human per-
formance. These judgments agreed with CoLA’s
ratings on 87% of sentences with an MCC of
0.713. In other words, 13% of the labels in CoLA
contradict the observed majority judgment.

We identify several reasons for disagreements
between our annotators and CoLA. Errors in

SMCC (Matthews, 1975) is an evaluation metric for
unbalanced binary classifiers. It is a special case of Pearson’s
r for Boolean variables, that is, it measures correlation of two
Boolean distributions, giving a value between —1 and 1. On
average, any two unrelated distributions will have an MCC
of 0, regardless of class imbalance. By contrast, accuracy and
F1 favor classifiers with a majority-class bias.

character recognition in the source PDFs may
produce artifacts which alter the acceptability of
the sentence or omit the original judgment. Based
on these 200 sampled sentences, we estimate
such errors occur in 1-2% of CoLA sentences.
Ascribing 2 percentage points of disagreement
to such errors, the remaining 11 points can be
ascribed to a lack of context or genuine variation
between the dialect spoken by the original author
and that spoken by the annotator.! We also
measure our individual annotators’ agreement
with the aggregate rating, yielding an average
pairwise agreement of 93%, and an average MCC
of 0.852.

4 Experiments

We train several semi-supervised neural network
models to do acceptability classification on CoLA.
At 10k sentences, CoLA is likely too small to
train a low-bias learner like a recurrent neural

10We observe greater disagreement between human
annotators and published judgments than Sprouse et al.
(2013) do. As a reviewer points out, this may be due to
the fact that Sprouse et al. measure agreement with minimal
pairs of sentences using a forced choice task, which is
more constrained and arguably easier than single sentence
judgments.
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network without additional prior knowledge. In
similar low-resource settings, transfer learning
with sentence embeddings has proven to be ef-
fective (Kiros et al., 2015; Conneau et al., 2017).
Our best model uses a transfer learning approach
in which a large sentence encoder is trained on an
unsupervised real/fake discrimination objective,
and a lightweight multilayer perceptron classi-
fier is trained on top to do acceptability classi-
fication over CoLA. It also uses contexualized
word embeddings inspired by ELMo (Peters et al.,
2018).

We compare our models to a continuous bag
of words (CBOW) baseline, the unsupervised
models proposed by Lau et al. (2016), and human
performance. To make these comparisons more
meaningful, we avoid giving our models distinct
advantages over human learners by limiting the
training data in two ways: (i) Aside from accept-
ability labels, our training has no grammatical
annotation. (ii) Our large sentence encoders are
limited to 100-200 million tokens of training
data, which is within a factor of ten of the number
of tokens human learners are exposed to during
language acquisition (Hart and Risley, 1992).!!
We avoid training models on significantly more
data because such models have a distinct advan-
tage over the human learners we aim to match.

4.1 Preliminaries

Language model We use an LSTM language
model (LSTM LM) at various stages in our exper-
iments: (i) Several of our models use word embed-
dings or hidden states from the LM as input. (ii)
The LM generates fake data for the real/fake task.
(ii1) The LM is an integral part of our implementa-
tion of the method proposed by Lau et al. (2016).
We train the LM on the 100 million-token British
National Corpus (BNC). It learns word embed-
dings from scratch for the 100k most frequent
words in the BNC (with out of vocabulary words
replaced by <unk>). We lowercase and tokenize
the BNC data using NLTK (Bird and Loper, 2004).
The LM achieves a word-level perplexity of 56.1
on the BNC.

Word representations We experiment with
three styles of word representations: (i) We train
a set of conventional fixed word embeddings as

""Hart and Risley (1992) find that children in affluent
families are exposed to about 45 million tokens by age 4
years.
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part of the training of the LM described above,
which we refer to as BNC embeddings. (ii)) We
train ELMo-style contextualized word embed-
dings, which, following ELMo (Peters et al.,
2018), represent w; as a linear combination of
the hidden states h] for each layer j in an LSTM
LM, though we depart from the original paper by
using only a forward LM. (iii) We also use the pre-
trained 300-dimensional (6B) GloVe embeddings
from Pennington et al. (2014).'2

Real/fake auxiliary task We train sentence
encoders on a real/fake task in which the objec-
tive is to distinguish real sentences from the BNC
and ‘‘fake’’ English sentences automatically gen-
erated by two strategies: (i) We sample strings
(2-a) from the LSTM LM. (ii) We manipulate sen-
tences of the BNC (2-b) by randomly permuting
a subset of the words, keeping the other words
in situ. Training data includes the entire BNC
and an equal amount of fake data. We lowercase
and tokenize all real/fake data and replace out of
vocabulary words as in LM training.

(2) a. either excessive tenure does not threaten
a value to death.
b. what happened in to the empire early the

traditional roman portrait?

We choose this task because arbitrary numbers of
labeled fake sentences can be generated without
using any explicit knowledge of grammar in the
process, and we expect that many of the same
features are relevant to both the real/fake task and
the downstream acceptability task.

4.2 Baselines

Pooling classifier Our real/fake classifiers and
acceptability classifiers use an architecture we
refer to as a pooling classifier, which is based on
Conneau et al. (2017). As illustrated in Figure 2,
the pooling classifier consists of two parts: (i) a
sentence encoder which reduces variable-length
sequences of tokens into fixed-length sentence
embeddings, and (ii) a lightweight classifier which
outputs a classification based on the sentence em-
bedding. In the sentence encoder, a deep bidirec-
tional LSTM reads a sequence of word embeddings;

12Results with models that use these GloVe embeddings
are less immediately comparable with human performance
results, since GloVe is trained on several orders of magnitude
more text than humans see during language acquisition.
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Figure 2: Architecture for the pooling classifier models.
w; = word embeddings, f; = forward LSTM hidden
state, b; = backward LSTM hidden state.

then the forward and backward hidden states for
each time step are concatenated, and max-pooling
over the sequence gives a sentence embedding. In
the classifier, the sentence embedding is passed
through a sigmoid output layer (optionally pre-
ceded by a single hidden layer) giving a scalar
representing the probability of a positive classi-
fication (either the sentence is real or acceptable,
depending on the task).

We train several variations of pooling classi-
fiers, as shown in Table 4. First, we train classifiers
end-to-end on the real/fake task, varying the style
of word embedding. The classifier portion consists
only of a single softmax layer. We evaluate these
classifiers on CoLA without CoL A training.

Second, we train pooling classifiers entirely on
CoLA. We test only ELMo-style embeddings here
because, unlike BNC and GloVe embeddings, they
include robust contextual information about the
entire sequence, eliminating the need for training
a large LSTM on CoLA alone.

Third, we transfer features learned from the
real/fake task to classifiers trained on CoLA. Spe-
cifically, we freeze the weights of the sentence
encoder portion of the real/fake classifiers, and
train new classifiers on CoL A using the sentence
embeddings as input. For these experiments, in
addition to a sigmoid layer, the classifier has an
additional hidden tanh layer to compensates for

the fact that the sentence encoder is not fine-tuned
on CoLA.

Lau et al. (2016) We compare our models to
those of Lau et al. (2016). Their models obtain an
acceptability prediction from unsupervised LMs
by normalizing the LM output using one of several
metrics. Following their recommendation, we use
the Word LogProb Min-1 metric.'> Because this
metric produces unbounded scalar scores rather
than probabilities or Boolean judgments, we fit
a threshold to the outputs in order to use these
models as acceptability classifiers. This is done
with 10-fold cross-validation on the CoL A test set:
We repeatedly find the optimum threshold for 90%
of the model outputs and evaluate the remaining
10% with that threshold, until all the data have
been evaluated. Following their methods, we train
n-gram models on the BNC using their published
code.'* In place of their RNN LM, we use the
same LSTM LM that we use to generate sentences
for the real/fake task.

CBOW For asimple baseline, we train a CBOW
model directly on CoLA. We pass the sum of BNC
word embeddings for the sentence to a multilayer
perceptron with a single hidden layer.

4.3 Training Details

All neural network models are implemented in
PyTorch and optimized using Adam (Kingma and
Ba, 2014). We train 20 LSTM LMs with from-
scratch embeddings for up to 7 days or until
completing four epochs without improving in de-
velopment perplexity and select the best check-
point. Hyperparameters for each experiment are
chosen at random in these ranges: embedding size
€ [200, 600], hidden size € [600, 1200], number
of layers € [1, 4], learning rate € [3 X 1073,
10°], dropout rate € {0.2, 0.5}. We select the
model with best performance for use in further
experiments.

We train 20 pooling classifiers end-to-end on
real/fake data with BNC embeddings, 20 with

3Where s=sentence, prym(z) is the probability the LM
assigns to string = and p,(z) is the unigram probability of

log py i (w)
log p, (w)
et al. also obtain strong results with the SLOR metric. We

also calculate results with SLOR but find them to be slightly
worse overall, though not universally. We do not report these
results, but they are available upon request.

Yhttps://github.com/jhlau/acceptability.
prediction.

string : Word LP Min-1 = min{f w e s}. Lau
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GloVe, and 20 with ELMo-style embeddings for
up to 7 days or until completing four epochs
without improving in development MCC. We
train 20 pooling classifiers end-to-end on CoLA
using ELMo-style embeddings. Hyperparameters
are chosen at random in these ranges: embedding
size € [200, 600], hidden size € [500, 1500],
number of layers € [1, 5], learning rate € [3 X 1073,
107°], dropout rate € {0.2, 0.5}.

For transfer learning experiments, we extract
and freeze the weights from the encoders from the
5 best real/fake classifiers with BNC, GloVe, and
ELMo-style embeddings, each. For every encoder,
we train 10 classifiers on CoL A until completing
20 epochs without improving in MCC on the
development set. Hyperparameters are chosen at
random in these ranges: hidden size € [20, 1200]
and learning rate € [10~2, 10~°], dropout rate €
{0.2,0.5}.

For our single best model—a pooling classifier
with ELMo-style embeddings, an encoder with
real/fake training, and a classifier with CoLA
training—the embedding size (i.e., LM hidden
size) is 819 dimensions, the real/fake encoder
hidden layer size is 528 dimensions, and the
acceptability classifier hidden layer size is 1134.

5 Results and Discussion

Table 4 shows the results of the best run from each
experiment. The best model overall is the real/fake
model with ELMo-style embeddings. It achieves
the highest MCC and accuracy both in-domain and
out-of-domain by a large margin, outperforming
even the models with access to GloVe.

All models with real/fake encoders and CoLA
training perform better than the unsupervised
models of Lau et al. (2016) on both evaluation
metrics on the in-domain test set. Out-of-domain,
Lau et al.’s baselines offer the second-best results.
Our models consistently perform worse out-of-
domain than in-domain, with MCC dropping by
as much as 50% in one case. Because Lau et al.’s
baselines don’t use the training set, they perform
similarly in-domain and out-of-domain. Real/fake
classifiers without any additional training on
CoLA tend to perform significantly worse than
their counterparts with CoLA supervision.

The sequence models consistently outperform
the word order-independent CBOW baseline, in-
dicating that the LSTM models are using word
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order for acceptability classification in a non-
trivial way. In line with Lau et al.’s findings, the
n-gram LM baselines are worse than the LSTM
LM. This result is expected given that n-gram
models, but not LSTMs, have a limited feature
window.

Discussion Of the models we have tested, LSTMs
are the most effective low-bias learners for ac-
ceptability classification. Compared with humans,
though, their absolute performance is underwhelm-
ing. This indicates to us that whereas the ANNs
we study can acquire substantial knowledge of
grammar, their linguistic competence is far from
rivaling that of humans.

Our models with unsupervised pretraining have
an advantage over similar models without pre-
training. This finding aligns with the conclusions
of Peters et al. (2018). We see this effect with
both the LM pretraining for our ELMo-style em-
beddings real/fake pretraining for our sentence
encoders. Unsurprisingly, the unsupervised Lau
et al. models and real/fake classifiers are not as
effective as models trained on CoLA. However,
they far outperform random guessing and the
CBOW baseline, indicating that even purely unsu-
pervised models acquire significant knowledge of
grammar.

The supervised models universally see a sub-
stantial drop in performance from the in-domain
test set to the out-of-domain test set. This suggests
that they have specialized somewhat to the phe-
nomena in the training set, rather than English
grammar in a fully general way as one would hope
for. Addressing this problem will likely involve
new forms of regularization to mitigate this over-
fitting and, more importantly, new pretraining strat-
egies that can help the model better learn the
fundamental ingredients of grammaticality from
unlabeled data.

6 CoLA Design Experiments

The results in the previous section highlight the
effects of pretraining, but give little insight into
how the labeled training data in CoLA impacts
classifier performance. To quantify the impact of
CoLA training, we conduct two additional ex-
periments: First, we measure how the amount of
training data impacts model performance on the
CoL A development set. Second, we investigate
how the specific contents of the in-domain and
out-of-domain sets impact model generalization.
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Figure 3: Results on the CoLA development set as a
function of the number of training examples, with line
of best fit and 95% confidence interval. Random « jitter
added.

Training set size In this experiment, we vary
the amount of training data seen by our accept-
ability classifiers. We construct alternate training
sets of sizes 100, 300, 1000, and 3000 by randomly
downsampling the 8551-example CoLA training
set. Then, for each training set we train classifiers
with 20 restarts using the best performing ELMo-
style real/fake encoder, and evaluate on the entire
development set. Figure 3 plots the results. As
training data increases from 100 to 8551 sentences,
we see approximately log-linear improvements in
performance. The small decrease in performance
between 1000 and 3000 sentences is likely an arti-
fact of the random downsampling.

From these results we draw two main conclu-
sions: First, it appears that increasing the amount
of training data in CoLA by an order of magnitude
may significantly benefit our models. Second,
much of what our models learn from CoLA can
be learned from as few as 300 training examples.
This suggests that CoL.A training is not teaching
our models specific facts about acceptability as
much as teaching them to use existing grammatical
knowledge from the sentence encoders.

Splitting CoLA  Our results in Table 4 show that
our models’ performance drops noticeably when
tested on out-of-domain sentences from publi-
cations not represented in the training data. In
this experiment, we investigate different splits of
CoLA into in-domain and out-of-domain to test
the degree to which the decrease in performance
on out-of-domain sentences is a stable property of
these models, or simply an artifact of the particular
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publications represented in the out-of-domain set
(as described in Section 3).

The splits are constructed by randomly selecting
sources from the 23 sources from CoLA to hold
out until the sum of their sizes exceeds 750. This
gives out-of-domain set sizes ranging from 789 to
1539, consisting of 2 to 6 sources. CoLLA’s original
out-of-domain set contains 1049 examples and 6
sources. Development and test sets are constructed
by randomly splitting the out-of-domain data in
half, and randomly selecting an approximately
equal number of in-domain sentences. For each
training set we train classifiers with 20 restarts us-
ing the encoder from the best performing ELMo-
style real/fake classifier.

In Table 5, we report the average test perfor-
mance over 20 restarts. We conclude that the do-
main difference between two samples of sources
in CoLA is generally a meaningful one for these
models. This is especially so for the original split,
where average in-domain MCC is 0.125 greater
than out-of-domain MCC, close to the maxi-
mum observed difference of 0.162. By contrast,
in one case average out-of-domain performance
was actually better. This tells us that the particular
nature of the sources in each domain has a large
effect on what our models learn.

7 Phenomenon-Specific Analysis

In addition to testing the general grammatical
knowledge of low-bias learners, acceptability clas-
sification can be used to probe models’ knowledge
of particular linguistic phenomena. We analyze
our baselines’ performance by phenomenon using
two methods: First, we break down their perfor-
mance on CoLA based on the different construc-
tions present in the target sentences. Second, we
evaluate them on controlled test sets targeting
specific grammatical contrasts.

7.1 CoLA Performance by Phenomenon

In this error analysis, we study performance on
CoLA as a function of the syntactic features
of the individual sentences, using the 8 features
described in Section 3. We train classifiers with
20 restarts using the best performing ELMo-style
real/fake encoder. For each feature, we measure
the MCC of our models on only those sentences
with that feature.

Figure 4 shows the mean MCC over 20 restarts
for each feature. Unsurprisingly, syntactically
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Split In-Domain Out-of-Domain Overall Out Sources Out N
Acc MCC Acc. MCC Acc. MCC
orig. 0.701 0.348 0.620 0.223 0.660 0.285 CO05,J71, S97, CLC95, W80, SWB04 1049
1 0.729 0357 0.632 0.195 0.680 0.275 BCO01,B73 1139
2 0.700 0.319 0.666 0.188 0.683 0.255 KL93,SGWWS85, W80, D98, B73, G81 853
3 0.708 0.333 0.659 0.284 0.684 0.307 ADO03, D98, G81 1237
4 0.663 0.243 0.673 0.267 0.668 0.252 B82,SWB04, CJ99 789
5 0.720 0349 0.671 0.285 0.696 0.315 MO02, BCO1, CJ99 1539

Table 5: Results for 5 different splits of CoLA and the original split into in-domain and out-of-domain.
All results are averages over 20 restarts. Out N is the number of out-of-domain sentences. Sources are
abbreviated by authors’ last initial and year; full citations for each source are shown in Table 2.
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Figure 4: Performance on phenomenon-specific subsets
of the CoLA development set. Results are the mean
over 20 random restarts, with error bars £1 STD. Lines
show mean performance on the entire dev set and
mean human performance on 200 dev set sentences.
Simple: no marked syntactic structures. Adjunct:
adjuncts of nouns and verb phrases. Comp Clause:
embedded or complement clauses. fo-VP: non-finite
embedded verb phrase. Binding: pronouns and binding
phenomena. Question: questions and relative clauses.
Violations: morphological or semantic violations, or an
extra/missing word.

simple sentences are easier than average, but
unexpectedly sentences with adjuncts are as well.
Sentences with complement clauses, embedded
VPs, and argument alternations are about as hard
as the average sentence in CoLA. Although these
constructions can be complex, they also occur with
very high frequency. Sentences with binding and
violations, including morphological violations, are
among the hardest. We also find that our models
perform poorly on sentences with question-like
syntax. This difficulty is likely due to long-distance
dependencies in these sentences.
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7.2 Targeted Test Sets

Here, we run additional evaluations to probe
whether our models can reliably classify sets of
sentences that target a single grammatical contrast.
This kind of evaluation can give insight into what
kinds of grammatical features our models do and
do not acquire easily. Using data generation tech-
niques inspired by Ettinger et al. (2016), we build
five auxiliary data sets (described below) using
simple rewrite grammars which target specific
grammatical contrasts.

Unlike in CoLA, none of these judgments are
meant to be difficult or subtle, and we expect that
most humans could reach perfect accuracy. We
also take care to make the test sentences as simple
as possible to reduce classification errors unrelated
to the target contrast. Specifically, we limit noun
phrases to 1 or 2 words and use semantically re-
lated vocabulary items within examples.

Subject-verb-object This test set consists of
100 triples of subject, verb, and object each
appearing in five permutations of (SVO, SOV,
VSO0, VOS, OVS).!> The set of 100 triples is the
Cartesian product product of three sets containing
10 subjects ({John, Bo, ...}), 2 verbs ({read,
wrote}), and 5 objects ({the book, the letter, ...}).

(3) a. Boread the book. b. *Bo the book read.
c. *read Bo the book. d. *read the book Bo.
e. *the book read Bo.

Wh-Extraction This test set consists of 260
pairs of contrasting examples, as in (4). This is

1508V is excluded because it does not yield a clear
acceptability rating. Examples such as ‘“The book John
read’’, can be interpreted as marginally acceptable sentences
with topicalized subjects, or as acceptable noun phrases
(rather than sentences) with relative clause modifiers.
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Model Emb. Enc. Class. SVO Wh Causative SV Agr. Reflexive
LSTM LM WLPM BNC - CoLA Th. 0.801 0.601 0.270 0.599 0.152
Pooling ELMo-St. CoLA CoLA 0.637 0.102 0.633 0.128 0.075
Pooling BNC R/F CoLA 0.381 0.184 0.463 0.098 0.043
Pooling GloVe R/F CoLA 0.988 0.059 0.614 0.277 0.150
Pooling ELMo-St. R/F CoLA 0.650  0.000 0.449 0.302 -0.020

Table 6: MCC results for specific phenomena. Emb. is model embedding style; Enc. is model encoder
training, Class. is model classifier training. R/F is real/fake, ELMo-St. is ELMo-style, and CoLA-Th. is
threshold tuning on CoLA. LSTM LM WLPM is the LM with Lau et al. metrics Word LP Min-1.

to test (i) whether a model has learned that a wh-
word must correspond to a gap in the sentence,
and (ii) whether the model can identify non-local
dependencies up to three words away. The data
contain 10 first names as subjects and 8 sets of
verbs and related objects (5). Every compatible
verb-object pair appears with every subject.

(4) a. What did John fry?
b. *What did John fry the potato?

(5) {{boil, fry}, {the egg, the potato} }

Causative-inchoative alternation This test set
is based on a syntactic alternation conditioned
by the lexical semantics of particular verbs. It
contrasts verbs like popped which undergo the
causative-inchoative alternation, with verbs like
blew that do not. If popped is used transitively
(6-a), the subject (Kelly) is an agent who causes
the direct object (the bubble) to change states.
Used intransitively (6-b), it is the subject (the
bubble) that undergoes a change of state and the
cause need not be specified (Levin, 1993). The test
set includes 91 verb/object pairs, and each pair
occurs in the two forms as in (6). Thirty-six pairs
allow the alternation, and the remaining 55 do not.

(6) a. Kelly popped/blew the bubble.
b. The bubble popped/*blew.

Subject-verb agreement This test set is gener-
ated from 13 subjects in singular and plural form
crossed with 13 verbs in singular and plural form.
This gives 169 quadruples as in Example (7).

(7) a. My friend has/*have to go.
b. My friends *has/have to go.

Reflexive-antecedent agreement This test set
probes whether a model has learned that every
reflexive pronouns must agree with an antecedent

noun phrase in person, number, and gender. The
data set consists of a set of 4 verbs crossed with 6
subject pronouns and 6 reflexive pronouns, giving
144 sentences, only 1 out of 6 acceptable.

(8) T amused myself/*yourself/*herself/*himself/
*ourselves/*themselves.

Results The results from these experiments are
given in Table 6. Our models’ performance on
these test sets is mixed. They make some system-
atic acceptability judgments that reflect correct
grammatical generalizations. Some models are
very effective at judging violations in gross word
order (SVO in Table 6). The pooling classifier
with GloVe embeddings achieves near perfect
correlation, suggesting that it systematically uses
gross word order. However, the remaining tests
yield much poorer performance.

Our models consistently outperform Lau et al.’s
baselines on lexical semantics (Causative), judg-
ing more accurately whether a verb can undergo
the causative-inchoative alternation. This may be
due in part to the fact that our models receive su-
pervision from CoLA, in which argument alter-
nations are well represented (see Figure 1).

Lau et al.’s baseline outperforms our models
in some cases. The LSTM LM with the Word
LP Min-1 metric is the only model that can reli-
ably identify the non-local dependency between
a wh-word and its gap (Wh). It also performs
relatively better on judgments involving agree-
ment (SV Agr.). All models struggle on the Reflex-
ive examples.

The poor performance of our models on
contrasts involving agreement ((SV Agr.) and Re-
flexive) is surprising in light of findings by Linzen
et al. (2016) that LSTMs can identify agreement
errors easily even without access to sub-word
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information. We speculate that this is due to under-
representation of the relevant examples in CoLA.
We estimate that morphological violations make
up about 6% of examples in CoL A (about half of
the Violations in Figure 1).

8 Motivation & Related Work

We see two chief motivations that guide work
on acceptability classification with ANNs by us
and by others: First, more fine-grained evaluation
tools may accelerate work on general-purpose
neural network modules for sentence understand-
ing. Second, studying the linguistic competence
of ANNs bears on foundational questions in lin-
uistics about the learnability of grammar.

Fine-grained evaluation of ANNs The ques-
tion of how well ANNs learn fine-grained gram-
matical distinctions has been the subject of much
recent work. One method is to train models to per-
form probing tasks which target a construction of
interest. Examples of such tasks are to determine
whether the sentence is in active or passive voice
(Shietal., 2016), whether the subject is singular or
plural (Conneau et al., 2018), or whether a given
token is under the scope of negation (Ettinger et al.,
2018). In each case, the authors use these tasks
to compare the performance of reusable sentence
embeddings.

Acceptability classification can be used to target
many of the same grammatical constructions as
probing tasks. For instance, an acceptability clas-
sifier that can reliably distinguish between pairs
of sentences as in (9) must have implicit knowl-
edge of the whether the subject of a sentence is
singular or plural (in the first case) and whether
the token ever is under the scope of negation.
These exact experiments have been conducted
by Linzen et al. (2016) and Marvin and Linzen
(2018), respectively, although these works differ
from our approach in that they do not evaluate
domain general acceptability classifiers on these
contrasts.

(9) a. The key is/*are on the table.
b. Betsy hasn’t/*has ever been to France.

Acceptability classification also enables certain
kinds of investigations not possible with probing
tasks. A single acceptability classifier can be trained
to identify numerous unrelated contrasts. This is
generally not possible with probing tasks, because

the classes are tied to specific grammatical con-
cepts. Acceptability classification also encourages
direct comparison between ANN and human lin-
guistic competence because, unlike many probing
tasks, it can be easily performed by native speak-
ers without linguistic training. Finally acceptabil-
ity classifiers and generative grammars share a
common objective, namely to predict the well-
formedness of all and only those strings of the
language that are acceptable to native speakers.
Accordingly, it is straightforward to draw parallels
between acceptability classifiers and established
work in generative linguistics.

The poverty of the stimulus Research on
acceptability classification can also be brought
to bear on a foundational question in linguistic
theory: The extent to which human linguistic com-
petence is learned or innate. The influential argu-
ment from the poverty of the stimulus (APS) holds
that the extent of human linguistic competence
cannot be explained by purely domain general
learning mechanisms and that humans must be
born with a Universal Grammar which imparts
specific knowledge of grammatical universals to
the child and makes learning possible (Chomsky,
1965). While the APS has been subject to much
criticism (Pullum and Scholz, 2002), it remains a
foundation of much of contemporary linguistics.

In the setting of machine learning, the APS
predicts that any artificial leaner trained with no
prior knowledge of the principles of syntax and
no more data than a human child sees must fail to
make acceptability judgments with human-level
accuracy (Clark and Lappin, 2011). If linguisti-
cally uninformed neural network models achieve
human-level performance on specific phenomena
or on a domain-general data set like CoLLA, this
would be clear evidence limiting the scope of
phenomena for which the APS can hold.

However, acceptability classification alone can-
not evaluate aspects of ANNs’ linguistic compe-
tence against humans’ in every relevant way. For
example, Berwick et al. (2011) note that native
speakers can easily recognize that, in Bo is easy
to please, Bo is the entity being pleased, while in
Bo is eager to please, Bo is the one who does the
pleasing. Because the acceptability judgments in
CoLA are reading-independent (see Table 1), they
cannot be used to probe whether ANN's understand
these distinctions.
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We wish to stress that the success of supervised
acceptability classifiers like the ones we train
cannot falsify the APS, because unacceptable
examples play no apparent role in child language
acquisition. While unsupervised acceptability
classification could do so, more work is needed
to find methods for extracting reliable Boolean
acceptability judgments from unsupervised lan-
guage models. Our approach of fitting a threshold
to the models of Lau et al. (2016) gives encour-
aging results, but these models are ultimately not
as effective as supervised models. An alternative
adopted by Linzen et al. (2016) and Marvin and
Linzen (2018) is to evaluate whether language
models’ assign higher probability to the accept-
able sentence in a minimal pair. However, this
forced choice minimal pair task, as discussed in
Section 2.3, cannot be applied to CoLA, which
does not exclusively contain minimal pairs.

Still, we maintain that our approach is a valuable
step in the direction of evaluating the APS. Our
results strongly suggest that grammatically un-
biased sentence embeddings and contextualized
word embeddings have non-trivial implicit knowl-
edge of grammar before supervised training on
CoLA. As our experiments in Section 6 show,
a significant portion of what these models learn
from CoLA can be learned from relatively little
acceptability judgment data (as few as 300 sen-
tences, of which fewer than 100 are unacceptable).
Furthermore, the real/fake encoders and ELMo-
style embeddings are trained on a quantity of data
comparable to what human learners are exposed
to. Given the rapid pace of development of new
robust sentence embeddings, we expect to see
increasingly human-like acceptability judgments
from powerful neural networks in coming years,
though with an eye towards evaluating the APS,
future work should continue to investigate accept-
ability classifiers with unsupervised methods and
restricted training resources.

9 Conclusion

This work offers resources and baselines for the
study of semi-supervised machine learning for
acceptability judgments. Most centrally, we intro-
duce CoLA, the first large-scale corpus of accept-
ability judgments, making it possible to train and
evaluate modern neural networks on this task.
In baseline experiments, we find that a network
trained on our artificial real/fake task, combined
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with ELMo-style word representations, outper-
forms other available models, but remains far
from human performance.

Much work remains to be done to implement
the agenda described in Section 8. There is much
untapped potential in the acceptability classifica-
tion task as a fine-grained evaluation tool and as
a test of the Poverty of the Stimulus Argument.
We hope for future work to test the performance of
a broader range of new effective low-bias machine
learning models on CoLLA, and to investigate fur-
ther what grammatical principles these models do
and do not learn.
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