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Abstract—Electric power and natural gas systems are typically
operated independently. However, their operations are interre-
lated due to the proliferation of natural gas-fired generating
units. We analyze the independent but interrelated day-ahead
operation of the two systems. We use a direct approach to
identify operational equilibria involving these two systems, in
which the Karush-Kuhn-Tucker conditions of both electric power
and natural gas operational models are gathered and solved
jointly. We characterize the equilibria that are obtained under
different levels of temporal and spatial granularity in conveying
information between the two system operators. Numerical results
from the Belgian system are used to examine the impacts of
different levels of information interchange on prices, operational
costs, decisions in the two systems.

Index Terms—Power system operations, natural gas, locational
marginal pricing, complementarity modeling

NOMENCLATURE

Indices, Sets, and Functions

C(m)  set of natural gas compressors connected to node m
E(7) set of buses directly connected to bus i

G(m)  set of nodes directly connected to node m

i, indices of electric buses in set, B

k index of natural gas compressors

m,n indices of natural gas nodes in set, N

REF reference bus

t time index in set, T’

v index of generating units

w index of natural gas suppliers

@iG set of generating units connected to bus %

ve set of natural gas-fired units connected to node m
VS set of natural gas suppliers connected to node m
Qa set of natural gas-fired generating units

Qr set of non-natural gas-fired generating units

Parameters and Constants

cE value of lost electric load [$/p.u.]
Cce value of lost natural gas load [$/Mm?]
Ca v variable production cost of non-natural gas-fired gen-

erating unit v [$/p.u.]

This work was supported by National Natural Science Foundation of China
grant 51877071 and National Science Foundation grant 1808169.

S. Chen and Z. Wei are with the College of Energy and Elec-
trical Engineering, Hohai University, Nanjing 210098, China (e-mail:
chenshenghhu@ 163.com; wzn_nj@263.net).

A. J. Conejo is with the Department of Integrated Systems Engineering
and the Department of Electrical and Computer Engineering, The Ohio State
University, Columbus, OH 43210, USA (e-mail: conejo.1 @osu.edu).

R. Sioshansi is with the Department of Integrated Systems Engineer-
ing, The Ohio State University, Columbus, OH 43210, USA (e-mail:
sioshansi.1 @osu.edu).

CO,U
CS,w
FL,m,t

max
Fs

max
P
min

Pk

Ti,j

Variables
Fokt

D
FL,m,t

Fm,n,t

Fm,n,t

FS,w,t
Lm,n,t
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D
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non-fuel variable operation and maintenance cost of
natural gas-fired unit v [$/p.u.]

variable production cost of natural gas supplier w
[$/Mm?]

natural gas-transportation limit of compressor k
[Mm?/h]

hour-t non-generation-related natural gas demand at
node m [Mm?>/h]

capacity of natural gas supplier w [Mm?/h]
minimum natural gas supply from supplier w
[Mm?/h]

ramping limit of natural gas supplier w [Mm3/h]
line-pack parameter of pipeline connecting nodes m
and n [Mm?>/bar]

minimum total line-pack in the natural gas system
[Mm?]

capacity of generating unit v [p.u.]

minimum power output of generating unit v [p.u.]
ramping limit of generating unit v [p.u./h]

capacity of the line connecting buses ¢ and j [p.u.]
hour-t electric demand at bus ¢ [p.u.]

Weymouth constant of the pipeline connecting
nodes m and n [(Mm?®/h)/bar]

hour-t price of natural gas at node n [$/Mm?>/h]
heat rate of natural gas-fired unit v [Mm3/h/p.u.]
conversion efficiency of gas compressor k [p.u.]
maximum node-m natural gas pressure [bar]
minimum node-m natural gas pressure [bar]
maximum compression ratio of compressor k [p.u.]
minimum compression ratio of compressor & [p.u.]
susceptance of line connecting buses ¢ and j [p.u.]

hour-t natural gas flow through compressor k&
[Mm?®/h]

non-generation-related natural gas demand at node m
that is served in hour ¢ [Mm3/h]

hour-¢ natural gas flow through the pipeline connect-
ing nodes m and n [Mm?®/h]

average hour-t natural gas flow through the pipeline
connecting nodes m and n [Mm?/h]

natural gas supplied in hour ¢ by supplier w [Mm?3/h]
hour-¢ line-pack in the pipeline connecting nodes m
and n [Mm?>/h]

hour-¢ active power output from generating unit v
[p-u.]

bus-7 electric demand that is served in hour ¢ [p.u.]
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i+ hour-¢ phase angle of bus ¢ [rad]

71'1,6“_lt hour-¢ inlet pressure of compressor k [bar]

wg“; hour-¢ outlet pressure of compressor k [bar]

hour-¢ natural gas pressure at node m [bar]

hour-¢t natural gas consumption of compressor k

[Mm?/h]

7Tm,t
Tkt

I. INTRODUCTION

ROLIFERATION of natural gas-fired generating units is

increasing the coupling of electric power and natural
gas systems [1], [2]. Despite this coupling, these systems
are typically planned and operated independently of one
another, which may be sub-optimal [3]-[5]. This issue may
be addressed using a joint operational model that yields an
optimal solution for both systems [6]. There are, however,
non-trivial institutional and administrative barriers to having a
single entity operate both systems. Thus, it may be preferable
to independently operate the two systems, while having some
form of co-ordination between them.

The existing literature examines several approaches to co-
ordinate the interdependencies between electric and natural gas
systems. Zlotnik ef al. [7] quantify the benefits that various
levels of co-ordination between the two systems bring. Toledo
et al. [8] investigate the impact of natural gas prices on
operational costs of power systems. He et al. [9] implement
a distributed day-ahead dispatch framework for operating the
two systems. Other works examine co-ordination within a
market-equilibrium framework. Khazeni et al. [10] develop
a market-equilibrium model wherein profit-maximizing elec-
tricity and natural gas retailers are upper-level players that
are followed by cost-minimizing lower-level retail customers.
Wang et al. [11] develop an equilibrium model for strategic
producers that participate in integrated electricity and natural
gas markets. Ji and Huang [12] propose a bi-level model,
where the upper level maximizes the profits of the market
participants, while the lower level represents the independent
clearing of interdependent electricity and natural gas markets.
Wang et al. [13] study a coupled electricity and natural gas
distribution market with bilateral energy trading. An equilib-
rium of these coupled markets is identified by a best-response
decomposition algorithm.

The premise that underlies the co-ordination of the two
systems within a market-equilibrium framework is that there is
sufficient information exchanged between them. Thus, an out-
standing question, which our work addresses, is the extent to
which co-ordination can be achieved with limited information
exchange. Some works that study the co-ordination of elec-
tricity and natural gas systems through a market framework
[12], [13] employ algorithms that are sensitive to the initial
point that is chosen [14]. Thus, a second gap in the existing
literature that we address is to develop an approach that is not
iterative and does not rely on the choice of an initial point.

Building off of these two gaps in the existing literature, we
study the problem of co-ordinating the day-ahead operation
of electric and natural gas systems with limited information-
exchange between them. More specifically, the electric and
natural gas systems operate independently, under perfectly
competitive market structures, to minimize their respective
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operational costs. The operations of the two systems are
interrelated, however, due to natural gas-fired units. Thus,
the two systems must achieve an operational equilibrium,
from which neither has a cost-reducing deviation. Our work
develops a comprehensive approach to deriving such oper-
ational equilibria. The electric power system is represented
using a DC load-flow model. A second-order-cone (SOC)
relaxation of a natural gas-flow model that captures line-pack
is used to represent the natural gas system [13], [15]. This
SOC relaxation is enhanced by including convex envelopes
[16]. Because these models are, respectively, linear and SOC
problems, we can find a market equilibrium by using their
Karush-Kuhn-Tucker (KKT) conditions [17]. This method is
not dependent on or sensitive to the choice of an initial point
in finding an equilibrium. Using this modeling framework, we
examine the impacts on the operations of the two systems of
having different levels of temporal and spatial granularity in
communicating natural gas demands and prices between them.
Our work is somewhat related to that of Gil et al. [18], who
study the problem of co-ordinating the operation of separate
electricity and natural gas departments within an integrated
firm that operates in both markets. Their work is related to
ours, insomuch as they examine the use of contract terms to
co-ordinate operations of the two sides of the business, much
as we examine the use of price signals to co-ordinate the
operations of the two systems. Nevertheless, our work includes
operational constraints of both electric and natural gas systems
that are not considered by Gil et al.

In light of this existing literature, our work makes the
following three contributions.

1) We characterize operational equilibria under different
levels of temporal and spatial granularity in exchanging
fuel-price information.

2) We develop a direct approach that includes the KKT
conditions of both system-operational models to identify
operational equilibria.

3) We use a case study, which is based on the Belgian
system, to explore the impacts of different levels of
granularity in exchanging information.

The remainder of this paper is organized as follows. Sec-
tion II presents the two system models. Section III details
the methodology that is employed to find solutions that are
simultaneously optimal in the two system models and how
different levels of temporal and spatial granularity in the
information exchange are modeled. Section IV summarizes
the results of our case study. Section V concludes.

II. SYSTEM MODELS

We begin this section with the formulation of the natural
gas-operational model and its convexification. We then for-
mulate the power system-operational model.
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A. Natural Gas System-Operational Model
The natural gas-operational model is formulated as [19]:

2.

teT,meN,we¥s,
+C% - (Frumt = Fimy)]

st FP o+ Z (Tht + For,e) + Z mwPev: (2

[CS,wFS,w,t (1)

min

keC(m) veVE
+ > Funi= Y FswiVmeNiteT
neG(m) wews,

Fm,n,t - (Fm,n,t - Fn,m,t)/2;vm7 nc N7 teT (3)

E2 L JWE, =m2 — 7 s VmneNteT “4)

Fm,n,t + Fn,m,t = Lm,n,t - Lm,n,t—l; (5)
VYm,neN;teT

Livni=Kmn (Tt +m0)/2;¥m,neN;t €T (6)

Tkt = O Fop;Ym e Nk e Cim);t € T 7
PRI <t < PTG ®)
VYmeN; ke C(m);teT
0<Fert <FER5VYmeNke Cim)steT 9)
FP < Fgwy < FE25Vm e Njw € Uit €T (10)
— FgW < Fswi—Fswi1 < Fg s (an
VmeN;we W teT
amin < Tt < T s¥m e Nst € T (12)
Y Loz > Lunini (13)
m,neN
0< FP s < FLmuVm €Nt €T (14)
where Zg = {Fc,k,t7 FP ts Fmnts Frvnts Fs w6, Lin .t

W}:t, WZ‘?;, Tt Tkyt} is the variable set.

Objective function (1) computes the cost of operating the
natural gas system. The first term in the objective function
gives the cost of natural gas supply while the second is the cost
of any curtailed non-generation-related natural gas demand.
Constraints (2) impose hourly nodal natural gas balance be-
tween non-generation-related natural gas demand, compressor
demand, flows through compressors, generation-related natural
gas demand, natural gas flow through pipelines, and production
from natural gas sources. Constraints (3) compute the average
hourly natural gas flow in each pipeline in terms of the natural
gas flow in each direction in the pipeline. Constraints (4)
relate the hourly average natural gas flow in each pipeline
to the difference between the squared pressures at the two
ends of the pipe. We assume here that the direction of natural
gas flows are known a priori, meaning that Fm,n,t > 0.
This is a reasonable assumption for day-ahead operations
[20]. Constraints (5) compute the change in line-pack on each
pipeline between hours ¢ and (¢t — 1) and relate it to the flows
on the pipeline. Constraints (6) give the linear relationship
between the hourly line-pack in each pipeline and the average
between the natural gas pressures at the two ends of the pipe.
Constraints (5) and (6) imply that decreased nodal pressure
results in a lower gas line-pack (i.e., Liyyn: < Lmon,i—1),

because additional natural gas from the line-pack is injected
into the network (i.e., Fi, pnt + Fpom,+ > 0). Constraints (7)
compute the hourly consumption of fuel of each compressor,
which is simplified as a fixed percentage (typically between
3% and 5%) of the transported natural gas flow [19], [21].
Constraints (8) impose minimum and maximum compression
ratios on the compressors while Constraints (9) enforce non-
negativity and the transportation limit of the natural gas
compressors. Constraints (10) and (11) impose production
and ramping limits on the natural gas suppliers, respectively.
Constraints (12) impose nodal pressure limits. Constraint (13)
imposes a minimum line-pack over the entire system in the
final period of the optimization horizon. Constraints (14)
limit the amount of non-generation-related natural gas demand
that is served to be non-negative and no greater than the
corresponding nodal demand.

B. Convexification of Natural Gas-System Operational Model

Model (1)-(14) is non-convex due to (4), which can be
equivalently written as:

Fv%z,n,t/WrzL,n S 7T72n,t - Wrzz,t;vmu ne N;t € T; (15)
and:
Fnt/Winn > Ty = T i Ymn e Nst € T. (16)

Inequalities (15) are convex SOC constraints while (16) are
non-convex. We can convexify the latter using convex en-
velopes [22] by first creating four sets of auxiliary variables,
mnts Dmoyn,ts Kmonts and &y e YV, n € Nyt € T'. The vari-
ables, Km,n.¢ and &m ¢, approximate 2, and 72, , — 72
respectively. With these variables, the convexification of (16)
for all m,n € N and ¢t € T is given by:

Amon,t = Tm,t + T, ts (17)

bm,n,t = Tm,t — Tn,t; (18)

Emant 2 Gy Dt + U (@mne — apen, bt 1 (19)
gm,n,t 2 aynrlf:;tbm,n,t + bﬂ?;:)tam,n,t - a%?:;)t %?;:,t; (20)
gm,n,t < ag}bi_’rrl%tbm,n,t + bm?f:_’tam,n,t - ami%,tbmi’ﬁ,t; (21)
gm,n,t < ag}f;tbm,n,t + bmi?l_’tam,n,t - ami}:_’tbmi%,t; (22)
Rm,n,t > Ffi,n,t; (23)

Kmn,t < (FnT?t =+ Fglgt) Fm.,n,t - FrﬁlftFrgllﬁta 24)
Hm,n,t/Wﬁhn Z gm,n,t; (25)

where A’ mts a“7H7}Li,r’rl7,,t’ b%?ﬁz{,t’ bfr;lmi,rrlz,t’ Frlr?,i;:,t’ and Fﬁmugt are

fixed constants. Equalities (17) and (18) define a,,,,,; and
by n,t as the sum and differences between the nodal pressures
at the two ends of the pipeline. By these definitions, we have
that @ n,tbmns = 7 — Tp . Constraints (19)-(22) give
the convex envelope that defines &mnon ¢ in terms of ay, . ¢ and
by, n,t. Constraints (23) and (24) give the convex envelope that
defines Ky, p,¢ in terms of Fm,m. Finally, (25) relates Ky,
and &, ¢ to one another.

Fig. 1 shows the convexified bounds of 77, , — 7. , for
the special case in which @, n.t = byt (We illustrate this
special case because (19)—(22) generally define hyperplanes,
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which cannot be easily shown). Fig. 2 shows the convex-
ified bounds of F,%Lnt With these auxiliary variables and
constraints defined, the convexification of (1)—(14) is given
by (1)-(3), (5)-(14), (15), and (17)—(25), which we refer to
hereafter as the convexified natural gas system-operational
model. The tightness of the convexified SOC natural gas flow
model is demonstrated in our previous work [16]. Thus, it is

not discussed here.

- am,mibmm.t

=== @ Dt + Unin 1@mna — aoin Ui 4

'e- axj‘witbm,n.l + b%?ﬁ,:am,n.l - aizﬁtbﬁ?’it

=XF= bt O s — @ O
a

max min max_pmin
rn,ntbm,”-f + brrz.n,tamw-t am,n,tbm,n.t

azn, s an
Fig. 1. Convexified approximation of ”1211 i 7T,i ; that is given by (19)—(22)

for the special case in which am,n,t = bm,n,t-

max
Fm,n.t [
2
— . .
max min \ f7 max fomin ’
- (Fm,n.t + Fm,mt)EnJl-f - Enm.tEn.n,t ’
min ,
F mont
Fmin Jrmax

m,n.t — myn,t

Fm.mt

Fig. 2. Convexified approximation of F‘ﬁw

; that is given by (23) and (24).

Because the convexified natural gas system-operational
model is a convex SOC problem, the strong duality theorem
applies if an appropriate constraint-qualification condition is
satisfied [23]. We assume, hereafter, that such a condition
is satisfied. As such, the problem is guaranteed to have
well defined dual variables and we specifically define w,, ¢
as the dual variable that is associated with node-m/hour-¢
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Constraint (2). Intuitively, u,, ; represents the node-m/hour-
t natural gas locational marginal price (LMP) in $/Mm3.

C. Power System-Operational Model

The power system-operational problem is formulated as:

min g

teT | meNwelv§

(CO-,'U + 77v<m,t)PG,v,t (26)

+ Z CG,'UPG,'U,t + Z CE : (PL,i7t - P[let)

vEQR ieB
st > Powa=Phig+ Y oig- (00 —050); @7
vedd JEE(i)
VieB;teT
PEM < Pgoy < PES5V0 € Qo UQpit €T (28)
— PE < Pgut — Powi1 < Pays (29)
Vo e QaUQpiteT
= P < by (00 — 05,0) < P (30)
VieB;jeE®i);teT
Orepe =05t €T (31)
0< PP <Pp;uVieBiteT; (32)

where Zg = {Pgﬂ,yt, Pgi,tv 9“} is the variable set.

Objective function (26) computes the power system-
operations cost. The first two terms in the objective function
represent the cost of operating natural gas-fired and non-
natural gas-fired units, respectively, while the third computes
load-curtailment cost. Constraints (27) impose hourly load
balance on each bus. Constraints (28) and (29) impose capacity
and ramping limits, respectively, on the generating units.
Constraints (30) impose flow limits on the transmission lines
while Constraints (31) fix the phase angle at the reference bus
equal to zero in each hour. Constraints (32) limit the amount
of load served at each bus to be non-negative and no greater
than the corresponding hourly demand. We finally define \;;
as the dual variable that is associated with hour bus-i/hour-
t Constraint (27), which gives the hour bus-i/hour-t electric
LMP in $/p.u.

III. SOLUTION METHODOLOGY

Although the two systems are modeled as being operated
independently of one another, they are interdependent. This is
because the dispatch of the power system impacts natural gas
demands while the cost and availability of natural gas impact
the power system dispatch. Thus, our goal is to obtain an
operational equilibrium or a set of solutions to the two system
problems that are simultaneously optimal in both (i.e., neither
system operator has a unilateral deviation from the operational
equilibrium that reduces the cost of operating its system).
Such an operational equilibrium can be found if the natural
gas prices that are used to dispatch the electric power system
perfectly reflect the corresponding true natural gas LMPs (i.e.,
if umt = Cnye Ym € N oand ¢t € T). We begin in this
section by first outlining the approach that we use to compute
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numerically operational equilibria under such a perfect-pricing
assumption. We then discuss how operational equilibria with
different levels of spatial and temporal granularity in natural
gas LMPs are computed.

A. Operational Equilibria Under Perfect-Price Assumption

To derive operational equilibria under the perfect-price
assumption (and for notational ease), we begin by writing the
convexified natural gas system-operational model in compact
matrix form as:

min e r (33)
st. Jir+ Eis—h1 + D1y =0; (u) (34)
Jor + Eas — hoy < 0; (v) (35
5q € A VgeA; (wg) (36)

where the dual-variable vector that is associated with each
constraint appears in parentheses to its right. » and s are
decision-variable vectors. More specifically, r contains the
variables Fc i ¢, Ffj,m,t, Frnts Fsuwts Lmnt, W}Qt, 71'2‘)1;,
and 75, while s contains the variables F}, ,,; and 7, ;. e,
h1, and hgy are parameter vectors and Jy, Jo, Fq, E5, and
D, are parameter matrices. ¢ represents the index of the
cones and A represents the set of cones. A is a cone and
Sq € A means sgq > \/3272 + 8734+ 52 5 where d is
the dimension of the vector, s,. 3 is a vector of variables that
are determined in the power system-operational model that
directly impact the operation of the natural gas system (i.e.,
the dispatch of the natural gas-fired units). Because the value
of y is determined in the power system-operational model, it is
considered a parameter vector in (33)—(36). The dual-variable
vector, u, includes the natural gas LMPs, u,, ;Ym € N,t € T..
However, u also includes dual variables that are associated
with other equality constraints in the convexified natural gas
system model.

We similarly write the power system-operational model in
compact matrix form as:

I;li;l c?:v + c;y + CTDly 37
st. Az 4+ By — g1 = 0; N (38)
Agx + Bay — g2 < 05 () (39)

where the dual-variable vector that is associated with each
constraint is in parentheses to its right. = and y are decision-
variable vectors, where = contains the variables Pz , ; (only
for v € Qpg), Pgi,t’ and 6;, and y contains the variables
P¢ v+ (only for v € Q). y represents decision variables that
directly impact the operation of the natural gas system (i.e.,
the dispatch of natural gas-fired units). ¢y, c2, g1, and go are
parameter vectors and Ay, Ao, By, Bs, and D; are parameter
matrices. ( is a vector that represents the cost of using natural
gas in dispatching the electric power system.

Comparing (33)-(36) and (37)—(39) reveals two interrela-
tionships in operating the two systems. First, y is a decision-
variable vector in (37)—(39) but also appears in (34). Second,
the natural gas-cost vector, ¢, which appears in (37) is related
to the dual-variable vector, u, that is associated with (34). As

such, the two problems cannot be solved independently of one
another. This inability to solve the problems independently
motivates our desire to obtain an operational equilibrium,
which we do by simultaneously solving the necessary and
sufficient KKT conditions of the two problems [14], [17].
The strong-duality theorem holds for the linear power system-
operational model. Provided that Slater constraint-qualification
conditions are satisfied, the strong-duality theorem also applies
to the convexified SOC relaxation of the natural gas system-
operational model [23].
The KKT conditions of (33)-(36) are:

e+ Jiu+Jjv=0; (40)
Elu+Ejv—w=0; (4D
Jir+ Eys —hy + D1y = 0; 42)
0<v Ll Jor+ Eys—hy <0; (43)
Sqswq € A}V € A (44)
w;rsq =0;Vq € A. 45)

Conditions (40) and (41) impose stationarity with respect to
r and s, respectively. Condition (42) is the equality constraint
of the original problem while (43) is the inequality constraint
with complementary slackness. Condition (44) forces s to be
within the cone, A, and imposes the same requirement on
the dual-variable variable that is associated with the SOC
constraint. Condition (45) imposes complementary slackness
between s and w.
The KKT conditions for (37)—(39) are:

a+AIAN+ A y=0 (46)
co+ D/ C+ BN+ Byy=0 (47)
Ajx+Biy—g1 =0 (48)
0<~ L Asx+ Bay— g2 <0. (49)

Conditions (46) and (47) impose stationarity with respect to
x and y, respectively. Condition (48) is the equality constraint
while Condition (49) is the inequality constraint with comple-
mentary slackness.

We can obtain an operational equilibrium by simultaneously
solving (40)—(49) and the additional perfect-pricing condition:

(50)

However, these conditions include two types of non-
convexities, which complicate their solution. First, the
complementary-slackness requirements in (43) and (49)
are non-convex, because, for instance, the complementary-
slackness requirement in (43) can be written as:

V- (J2T+E25—h2) =0.

Cmypt = Umt, VM e Nst € T.

We use the method that is outlined by Fortuny-Amat and
McCarl [24], which requires the use of binary variables, to
linearize the complementary-slackness requirements in (43)
and (49).

The second non-convexity arises from (45). We can linearize
this by using the strong-duality condition for (33)—(36), which

is:
el r = —h?u—l—yTDIu—h;—V—l—Zw;Sq. (51
geEA
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Substituting this equality into (45) gives the equality:

e'r+hiu—y " Diut+hgv=0. (52)
This equality is non-convex because both y and u are variables
when solving the full set of KKT conditions. Thus, y " D{ u is
bilinear. We can linearize this term by using the strong-duality
condition for (37)—(39) [17], which is:

clz+egy+( Diy=—g{ A\—gy7. (53)

Substituting this condition and (50) into (52) gives:
elrthiutclrteyytglAtgy+hiv=0. (54)

Thus, taking these linearizations together, we can obtain
an operational equilibrium by solving the mixed-integer SOC
problem:

min 1 (55)
s.t. (40)—(44), (46)—(49), (50), (54) (56)
where the complementary-slackness conditions in (43)

and (49) are replaced by their linearizations using binary vari-
ables. The objective function of this problem is arbitrarily fixed
equal to unity, while the constraints impose the convexified
KKT conditions of the two problems and the perfect-pricing
assumption.

A diagonalization algorithm is used to verify whether a
solution that is provided by (55) and (56) is an equilibrium.
This is because (55) and (56) only provide KKT points for
the two system models, which may not necessarily be an
equilibrium.

B. Operational Equilibria Under Different Price-Granularity
Levels

The operational equilibria that are obtained from (55)—(56)
assume perfect price-based co-ordination between the electric
and natural gas systems. In practice, the two systems do not
have this level of information exchange. Indeed, wholesale
natural gas prices typically lack the spatial and temporal
granularity of the natural gas LMPs that are given by u. As
such, we develop a method of computing operational equilibria
under different levels of price granularity. Doing so allows us
to quantitatively analyze the value of using imperfect versus
perfect natural gas LMPs to co-ordinate the operation of the
two systems.

Modeling imperfect natural gas pricing requires replac-
ing (50) with alternate conditions that define ( as spatial or
temporal averages of u.! Moreover, because the perfect-pricing
assumption is relaxed, the linearization of (45) that yields (54)
is no longer valid. Thus, we compute operational equilibria
using a non-convex nonlinear optimization problem, in which
the complementary-slackness conditions are not convexified.

'Because w is a dual-variable variable that is associated with all of the
equality constraints in the natural gas-system operational model, it includes
dual variables that are not natural gas LMPs. Thus, in actuality, we only
replace (50) for values of w that correspond to the natural gas LMPs.
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Specifically, we examine three cases. The first considers
temporal averaging of the natural gas LMPs. In this case, (50)
is replaced with:

1
Cm.,t

= mZumﬂL;Vm eN;teT,

LeT

(57)

which defines (,,,; as the simple average (over the |T'| hours
of the model horizon) of the true natural gas LMPs at node m.
The second case considers spatial averaging of the natural gas
LMPs, in which case (50) is replaced with:

Cm,t = Z FL.,,LL.,t'UJ,u,t/ Z FL%t,Vm S N,t cT.
peN peN

(58)

This defines (,,,, as the weighted (by the non-generation-
related natural gas demands) average (over the nodes) of the
true natural gas LMPs in hour ¢. The final case that we examine
assumes combined temporal and spatial averaging of natural
gas LMPs. In this case (50) is replaced with:

Cm,t = % Z Z FL,M,LU’M,L/ Z FL,M,L )

veT \ peN peN

YmeN;teT. (59)

In all three of these cases, an operational equilibrium is
obtained by using primal/dual conditions for each of (33)-
(36) and (37)—(39). The primal/dual conditions for the former
are (40)-(42), (44), (45), and (51) while those of the latter
are (46)—(48) and (53). Thus, the operational equilibria under
imperfect pricing are obtained by solving:

(60)
(61)

min 1
s.t. (40)—(42), (44)—(48), (51), (53),
and one of (57), (58), or (59).

C. Value of Perfect Pricing

Once we obtain operational equilibria under the four pricing
assumptions (i.e., perfect, temporal averaging, spatial aver-
aging, and combined averaging), we can compare the true
combined cost of operating the natural gas and electric power
systems. Comparing this cost in the three averaging cases to
the perfect-pricing case gives a measure of the value of perfect
pricing (VPP). To do this, we note that the actual cost of
operating the natural gas system is given by (1), while the
actual cost of operating the power system is given by:

Z Z CO,'UPG,U,t + Z CG,UPG,'U,t

teT | meNwe¥ & vEQR

+> CF (P — PPy
i€B

(62)

This cost is equivalent to (26), except that the 1,Cpm, i Pa v,
term is removed. This is because the cost of supplying fuel
to natural gas-fired generating units is implicitly accounted
for in computing the cost of operating the natural gas system
in (1). Thus, including 1,(m 1 Pa,v,e in (62) would double-
count this cost. With this definition, we can compute the cost
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of operating the two systems under the four sets of operational
equilibria by substituting the values of Fgm)t, Fswi, Pavt
and PLL?M that are obtained under each pricing assumption
into (1) and (62), respectively. The VPP, which is measured
as a percentage, is given by:
Ccl. —CF
M - 100, (63)
Ckg
where CF; and CL represent the sum of (1) and (62) under
perfect- and imperfect-pricing cases, respectively.

IV. CASE STUDY

This section illustrates the performance of the proposed
model using a case study that is based on the Belgian electric
and natural gas systems. Fig. 3 shows the topology of the 24-
bus power system? and 20-node natural gas system [19] that
we study. The natural gas-fired units that are at buses 2, 3, 6, 8,
16, 15 and 22 are connected to natural gas nodes 4, 3, 4, 4, 6,
11, and 13, respectively. The generating units have an installed
capacity of 13.95 GW, with natural gas-fired units contributing
30.2% of this total. Fig. 4 summarizes the diurnal electricity
and non-generation-related natural gas demands that are used
in the case study. Electricity demands are obtained from the
same source that provides the network data. Non-generation-
related natural gas demands are obtained from the work of
[19] and scaled based on actual daily natural gas consumption
data.3 All of the case study data are provided in an online
supplement.*
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Fig. 4. Diurnal electricity and non-generation-related natural gas demands.

Both the perfect- and imperfect-pricing operational-
equilibrium models are programmed using GAMS 24.7. The
former is solved using CPLEX 12.6.3.0.2 while the latter is
solved using IPOPT 3.12. The computations are carried out
on a computer with a 2.5 GHz Intel Core process and 8 GB
of memory. Modeling the perfect-pricing case requires the
selection of big-M parameters that are used to linearize the

Zhttps://doi.org/10.5281/zen0do.999150
3https://www.quandl.com/data/BP/GAS_CONSUM_D_BEL
“https://doi.org/10.6084/m9.figshare.8848553.v1

complementary-slackness conditions. The big-M values for
primal constraints are determined based on induced bounds.
The big-M values for Lagrange multipliers are determined
based on dual-variable values that are obtained from solving
each of the convexified natural gas system-operational and
power system-operational models on their own.

Table I summarizes the system-operations costs in the
perfect- and three imperfect-pricing cases, as well as the
VPPs. As expected, imperfect pricing results in slightly higher
system-operations costs, although the breakdown of the cost
increases differs between the four cases.

TABLE I
SYSTEM-OPERATIONS COSTS [$ MILLION] AND VPPSs [%)]

Pricing System-Operations Costs

Case Natural Gas  Electric ~ Total VPP
Perfect 5.529 4.384 9.913 n/a
Temporal Average 5.432 4.529 9.961  0.483
Spatial Average 5.796 4.163 9.959 0477
Combined Average  5.609 4.359 9.968  0.558

Figs. 5 and 6 show hourly load-weighted natural gas and
electric LMPs. Contrasting the cases of perfect pricing and
temporal averaging, we see that the latter results in higher
natural gas LMPs during peak periods (hours 8-15) and
lower prices during off-peak periods (the remaining hours).
These price impacts result in noticeably lower on-peak and
slightly higher off-peak electric LMPs and a less volatile
diurnal electric LMP profile with temporal averaging. The
reduced volatility is due to the marginal generation cost of
each natural gas-fired unit being constant over the day. Fig. 7
shows hourly total natural gas-fired production in the four
pricing courses. The figures shows that temporal, spatial, and
combined averaging of natural gas prices result in distorted
dispatch decisions relative to the perfect-pricing case.

13000 -

== Perfect Pricing
= = Temporal Average
==== Spatial Average
-------- Combined Average

12000 -

11000

10000

9000
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7000
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5000

Load-Weighted Average Natural Gas Price [$/Mm?|

4000 L L L L L L L L L L L L L L L L I
6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24
Hour

Fig. 5. Load-weighted natural gas LMPs with perfect, temporal, spatial, and
combined averaging.

Fig. 8 shows the range of natural gas LMPs at nodes
that are connected to natural gas-fired generators with perfect
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Fig. 3. Belgian-based 24-bus power system and 20-node natural gas system.
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Fig. 6. Load-weighted electric LMPs with perfect, temporal, spatial, and

combined averaging.

pricing. It also shows the values of ( that are obtained from
spatial averaging. The figure shows that in many hours, spatial
averaging increases the fuel cost of natural gas-fired units. This
is largely because natural gas-fired units in the Belgian system
are connected to nodes that are relatively unconstrained from
a fuel-supply perspective. Thus, natural gas LMPs at nodes
to which natural gas-fired units are connected are typically
lower than those at other nodes. As such, spatial averaging
results in much higher fuel prices, especially during on-peak

35
= Perfect Pricing
= = Temporal Average -~
. ~
3 | | ==m=Spatial Average \
-------- Combined Average

Total Natural Gas-Fired Generation [GW]

Lo Lo Lo |
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
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m;
oL
o L
o L

Fig. 7. Total natural-gas fired production in each hour with perfect, temporal,
spatial, and combined averaging.

periods (e.g., hours 9-12). These higher fuel prices yield
higher electric LMPs, particularly during the on-peak period,
as is shown in Fig. 6. Interestingly, Fig. 5 shows that in some
hours spatial averaging results in lower natural gas LMPs
compared to perfect pricing. This is because spatial averaging
results in natural gas-fired generators having higher operating
costs, which reduces their use (thereby reducing the actual cost
of supplying natural gas). These higher fuel costs with spatial
averaging also yield the increased power system-operational

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at

http://dx.doi.org/10.1109/TPWRS.2019.2928475

CHEN ET AL.: OPERATIONAL EQUILIBRIA OF ELECTRIC AND NATURAL GAS SYSTEMS WITH LIMITED INFORMATION INTERCHANGE 9

costs and lower natural gas system-operational costs that are
summarized in Table I. If the natural gas system is highly
congested, natural gas LMPs may significantly differ between
nodes. In such a case, the fuel costs of natural-gas fired units
that are provided by spatial averaging deviate from their ‘true’
values. Hence, in such a case spatially averaged natural gas
prices are undesirable for system operations.
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Fig. 8. Range of natural gas LMPs at nodes with natural gas-fired generators
in perfect-pricing case and spatial-average prices.

Table I shows that combined averaging yields a higher
VPP than either temporal or spatial averaging do on their
own, indicating that insufficient coordination between the
two systems results in higher operational costs. However, the
combined effect is less than the sum of the effects of temporal
and spatial averaging on their own. This suggests subadditive
efficiency losses from both temporal and spatial averaging
together. Fig. 5 shows that combined averaging yields lower
natural gas LMPs compared to perfect pricing. This is due
largely to the same effect that yields lower natural gas LMPs
with spatial averaging—combined averaging increases the
operating cost of natural gas-fired units, reducing their use
and natural gas consumption. Fig. 6 shows that combined
averaging yields higher electric LMPs during hours 1, 3-5,
7, and 14-24 compared to perfect pricing. This is due to the
same effect that causes higher electric LMPs with temporal
averaging—the operating costs of natural gas-fired units are
increased in off-peak hours relative to perfect pricing. As with
temporal averaging, combined averaging yields lower on-peak
electric LMPs relative to the LMPs that are obtained with
perfect pricing (i.e., because the operating costs of natural gas-
fired units are decreased in on-peak hours relative to perfect
pricing). Combined averaging yields the same electric LMPs
across hours 7-22, which is due to all of the natural gas-fired
units having the same fuel costs across all of the hours of the
day.

The perfect- and imperfect-pricing operational equilibrium
models require about 2310 s and 190 s, respectively, of wall-
clock time to solve.

V. CONCLUSIONS

This paper proposes an operational-equilibrium model for
the independent but interrelated day-ahead operation of elec-
tric and natural gas systems. We develop a direct approach,
which relies upon the optimality conditions of both system-
operational models to compute operational equilibria between
the two systems. We investigate the impacts of different levels
of both temporal and spatial granularity in communicating
fuel-price information between the two systems on their oper-
ations. Computational results, using a case study that is based
on the Belgian electric power and natural gas systems, indicate
that exact information interchange between the two systems is
desirable to co-ordinate their operations most efficiently. We
show that temporal, spatial, and combined averaging of natural
gas prices have spillover effects on electric LMPs. The natural
gas system-operational model that we use is a simplification,
as many natural gas system are decentralized and involve
more than one operator. Nevertheless, our analysis provides
a formative analysis of the benefits of tighter co-ordination
between the two systems using market-based mechanisms.

Most wholesale natural gas markets employ pricing that is
akin to combined averaging. This is because these markets
have only a handful of locational pricing hubs and delivery
points. Moreover, many wholesale markets set a single daily
price for natural gas. Our results show that these pricing prac-
tices introduce overall efficiency losses to the whole system
(i.e., considering both systems together). Moreover, there are
mixed impacts of combined averaging on the efficiency and
cost of operating the two systems. In our case study, combined
averaging increases the cost of operating the natural gas system
relative to perfect pricing. This is largely due to combined
averaging decreasing the perceived cost of operating the
natural gas-fired generating fleet compared to perfect pricing.
Given these findings, operators of natural gas systems may
have incentives to implement more granular pricing practices,
to reduce the costs of operating their own systems.
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