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Planar Orientation Control and Torque Maximization

Using a Swarm With Global Inputs

Shiva Shahrokhi, Lillian Lin, and Aaron T. Becker

Abstract—This paper studies the torque applied by a large
number of particles on a long aspect-ratio rod. The particles are
all pushed in the same direction by a global signal. We calculate
the force and torque generated by three canonical position
distributions of a swarm: uniform, triangular, and normal. The
model shows that for a pivoted rod the uniform distribution
produces the maximum torque for small swarm standard devi-
ations, but the normal distribution maximizes torque for large
standard deviations. In simulation, we use these results to design
PD controllers to orient rigid objects. We conclude showing
experiments with up to 97 hardware robots to evaluate our theory
in practice.

Note to Practitioners—Workspace clutter can prevent large
steered particles from being able to manipulate objects and
maneuver, while smaller particles can pass through this clutter.
A small particle produces less force than a big particle, so to
produce the same force, more are needed. Their small size makes
onboard sensing and computation hard. Therefore they are often
controlled by a shared control input. Manipulating objects with
a swarm of particles actuated by a shared control input is a
challenging task, but it is even more challenging when the object’s
final orientation needs to be set. Many applications including
assembly and delivery require a specific orientation of the object.

Torque control with only one steered particle is easy: maximize
torque by pushing on the object at a location as far from the
pivot point as possible. However, a swarm of particles contributes
force at different places on the object. This work studies how
to maximize torque using a swarm of particles shaped in three
canonical position distributions. The work is limited by assuming
each particle touching the object transmits equal force, but
hardware experiments validate the necessity to consider swarm
distribution when applying torque. In future work, we will
investigate how stochastic contacts between particles effects force
and torque transmission, and examine control in 3D space.

Index Terms—Underactuated Robots, Torque Control, Swarm
Control

I. INTRODUCTION

IN the future, large swarms of robots may be remotely

guided through the human body, to cure disease, heal tissue,

prevent infection, and assemble structures in parallel. For each

application, large numbers of micro robots are required to

deliver sufficient payloads, but the small size of these robots

makes it difficult to perform onboard computation. Today,

such robots are often controlled by a broadcast signal. Future

implementations require control techniques that can reliably

exploit large populations despite significant under-actuation.

This paper investigates maximizing torque applied by a

large number of particles, hereafter called a swarm. The under-

actuated swarm is steered by a shared signal such that the

same force is applied to each particle. The robotic system is
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Fig. 1. Torque control of an object is essential for manipulation unless objects
are homogeneous discs, especially when there are narrow passageways or
the objects must be aligned, e.g. sensors and emitters. This paper calculates
the optimal position for a swarm of particles to push to maximize torque
production using a highly under-actuated system where all particles are
controlled uniformly by the same input. (a) Simulation of particles exerting
torque on a hinged “door”. (b) Orientation control of a free long rod. (c)
Hardware robots applying torque to an object. See video attachment. A full
resolution video is available at https://youtu.be/7Q5lu ZFbxI.

comprised of the swarm, the shared control signal, and an

external sensor that measures the swarm position. This paper

examines analytically two representative aspects of planar

swarm torque control: first, pushing a pivoted rod in Sec.

IV-A, and second pushing a free body in Sec. IV-B. We show

how implementing these results with PD controllers enables

orientation control in simulation (Sec. V). We conclude with

hardware experiments with centimeter-scale robots (Sec. VI).

The analysis in this paper is motivated by practical chal-

lenges when designing control techniques to orient objects

with large aspect ratios in our preliminary conference pa-

per [1]. The analytical results are new, and the hardware results

have been extended.

With a single agent, torque control is straightforward: the

agent simply maximizes the length of the moment arm to

maximize torque. To make an agent push open a door, it should

push on the edge furthest from the hinge. The optimal solution

https://youtu.be/7Q5lu_ZFbxI
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for a swarm of particles is not straightforward because they

cannot all push at one position.

Obtaining positions of each particle in the swarm is often

hard, because remote sensing of tiny particles is difficult.

However, though particles may be smaller than the minimum

resolution of MRI, PET, and ultrasound, these sensing modal-

ities can still return aggregate data in the form of an array of

intensity values. From this data, some statistics of the swarm’s

position are easy to obtain such as mean position and variance

[2]. This paper focuses on orientation control of a rectangular

object by maximizing torque using statistics of the swarm’s

position distribution. Representative results are in Fig. 1.

II. RELATED WORK

Unlike caging manipulation, where robots form a rigid

arrangement around an object [3], [4], our swarm of particles

is unable to grasp the blocks they push, and so manipulation

requires nonprehensile manipulation techniques, e.g. [5]–[7].

Robotic manipulation by pushing has a long and successful

history [5], [8]–[10]. Key developments introduced the notion

of stable pushes and a friction cone. A stable push is a pushing

operation by a robot with a flat-plate pushing element in which

the object does not change orientation relative to the pushing

robot [5]. The friction cone is the set of vector directions

a robot in contact with an object can push that object with

a stable push. Stable pushes can be used as primitives in a

rapidly-expanding random tree to form motion plans. A key

difference is that our swarm of particles do not form a rigid

structure and instead tend to flow around the object, with

similarities to fluidic trapping [11], [12].

Though some particles self-aggregate, e.g. ferrous particles

tend to clump in a magnetic field, many do not. The magne-

totactic bacteria of [13], [14] and protists of [15] are directed

by the orientation of the magnetic field and do not suffer

from magnetic aggregation. This paper does not consider self-

aggregation.

Controlling the shape, or relative positions, of a swarm

of particles is a key ability for a myriad of applications.

Correspondingly, it has been studied from a control-theoretic

perspective in both centralized, e.g. virtual leaders in [16], and

decentralized approaches, e.g. decentralized control-Lyapunov

function controllers in [17]. Most approaches assume a level of

intelligence and autonomy in the individual robots that exceeds

the capabilities of current micro- and nano-robots [13], [18],

[19]. Instead, this paper focuses on a centralized technique that

applies the same control input to each member of the swarm,

as in [20].

III. TORQUE CONTROL

We derive inspiration from recent work on pulling with a

swarm [21]. The contribution of this work is to map swarm

distributions to torque production. To change the output torque

τ of a single steered particle, we can choose the direction and

magnitude of the force applied F , and the moment arm from

the object’s center of mass (COM) O to the point of contact

P . We define a coordinate frame rooted at the COM, with

the x-axis parallel to the object’s longest axis. The resulting

torque is:

τ = F × (P −O). (1)

We assume that the forces produced by individual particles

add linearly. As [21] indicates, this is often a simplification of

the true dynamics. The swarm version of (1) is the summation

of the forces contributed by n individual particles:

τtotal =
n
∑

i=1

ρiFi × (Pi −O), (2)

Ftotal =
n
∑

i=1

ρiFi. (3)

Here Fi is the force that the ith particle applies. Not all

particles are in contact with the object. The indicator variable

ρi is 1 if the particle is in direct contact with the object or

touching a chain of particles where at least one particle is in

contact with the object, otherwise ρi = 0. The moment arm is

the particle’s position Pi to the object’s COM O = [Ox, Oy]
⊤.

If all particles are identical and the control input is uniform,

the force is equivalent for every particle and so Fi is a constant

for all i.
This analysis assumes perfect transmission of force from

each particle in contact with the object. The swarm, when

steered toward an object, begins interacting with the object

at different times. The number of particles touching the

object as a function of time is difficult to predict and often

impossible to directly measure. Stochastic effects make exact

long-term prediction challenging. Even when it is possible to

predict which particles will hit the object first, as particles

interact with the object, the swarm’s configuration changes.

The challenge is not only limited to swarm-object interaction,

but also to swarm-swarm interactions when the swarm self-

collides or is split into multiple components. As a result, the

instantaneous force the swarm will exert on the object is not

easy to predict.

However, as explained by the central limit theorem, the

time-averaged configuration and the time-averaged forces are

predictable. This claim is validated by hardware experiments

in Section VI.

IV. CALCULATING TORQUE FROM SWARM DISTRIBUTION

Assume a swarm of particles are pushing on a rigid object.

Let the marginal distribution of the swarm along x have

probability density p(x), where x is defined as perpendicular

to the object’s long axis. This section considers three canonical

probability distributions: uniform, triangular, and normal, all

parameterized by mean µ and standard deviation σ. They are

plotted in Fig. 2 and described by

pu(x) =

{ 1
2
√
3σ

, for µ−
√
3σ ≤ x ≤ µ+

√
3σ

0, otherwise
, (4)

pt(x) =











x−µ+
√
6σ

6σ2 , for µ−
√
6σ ≤ x ≤ µ

−x+µ+
√
6σ

6σ2 , for µ < x ≤ µ+
√
6σ

0, otherwise

, (5)

pn(x) =
1

σ
√
2π

e−(x−µ)2/2σ2

. (6)
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Distribution The µ location to push that maximizes torque Maximum possible torque

Pivoted Uniform µpumax
=

{

1−
√
3σ for σ < 1

2
√
3

1−
√
3σ < µ <

√
3σ for σ ≥ 1

2
√
3

τpumax
=

{

1−
√
3σ for σ < 1

2
√
3

1
4
√
3σ

for σ ≥ 1
2
√
3

Pivoted Triangular µptmax
=

{
√
12σ2 + 1−

√
6σ for σ < 1

2
√
3√

2
2

for σ ≥ 1
2
√
3

τptmax
=







(1+12σ2)
3
2 −1

18σ2 −
√
6σ for σ < 1

2
√
3√

2−2+3
√
6σ

36σ2 for σ ≥ 1
2
√
3

Free Uniform µufmax
=

{

1−
√
3σ for σ < 1

2
√
3√

3σ for σ ≥ 1
2
√
3

τufmax
=

{

1−
√
3σ for σ < 1

2
√
3

1
4
√
3σ

for σ ≥ 1
2
√
3

Free Triangular µtfmax
=

{ √
12σ2 + 1−

√
6σ for σ < 2√

6

1 < µ <
√
12σ2 + 1−

√
6σ for σ ≥ 2√

6

τtfmax
=







(1+12σ2)
3
2 −1

18σ2 −
√
6σ for σ < 2√

6
1

9σ2 for σ ≥ 2√
6

TABLE I
MAIN RESULTS FROM SECTION IV FOR MAXIMIZING TORQUE WITH THREE COMMON DISTRIBUTIONS.

The next section examines where to steer the mean of the

probability distribution to maximize torque. We discuss two

problems: pivoted object torque and free object torque. All

the results are summarized in Table I, and the calculations are

included in the Mathematica file in the multimedia attachment.

A. Pivoted object torque

In this problem, the torque applied to a rod of length 1

pivoted at 0 when θ = 0 is

τp =

∫ 1

0

x p(x) dx. (7)

a) Defining torque for distributions

First, for simplicity of the following derivations, the lower

bound l and upper bound u are defined for the uniform

distribution as

l = max(0, µ−
√
3σ) , u = min(1, µ+

√
3σ). (8)

Torque by a uniformly distributed swarm is

τup
=

u2 − l2

4
√
3σ

. (9)

To simplify derivations for the triangular distribution, we

define the bounds of integration as

l1 = max(0, µ−
√
6σ) , l2 = max(0, µ),

u1 = min(1, µ) , u2 = min(1, µ+
√
6σ).

Torque by a triangularly distributed swarm is

τtp =
τl + τr
36σ2

, (10)

where τl and τr are defined as

τl = l1
2
(

2l1 − 3(µ−
√
6σ)

)

+ u1
2
(

2u1 − 3(µ−
√
6σ)

)

,

τr = l2
2
(

2l2 − 3(µ+
√
6σ)

)

− u2
2
(

2u2 − 3(µ+
√
6σ)

)

.

Torque by a normally distributed swarm is

τnp
=

(

e
µ2

2σ2 − e
(1−µ)2

2σ2

)

σ

√
2π

(11)

+
µ

2

(

erf

(

1− µ√
2σ

)

+ erf

(

µ√
2σ

))

.

The erf(·) is the error function, defined as

erf(x) =
2√
π

∫ x

0

e−t2dt. (12)

Torque is plotted as a function of µ for representative σ
values in Fig. 3.

b) Maximum torque for distributions

For a uniformly distributed swarm, the mean position that

maximizes torque on a pivoted object is found by setting the

first derivative of (9) to zero and solving, and is

µupmax
=

{

1−
√
3σ for σ < 1

2
√
3

1−
√
3σ < µ <

√
3σ for σ ≥ 1

2
√
3

. (13)

As soon as the width of the uniformly distributed swarm is

longer than the rod (σ > 1
2
√
3

), there exists a range of optimal

solutions: any µ such that the swarm covers the rod from 0 to

1. The resulting torque is

τupmax
=

{

1−
√
3σ for σ < 1

2
√
3

1
4
√
3σ

for σ ≥ 1
2
√
3

. (14)

For a triangularly distributed swarm, the mean position that

maximizes torque is found by the first derivative test on (10)

and is

µtpmax
=

{ √
12σ2 + 1−

√
6σ for σ < 1

2
√
3√

2
2 for σ ≥ 1

2
√
3

. (15)

Thus the torque is

τtpmax
=







(1+12σ2)
3
2 −1

18σ2 −
√
6σ for σ < 1

2
√
3√

2−2+3
√
6σ

36σ2 for σ ≥ 1
2
√
3

. (16)

For all distributions, the µ that maximizes torque if σ = 0 is

1. The uniform distribution maximizes torque for σ / 0.2403,

and the normal distribution maximizes torque for larger σ
values. For the τp case, the optimal µ moves in the −x
direction, and for some distributions approaches a limit as σ

increases. This limit is µ =
√
2
2 for a triangularly distributed

swarm. In a normal distribution, the first derivative of (11) is

dτ
dµ

=
1

2

(

erf

(

1− µ√
2σ

)

+ erf

(

µ√
2σ

))

− e
−(µ−1)2

2σ2

√
2πσ

. (17)
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Fig. 2. Three distributions are examined in this work: uniform, triangular, and normal. Each is plotted above with μ = 1 for representative σ values.

Fig. 3. Torque on a pivoted rod as a function of mean position μ. Mean position is the pushing location along a rod extending from 0 to 1. For all
distributions, pushing at μ = 1 is not optimal unless σ = 0 or the swarm is uniformly distributed with σ > 1

2
√
3

. Black lines show where μ maximizes

torque in the limit as σ grows.

a) b) c)

Fig. 4. Optimal location to push and maximum torque plots for a pivoted object of length 1, pivoted at 0. Generating code is in the attachment.

The limit as σ → ∞ is 2−3μ

σ36
√
2π

which goes to zero as the

swarm variance increases. However, the zero of the numerator

is μ = 2
3 , which means as σ increases the best position to

push the rod asymptotically reaches μ = 2
3 .

The central limit theorem explains why systems where all

the particles have independent noise form a normal distri-

bution. However, optimizing torque for a normal distribution

involves two error functions (erf) and the first derivative test

has no closed-form solution. Instead, we have solved all the

equations for the triangular distribution. The numerical studies

illustrated in Fig. 4 b and c show the triangular and normal

distributions perform similarly.

B. Free object torque

In this problem, the torque applied to a free rod of length

2 from [−1, 0] to [1, 0], is

τf =

∫ 1

−1

x p(x) dx. (18)

a) Defining torque to a free rod for distributions

To calculate free object torque for a uniformly distributed

swarm, for simplicity of derivations, lf and uf are defined as

lf = max(−1, μ−
√
3σ), uf = min(1, μ+

√
3σ).

The torque applied by a uniformly distributed swarm is

τuf
=

u2
f − l2f

4
√
3σ

. (19)

To simplify derivations for a triangularly distributed swarm,

we define bounds of integration as:

lf1 = max(−1, μ−
√
6σ), lf2 = max(−1, μ),

uf1 = min(1, μ), uf2 = min(1, μ+
√
6σ).

The torque applied by a triangularly distributed swarm is

τtf =
τfl + τfr
36σ2

, (20)
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Fig. 5. Torque on a free rod as a function of mean position μ. Mean position is the pushing location along a rod extending from -1 to 1. For all distributions,
pushing at μ = 1 is not optimal unless σ = 0.

a) b) c)

Fig. 6. Optimal location to push and maximum torque plots for a free object of length 2, located from x = −1 to 1.

where τfl and τfr are defined as:

τfl = u2
f1
(2uf1 − 3(μ−

√
6σ))− l2f1(2lf1 − 3(μ−

√
6σ)),

τfr = −u2
f2
(2uf2 − 3(μ+

√
6σ)) + l2f2(2lf2 − 3(μ+

√
6σ)).

The torque applied by a normally distributed swarm is

τnf
=

(
e

−(μ+1)2

2σ2 − e
−(μ−1)2

2σ2

)
σ

√
2π

+
1

2
μ

(
erf

(1− μ√
2σ

)
+ erf

(1 + μ√
2σ

))
. (21)

Torque is plotted as a function of μ for representative σ
values in Fig. 5.

b) Maximum torque for distributions

Maximum torque of a uniformly distributed swarm to a free

object has the same upper solution as with a pivoted object:

μufmax
=

{
1−√3σ for σ < 1

2
√
3√

3σ for σ ≥ 1
2
√
3

. (22)

The major difference is the existence of only one σ value

solution for torque on a free object. The left bound of the

distribution must never be less than 0, or torque applied left

of the center will cancel torque to the right of the center. The

maximum torque produced is given by (14).

For a triangularly distributed swarm the optimal mean is

μtfmax
=

{ √
12σ2 + 1−√6σ for σ < 2√

6

1 < μ <
√
12σ2 + 1−√6σ for σ ≥ 2√

6

.

(23)

As with the uniform distribution in (13) the optimal solution

for triangular distributions with σ > 2√
6

has a range of

solutions. Setting μ = 1 maximizes force for the optimal

torque. However, moving the mean right reduces the negative

torque applied by particles to the left of 0, but this gain is

canceled by a corresponding reduction in positive torque.

Therefore, the maximum torque is

τtfmax
=

{
(1+12σ2)

3
2 −1

18σ2 −√6σ for σ < 2√
6

1
9σ2 for σ ≥ 2√

6

. (24)

Again, for a normally distributed swarm, we have nu-

merically found the maximum torque and optimal pushing

location μ. The results are closely approximated by the upper

bound solution for the triangular system. The results are

plotted in Fig. 6. The normal distribution maximizes torque

for 0.2405 � σ � 0.8793, and the uniform distribution has

the maximum torque for other values.

V. SIMULATION

This section examines three challenges for torque control of

an object, arranged in increasing difficulty. Each task uses a

PD controller that regulates the swarm’s mean position, as in

[22]. Although the controller only regulates the swarm’s mean

and not its distribution, simulations and hardware experiments

confirm that as long as the swarm does not partially pass the

object, the resulting distribution is approximately normal. The

control input is the global force applied to each particle:

ux = Kp(Gx − x̄) +Kd(0− v̄x),

uy = Kp(Gy − ȳ) +Kd(0− v̄y), (25)

where Kp is the proportional gain, and Kd is the derivative

gain. The swarm’s average position is [x̄, ȳ]T and mean

velocity is [v̄x, v̄y]
T . Each task uses a different algorithm to

select the swarm’s goal position [Gx, Gy]
T . The derivative

gain Kd limits overshoot.
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a) Maximizing torque on a pivoted body: An object with

a pivot point can rotate, but not translate. A door is an example.

If there was only one particle touching the object, that particle

should push at the point which maximizes the moment arm,

at the extreme end of the object furthest from the pivot point.

The optimal pushing location provides the maximum force,

because it maximizes the distance ‖P −O‖ in (1). However,

given a swarm of particles, maximizing ‖P −O‖ is no longer

the optimal solution. If the mean of the swarm hits the object at

the extreme edge, half of the particles will miss the object and

the swarm will be split. Because few particles remain, the force

is significantly decreased and torque is not maximized. Unless

a separate regathering step is added, particles that pass the rod

do not contribute any force or torque. For the simulations in

this subsection, the swarm mean and variance (μ, σ) are only

calculated over the particles that have not passed the rod. The

key parameter of interest for a pivoted rod of length L is C,

the position along the rod where the mean of the swarm will

push. The goal position in (25) is set to:

Gx = Ox + C cos(Oθ),

Gy = Oy + C sin(Oθ), (26)

where [Ox, Oy] is the pivot point, and Oθ is the orientation

of the object’s major axis, measured from the world x-

axis. Figure 7 illustrates how different values of C result in

different rates of turning. These simulations tested C = τtpmax

calculated by (15) and C = {1/4, 1/2, 2/3, 1}L. The fastest

turning rates occurred with the dynamic goal location using

τtpmax
. We have used τtpmax

using the triangular distribution

because the results for triangular and normal distributions are

approximately the same.

b) Orientation of an object: These simulations used

a uniform density rectangle as the object. This object was

30× larger than the particles. Using the pure torque control

discussed in the previous paragraph, the orientation of the

object can be controlled by applying force. The rectangular

object is not pivoted, so it moves in addition to rotating. The

swarm may split into multiple components if some particles

move past the object, so we use the hysteresis variance control

from [22] to gather the swarm when its variance grows larger

than a threshold value. This variance control steers the swarm

mean toward a nearby region with boundaries that form a

corner. If the variance is less than the variance threshold, the

controller chooses a goal position to regulate the orientation

of the object:

Gx = Ox +KorientAngErr(Oθ, Gθ) cos(Oθ),

Gy = Oy +KorientAngErr(Oθ, Gθ) sin(Oθ). (27)

Here Korient is a positive gain on the control input, Gθ is the

goal orientation, [Ox, Oy] is the object’s center of mass, and

AngErr(A,B) = ArcTan(cos(A)−cos(B), sin(A)−sin(B)).
Fig. 8 illustrates this controller with different starting posi-

tions. When the plot traces are constant the swarm is no longer

pushing the object and instead is being regathered in a corner

of the workspace.

c) Straight translation while regulating object orienta-

tion: When the total force is applied perpendicular to the

Fig. 7. Simulation results from a swarm applying force to a pivoted rod
(hinged door). The swarm mean is steered toward a point C units along the
object from the pivot point. Simulation used 100 particles of diameter 0.08
m with a dynamic standard deviation and an object length of 12 m.

Time (s)

 (
D

eg
re

e)

Fig. 8. Plot demonstrating orientation control of a rectangular object. The
green line is the goal orientation. Other lines show results with three different
initial average y-coordinates of the swarm. When the plot traces are constant
the swarm is no longer pushing the object and instead is being regathered in
a corner of the workspace until the variance is below a desired threshold.

object and in line with the center of mass, according to (1)

there will be no torque. The following goal position for the

mean position of the swarm regulates the object’s orientation

using Δθ for proportional feedback to determine where to

apply force where Δθ = AngErr(Gθ, Oθ) is the difference

between the goal angle and the current object angle. Kτ is a

constant and is tuned manually to 10. (Ox, Oy) is the position

of the object’s COM.

Gx = Ox

Gy = KτΔθ +Oy (28)

Fig. 9 shows how Δθ converges to zero with different initial

configurations of the swarm. When the swarm is above or

below the object the swarm applies a torque to the object.

VI. EXPERIMENTS

To demonstrate the analytical results from Section IV hold,

we performed experiments using centimeter-scale hardware

robots called Kilobots. These allow us to emulate a variety
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Length (m)

 (
D

eg
re

e)

ΔθΔθΔ

Fig. 9. In this task, the swarm pushed the object in the +x direction while
trying to regulate the orientation to Gθ = 0◦. The swarm can push the object
without changing its orientation only if it pushes along a line intersecting the
COM of the object. A feedback control law regulates the object’s orientation.

of dynamics, while enabling a high degree of control over

robot function, the environment, and data collection.

The Kilobot, from [23], [24], is a low-cost robot designed

for testing collective algorithms with large numbers of robots.

It is available as open-source hardware or can be purchased

ready-made [25]. Each robot is approximately 3 cm in diam-

eter, 3 cm tall, and uses two vibration motors to move on

a flat surface at speeds up to 1 cm/s. Each robot has one

ambient light sensor that is used to implement phototaxis,

moving towards a light source.

These experiments used up to n = 97 Kilobots, a glass-

covered 1.5m×1.2m whiteboard as the workspace, and 30W
and 50W LED floodlights arranged 1.5 m above the plane of

the table in a 6 m square centered on the workspace. Above the

table, an overhead machine vision system tracked the position

of the swarm. For the uniform distribution experiments, we

designed an object to rigidly hold the swarm, and programmed

the robots to go straight.

A. Pushing a pivoted object

Figure 10 shows snapshots of experiments using a pivoted

object with uniformly distributed swarms that have the same

size and standard deviation, σ, but different mean position,

μ. The object was designed such that the Kilobots keep the

starting uniform distribution with σ = 0.05L, where L =
1.42m. Kilobots were programmed to go straight so that they

always apply force perpendicular to the object. The results of

different mean positions are shown in Fig. 11 for four trials at

μ = [0.5, 0.66, 0.8]L. Mean positions near the optimal solution

of (13) increase torque.

The experiments from Section V.a were manually demon-

strated using this physical swarm. Fig. 12 illustrates an exper-

iment showing pure torque control with a swarm of robots.

In this figure a large-aspect-ratio rectangle (91×2 cm, colored

pink in the image) was hinged to one side of the table. Like

a door, this object could only be moved around this hinge

pivot. Two trials were performed. In each trial the swarm

t = 6 s

°

s

°

0.1 m

Fig. 10. Snapshots showing the effect of pushing a pivoted rectangular object
at different distances from the pivot point. The top row shows frames with a
mean position μ = 3/4 of the object length. The bottom row show frames
with swarm mean position μ = 1/2.
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Fig. 11. Pivoted object orientation using uniformly distributed Kilobots with
σ = 0.05L = 0.071m, but different mean positions. Mean positions are
normalized along a rod of length L = 1.42 m.

was initialized in the lower right side of the table, and then

commanded to push the object with the mean position of the

swarm directed toward a point distance C from the pivot point.

Data was recorded for 150 seconds. In the first trial, C = L,

so the robots were commanded to push the door at the extreme

edge of the door from the pivot. In the second trial C = 1/2L,

so the swarm pushed the object in the center of the rectangle.

As discussed in Section V, the robots spread when commanded

to push the object at the extreme end, and half of the robots

flowed past the end of the rectangle without engaging the

rectangle. This illustrates a key difference between robotic

swarms and a single pusher robot. The swarm exerts the most

torque when (2) is maximized. (2) is maximized when the

majority of the swarm engages the object. For this reason in

Fig. 12, the trial in the second row of screenshots moves the

door further than the trial in the first row.

t = 0 s

t = 0 s

t = 30 s

t = 30 s

t = 120 s

t = 120 s

t = 150 s

t = 150 s

Fig. 12. Snapshots showing the effect of pushing a pivoted rectangular object
at different distances from the pivot point. The top row of snapshots illustrate
the swarm pushing at the end of the object. The bottom row illustrates that
when the swarm pushes at the middle of the object, the force provided by the
swarm remains constant.
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t = 0 s t = 10 s t = 60 s

t = 90 s t = 120 s t = 150 s

Fig. 13. Snapshots showing orientation control of a free object using 97
hardware robots that all receive the same control input. Light direction is
the global control input and the robots are programmed to move toward the
brightest light in the environment.

B. Orientation control of a free object

Figure 13 shows snapshots of orientation control of a free

rod using 97 Kilobots. Kilobots were programmed to move to-

ward the brightest light in the room. Therefore, the light is the

global input. The goal orientation of the object toggled each

time the goal orientation was achieved, switching between 15◦

and −15◦. The mean position of the robots was steered to a

workspace corner whenever the goal orientation was achieved,

or the variance grew larger than a threshold amount. The

cyan arrows around the object show the normalized artificial

potential field forces used to steer the mean position of the

swarm away from narrow ends of the object. These are used,

as in [2], during the regathering process if the mean position

of the swarm distribution passes the object. The swarm, using

control law (27), achieved three goal orientations in 150 s.

VII. CONCLUSION AND FUTURE WORK

This paper presented an analysis of torque applied by

a swarm to a long rod. Three distributions were studied:

uniform, triangular, and normal. Though particles are often

normally distributed, the closed-form solution for optimizing

torque from normal distributions involves error functions. We

illustrated numerically that the triangular distribution well-

approximates the normal distribution, and gave analytic so-

lutions with uniform and triangular distributions. We designed

PD controllers using this analysis, and verified the analysis

with simulation and hardware experiments. Future efforts

should examine the effects of Brownian noise, pose control

for multiple-part assembly, trajectory prediction, manipulation

in crowded workspaces, and extend this analysis to 3D.
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