RIGHTS

Session 3C: Secure Computing Il

CCS ’19, November 11-15, 2019, London, United Kingdom

Securely Sampling Biased Coins
with Applications to Differential Privacy

Jeffrey Champion abhi shelat Jonathan Ullman
Northeastern University Northeastern University Northeastern University
champion.j@husky.neu.edu abhi@neu.edu jullman@ccs.neu.edu

ABSTRACT

We design an efficient method for sampling a large batch of d
independent coins with a given bias p € [0, 1]. The folklore secure
computation method for doing so requires O(4 + log d) communica-
tion and computation per coin to achieve total statistical difference
274 We present an exponential improvement over the folklore
method that uses just O(log(4 + log d)) gates per coin when sam-
pling d coins with total statistical difference 274, We present a
variant of our work that also concretely beats the folklore method
for A > 60 which are parameters that are often used in practice. Our
new technique relies on using specially designed oblivious data
structures to achieve biased coin samples that take an expected 2
random bits to sample.

Using our new sampling technique, we present an implementa-
tion of the differentially private report-noisy-max mechanism [4] (a
more practical implementation of the celebrated exponential mech-
anism [28]) as a secure multi-party computation. Our benchmarks
show that one can run this mechanism on a domain of size d = 212
in 6 seconds and up to d in 14 minutes. As far as we know,
this is the first complete distributed implementation of either of
these mechanisms.

— 919

CCS CONCEPTS

« Security and privacy — Privacy-preserving protocols; .
Mathematics of computing — Probabilistic algorithms.

KEYWORDS

differential privacy, multi-party computation

ACM Reference Format:

Jeffrey Champion, abhi shelat, and Jonathan Ullman. 2019. Securely Sam-
pling Biased Coins with Applications to Differential Privacy. In 2019 ACM
SIGSAC Conference on Computer& Communications Security (CCS °19), No-
vember 11-15, 2019, London, United Kingdom. ACM, New York, NY, USA,
12 pages. https://doi.org/10.1145/3319535.3354256

1 INTRODUCTION

This paper presents asymptotically and concretely superior se-
cure computation methods for sampling a batch of d coins with

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

CCS ’19, November 11-15, 2019, London, United Kingdom

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6747-9/19/11...$15.00
https://doi.org/10.1145/3319535.3354256

Ay

603

bias p € [0, 1]. The problem of sampling biased coins plays a fun-
damental role in implementing many randomized algorithms, in
running Monte Carlo simulations, and in producing differentially
private data summaries. Furthermore, as explained in [14], the tasks
of sampling from binomial, Poisson, Laplace, or geometric distribu-
tions can all be reduced to the task of sampling biased coins. Thus,
we consider this task an essential primitive in the area of secure
computation.

Biased Sampling with (and without) Secure Computation.
In order to explain our contributions, we provide some background
on methods for sampling biased coins and their complexity. If we
are willing to sample “in the clear,” then the folklore method for
sampling a coin with bias p is to first sample a uniform number
r € [0, 1] and then output heads if r < p and tails otherwise. A naive
implementation of this first method that achieves error at most 2%
is to sample r discretely in the following way: flip A fair coins,
interpret these coins as the binary expansion of r, and perform the
comparison. A downside of this method is that it flips A coins to
sample one biased coin, and thus the running time is at least Q(4).
One can address this issue using the following lazy flipping strategy:
flip the first coin and compare against the first digit in the binary
expansion of p, if the digits differ than a decision can be made, and
otherwise, the process is repeated with a fresh coin and the next
digit of the expansion. A simple calculation shows that lazy flipping
requires just 2 coins and O(1) time in expectation, regardless of A!
Thus, sampling biased coins “in-the-clear” is essentially solved in a
Turing-machine model of computation. In this work we focus on
achieving complexity similar to the lazy flipping method but in a
secure computation.

Unfortunately, the lazy flipping method cannot be easily imple-
mented in a two- or multi-party secure computation. Recall that
the goal of Secure Multi-Party Computation is to allow a set of par-
ties Py, ..., P, to securely evaluate a function y = f(x1,...,xpn),
where each P; provides input x;. Here securely evaluating a func-
tion means computing the function jointly in such a way that no
P; learns anything other than what is revealed by the output y and
their own input x;. In particular, each P; must not learn x; for i # j,
nor any intermediate value derived from x; during the computation
of f. To achieve this property, implementing an MPC version of
an algorithm usually requires that all parts of the algorithm be
converted into static circuits. This means that loops for example
cannot stop early, since the stopping time may reveal something
about the inputs.

Since the lazy flipping method implicitly leaks the number of
fair coins that were flipped, it cannot be directly implemented as
a secure computation while preserving its efficiency. Specifically,
if we transform the algorithm to a binary circuit, the circuit that
samples r must have size proportional to the worst case where

https://doi.org/10.1145/3319535.3354256
https://doi.org/10.1145/3319535.3354256

RIGHTS LI

Session 3C: Secure Computing Il

all A bits are compared against the binary expansion of p. Thus
a secure computation for the folklore sampling mechanisms gen-
erally requires A fair coins per sample instead of an expected 2.
When expressed in terms of boolean gates—which generically rep-
resents the running time and communication complexity of such a
protocol—this requirement leads to O(A) gates per coin.

A natural approach to overcome this inefficiency is to use a
secure computation protocol along with an oblivious RAM data
structure, implemented as a circuit, to emulate lazy sampling. Obliv-
ious RAM data structures, first introduced by Goldreich and Os-
trovsky [19] allow the implementation of a RAM program while
hiding the addresses of the memory locations that are accessed
during the execution. By hiding the memory access pattern, this
approach could allow the lazy sampling of coins that requires
only an expected 2 fair coins per sample. However, to implement
one read operation on a memory of size A, most ORAM data-
structures require polylog(A) additional read and write memory
operations [19, 26, 35, 42].

The state of the art in relation to asymptotic complexity is
Panorama [31], which requires é(log A) extra operations (albeit
with astronomically high constants). However, even ignoring the
large constants, all known ORAM schemes require read operations
on machine words of size log(4) bits when accessing a memory with
A elements. Since our application only requires reads of single bits
to implement lazy sampling, all of the schemes will incur O(log? 1)
overhead which is asymptotically worse than our scheme. Ignoring
asymptotics, the most recent practical implementations of ORAM
for secure computation [12] concretely perform worse than our
approach (and also only support two-party secure computation).

Our Contributions. The first main contribution of this paper is
to develop a new secure computation sampling procedure that takes
a string of fair coins! and samples a string of d biased coins that has
statistical distance at most 2~% from a string of d independent coins
with bias p, using an amortized O(log(1+log d)) AND gates per coin.
This result improves exponentially over the folklore technique that
uses O(A + log d) gates per coin, and is polynomially better than
schemes that use the state-of-the-art ORAM techniques.

Our main technique is to employ new oblivious data structures
that allow us to amortize the cost of the lazy sampling method by
“blurring” when the sampling of one biased coin ends the the next
begins. In §2.1, we describe these two data structures that enable our
improvements: an oblivious push-only stack, and an oblivious pop-
only stack with reset. The first push-only stack allows obliviously
pushing elements onto a stack. When the stack is full, the data struc-
ture obliviously ignores the operations and does not change the
underlying data. The second data structure allows the opposite—it
only supports pop operations, and returns the last element repeat-
edly when it is empty. It additionally supports an oblivious reset
which returns the stack to an arbitrary original configuration. Both
of these data structures are inspired by the oblivious stack proposed
by Zahur and Evans [44].

Using these data structures, our new sampling method works as
follows. We first initialize a pop-only stack with the binary expan-
sion of the bias p. At each step, we pop from the stack and compare

! The fair coins can be obtained securely by taking the xoRr of fair coins obtained from
each party.

Ay

604

CCS ’19, November 11-15, 2019, London, United Kingdom

against the next fair coin. We obliviously compare the coins and if
they agree, we make an “empty” oblivious push to the push-only
stack, and we simply repeat the procedure by popping and com-
paring with the next fresh fair coin. If the two coins disagree, then
we can output a biased coin sample by performing a true oblivious
push to the push-only stack and obliviously resetting the pop-only
stack. Thus, each iteration of the loop requires one oblivious push,
one oblivious pop, one oblivious reset, and one comparison. As we
show in §2.1, these operations can all be done in O(log(1 + log d))
gates per coin.

While our method asymptotically beats the standard secure sam-
pling methods, our implementation efforts? reported in §5 show
that the constant overheads in our careful stack implementation
only beat the standard methods when the statistical parameter
A > 200, i.e., when the sampling error is set to be quite small. As
a second contribution, we show that for larger statistical errors
A € [60,512], an alternative method often beats the naive strategy.
In particular, let Cy(-) be a circuit that on input j produces the M bit
in the binary expansion of bias p. We can replace the pop-only stack
that holds the bits of p used in the method described above by this
circuit. We show that for an appropriate range of A € [60, 512], it is
indeed possible to build such circuits for any arbitrary bias p. In §5,
we utilize circuits that output the first 128 bits of any p using at most
13 AND gates. Such a circuit is simply a 7-bit boolean predicate, and
Peralta et al. [8] show that every 6-bit predicate can be computed
in at most 6 AND gates. Our result follows from simply muxing the
top and bottom halves of the 7-bit predicate truth table. In practice,
we implemented this for many p and found that all of them could in
fact be expressed in 11 gates. However, as the statistical parameter
increases, the size of our predicate also increases linearly, and thus
this method eventually becomes more expensive than the pop-only
data structure. We evaluate the cross-over point and determine this
to be A > 512. In all cases, these methods surpass the naive sam-
pling circuit at A > 60. We summarize all (asymptotic) amortized
gate complexities and random coins used to make a single biased
coin in Table 1.

Application to Differential Privacy. As an application of our
sampling methods, we give improved secure multiparty implemen-
tations of fundamental algorithms from differential privacy [15].
Differential privacy is a strong formal model of data privacy tailored
to statistical applications. Intuitively, a randomized algorithm is
differentially private if it does not reveal “too much” about the data
of any one individual. At a high level, these algorithms introduce
random noise that masks the contribution of one individual, while
preserving the overall utility of the dataset when the number of
users is sufficiently large. Differential privacy has been the sub-
ject of an enormous body of literature (see e.g. [16] for a textbook
treatment) and has now been implemented by companies such as
Apple [37, 38] and Google [5, 18] and statistical agencies such as
the U.S. Census Bureau [22].

The most powerful differentially private algorithms are designed
in a centralized model where a trusted party collects the data and
agrees to publish only the output of the algorithm. In many indus-
trial applications, this trust assumption is problematic, and so com-
panies have mostly opted to use the local model [15, 25, 43], which

20ur code can be found at https://www.gitlab.com/neucrypt/securely_sampling.

https://www.gitlab.com/neucrypt/securely_sampling

RIGHTS

Session 3C: Secure Computing Il

is essentially a weak model of information-theoretic secure com-
putation where each party applies a separate differentially private
algorithm to their own data. Unfortunately the local model severely
limits the utility of the algorithm both in theory [10, 13, 25, 39] and
in practice, often requiring billions of users to achieve reasonable
utility (see e.g. [5]).

To resolve this tension between the central and local models, the
prescient work of Dwork et al. [14] posed the question of secure
multi-party implementations of differentially private algorithms,
and gave algorithms for sampling the noise required to implement
simple counting mechanisms. Using our secure sampling methods,
we give improved algorithms for sampling the noise in fundamental
differentially private algorithms.

In particular, as far as we are aware, we give the first full se-
cure implementation of the report-noisy-max mechanism (which
is a more practical implementation of the celebrated exponential
mechanism [28]). This is a highly versatile mechanism that is the
driving force in numerous applications of differential privacy (see
e.g. [4, 6, 23, 36] for a tiny sample). This mechanism is particularly
crucial in applications of distributed differential privacy, as any im-
plementation of this mechanism in the local model provably suffers
an exponential loss of utility [25, 39], even in some of its simplest
applications. This application is well suited to our methods due to
its need for many biased coins and because the need to securely
take a maximum makes it more amendable to circuit-based proto-
cols rather than the sorts of tailored algebraic protocols that have
been applied to computing sums (e.g. [7, 33, 34]).

Our experiments reported in §5 show that datasets of size 2*“ up
to 2!? can easily be handled in seconds to minutes. These figures
give encouraging evidence that one can process moderate-sized
datasets using the noisy-max mechanism. In our evaluation we
consider only the simple two-party semi-honest model, for which
we can achieve reasonable concrete efficiency. But since our main
contribution is more efficient circuits, our improvements apply
equally to multi-party and malicious models.

212

Discussion of Prior Work. The closest prior work is the cele-
brated result of Dwork et al. [14], which presents the idea of using
secure computation protocols to implement differentially private
processing of datasets by the data owners themselves. Indeed, our
results in §3.2 make use of their observation that sampling Poisson
and related distributions can be reduced to sampling several fair
coins with different biases. Their paper also makes note of the inef-
ficiency of standard sampling, however the approaches that they
suggest to overcome the A coin bottleneck have very large gate
overheads.

Anandan and Clifton [1] present a two-party protocol based
on homomorphic encryption to generate a single sample from a
Laplace distribution in the presence of a malicious adversary. Their
first protocol takes the approach of inverting the CDF and there-
fore is computationally expensive and was not implemented. They
propose a second cut-and-choose style protocol that offers only
polynomial security and report that 500 samples can be generated
in 9 seconds.

Several prior works present tailored MPC protocols for specific
differentially private algorithms. The problem of computing a dif-
ferentially private sum was first considered by Dwork et al. [14]

Ay

605

CCS ’19, November 11-15, 2019, London, United Kingdom

and has many follow-up works [2, 3, 11, 17, 34]. Shi et al. [34] also
present a DP mechanism for computing sums that uses a single
round, allows users to drop out, but does not match the accuracy
achievable in the central model, and require a trusted setup phase.
Pettai and Laud [32] use the sharemind MPC system to report on
another implementation of the sum-and-aggregate mechanism for
differentially private processing of counts, averages, medians, etc.
These mechanisms are much simpler than report-noisy-max.

Eigner et al. [17] present PrivaDA as an architecture for dis-
tributed differential privacy that uses secure computation on float-
ing point arithmetic to compute the distributed Laplace, the dis-
tributed discrete Laplace, and the distributed exponential mecha-
nism. Their main technical contribution is to explain how to handle
floating-point arithmetic, exponentiation and logarithm functions
in secure computation, as well as converting between integer and
floating representations. These operations are extremely compli-
cated as secure computations; their experimental results for com-
puting a single logarithm take 10s of seconds. In comparison, we
are able to sample roughly 8000 geometric samples in the same
time. As a result of these costs, they were unable to implement
any full DP mechanisms. More concerning, Mironov [29] shows
the hazards of using floating point approximations in differential
privacy applications.

Several works have shown the necessity of secure computa-
tion (i.e. oblivious transfer) to achieve optimal accuracy without a
trusted aggregator [20, 21, 27, 30]. Other work has considered se-
curely implementing differentially private algorithms for gradient
descent [7], continually monitoring sums [17, 33, 34], the private
record-linkage problem [24], and heavy-hitters [9].

Algorithm AND Gates Random Bits
ODO-1[14] O((A + logd)? log d) 2

ODO-2 [14] O(A + logd) O(A + log d)
ODO-3 [14] O(d(A + logd)) 2

ODO-4 [14] O((A + logd)log(A + d)) 2

MNM-1 O(log(A + log d)) 2

MNM-2 O((A + logd)log(A + logd)) 2

Table 1: Amortized O(-) cost per biased coin. The amortiza-
tion is over d coins in total. We denote A as the total statisti-
cal error for d coins. ODO-1, ODO-2, ODO-3, and ODO-4 are
from [14] in the order they appear in that work starting at
section 4.3. ODO-2 is the algorithm we implement due to its
simplicity and low gate count. MNM refers to our coin flip-
ping algorithm, and our numbering is 1 for the algorithm
with asymptotic improvements and 2 for the algorithm used
in practice.

2 SECURELY FLIPPING MANY COINS OF THE
SAME BIAS
The fundamental problem we solve in this paper is to design

a boolean circuit C(d, p;) that can sample d coins of a bias p ef-
ficiently in both gates, communication, and number of random

RIGHTS

Session 3C: Secure Computing Il

input bits required to perform the sampling with overall statisti-
cal difference 2~*. The naive circuit described in the introduction
Co(d, p; A) has amortized gate count |Co(d, p;)| = O(logd + A). Our
circuit Cmnm-1(d, p; A) reduces this complexity to O(log(logd + 1))
by taking advantage of the expected two random bits needed per
biased coin. Our algorithm does this by ending every compari-
son when the first difference in the p bias and stream of unbiased
bits occurs. Informally, doing this privately requires the following
functionalities:

(1) Sequential production of p’s binary expansion
(2) A way to obliviously produce biased coins
(3) A method for reseting p’s expansion obliviously

Note that all of these must be achieved within a secure computation,
which does not provide many intuitive options for finishing random
comparisons early while still being secure. We will describe how to
acquire (1) and (3) in two ways later in the section. For (2) and one
of those ways, we design oblivious data structures, which can store
a number of coins at once, while providing operations to push and
pop coins obliviously.

2.1 Oblivous data structures

The notion of an oblivious data structure was introduced by Gol-
dreich and Ostrovsky [19] in the context of protecting the privacy
of a CPU’s memory access pattern against an adversary who can
tap the memory channel bus. Subsequently several works have
studied the overhead tradeoffs involved in implementing such data
structures. The classical notion of security for oblivious data struc-
tures is stated in a RAM model and specified through the notion of
a simulator and indistinguishably of the traces resulting from any
two sequence of operations.

Instead of considering arbitrary RAM datastructures, we only
consider a pair of very limited datastructures that support 1 and 2
operations. We only allow circuit-model implementations of these
operations, and then evaluate the AND-gate complexity of these
circuits as our measure of interest. This notion implies the standard
simulator-based one for the limited scope and is consequently much
simpler.

A data structure D = (O; B,C) = D(0) is a tuple consisting of a
sequence of bits B = by, ..., by, a set of bookkeeping bits C3 and
a fixed set of operators O which act on B and C. For the following
let C = {c, r}, where c represents the current count of bits and r
is a reset flag. We define three members (the ones relevant to our
data structures) of the set of possible operators O*:

(1) cpush(f, D, b): returns (B’ = (b,b1,...,by—1),C" = {c +
1,r})if f = 1 and (B, C) otherwise. b represents the bit to be
pushed.

(2) creset(f, D): returns (B,C" = {c,1}) if f = 1 and (B,C)
otherwise. In our construction, r = 1 denotes the need for a
reset.

3) rpop(B’é)(f, D): returns the bit by and (B’ = (by, . . ., by, 0),
C'={¢-1,0})ifr =1,by and (B" = (b2,...,bp,0),C" =
{c — 1,0}) otherwise. Here the values B = (l;l, o, l;M), ¢

3Conceptually, the bits in C can be included in the sequence of bits, but we separate
them for convenience.

Ay

606

CCS ’19, November 11-15, 2019, London, United Kingdom

count | reset | shift| data data data

Figure 1: Depiction of the recursive data structure at level ¢.
The top row indicates how we name each field in the subse-
quent discussion. The bottom row indicates the field size in
bits. Each level includes 4 bits of bookkeeping and 3 “buck-
ets” that hold 2¢ bits each. Our implementation also includes
a pointer to the next level for convenience, but this can be
omitted if successive levels are arranged in memory as an
array.

are hard-coded values of the datastructure (typically, the
inijtialized values before any operations).

These operations take a conditional flag f as an input that determine
whether the operation is performed or not. In the case of rpop, f is
ignored in favor of an internal bit in C.

We consider boolean circuits that implement these operations
on D. However, instead of requiring uniform circuits, we allow the
circuit that implements the it operation on D to depend on i, i.e.,
the number of previous operations that have been applied to the
data structure. The circuit that implements an operation cannot,
however, depend on the specific operations that have been applied to
D—only on the count. This extra ability allows scheduling “clean-up
tasks" that simplify the datastructure at periodic intervals that are
independent of the data being stored. We use the natural notion of
correctness in which the circuit for each operation implements the
semantics defined above.

Each of these circuits consist of boolean gates (AND and XOR),
simple wires, and desigation of each wire as an input wire, an ouptut
wire, or an internal wire. We measure the complexity of a circuit
by counting the number of its AND gates.

We now proceed to describe our implementations of this data
structure.

Construction. We use two data structures, both of which are
essentially constructed as in Figure 1, and are hierarchical; level i
of the structures contain a single bit to represent whether a level
needs to be reset, two bits which store a count of the number of
elements at this level, 3 data slots each of size 2! bits, and finally
a pointer to the next level of the data structure. The pointer is for
convenience of notation and can be omitted in implementation by
arranging the levels adjacent to one another in an array. The total
capacity of the data structure is the sum of the sizes of the data slots
at all of the levels. This design is inspired by the stack construction
from [44]. Our first data structure, DPOP(OPOP)’ is a data structure
with Opop = {rpop, creset}, and follows Figure 1 precisely. Our
second data structure is Dy, sh(Opysh), With Opysp = {cpush},
and it omits the reset bit from Figure 1.

All pushes and pops initially take place in level 0, but level 0 will
become empty or full at different points during a sequence of stack
operations. To address this, when level i is full it shifts some of its

RIGHTS

Session 3C: Secure Computing Il

contents to level i + 1 below, and when level i is empty, level i + 1
shifts its contents to level i. To keep this operation oblivious, these
shifts occur on a regular schedule: level i checks if it needs to make
a shift every 2*1 operations of a given type (push or pop). Notice
this oblivious schedule ensures that overflows (or underflows) never
occur except at possibly the last level (where they are ignored in
our case). Thus, we use a shift circuit every second time a level
is accessed, meaning shifts must be made not only when a level
is empty/full but also when it could be empty/full after the next
operation of a given type. The advantage of this shifting scheme is
that, even though moving data twice as large is twice as expensive,
level i + 1 is accessed half as often as level i, so all levels have the
same amortized cost. This makes the complexity per operation a
favorable O(log n) for n element capacity, since a level 0 access has
constant gate count and there are O(log n) levels total.

In contrast to the implementation in [44], our structures only
support either push or pop operations, but not both. As a result,
it suffices to have only 3 buckets per level (instead of 5), cutting
down our gate count by a constant factor.

Oblivious Reset. Intuitively, we will be using Dpop to store bits of
the binary expansion of some bias p and pop them off sequentially
to give the functionality of (1). To achieve (3), we add a secret reset
bit to each level of the stack which determines whether the level
will set its slots to their original values of the datastructure before
popping normally. After every oblivious reset, we set the reset bit
to 0. When we pop the next bit of p’s binary expansion and it is not
equal to the next random bit, we set the reset bit of each level to 1
so that the next pop will start from the first bit of p’s bias again.

Below we provide pseudo-code to more formally express the
intuition above. We use the notation mux(f, ag, a1) to represent
ao + f - (ap + a1) where the operations are performed over F; in
other words, this step returns ay using |ao| AND gates. We show
the pseudo-code for the pop operation first; the cpush operation is
similar. The creset operation recursively sets the reset flag at each
level of the hierarchy.

1: procedure rRPOP(f, stk) > ret success bit s, data d
2: stk.{1,2,3,c} « mux(stk.r,stk.{1,2,3,c}, {i, 2,3, ¢})
> X is reset value of x
3 stk.r <0 > always set reset bit to 0
4: if stk.next # L then
if stk.s =1 therg
6: c1 « (stke < 1)
7: stk.1 « mux(cy, stk.1, stk.3)
8: s,d « rpoP(cq, stk.next)
9: stk.1,stk.2 « d
10: stk.c «— mux(s A c1, stk.c, stk.c + 2)
11: ¢y « (stk.c ; 0 (mod 2))
12: stk.1 « mux(c1 A ¢, stk.1, stk.2)
13: stk.2 «— mux(cy A ¢, stk.2, stk.3)
14: stk.s « 0
15: else
16: stk.s « 1
17: end if
)

607

CCS ’19, November 11-15, 2019, London, United Kingdom

18: end if

19: s« 1
case

20: (d, stk.c) « (stk.1,c—1)

21: stk.1 « stk.2, stk.2 « stk.3

22: return (s, d)

23: end procedure

> always pop (compare with rand bit) in our

1: procedure cPUSH(f, input, stk) > ret success bit s
2: if stk.next # L then

if stk.s = 1 then
H

w

4 c1 « (stk.c > 2)

5 s’ « mux(cy, 0, cPUsH(cy, stk.next))

6: stk.3 « mux(s’, stk.3, stk.1)

7: stk.c « mux(s’, stk.c, stk.c — 2)

8: stk.s < 0

9: else

10: stk.s « 1

11: end if

12: end if

13: s « —(stk.c 2 3) > check fullness
14: fori=1to3do

15: stk.i «— mux(f A (stk.c - i), stk.i, input)
16: end for

17: stk.c «— mux(f A s, stk.c, stk.c + 1)

18: return s

19: end procedure

1: procedure CRESET(f, stk) > return nothing
2 stk.r «— mux(f, stk.r, 1)

3 if stk.next # L then

4 CRESET(f, stk.next)

5 end if

6

: end procedure

Analysis. We now state and prove the following theorem.

THEOREM 2.1. Let data structure D have capacity n bits. The total
number of AND gates required to implement n calls to pop, creset
(respectively cpush) on D is ©(nlog n).

Consider a data structure that is designed to hold n bits. The ith
level of the data structure holds 3-2? bits, and therefore k = O(log n)
levels are needed. Thus, it is easy to see that the creset operation
on such a data structure requires O(log n) AND gates to implement
since it performs one mux operation on a single bit per level. Each
mux(-, ag, a1) operation can be implemented using |ag| AND gates.

The analysis of pop is slightly more complicated but also require
O(nlogn) AND gates across n operations. Let T(i) represent the
number of AND gates required to implement a call of pop on level
i of the hierarchy. When the shift bit at this level is 0, then only
the AND gates from the mux operation in line 2 are required, and
soT()=3- 2!, When shift is odd, then lines 7,10,12,13 contribue

RIGHTS

Session 3C: Secure Computing Il

another 3 - 2! + 2 gates, and the recursive call in line 8 contributes
T(i + 1) gates. Over a sequence of n operations, the n calls to hierar-
chy level 0 contribute n - T(0) gates. Half of these calls require 3 - 2°
gates, while the other n/2 calls require 3 - 2° + (3 - 20 + 3 + T(2))
gates. Of these, n/4 terms of T(2) add 3 - 2! gates, while the other
n/4 contribute 3 - 2! + (3 - 21 + 3 + T(3)). Expanding all such T()
terms and collecting, the total number of AND gates is

k
Z[n/zi] 232071 4 [n/21(3 - 28 + 3)
i=1

[n/2"7[3-2" +3-2"71 +3]

M~

1l
—

5n = O(nlogn)

M-

Il
—-

An analysis of cpush is similar.

Discussion of Batching Parameters. Returning to the task of pro-
ducing d biased coins of the same bias, we arrive at the issue of
when to stop pushing coins onto the push-only stack. To use the
least number of pushes, we could check if the stack is full before
every push and stop when it is. However, this would potentially
lose some privacy since we are revealing the total number of unbi-
ased coined needed to make d coins. Additionally, stopping early
does not mesh with the constraint of a static circuit. Given that it is
unknown how many pushes will be needed to generate a group of d
coins, we choose a small constant ¢ such that the chance of needing
more than cd pushes to make d biased coins is less than 274 If
we assume the stack is full after cd pushes, we can also empty out
the stack for free by simply wiring the slots to d coins. The final
question is to choose what size stack will be used to make a total
of d coins. The obvious choice is to use a stack large enough to
store all d coins at once, which would also minimize ¢. However,
by making coins in batches of some size g < d we can reduce the
number of levels and thus the amortized cost per push of the stack,
while increasing ¢ very marginally, reducing our complexity. The
process for choosing c and g is described thoroughly in §5.

2.2 Make-Batch 1

In this section, we describe our first method for producing a batch
of g biased coins via c-g cpush operations on a push-only stack. This
method for MAKE-BATCH yields an asymptotic complexity which
clearly dominates that of ODO-2 for making d coins, but does not
win in practice until A+log d (union for overall statistical difference)
is large for practical standards. This MAKE-BATCH uses a pop-only
resettable stack described above to achieve properties (1) and (3).
Informally, the loop mimics the “lazy sampling” method in which
the binary expansion of the bias p is compared bit-by-bit with fair
random coins. As soon as the random coin differs from a bit of
the expansion, the loop pushes a new sample onto a stack that
collects samples. Each iteration of the loop thus consists of one pop
operation, one cpush operation, and one creset operation in case
of success. The pseudocode is as follows:

Ay

608

CCS ’19, November 11-15, 2019, London, United Kingdom

1: Let rstacky be the resettable, pop-only stack that contains
a given p
2: Let RPOP(rstacky) be a pop that is preceded by a reset if
the reset bit is 1
: Let cstack be the push-only stack of size g
: procedure MAKE-BATCH(c, g, p)
for w =1to cg do
b «NEXT(1, coins)
t «<RrpOP(rstacky)
fe<bot
cpusH(f, =b, cstack)
roomand f =1
10: CRESET(f, rstackp)
11: end for
12: end procedure

> next fair bit

> next bias bit

> f =1 if difference found
> push —b if cstack has

R R A

> oblivious reset

THEOREM 2.2. Let A be the security parameter and d be the total
number of coins. Then the amortized circuit complexity of MAKE-
BATCH for making d coins is O(log(A + log d)).

2.3 Make-Batch 2

Our second algorithm for MAKE-BATCH does better than the first
when A + log d is less extreme, which is generally the case in prac-
tice. Instead of using a stack for satisfying property 1, a predicate
function is constructed to take an integer j as input and return
the jth bit of some probability p. This predicate function is used
in conjunction with a counter that tracks what j should be at a
given step. To satisfy 3, we reset this counter depending on the
XOR of the next unbiased bit and the next bit of p. We present the
pseudocode below:

1: Let GET(p, j) be the predicate function that gets the jth bit
of a binary expansion p
procedure MAKE-BATCH(c, g, p)

count «— 0
for w =1to cg do
b «NEXT(1, coins)

2
3

4

5 > next fair bit
6: t «GET(p, count)

7

8

9

> next bias bit
f<bot > f = 1if difference found
cpusH(f, =b, cstack)
: count « count + 1
10: if f =1 then
11: count « 0
12: end if
13: end for

14: end procedure

THEOREM 2.3. Let A be the security parameter and d be the total
number of coins. Then the amortized circuit complexity of MAKE-
BATCH for making d coins is O((A + log d) log(A + log d)).

3 REPORT-NOISY-MAX APPLICATION

In this section we demonstrate how we can use our new meth-
ods for batch-sampling biased coins to securely implement one

RIGHTS

Session 3C: Secure Computing Il

of the foundational algorithms in differential privacy (DP), the
report-noisy-max mechanism [4] (a variant of the widely known
exponential mechanism). We begin by recalling the definition of DP.

DEFINITION 3.1 ([15]). Let X be the universe of possible dataset
entries, R be a range of outputs, and ¢, > 0 be parameters. We
say a randomized algorithm A : X" — R is (¢, §)-differentially
private if for every two datasets x = (x1,...,Xj,...,xp) € X" and
x" = (xq,.. .,xlf, ...,Xn) € X" that are the same except for one
individual’s data, and for every set of outcomes S C R, we have
P[A(x) € S] < e*P[A(x") € S] + 6.

We typically view ¢ as the “privacy level” and require it to be
a small constant, as having ¢ too small leads to poor utility, and
leaving it too large provides meaningless privacy. For example,
Google’s RAPPOR [18] and PROCHLO [5] use ¢ = In3 and ¢ =
2.25, respectively. We think of § as a “failure probability” for the
algorithm, and require that it be “cryptographically small”, e.g. 278,

3.1 Report-Noisy-Max

One of the most useful differentially private algorithms is the
report-noisy-max mechanism [4] (see [16] for a textbook treatment).
This mechanism is a more practical implementation of the widely
known exponential mechanism [28], and the two mechanisms solve
the same problem with identical privacy and utility guarantees.

Given a dataset X" and discrete set of choices Y (denote |Y| = d),
as well as a utility function u: X" X Y — R such that u(x, y) is the
utility of choice y € Y on dataset x € X", a user would naturally
want to select a y € Y that has high utility on the given dataset. For
example, Y might be a set of classifiers for a machine learning model,
and u(x, y) might be the number of examples in the dataset that y
classifies correctly. The report-noisy-max mechanism is a way to
privately select an element g such that u(x, §) > maxy ey u(x,y) -
O(log d). The importance of this mechanism comes from the fact
that the error grows only logarithmically in the number of choices.

The report-noisy-max algorithm works in two steps: First, se-
curely compute noisy scores iy = s(x,y) + zy for each y € Y,
where zy is a suitably chosen random variable typically Laplace
or geometric. Second, return that maximizes the noisy score d;.
It is crucial for privacy that the intermediate noisy scores are not
revealed, only the final choice §. For our purposes, we draw from
geometric noise in the first step. We label the noisy max mechanism
that adds Geo(2/¢) (the discrete version of Lap(2/¢)) to each score
as NM-Geo(2/¢). Since we are drawing samples from the geometric
distribution, we restrict the output space of our utility function to
u: X" xY — Z. We note that rounding down scores to integers for
utility functions that have output space R increases the error by
at most 1, which is small in comparison to log d. Since this mech-
anism can be implemented by sampling many independent noise
variables, each of which require sampling many biased coins, it is
ideally suited to our methods.

THEOREM 3.2 ([16, 40]). NM-Geo(2/¢) is (¢, 0)-differentially pri-
vate.

Ay

609

CCS ’19, November 11-15, 2019, London, United Kingdom

3.2 Review: Sampling Exponential Noise via
Poisson

In this section, we review the techniques from [14] showing
how to sample the Poisson distribution in order to approximate
the exponential distribution. Recall that the celebrated Poisson
distribution is a discrete probability distribution that expresses
the probability of a given number of events occurring in a fixed
interval if these events occur with a known constant rate A. For
example, such a distribution can model the number of soldiers in the
Prussian army killed accidentally by horse kicks [41]. Specifically,
the support of the Poisson distribution are the non-negative integers
0,1,2,..., and the probability mass function is defined as f(k; 1) =
Pr[X =k] = ’lklf,ﬂ . As in [14], we sample from this distribution in
order to approximate the exponential distribution.

Naive methods. Generically, one can sample any function with
cumulative distribution function p by first sampling r € [0, 1] and
then finding the maximum x such that r < cdf(x). The latter
maximization problem can be solved by inverting the CDF. Thus, in
the case of drawing Poisson or exponential noise, the complexity of
this naive sampling approach will be dominated by the complexity
of computing In x (which appears in the inverse CDF).

Bitwise sampling. The main observation in [14] is that the special
structure of an exponential distribution enables the generation
of the binary representation of an exponential variable using a
number of coins that is independent of the bias. Thus, by calling the
noise sample some x bit number, one can compute the probability
that bit i of a sample is 0 or 1 as seen in [14]. This bounds the
distribution to the interval (—2%, 2¥), since after generating a x
bit noise sample we flip a fair coin to choose whether the noise
is negative or positive, as we desire two-sided exponential noise.
Since Pr[X = x] « exp(—|x|/R) in the exponential distribution
(with scaling constant R), the probability that bit is 1 diminishes
at a doubly exponential rate, meaning x will stay nearly constant
as the number of samples and privacy requirements grow. We note
that sampling in this way implicitly makes the noise an integer,
meaning we are actually sampling from the geometric distribution.
This is ideal since geometric noise satisfies our differential privacy
needs while avoiding the expensive computation of the natural
logarithm.

3.3 Implementing Report-Noisy-Max

Using bitwise sampling from §3.2 and MAKE-BATCH from §2, we
can construct a secure implementation of noisy max. We present
the pseudocode below:

1: Let A be the security parameter, ¢ be the DP parameter,
and « restrict our noise domain to (2%, 2¥)

2: Let po, p1, . . . be the binary expansions (out to f bits, de-
rived from ¢) for the biased coins needed to compute k bit
noise, where k < k is derived from x to optimize run time

3: Let cstack be the push-only stack of size g used for making
batches of g coins, where g is picked along with a small
constant ¢ to optimize run time

4. procedure MNM, . (u1,...,ug) > u; = u(x, y;)

RIGHTS

Session 3C: Secure Computing Il

5 fori=kto0do
6 forj=1tod/g do
7: MAKE-BATCH(C, ¢, Pi)
8 Sty > output coins
9 ng(]-_l)ﬂ,...,ngj — n90_1)+1|51"'
> concat noise, sample n; corresponds to u;
end for

end for

return MAX-1pX(u1 + ny, . .
13: end procedure

.»Sg «<PURGE(cstack)

. Ngjlsg

L ug tng)

We note that the pseudocode for ODO, , ., the algorithm that
uses comparator circuits to flip all biased coins, follows directly
from the bitwise sampling in §3.2 and the definition of noisy max,
so we do not provide it.

3.4 Complexity Theorems

We now present the following theorems which follow very sim-
ply from the MAKE-BATCH theorems:

THEOREM 3.3. Let ¢ € [0.001, 10] and the number of bits for all
u; (potentially padded) be constants, A be as above, d be the number
of choices, and k = O(log(A + log d)). Then the circuit complexity of
MNM} ., with MAKE-BATCH from §2.2 is O(d log?(A + log d)).

THEOREM 3.4. Let ¢ € [0.001, 10] and the number of bits for all
u; (potentially padded) be constants, A be as above, d be the number
of choices, and k = O(log(A + log d)). Then the circuit complexity of
MNM,, . with MAKE-BATCH from §2.3 is O(d(A + log d) log?(A +
log d)).

THEOREM 3.5. Let ¢ € [0.001, 10] and the number of bits for all
u;j (potentially padded) be constants, A be as above, d be the number

of choices, and k = O(log(A + log d)). Then the circuit complexity of
ODO, , « is O(dlog(A + log d)(A + log d)).

3.5 Proof of Differential Privacy

Let M : X — Y be the noisy max algorithm using geometric noise
with finite domain (—2%, 2¥) such that:
NM-Geo(2/¢)
F(x)

wp.1-6

M) = { w.p.d

where J is the function executed when a sample is out of the
range (—2%,2%) and NM-Geo(2/¢) is the "perfect" noisy max al-
gorithm defined as above. By the privacy of NM-Geo(2/¢), M is
(¢, O)-differentially private. Let M : X" — N be MNM, which is
the same as M except for the possibilities of a biased coin failing
and/or that cg pushes (for ¢ and g as in the pseudocode) create less
than g coins. We define M like so:

M(x) wp.1-(p+v) (=E)
S(x) (E)

where E is the event in which any biased comparator fails (repre-
sented by p) and/or any set of c¢g pushes fails to produce g coins
(represented by v). We let G be the function executed when E hap-
pens.

s

W.p.p+V

M(x) = {

Ay

610

CCS ’19, November 11-15, 2019, London, United Kingdom

THEOREM 3.6. M is (¢, 8 + p + v)-differentially private.

Here we have
5= 26—(2’“£—ln d)

p= Z_A, and

for some choice of k, ¢, 4, ¢, and g, which are defined the same
way as in the pseudocode. We choose ¢ and g given A such that
the last inequality holds. Note that ODO can be proven (¢, § + p)-
differentially private in the same way.

Discussion. Since our algorithm introduces three addends that
sum to §, its a good idea to set A = log(4/9) for the goal of (e, §)-
DP. This will make v and p both less than or equal to §/4, mak-
ing their sum less than or equal to §/2. If « is set such that § =
2¢~(2e-Ind) < §/9 as well (which happens when x = O(1 +log d)),
we have 8’ + p + v < §. Choosing «k and A this way yields a
complexity of O(dlog?log(d/5)) for the first MAKE-BATCH, and
O(dlog(d/d) log2 log(d/&)) for the second. Since ¢ is a parameter
to the algorithm that determines the exact biases for computing
the bits of noise, it is already attained. It is worth noting however,
that smaller ¢ for the same desired § may increase the algorithm’s
complexity slightly.

4 OPTIMIZATIONS

In this section we will describe some of the additional methods
used to further cut down gates when implementing MNM.

Special Values of e. Our primary reduction comes from choices
of ¢ that have especially easy biases to produce, namely ¢ of the
form e = 27 In 2 for i € Z. When ¢ takes this form, the expression
for the probability of bit j being 1 is reduced from

11 +exp@) to 1/(1+22 7).

When the expression j —i — 1 > 0, we have a fully periodic binary
expansion for the probability that bit j is 1 (e.g. 01010101... for
Jj—i—1=0). This allows us to produce the binary expansion for
P[bit j = 1] by simply taking bit j — i — 1 of count (see §2.3), making
GET a 0 gate function! Thus, if one does not have precise needs for ¢,
one can find the first expression of the form 27% In 2 less than their
approximate ¢ threshold and have a number of periodic expansions
among the k biases flipped in the MNM protocol.

Remainder Batch. A lesser reduction we use is when finding the
optimal ¢ and g for batches, having the last group be a potentially
smaller size, in order to make the least amount of total coins possible.
With a total of d coins to make, this is done by simply taking w = d
(mod g) and finding the least expression of the form 3(2!) > w,
which is then used as the size of the final group.

5 EVALUATION

The main contribution of this paper is the design of a new circuit
family for sampling biased coins that is suitable for use in secure
computation protocols. To illustrate the benefits of this new design,

RIGHTS

Session 3C: Secure Computing Il

we have implemented our new sampling schemes, the ODO sam-
pling scheme, and the report-noisy-max mechanism. The focus of
the paper is not on secure computation, and therefore we consider
the simpler two-party honest-but curious model; our techniques,
however, apply equally to multi-party computation protocols that
handle a variety of adversarial models.

Implementation Details. Our code can be found at https://www.git
lab.com/neucrypt/securely_sampling. We implemented and bench-
marked both ODO and MNM, using Obliv-C [45], an extension of
C that compiles and executes Yao’s Garbled Circuits protocols with
many protocol-level optimizations.

Benchmarks were performed using Ubuntu 18.04 with Linux
kernel 4.18.0-1009-gcp 64-bit, running on pairs of identical Google
Cloud Instance n1-highcpu-4 instances. Code was compiled using
gcc version 8.2.0 (Ubuntu 8.2.0-7ubuntul), with the -03
-march=native flags.

We evaluated performance in two network settings. In the first
network setting that mimics a LAN setup, all instances ran in the
same us-east1-b datacenter. Using iperf, we measured the band-
width between the pairs of instances to be 7.5 gigabits per second
and the ping times to be 0.4ms. The second network setting reflects
a typical WAN in which one machine was in the us-east1 datacen-
ter while the others were in the us-west1 datacenter. Again using
iperf, we measured the bandwidth between the two instances to
be 330 megabits per second. These two network settings highlight
the difference in network communication requirements between
the various algorithms.

Selection of parameters. Using our MNM sampler requires choos-
ing the following parameters:

(1) u: This parameter represents the number of pushes (cg as
described above) needed to produce g coins with a desired
chance of failure. In our experiments for ¢ = 2731n2,6 =
2790 this parameter ranged from 1941 to 6947.

(2) g: The primary batch size used to make all groups except for
the remainder group (which in some cases is still size g). In
our experiments for ¢ = 2731n 2,8 = 27, this parameter
ranged from 765 to 3069.

(3) ¢: The length of the bias for a desired 274 statistical difference
overall (f in the MNM pseudocode). In our experiments for
£=2731In2,8 = 2799, this parameter ranged from 78 to 85.

(4) v: This represents the number of pushes needed to produce
q coins with the same desired chance of failure as each of the
batches of g. In our experiments for e = 273In2,§ = 27,
this parameter ranged from 1066 to 6947.

(5) q: The remainder batch size, used as an optimization (to
make as few extra coins as possible). In our experiments for
e=273In26 = 279, this parameter ranged from 381 to
3069.

In choosing these parameters, we picked x as in our differential
privacy discussion thus letting us solve for k as described in Theo-
rem 3.3. Then we iterated over the choices for g, which are 3(2%)
fori=0,1,2,...,15 (for i > 15, the cost per operation is too high
compared to the minor reduction of c). For each g, we found the

Ay

611

CCS ’19, November 11-15, 2019, London, United Kingdom

A pop Method Predicate method

64 43.6 16
128 52.2 24
192 60.8 32
256 60.8 39
320 60.8 47
384 69.3 54
448 69.3 61
512 69.3 69
576 69.3 77
640 69.3 84

Table 2: Amortized number of AND gates for pop vs predi-
cate as the length of the bias A increases. For pop we took the
average of 10000 iterations of calling pop and conditionally
resetting on a random bit. The crossover point is roughly
A > 512 which is a highly secure setting, but certainly a rea-
sonable parameter setting.

minimum number of pushes needed to make
P[cg pushes yield < g coins] < 27(/71°89),

with f > 1 + logk + logd. By taking d (mod g) we could easily
deduce what the remainder group would be, and the number of
pushes needed for that to satisfy our desired overall chance of fail-
ure. With this done, we calculated what the total concrete gate
count would be for noisy max based on our benchmarks of data
structure operations and the cost of evaluating a log f bit predicate
using multiple efficient 6-bit predicates. When doing this we first
compared whether the pop-only stack or the predicate would be
faster and chose the appropriate one. Finally, we took the parame-
ters that yielded the lowest estimated concrete gate count for noisy
max.

5.1 Microbenchmarks of datastructures

In this section we present the gate complexity of our cpush, pop,
and creset operations, as well as the complexity of our predicate
implementations for different biases. To compute these, we modified
our Obliv-C implementation to report specific gate counts.

Complexity of push. Here we empirically measure the gate com-
plexity of our cpush implementation. We consider stacks of size
n = 3 - 2! bits and then apply n conditional cpush operations while
measuring the number of gates required for each operation. Fig-
ure 2 graphs the number of gates for the first 6141 operations as
well the average number of gates for the first i operations.

Crossover for pop. In the section we compare the performance of
our predicate versus the pop operation for producing the 1 bit of
the binary expansion of a bias p. We compute the average number
of gates required for pop operations, and the size of our predicate
solution for increasingly long binary expansions of the bias. Our
data is summarized in Table 2.

https://www.gitlab.com/neucrypt/securely_sampling
https://www.gitlab.com/neucrypt/securely_sampling

RIGHTS

Session 3C: Secure Computing Il

4,000

3,000 - =

2,000

AND gates

1,000

2,000 3,000 4,000
Operation number

6o T T T 7

20 - N

Average AND gates

0 | | | | | |
0 1,000 2,000 3,000 4,000 5,000 6,000

Operation number

Figure 2: The top plot shows the exact number of AND gates
in ih cpush operation. The bottom plot show a running av-
erage number of gates for the first i operations, which fits
closely the amortized O(log n) complexity we analyze.

5.2 Two Party d-Sample Benchmarks

We benchmarked the action of generating d samples from Geo(2/¢)
using the second version of MAKE-BATCH, which uses a predicate
function to generate the bias. For comparison purposes, we also
benchmarked the ODO implementation. For both implementations
we varied the number of samples to make between 22 and 21°.
We also sampled with two different ¢: one of the form ¢ = 27 In 2
(¢ = 2731n2), and one not in that form (¢ = 0.1). For each value
of ¢, we benchmarked for § = 27% and § = 273°. We recorded the
wall-clock time for the two aforementioned network settings and
present our results for this in Figures 3a and 3c. The total number
of bytes transmitted among both parties and the sum of the number
of non-free Yao gates and the number of unbiased coins used are
shown in Figures 3b and 3d, respectively. We note that cost and
communication are static across different networks.

As we expected, our protocol scales very well with d in all cat-
egories. Despite the asymptotic behavior with the second MAKE-
BATCH being sub-optimal, it is understandable that it scales well,
as for lower values of A + log d the cost of the predicate function
is roughly constant, meaning the complexity is just as good as our
protocol with the first MAKE-BATCH.

Ay

612

CCS ’19, November 11-15, 2019, London, United Kingdom

5.3 Two Party Noisy Max Benchmarks

Next we report on our full implementation of the noisy max
algorithm using our improved biased coin sampling procedure. We
expect the performance for noisy-max to be dominated by the cost
of the sampling, and the data below supports this claim. In our
two-party setup, we have each party contribute half of the dataset.
We vary the size of the dataset from 212 = 4096 to 217, using 32-
bit integer entries for the data. The benchmarks are run with 2
machines running in the same us-east1 datacenter. The results
are presented in Table 3.

As predicted by our analysis, the cost grows slowly between
5§ =2 and 6 = 2789 at d = 219, the difference is only 10s or 2%.
We note that the communication overhead is quite high but feasible
for moderate-sized domains.

1 d AND gates Comm (10 b) Time (s)
4096 8,349,483 340.3 4.40
8192 16,454,933 670.6 8.11
16384 32,751,039 1335.3 17.87

=60 32768 64,584,144 2632.7 31.32
65536 129,371,034 5271.8 63.53
131072 259,005,597 10554.2 126.31
262144 515,833,031 21020.8 242.69
524288 1,033,115,150 42099.7 488.05
4096 8,613,824 351.0 4.78
8192 16,841,275 686.2 8.91
16384 33,408,111 1360.9 16.07

=80 32768 66,031,953 2691.0 32.45
65536 131,256,973 5347.8 62.46
131072 262,730,472 10704.4 124.87
262144 523,257,767 21320.0 254.11
524288 1,047,606,374 42683.8 493.63

Table 3: Summary of costs for running report-noisy-max
mechanism with ¢ = 273In2 = 0.0866 on datasets of increas-
ing size and § € {2790,2780},

ACKNOWLEDGMENTS

The authors were supported by NSF grant CNS-1816028. Part of
this work was done while JU was visiting the Simons Institute for
Theory of Computing. We thank Jack Doerner for his help with the
implementation.

Session 3C: Secure Computing Il CCS ’19, November 11-15, 2019, London, United Kingdom

1010
T
1,000 |- o ,
1 1
1 /!;)\ 1
< 800 | - a; 3+ N
S 2
S =
Q
< 600 | . =
g g 20 h
8 =
= =1
= 400 - N g
8 g
Gt S 1 -
% 200 : =
= e
ot) of)
! ! ! ! ! ! ! !
212 914 216 218 212 ol4 216 218
Size of Dataset Size of Dataset
(a) d-Sample Wall-clock Time, east-east (b) d-Sample Communication
1
3,000 |- 1oz .
i B o1.10° -
: :
E
< <
2 2,000 | 1 &
g +
= 3 g
'5 chu 5-10
‘é 1,000 - - §
g b
2 g
Z
0 8 0 .
! ! ! ! ! ! ! !
912 914 216 218 212 ol4 216 218
Size of Dataset Number of Dataset Entries
(c) d-Sample Wall-clock, east-west (d) d-Sample Yao Gates + Random Bits
B MNM (e =23In2) MNM (e = 0.1)m ODO (¢ = 0.1,2 3 In2)

75:2—60 P 5:2—80

Figure 3: d-Sample Benchmark Results. We measure time and communication to produce d samples from Geo(2/¢) in two
network settings. In these graphs, d varies for two choices of ¢ and two § for each ¢. We note that ODO does not change based
on the form of ¢, so we use one plot for the two values of ¢. Across all of these parameters, the MNM technique dominates the
ODO. In graph (c), the gray lines represent the same MNM performance lines from graph (a) for comparison purposes.

613
RIGHTS I

Session 3C: Secure Computing Il

REFERENCES

(1]

[2

[

(3]

[10]

[11

[12]

Balamurugan Anandan and Chris Clifton. 2015. Laplace noise generation for
two-party computational differential privacy. In 2015 13th Annual Conference on
Privacy, Security and Trust (PST).

Gilles Barthe, George Danezis, Benjamin Grégoire, César Kunz, and Santiago
Zanella-Beguelin. 2013. Verified computational differential privacy with ap-
plications to smart metering. In 2013 IEEE 26th Computer Security Foundations
Symposium. IEEE, 287-301.

Amos Beimel, Kobbi Nissim, and Eran Omri. 2008. Distributed private data anal-
ysis: Simultaneously solving how and what. In Annual International Cryptology
Conference. Springer, 451-468.

Raghav Bhaskar, Srivatsan Laxman, Adam Smith, and Abhradeep Thakurta. 2010.
Discovering frequent patterns in sensitive data. In Proceedings of the 16th ACM
SIGKDD international conference on Knowledge discovery and data mining. ACM,
503-512.

Andrea Bittau, Ulfar Erlingsson, Petros Maniatis, Ilya Mironov, Ananth Raghu-
nathan, David Lie, Mitch Rudominer, Usharsee Kode, Julien Tinnes, and Bernhard
Seefeld. 2017. PROCHLO: Strong Privacy for Analytics in the Crowd. In Proceed-
ings of the Symposium on Operating Systems Principles (SOSP).

Avrim Blum, Katrina Ligett, and Aaron Roth. 2013. A learning theory approach
to noninteractive database privacy. J. ACM 60, 2 (2013), 12.

Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H. Bren-
dan McMahan, Sarvar Patel, Daniel Ramage, Aaron Segal, and Karn Seth. 2017.
Practical Secure Aggregation for Privacy Preserving Machine Learning. JACR
Cryptology ePrint Archive (2017).

Cagdas Calik, Meltem Sénmez Turan, and René Peralta. 2018. The Multiplicative
Complexity of 6-variable Boolean Functions. (2018).

T.-H. Hubert Chan, Mingfei Li, Elaine Shi, and Wenchang Xu. 2012. Differentially
Private Continual Monitoring of Heavy Hitters from Distributed Streams. In
Privacy Enhancing Technologies - 12th International Symposium, PETS 2012, Vigo,
Spain, July 11-13, 2012. Proceedings. 140-159.

T-H Hubert Chan, Elaine Shi, and Dawn Song. 2011. Private and continual release
of statistics. ACM Transactions on Information and System Security (TISSEC) 14, 3
(2011), 26.

Ruichuan Chen, Alexey Reznichenko, Paul Francis, and Johanes Gehrke. 2012.
Towards statistical queries over distributed private user data. In Presented as part
of the 9th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 12). 169-182.

Jack Doerner and abhi shelat. 2017. Scaling ORAM for Secure Computation. In
ACM CCS’17.

[13] John C Duchi, Michael I Jordan, and Martin] Wainwright. 2013. Local privacy

[14]

[15]

[16

[17]

[18]

[19

[20]

[21

[22

[23

RIGHTS

and statistical minimax rates. In Foundations of Computer Science (FOCS), 2013
IEEE 54th Annual Symposium on. IEEE, 429-438.

Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya Mironov, and
Moni Naor. 2006. Our Data, Ourselves: Privacy Via Distributed Noise Generation.
In EUROCRYPT.

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. 2006. Cali-
brating Noise to Sensitivity in Private Data Analysis. In Theory of Cryptography
Conference (TCC).

Cynthia Dwork and Aaron Roth. 2014. The Algorithmic Foundations of Differen-
tial Privacy. Foundations and Trends in Theoretical Computer Science 9, 3-4 (2014),
211-407.

Fabienne Eigner, Aniket Kate, Matteo Maffei, Francesca Pampaloni, and Ivan
Pryvalov. 2014. Differentially private data aggregation with optimal utility. In
Proceedings of the 30th Annual Computer Security Applications Conference. ACM,
316-325.

Ulfar Erlingsson, Vasyl Pihur, and Aleksandra Korolova. 2014. RAPPOR: Ran-
domized aggregatable privacy-preserving ordinal response. In ACM Conference
on Computer and Communications Security (CCS).

Oded Goldreich and Rafail Ostrovsky. 1996. Software Protection and Simulation
on Oblivious RAMs. Journal of the ACM 43, 3 (1996).

Vipul Goyal, Dakshita Khurana, Ilya Mironov, Omkant Pandey, and Amit Sahai.
2016. Do Distributed Differentially-Private Protocols Require Oblivious Transfer?.
In 43rd International Colloquium on Automata, Languages, and Programming,
ICALP 2016, July 11-15, 2016, Rome, Italy.

Vipul Goyal, Ilya Mironov, Omkant Pandey, and Amit Sahai. 2013. Accuracy-
Privacy Tradeoffs for Two-Party Differentially Private Protocols. In Advances in
Cryptology - CRYPTO 2013 - 33rd Annual Cryptology Conference, Santa Barbara,
CA, USA, August 18-22, 2013. Proceedings, Part 1.

Samuel Haney, Ashwin Machanavajjhala, John M Abowd, Matthew Graham,
Mark Kutzbach, and Lars Vilhuber. 2017. Utility Cost of Formal Privacy for
Releasing National Employer-Employee Statistics. In Proceedings of the 2017 ACM
International Conference on Management of Data. ACM, 1339-1354.

Moritz Hardt, Katrina Ligett, and Frank McSherry. 2012. A Simple and Prac-
tical Algorithm for Differentially Private Data Release. In Advances in Neural
Information Processing Systems 25: 26th Annual Conference on Neural Information
Processing Systems 2012. Proceedings of a meeting held December 3-6, 2012, Lake

614

[24]

[25

[26

[27

™
&,

[29

[30

(31

[32

@
&

[34

[35

[39

[40

(41

[42

[43

[44

[45

CCS ’19, November 11-15, 2019, London, United Kingdom

Tahoe, Nevada, United States. 2348-2356.

Xi He, Ashwin Machanavajjhala, Cheryl Flynn, and Divesh Srivastava. 2017.
Composing Differential Privacy and Secure Computation: A case study on scaling
private record linkage. arXiv preprint arXiv:1702.00535 (2017).

Shiva Prasad Kasiviswanathan, Homin K. Lee, Kobbi Nissim, Sofya Raskhod-
nikova, and Adam Smith. 2008. What Can We Learn Privately?. In Foundations
of Computer Science (FOCS). IEEE.

Steve Lu and Rafail Ostrovsky. 2014. Garbled RAM Revisited, Part II. Cryptology
ePrint Archive, Report 2014/083.

Andrew McGregor, Ilya Mironov, Toniann Pitassi, Omer Reingold, Kunal Talwar,
and Salil Vadhan. 2010. The limits of two-party differential privacy. In Foundations
of Computer Science (FOCS), 2010 51st Annual IEEE Symposium on. IEEE, 81-90.
Frank McSherry and Kunal Talwar. 2007. Mechanism Design via Differential
Privacy. In IEEE Foundations of Computer Science (FOCS).

Ilya Mironov. 2012. On significance of the least significant bits for differential
privacy. In Proceedings of the 2012 ACM Conference on Computer and cCommuni-
cations Security (CCS). ACM.

Ilya Mironov, Omkant Pandey, Omer Reingold, and Salil Vadhan. 2009. Compu-
tational differential privacy. In Advances in Cryptology-CRYPTO 2009. Springer,
126-142.

Sarvar Patel, Giuseppe Persiano, Mariana Raykova, and Kevin Yeo. 2018.
PanORAMa: Oblivious RAM with logarithmic overhead. In 2018 IEEE 59th Annual
Symposium on Foundations of Computer Science (FOCS). IEEE, 871-882.

Martin Pettai and Peeter Laud. 2015. Combining Differential Privacy and Secure
Multiparty Computation. In ACSAC 2015. ACM, New York, NY, USA, 421-430.
https://doi.org/10.1145/2818000.2818027

Vibhor Rastogi and Suman Nath. 2010. Differentially private aggregation of
distributed time-series with transformation and encryption. In Proceedings of
the 2010 ACM SIGMOD International Conference on Management of data. ACM,
735-746.

Elaine Shi, T.-H. Hubert Chan, Eleanor G. Rieffel, Richard Chow, and Dawn Song.
2011. Privacy-Preserving Aggregation of Time-Series Data. In Proceedings of the
Network and Distributed System Security Symposium, (NDSS) 2011.

Elaine Shi, T.-H. Hubert Chan, Emil Stefanov, and Mingfei Li. 2011. Oblivious
RAM with O((logN)3) Worst-Case Cost. In Advances in Cryptology - ASTACRYPT
2011 - 17th International Conference on the Theory and Application of Cryptology
and Information Security, Seoul, South Korea, December 4-8, 2011. Proceedings.
197-214.

Kunal Talwar, Abhradeep Thakurta, and Li Zhang. 2015. Nearly optimal private
LASSO. In Advances in Neural Information Processing Systems, NIPS. 3025-3033.
Abhradeep Guha Thakurta, Andrew H Vyrros, Umesh S Vaishampayan, Gaurav
Kapoor, Julien Freudiger, Vivek Rangarajan Sridhar, and Doug Davidson. 2017.
Learning new words. US Patent 9,645,998.

Abhradeep Guha Thakurta, Andrew H Vyrros, Umesh S Vaishampayan, Gaurav
Kapoor, Julien Freudinger, Vipul Ved Prakash, Arnaud Legendre, and Steven
Duplinsky. 2017. Emoji frequency detection and deep link frequency. US Patent
9,705,908.

Jonathan Ullman. 2018. Tight lower bounds for locally differentially private
selection. arXiv preprint arXiv:1802.02638 (2018).

Salil Vadhan. 2016. The complexity of differential privacy. http://privacytools.
seas. harvard. edu/publications/complexity-differential-privacy (2016).

Ladislaus von Bortkiewicz. 1898. Das Gesetz der kleinen Zahlen [The law of
small numbers].

Xiao Wang, T.-H. Hubert Chan, and Elaine Shi. 2015. Circuit ORAM: On Tightness
of the Goldreich-Ostrovsky Lower Bound. In Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security, Denver, CO, USA, October
12-6, 2015. 850-861.

Stanley L Warner. 1965. Randomized response: A survey technique for eliminating
evasive answer bias. J. Amer. Statist. Assoc. 60, 309 (1965), 63-69.

Samee Zahur and David Evans. 2013. Circuit Structures for Improving Efficiency
of Security and Privacy Tools. IEEE S & P (2013), 493-507.

Samee Zahur and David Evans. 2015. Obliv-C: A Language for Extensible Data-
Oblivious Computation. Cryptology ePrint Archive, Report 2015/1153.

https://doi.org/10.1145/2818000.2818027

	Abstract
	1 Introduction
	2 Securely Flipping Many Coins of the Same Bias
	2.1 Oblivous data structures
	2.2 Make-Batch 1
	2.3 Make-Batch 2

	3 Report-Noisy-Max Application
	3.1 Report-Noisy-Max
	3.2 Review: Sampling Exponential Noise via Poisson
	3.3 Implementing Report-Noisy-Max
	3.4 Complexity Theorems
	3.5 Proof of Differential Privacy

	4 Optimizations
	5 Evaluation
	5.1 Microbenchmarks of datastructures
	5.2 Two Party d-Sample Benchmarks
	5.3 Two Party Noisy Max Benchmarks

	References

