
Securely Sampling Biased Coins
with Applications to Differential Privacy

Jeffrey Champion

Northeastern University

champion.j@husky.neu.edu

abhi shelat

Northeastern University

abhi@neu.edu

Jonathan Ullman

Northeastern University

jullman@ccs.neu.edu

ABSTRACT
We design an efficient method for sampling a large batch of d

independent coins with a given bias p ∈ [0, 1]. The folklore secure
computation method for doing so requiresO(λ+ logd) communica-

tion and computation per coin to achieve total statistical difference

2
−λ

. We present an exponential improvement over the folklore

method that uses just O(log(λ + logd)) gates per coin when sam-

pling d coins with total statistical difference 2
−λ

. We present a

variant of our work that also concretely beats the folklore method

for λ ≥ 60 which are parameters that are often used in practice. Our

new technique relies on using specially designed oblivious data

structures to achieve biased coin samples that take an expected 2

random bits to sample.

Using our new sampling technique, we present an implementa-

tion of the differentially private report-noisy-max mechanism [4] (a

more practical implementation of the celebrated exponential mech-

anism [28]) as a secure multi-party computation. Our benchmarks

show that one can run this mechanism on a domain of size d = 2
12

in 6 seconds and up to d = 2
19

in 14 minutes. As far as we know,

this is the first complete distributed implementation of either of

these mechanisms.

CCS CONCEPTS
• Security and privacy → Privacy-preserving protocols; •

Mathematics of computing → Probabilistic algorithms.

KEYWORDS
differential privacy, multi-party computation

ACM Reference Format:
Jeffrey Champion, abhi shelat, and Jonathan Ullman. 2019. Securely Sam-

pling Biased Coins with Applications to Differential Privacy. In 2019 ACM

SIGSAC Conference on Computer& Communications Security (CCS ’19), No-

vember 11–15, 2019, London, United Kingdom. ACM, New York, NY, USA,

12 pages. https://doi.org/10.1145/3319535.3354256

1 INTRODUCTION
This paper presents asymptotically and concretely superior se-

cure computation methods for sampling a batch of d coins with

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

CCS ’19, November 11–15, 2019, London, United Kingdom

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6747-9/19/11. . . $15.00

https://doi.org/10.1145/3319535.3354256

bias p ∈ [0, 1]. The problem of sampling biased coins plays a fun-

damental role in implementing many randomized algorithms, in

running Monte Carlo simulations, and in producing differentially

private data summaries. Furthermore, as explained in [14], the tasks

of sampling from binomial, Poisson, Laplace, or geometric distribu-

tions can all be reduced to the task of sampling biased coins. Thus,

we consider this task an essential primitive in the area of secure

computation.

Biased Sampling with (and without) Secure Computation.
In order to explain our contributions, we provide some background

on methods for sampling biased coins and their complexity. If we

are willing to sample “in the clear,” then the folklore method for

sampling a coin with bias p is to first sample a uniform number

r ∈ [0, 1] and then output heads if r ≤ p and tails otherwise. A naïve

implementation of this first method that achieves error at most 2
−λ

is to sample r discretely in the following way: flip λ fair coins,

interpret these coins as the binary expansion of r , and perform the

comparison. A downside of this method is that it flips λ coins to

sample one biased coin, and thus the running time is at least Ω(λ).
One can address this issue using the following lazy flipping strategy:

flip the first coin and compare against the first digit in the binary

expansion of p, if the digits differ than a decision can be made, and

otherwise, the process is repeated with a fresh coin and the next

digit of the expansion. A simple calculation shows that lazy flipping

requires just 2 coins and O(1) time in expectation, regardless of λ!
Thus, sampling biased coins “in-the-clear” is essentially solved in a

Turing-machine model of computation. In this work we focus on

achieving complexity similar to the lazy flipping method but in a

secure computation.

Unfortunately, the lazy flipping method cannot be easily imple-

mented in a two- or multi-party secure computation. Recall that

the goal of Secure Multi-Party Computation is to allow a set of par-

ties P1, . . . , Pn to securely evaluate a function y = f (x1, . . . , xn),
where each Pi provides input xi . Here securely evaluating a func-

tion means computing the function jointly in such a way that no

Pi learns anything other than what is revealed by the output y and

their own input xi . In particular, each Pi must not learn x j for i , j ,
nor any intermediate value derived from x j during the computation

of f . To achieve this property, implementing an MPC version of

an algorithm usually requires that all parts of the algorithm be

converted into static circuits. This means that loops for example

cannot stop early, since the stopping time may reveal something

about the inputs.

Since the lazy flipping method implicitly leaks the number of

fair coins that were flipped, it cannot be directly implemented as

a secure computation while preserving its efficiency. Specifically,

if we transform the algorithm to a binary circuit, the circuit that

samples r must have size proportional to the worst case where

Session 3C: Secure Computing II CCS ’19, November 11–15, 2019, London, United Kingdom

603

https://doi.org/10.1145/3319535.3354256
https://doi.org/10.1145/3319535.3354256

all λ bits are compared against the binary expansion of p. Thus
a secure computation for the folklore sampling mechanisms gen-

erally requires λ fair coins per sample instead of an expected 2.

When expressed in terms of boolean gates—which generically rep-

resents the running time and communication complexity of such a

protocol—this requirement leads to O(λ) gates per coin.
A natural approach to overcome this inefficiency is to use a

secure computation protocol along with an oblivious RAM data

structure, implemented as a circuit, to emulate lazy sampling. Obliv-

ious RAM data structures, first introduced by Goldreich and Os-

trovsky [19] allow the implementation of a RAM program while

hiding the addresses of the memory locations that are accessed

during the execution. By hiding the memory access pattern, this

approach could allow the lazy sampling of coins that requires

only an expected 2 fair coins per sample. However, to implement

one read operation on a memory of size λ, most ORAM data-

structures require polylog(λ) additional read and write memory

operations [19, 26, 35, 42].

The state of the art in relation to asymptotic complexity is

Panorama [31], which requires Õ(log λ) extra operations (albeit
with astronomically high constants). However, even ignoring the

large constants, all known ORAM schemes require read operations

onmachine words of size log(λ) bits when accessing a memory with

λ elements. Since our application only requires reads of single bits

to implement lazy sampling, all of the schemes will incur Õ(log2 λ)
overhead which is asymptotically worse than our scheme. Ignoring

asymptotics, the most recent practical implementations of ORAM

for secure computation [12] concretely perform worse than our

approach (and also only support two-party secure computation).

Our Contributions. The first main contribution of this paper is

to develop a new secure computation sampling procedure that takes

a string of fair coins
1
and samples a string of d biased coins that has

statistical distance at most 2
−λ

from a string of d independent coins

with bias p, using an amortized O(log(λ+ logd)) and gates per coin.

This result improves exponentially over the folklore technique that

uses O(λ + logd) gates per coin, and is polynomially better than

schemes that use the state-of-the-art ORAM techniques.

Our main technique is to employ new oblivious data structures

that allow us to amortize the cost of the lazy sampling method by

“blurring” when the sampling of one biased coin ends the the next

begins. In §2.1, we describe these two data structures that enable our

improvements: an oblivious push-only stack, and an oblivious pop-

only stack with reset. The first push-only stack allows obliviously

pushing elements onto a stack. When the stack is full, the data struc-

ture obliviously ignores the operations and does not change the

underlying data. The second data structure allows the opposite—it

only supports pop operations, and returns the last element repeat-

edly when it is empty. It additionally supports an oblivious reset

which returns the stack to an arbitrary original configuration. Both

of these data structures are inspired by the oblivious stack proposed

by Zahur and Evans [44].

Using these data structures, our new sampling method works as

follows. We first initialize a pop-only stack with the binary expan-

sion of the bias p. At each step, we pop from the stack and compare

1
The fair coins can be obtained securely by taking the xor of fair coins obtained from

each party.

against the next fair coin. We obliviously compare the coins and if

they agree, we make an “empty” oblivious push to the push-only

stack, and we simply repeat the procedure by popping and com-

paring with the next fresh fair coin. If the two coins disagree, then

we can output a biased coin sample by performing a true oblivious

push to the push-only stack and obliviously resetting the pop-only

stack. Thus, each iteration of the loop requires one oblivious push,

one oblivious pop, one oblivious reset, and one comparison. As we

show in §2.1, these operations can all be done in O(log(λ + logd))
gates per coin.

While our method asymptotically beats the standard secure sam-

pling methods, our implementation efforts
2
reported in §5 show

that the constant overheads in our careful stack implementation

only beat the standard methods when the statistical parameter

λ > 200, i.e., when the sampling error is set to be quite small. As

a second contribution, we show that for larger statistical errors

λ ∈ [60, 512], an alternative method often beats the naïve strategy.

In particular, letCp (·) be a circuit that on input j produces the j
th
bit

in the binary expansion of bias p. We can replace the pop-only stack

that holds the bits of p used in the method described above by this

circuit. We show that for an appropriate range of λ ∈ [60, 512], it is
indeed possible to build such circuits for any arbitrary bias p. In §5,

we utilize circuits that output the first 128 bits of anyp using at most

13 and gates. Such a circuit is simply a 7-bit boolean predicate, and

Peralta et al. [8] show that every 6-bit predicate can be computed

in at most 6 and gates. Our result follows from simply muxing the

top and bottom halves of the 7-bit predicate truth table. In practice,

we implemented this for many p and found that all of them could in

fact be expressed in 11 gates. However, as the statistical parameter

increases, the size of our predicate also increases linearly, and thus

this method eventually becomes more expensive than the pop-only

data structure. We evaluate the cross-over point and determine this

to be λ > 512. In all cases, these methods surpass the naïve sam-

pling circuit at λ ≥ 60. We summarize all (asymptotic) amortized

gate complexities and random coins used to make a single biased

coin in Table 1.

Application to Differential Privacy. As an application of our

sampling methods, we give improved secure multiparty implemen-

tations of fundamental algorithms from differential privacy [15].

Differential privacy is a strong formal model of data privacy tailored

to statistical applications. Intuitively, a randomized algorithm is

differentially private if it does not reveal “too much” about the data

of any one individual. At a high level, these algorithms introduce

random noise that masks the contribution of one individual, while

preserving the overall utility of the dataset when the number of

users is sufficiently large. Differential privacy has been the sub-

ject of an enormous body of literature (see e.g. [16] for a textbook

treatment) and has now been implemented by companies such as

Apple [37, 38] and Google [5, 18] and statistical agencies such as

the U.S. Census Bureau [22].

The most powerful differentially private algorithms are designed

in a centralized model where a trusted party collects the data and

agrees to publish only the output of the algorithm. In many indus-

trial applications, this trust assumption is problematic, and so com-

panies have mostly opted to use the local model [15, 25, 43], which

2
Our code can be found at https://www.gitlab.com/neucrypt/securely_sampling.

Session 3C: Secure Computing II CCS ’19, November 11–15, 2019, London, United Kingdom

604

https://www.gitlab.com/neucrypt/securely_sampling

is essentially a weak model of information-theoretic secure com-

putation where each party applies a separate differentially private

algorithm to their own data. Unfortunately the local model severely

limits the utility of the algorithm both in theory [10, 13, 25, 39] and

in practice, often requiring billions of users to achieve reasonable

utility (see e.g. [5]).

To resolve this tension between the central and local models, the

prescient work of Dwork et al. [14] posed the question of secure

multi-party implementations of differentially private algorithms,

and gave algorithms for sampling the noise required to implement

simple counting mechanisms. Using our secure sampling methods,

we give improved algorithms for sampling the noise in fundamental

differentially private algorithms.

In particular, as far as we are aware, we give the first full se-

cure implementation of the report-noisy-max mechanism (which

is a more practical implementation of the celebrated exponential

mechanism [28]). This is a highly versatile mechanism that is the

driving force in numerous applications of differential privacy (see

e.g. [4, 6, 23, 36] for a tiny sample). This mechanism is particularly

crucial in applications of distributed differential privacy, as any im-

plementation of this mechanism in the local model provably suffers

an exponential loss of utility [25, 39], even in some of its simplest

applications. This application is well suited to our methods due to

its need for many biased coins and because the need to securely

take a maximum makes it more amendable to circuit-based proto-

cols rather than the sorts of tailored algebraic protocols that have

been applied to computing sums (e.g. [7, 33, 34]).

Our experiments reported in §5 show that datasets of size 2
12

up

to 2
19

can easily be handled in seconds to minutes. These figures

give encouraging evidence that one can process moderate-sized

datasets using the noisy-max mechanism. In our evaluation we

consider only the simple two-party semi-honest model, for which

we can achieve reasonable concrete efficiency. But since our main

contribution is more efficient circuits, our improvements apply

equally to multi-party and malicious models.

Discussion of Prior Work. The closest prior work is the cele-

brated result of Dwork et al. [14], which presents the idea of using

secure computation protocols to implement differentially private

processing of datasets by the data owners themselves. Indeed, our

results in §3.2 make use of their observation that sampling Poisson

and related distributions can be reduced to sampling several fair

coins with different biases. Their paper also makes note of the inef-

ficiency of standard sampling, however the approaches that they

suggest to overcome the λ coin bottleneck have very large gate

overheads.

Anandan and Clifton [1] present a two-party protocol based

on homomorphic encryption to generate a single sample from a

Laplace distribution in the presence of a malicious adversary. Their

first protocol takes the approach of inverting the CDF and there-

fore is computationally expensive and was not implemented. They

propose a second cut-and-choose style protocol that offers only

polynomial security and report that 500 samples can be generated

in 9 seconds.

Several prior works present tailored MPC protocols for specific

differentially private algorithms. The problem of computing a dif-

ferentially private sum was first considered by Dwork et al. [14]

and has many follow-up works [2, 3, 11, 17, 34]. Shi et al. [34] also

present a DP mechanism for computing sums that uses a single

round, allows users to drop out, but does not match the accuracy

achievable in the central model, and require a trusted setup phase.

Pettai and Laud [32] use the sharemind MPC system to report on

another implementation of the sum-and-aggregate mechanism for

differentially private processing of counts, averages, medians, etc.

These mechanisms are much simpler than report-noisy-max.

Eigner et al. [17] present PrivaDA as an architecture for dis-

tributed differential privacy that uses secure computation on float-

ing point arithmetic to compute the distributed Laplace, the dis-

tributed discrete Laplace, and the distributed exponential mecha-

nism. Their main technical contribution is to explain how to handle

floating-point arithmetic, exponentiation and logarithm functions

in secure computation, as well as converting between integer and

floating representations. These operations are extremely compli-

cated as secure computations; their experimental results for com-

puting a single logarithm take 10s of seconds. In comparison, we

are able to sample roughly 8000 geometric samples in the same

time. As a result of these costs, they were unable to implement

any full DP mechanisms. More concerning, Mironov [29] shows

the hazards of using floating point approximations in differential

privacy applications.

Several works have shown the necessity of secure computa-

tion (i.e. oblivious transfer) to achieve optimal accuracy without a

trusted aggregator [20, 21, 27, 30]. Other work has considered se-

curely implementing differentially private algorithms for gradient

descent [7], continually monitoring sums [17, 33, 34], the private

record-linkage problem [24], and heavy-hitters [9].

Algorithm and Gates Random Bits

ODO-1 [14] O((λ + logd)2 logd) 2

ODO-2 [14] O(λ + logd) O(λ + logd)
ODO-3 [14] O(d(λ + logd)) 2

ODO-4 [14] O((λ + logd) log(λ + d)) 2

MNM-1 O(log(λ + logd)) 2

MNM-2 O((λ + logd) log(λ + logd)) 2

Table 1: Amortized O(·) cost per biased coin. The amortiza-
tion is over d coins in total. We denote λ as the total statisti-
cal error for d coins. ODO-1, ODO-2, ODO-3, and ODO-4 are
from [14] in the order they appear in that work starting at
section 4.3. ODO-2 is the algorithm we implement due to its
simplicity and low gate count. MNM refers to our coin flip-
ping algorithm, and our numbering is 1 for the algorithm
with asymptotic improvements and 2 for the algorithmused
in practice.

2 SECURELY FLIPPING MANY COINS OF THE
SAME BIAS

The fundamental problem we solve in this paper is to design

a boolean circuit C(d,p; λ) that can sample d coins of a bias p ef-

ficiently in both gates, communication, and number of random

Session 3C: Secure Computing II CCS ’19, November 11–15, 2019, London, United Kingdom

605

input bits required to perform the sampling with overall statisti-

cal difference 2
−λ

. The naïve circuit described in the introduction

C0(d,p; λ) has amortized gate count |C0(d,p; λ)| = O(logd+λ). Our
circuit Cmnm-1(d,p; λ) reduces this complexity to O(log(logd + λ))
by taking advantage of the expected two random bits needed per

biased coin. Our algorithm does this by ending every compari-

son when the first difference in the p bias and stream of unbiased

bits occurs. Informally, doing this privately requires the following

functionalities:

(1) Sequential production of p’s binary expansion

(2) A way to obliviously produce biased coins

(3) A method for reseting p’s expansion obliviously

Note that all of these must be achieved within a secure computation,

which does not provide many intuitive options for finishing random

comparisons early while still being secure. We will describe how to

acquire (1) and (3) in two ways later in the section. For (2) and one

of those ways, we design oblivious data structures, which can store

a number of coins at once, while providing operations to push and

pop coins obliviously.

2.1 Oblivous data structures
The notion of an oblivious data structure was introduced by Gol-

dreich and Ostrovsky [19] in the context of protecting the privacy

of a CPU’s memory access pattern against an adversary who can

tap the memory channel bus. Subsequently several works have

studied the overhead tradeoffs involved in implementing such data

structures. The classical notion of security for oblivious data struc-

tures is stated in a RAM model and specified through the notion of

a simulator and indistinguishably of the traces resulting from any

two sequence of operations.

Instead of considering arbitrary RAM datastructures, we only

consider a pair of very limited datastructures that support 1 and 2

operations. We only allow circuit-model implementations of these

operations, and then evaluate the AND-gate complexity of these

circuits as our measure of interest. This notion implies the standard

simulator-based one for the limited scope and is consequently much

simpler.

A data structure D = (O;B,C) = D(O) is a tuple consisting of a
sequence of bits B = b1, . . . ,bM , a set of bookkeeping bits C ,3 and
a fixed set of operators O which act on B and C . For the following
let C = {c, r }, where c represents the current count of bits and r
is a reset flag. We define three members (the ones relevant to our

data structures) of the set of possible operators O∗:

(1) cpush(f ,D,b): returns (B′ = (b,b1, . . . ,bM−1),C
′ = {c +

1, r }) if f = 1 and (B,C) otherwise. b represents the bit to be

pushed.

(2) creset(f ,D): returns (B,C ′ = {c, 1}) if f = 1 and (B,C)
otherwise. In our construction, r = 1 denotes the need for a

reset.

(3) rpop
(B̂,ĉ)(f ,D): returns the bit

ˆb1 and (B̂
′ = (ˆb2, . . . , ˆbM , 0),

C ′ = {ĉ − 1, 0}) if r = 1, b1 and (B
′ = (b2, . . . ,bM , 0),C

′ =

{c − 1, 0}) otherwise. Here the values B̂ = (ˆb1, . . . , ˆbM), ĉ

3
Conceptually, the bits in C can be included in the sequence of bits, but we separate

them for convenience.

c r s 1 2 3

count reset shift data data data

2 1 1 2
ℓ

2
ℓ

2
ℓ

Figure 1: Depiction of the recursive data structure at level ℓ.
The top row indicates how we name each field in the subse-
quent discussion. The bottom row indicates the field size in
bits. Each level includes 4 bits of bookkeeping and 3 “buck-
ets” that hold 2ℓ bits each. Our implementation also includes
a pointer to the next level for convenience, but this can be
omitted if successive levels are arranged in memory as an
array.

are hard-coded values of the datastructure (typically, the

initialized values before any operations).

These operations take a conditional flag f as an input that determine

whether the operation is performed or not. In the case of rpop, f is

ignored in favor of an internal bit in C .
We consider boolean circuits that implement these operations

on D. However, instead of requiring uniform circuits, we allow the

circuit that implements the ith operation on D to depend on i , i.e.,
the number of previous operations that have been applied to the

data structure. The circuit that implements an operation cannot,

however, depend on the specific operations that have been applied to

D—only on the count. This extra ability allows scheduling “clean-up
tasks" that simplify the datastructure at periodic intervals that are

independent of the data being stored. We use the natural notion of

correctness in which the circuit for each operation implements the

semantics defined above.

Each of these circuits consist of boolean gates (and and xor),

simple wires, and desigation of each wire as an input wire, an ouptut

wire, or an internal wire. We measure the complexity of a circuit

by counting the number of its and gates.

We now proceed to describe our implementations of this data

structure.

Construction. We use two data structures, both of which are

essentially constructed as in Figure 1, and are hierarchical; level i
of the structures contain a single bit to represent whether a level

needs to be reset, two bits which store a count of the number of

elements at this level, 3 data slots each of size 2
i
bits, and finally

a pointer to the next level of the data structure. The pointer is for

convenience of notation and can be omitted in implementation by

arranging the levels adjacent to one another in an array. The total

capacity of the data structure is the sum of the sizes of the data slots

at all of the levels. This design is inspired by the stack construction

from [44]. Our first data structure, Dpop (Opop), is a data structure

with Opop = {rpop, creset}, and follows Figure 1 precisely. Our

second data structure is Dpush (Opush), with Opush = {cpush},
and it omits the reset bit from Figure 1.

All pushes and pops initially take place in level 0, but level 0 will

become empty or full at different points during a sequence of stack

operations. To address this, when level i is full it shifts some of its

Session 3C: Secure Computing II CCS ’19, November 11–15, 2019, London, United Kingdom

606

contents to level i + 1 below, and when level i is empty, level i + 1
shifts its contents to level i . To keep this operation oblivious, these

shifts occur on a regular schedule: level i checks if it needs to make

a shift every 2
i+1

operations of a given type (push or pop). Notice

this oblivious schedule ensures that overflows (or underflows) never

occur except at possibly the last level (where they are ignored in

our case). Thus, we use a shift circuit every second time a level

is accessed, meaning shifts must be made not only when a level

is empty/full but also when it could be empty/full after the next

operation of a given type. The advantage of this shifting scheme is

that, even though moving data twice as large is twice as expensive,

level i + 1 is accessed half as often as level i , so all levels have the

same amortized cost. This makes the complexity per operation a

favorable O(logn) for n element capacity, since a level 0 access has

constant gate count and there are O(logn) levels total.
In contrast to the implementation in [44], our structures only

support either push or pop operations, but not both. As a result,

it suffices to have only 3 buckets per level (instead of 5), cutting

down our gate count by a constant factor.

Oblivious Reset. Intuitively, we will be using Dpop to store bits of

the binary expansion of some bias p and pop them off sequentially

to give the functionality of (1). To achieve (3), we add a secret reset

bit to each level of the stack which determines whether the level

will set its slots to their original values of the datastructure before

popping normally. After every oblivious reset, we set the reset bit

to 0. When we pop the next bit of p’s binary expansion and it is not

equal to the next random bit, we set the reset bit of each level to 1

so that the next pop will start from the first bit of p’s bias again.
Below we provide pseudo-code to more formally express the

intuition above. We use the notation mux(f ,a0,a1) to represent

a0 + f · (a0 + a1) where the operations are performed over F2; in
other words, this step returns af using |a0 | AND gates. We show

the pseudo-code for the pop operation first; the cpush operation is

similar. The creset operation recursively sets the reset flag at each

level of the hierarchy.

1: procedure rpop(f , stk) ▷ ret success bit s , data d
2: stk.{1, 2, 3, c} ← mux(stk.r , stk.{1, 2, 3, c}, {1̂, 2̂, 3̂, ĉ})
▷ x̂ is reset value of x

3: stk.r ← 0 ▷ always set reset bit to 0

4: if stk.next , ⊥ then
5: if stk.s = 1 then
6: c1 ← (stk.c

?

≤ 1)

7: stk.1← mux(c1, stk.1, stk.3)
8: s,d ← rpop(c1, stk.next)
9: stk.1, stk.2← d
10: stk.c ← mux(s ∧ c1, stk.c, stk.c + 2)

11: c2 ← (stk.c
?

≡ 0 (mod 2))

12: stk.1← mux(c1 ∧ c2, stk.1, stk.2)
13: stk.2← mux(c1 ∧ c2, stk.2, stk.3)
14: stk.s ← 0

15: else
16: stk.s ← 1

17: end if

18: end if
19: s ← 1 ▷ always pop (compare with rand bit) in our

case

20: (d, stk.c) ← (stk.1, c − 1)
21: stk.1← stk.2, stk.2← stk.3
22: return (s,d)
23: end procedure

1: procedure cpush(f , input, stk) ▷ ret success bit s
2: if stk.next , ⊥ then
3: if stk.s = 1 then
4: c1 ← (stk.c

?

≥ 2)

5: s ′ ← mux(c1, 0, cpush(c1, stk.next))
6: stk.3← mux(s ′, stk.3, stk.1)
7: stk.c ← mux(s ′, stk.c, stk.c − 2)
8: stk.s ← 0

9: else
10: stk.s ← 1

11: end if
12: end if
13: s ← ¬(stk.c

?

= 3) ▷ check fullness

14: for i = 1 to 3 do
15: stk.i ← mux(f ∧ (stk.c

?

= 3 − i), stk.i, input)
16: end for
17: stk.c ← mux(f ∧ s, stk.c, stk.c + 1)
18: return s
19: end procedure

1: procedure creset(f , stk) ▷ return nothing

2: stk.r ← mux(f , stk.r , 1)
3: if stk.next , ⊥ then
4: creset(f , stk.next)
5: end if
6: end procedure

Analysis. We now state and prove the following theorem.

Theorem 2.1. Let data structure D have capacity n bits. The total

number of and gates required to implement n calls to pop, creset
(respectively cpush) on D is Θ(n logn).

Consider a data structure that is designed to hold n bits. The ith

level of the data structure holds 3·2i bits, and therefore k = O(logn)
levels are needed. Thus, it is easy to see that the creset operation
on such a data structure requiresO(logn) AND gates to implement

since it performs one mux operation on a single bit per level. Each

mux(·,a0,a1) operation can be implemented using |a0 | and gates.

The analysis of pop is slightly more complicated but also require

O(n logn) and gates across n operations. Let T (i) represent the
number of and gates required to implement a call of pop on level

i of the hierarchy. When the shift bit at this level is 0, then only

the and gates from the mux operation in line 2 are required, and

so T (i) = 3 · 2i . When shift is odd, then lines 7,10,12,13 contribue

Session 3C: Secure Computing II CCS ’19, November 11–15, 2019, London, United Kingdom

607

another 3 · 2i + 2 gates, and the recursive call in line 8 contributes

T (i + 1) gates. Over a sequence of n operations, the n calls to hierar-

chy level 0 contribute n ·T (0) gates. Half of these calls require 3 · 20

gates, while the other n/2 calls require 3 · 20 + (3 · 20 + 3 +T (2))
gates. Of these, n/4 terms of T (2) add 3 · 21 gates, while the other

n/4 contribute 3 · 21 + (3 · 21 + 3 +T (3)). Expanding all such T ()
terms and collecting, the total number of and gates is

k∑
i=1
⌈n/2i ⌉ · 3 · 2i−1 + ⌈n/2i ⌉(3 · 2i + 3)

≤

k∑
i=1
⌈n/2i ⌉

[
3 · 2i + 3 · 2i−1 + 3

]
≤

k∑
i=1

5n = O(n logn)

An analysis of cpush is similar.

Discussion of Batching Parameters. Returning to the task of pro-

ducing d biased coins of the same bias, we arrive at the issue of

when to stop pushing coins onto the push-only stack. To use the

least number of pushes, we could check if the stack is full before

every push and stop when it is. However, this would potentially

lose some privacy since we are revealing the total number of unbi-

ased coined needed to make d coins. Additionally, stopping early

does not mesh with the constraint of a static circuit. Given that it is

unknown howmany pushes will be needed to generate a group of d
coins, we choose a small constant c such that the chance of needing

more than cd pushes to make d biased coins is less than 2
−λ

. If

we assume the stack is full after cd pushes, we can also empty out

the stack for free by simply wiring the slots to d coins. The final

question is to choose what size stack will be used to make a total

of d coins. The obvious choice is to use a stack large enough to

store all d coins at once, which would also minimize c . However,
by making coins in batches of some size д < d we can reduce the

number of levels and thus the amortized cost per push of the stack,

while increasing c very marginally, reducing our complexity. The

process for choosing c and д is described thoroughly in §5.

2.2 Make-Batch 1
In this section, we describe our first method for producing a batch

ofд biased coins via c ·д cpush operations on a push-only stack. This
method for make-batch yields an asymptotic complexity which

clearly dominates that of ODO-2 for making d coins, but does not

win in practice until λ+logd (union for overall statistical difference)

is large for practical standards. This make-batch uses a pop-only

resettable stack described above to achieve properties (1) and (3).

Informally, the loop mimics the “lazy sampling” method in which

the binary expansion of the bias p is compared bit-by-bit with fair

random coins. As soon as the random coin differs from a bit of

the expansion, the loop pushes a new sample onto a stack that

collects samples. Each iteration of the loop thus consists of one pop
operation, one cpush operation, and one creset operation in case

of success. The pseudocode is as follows:

1: Let rstackp be the resettable, pop-only stack that contains

a given p
2: Let rpop(rstackp) be a pop that is preceded by a reset if

the reset bit is 1

3: Let cstack be the push-only stack of size д
4: procedure make-batch(c,д,p)
5: forw = 1 to cд do
6: b ←next(1, coins) ▷ next fair bit

7: t ←rpop(rstackp) ▷ next bias bit

8: f ← b ⊕ t ▷ f = 1 if difference found

9: cpush(f ,¬b, cstack) ▷ push ¬b if cstack has

room and f = 1

10: creset(f , rstackp) ▷ oblivious reset

11: end for
12: end procedure

Theorem 2.2. Let λ be the security parameter and d be the total

number of coins. Then the amortized circuit complexity of make-

batch for making d coins is O(log(λ + logd)).

2.3 Make-Batch 2
Our second algorithm for make-batch does better than the first

when λ + logd is less extreme, which is generally the case in prac-

tice. Instead of using a stack for satisfying property 1, a predicate

function is constructed to take an integer j as input and return

the jth bit of some probability p. This predicate function is used

in conjunction with a counter that tracks what j should be at a

given step. To satisfy 3, we reset this counter depending on the

XOR of the next unbiased bit and the next bit of p. We present the

pseudocode below:

1: Let get(p, j) be the predicate function that gets the jth bit

of a binary expansion p
2: procedure make-batch(c,д,p)
3: count← 0

4: forw = 1 to cд do
5: b ←next(1, coins) ▷ next fair bit

6: t ←get(p, count) ▷ next bias bit

7: f ← b ⊕ t ▷ f = 1 if difference found

8: cpush(f ,¬b, cstack)
9: count← count + 1
10: if f = 1 then
11: count← 0

12: end if
13: end for
14: end procedure

Theorem 2.3. Let λ be the security parameter and d be the total

number of coins. Then the amortized circuit complexity of make-

batch for making d coins is O((λ + logd) log(λ + logd)).

3 REPORT-NOISY-MAX APPLICATION
In this section we demonstrate how we can use our new meth-

ods for batch-sampling biased coins to securely implement one

Session 3C: Secure Computing II CCS ’19, November 11–15, 2019, London, United Kingdom

608

of the foundational algorithms in differential privacy (DP), the

report-noisy-max mechanism [4] (a variant of the widely known

exponential mechanism). We begin by recalling the definition of DP.

Definition 3.1 ([15]). Let X be the universe of possible dataset

entries, R be a range of outputs, and ε, δ ≥ 0 be parameters. We

say a randomized algorithm A : Xn → R is (ε, δ)-differentially
private if for every two datasets x = (x1, . . . , xi , . . . , xn) ∈ X

n
and

x ′ = (x1, . . . , x
′
i , . . . , xn) ∈ Xn

that are the same except for one

individual’s data, and for every set of outcomes S ⊆ R, we have

P[A(x) ∈ S] ≤ eεP[A(x ′) ∈ S] + δ .

We typically view ε as the “privacy level” and require it to be

a small constant, as having ε too small leads to poor utility, and

leaving it too large provides meaningless privacy. For example,

Google’s RAPPOR [18] and PROCHLO [5] use ε = ln 3 and ε =
2.25, respectively. We think of δ as a “failure probability” for the

algorithm, and require that it be “cryptographically small”, e.g. 2
−80

.

3.1 Report-Noisy-Max
One of the most useful differentially private algorithms is the

report-noisy-max mechanism [4] (see [16] for a textbook treatment).

This mechanism is a more practical implementation of the widely

known exponential mechanism [28], and the two mechanisms solve

the same problem with identical privacy and utility guarantees.

Given a dataset Xn
and discrete set of choices Y (denote |Y| = d),

as well as a utility function u : Xn × Y→ R such that u(x,y) is the
utility of choice y ∈ Y on dataset x ∈ Xn

, a user would naturally

want to select a y ∈ Y that has high utility on the given dataset. For

example, Ymight be a set of classifiers for a machine learningmodel,

and u(x,y) might be the number of examples in the dataset that y
classifies correctly. The report-noisy-max mechanism is a way to

privately select an element ŷ such that u(x, ỹ) ≥ maxy∈Y u(x,y) −
O(logd). The importance of this mechanism comes from the fact

that the error grows only logarithmically in the number of choices.

The report-noisy-max algorithm works in two steps: First, se-

curely compute noisy scores ûy = s(x,y) + zy for each y ∈ Y,

where zy is a suitably chosen random variable typically Laplace

or geometric. Second, return ỹ that maximizes the noisy score ûỹ .
It is crucial for privacy that the intermediate noisy scores are not

revealed, only the final choice ỹ. For our purposes, we draw from

geometric noise in the first step. We label the noisy max mechanism

that adds Geo(2/ε) (the discrete version of Lap(2/ε)) to each score

as NM-Geo(2/ε). Since we are drawing samples from the geometric

distribution, we restrict the output space of our utility function to

u : Xn ×Y→ Z. We note that rounding down scores to integers for

utility functions that have output space R increases the error by

at most 1, which is small in comparison to logd . Since this mech-

anism can be implemented by sampling many independent noise

variables, each of which require sampling many biased coins, it is

ideally suited to our methods.

Theorem 3.2 ([16, 40]). NM-Geo(2/ε) is (ε, 0)-differentially pri-
vate.

3.2 Review: Sampling Exponential Noise via
Poisson

In this section, we review the techniques from [14] showing

how to sample the Poisson distribution in order to approximate

the exponential distribution. Recall that the celebrated Poisson

distribution is a discrete probability distribution that expresses

the probability of a given number of events occurring in a fixed

interval if these events occur with a known constant rate λ. For
example, such a distribution canmodel the number of soldiers in the

Prussian army killed accidentally by horse kicks [41]. Specifically,

the support of the Poisson distribution are the non-negative integers

0, 1, 2, . . ., and the probability mass function is defined as f (k ; λ) =

Pr [X = k] = λk e−λ
k ! . As in [14], we sample from this distribution in

order to approximate the exponential distribution.

Naive methods. Generically, one can sample any function with

cumulative distribution function ρ by first sampling r ∈ [0, 1] and
then finding the maximum x such that r < cd f (x). The latter

maximization problem can be solved by inverting the CDF. Thus, in

the case of drawing Poisson or exponential noise, the complexity of

this naive sampling approach will be dominated by the complexity

of computing lnx (which appears in the inverse CDF).

Bitwise sampling. The main observation in [14] is that the special

structure of an exponential distribution enables the generation

of the binary representation of an exponential variable using a

number of coins that is independent of the bias. Thus, by calling the

noise sample some κ bit number, one can compute the probability

that bit i of a sample is 0 or 1 as seen in [14]. This bounds the

distribution to the interval (−2κ , 2κ), since after generating a κ
bit noise sample we flip a fair coin to choose whether the noise

is negative or positive, as we desire two-sided exponential noise.

Since Pr [X = x] ∝ exp(−|x |/R) in the exponential distribution

(with scaling constant R), the probability that bit κ is 1 diminishes

at a doubly exponential rate, meaning κ will stay nearly constant

as the number of samples and privacy requirements grow. We note

that sampling in this way implicitly makes the noise an integer,

meaning we are actually sampling from the geometric distribution.

This is ideal since geometric noise satisfies our differential privacy

needs while avoiding the expensive computation of the natural

logarithm.

3.3 Implementing Report-Noisy-Max
Using bitwise sampling from §3.2 and make-batch from §2, we

can construct a secure implementation of noisy max. We present

the pseudocode below:

1: Let λ be the security parameter, ε be the DP parameter,

and κ restrict our noise domain to (−2κ , 2κ)

2: Let p0,p1, . . . be the binary expansions (out to f bits, de-

rived from ε) for the biased coins needed to compute k bit

noise, where k ≤ κ is derived from κ to optimize run time

3: Let cstack be the push-only stack of sizeд used for making

batches of д coins, where д is picked along with a small

constant c to optimize run time

4: procedure MNMλ,ε ,κ (u1, . . . ,ud) ▷ ui = u(x,yi)

Session 3C: Secure Computing II CCS ’19, November 11–15, 2019, London, United Kingdom

609

5: for i = k to 0 do
6: for j = 1 to d/д do
7: make-batch(c,д,pi)
8: s1, . . . , sд ←purge(cstack) ▷ output coins

9: nд(j−1)+1, . . . ,nдj ← nд(j−1)+1 |s1, . . . ,nдj |sд
▷ concat noise, sample ni corresponds to ui

10: end for
11: end for
12: return max-idx(u1 ± n1, . . . ,ud ± nd)
13: end procedure

We note that the pseudocode for ODOλ,ε ,κ , the algorithm that

uses comparator circuits to flip all biased coins, follows directly

from the bitwise sampling in §3.2 and the definition of noisy max,

so we do not provide it.

3.4 Complexity Theorems
We now present the following theorems which follow very sim-

ply from the make-batch theorems:

Theorem 3.3. Let ε ∈ [0.001, 10] and the number of bits for all

ui (potentially padded) be constants, λ be as above, d be the number

of choices, and κ = O(log(λ + logd)). Then the circuit complexity of

MNMλ,ε ,κ with make-batch from §2.2 is O(d log2(λ + logd)).

Theorem 3.4. Let ε ∈ [0.001, 10] and the number of bits for all

ui (potentially padded) be constants, λ be as above, d be the number

of choices, and κ = O(log(λ + logd)). Then the circuit complexity of

MNMλ,ε ,κ with make-batch from §2.3 is O(d(λ + logd) log2(λ +
logd)).

Theorem 3.5. Let ε ∈ [0.001, 10] and the number of bits for all

ui (potentially padded) be constants, λ be as above, d be the number

of choices, and κ = O(log(λ + logd)). Then the circuit complexity of

ODOλ,ε ,κ is O(d log(λ + logd)(λ + logd)).

3.5 Proof of Differential Privacy
LetM : Xn → Y be the noisy max algorithm using geometric noise

with finite domain (−2κ , 2κ) such that:

M(x) =

{
NM-Geo(2/ε) w.p. 1 − δ

F(x) w.p. δ
,

where F is the function executed when a sample is out of the

range (−2κ , 2κ) and NM-Geo(2/ε) is the "perfect" noisy max al-

gorithm defined as above. By the privacy of NM-Geo(2/ε), M is

(ε, δ)-differentially private. Let M̃ : Xn → N be MNM, which is

the same asM except for the possibilities of a biased coin failing

and/or that cд pushes (for c and д as in the pseudocode) create less

than д coins. We define M̃ like so:

M̃(x) =

{
M(x) w.p. 1 − (ρ + ν) (¬E)

G(x) w.p. ρ + ν (E)
,

where E is the event in which any biased comparator fails (repre-

sented by ρ) and/or any set of cд pushes fails to produce д coins

(represented by ν). We let G be the function executed when E hap-

pens.

Theorem 3.6. M̃ is (ε, δ + ρ + ν)-differentially private.

Here we have

δ = 2e−(2
κ ε−lnd)

ρ = 2
−λ

, and

ν ≤
d

д
exp

©­­«−2
(
cд
2
− (д − 1)

)
2

cд

ª®®¬ ≤ 2
−λ

for some choice of κ, ε , λ, c , and д, which are defined the same

way as in the pseudocode. We choose c and д given λ such that

the last inequality holds. Note that ODO can be proven (ε, δ + ρ)-
differentially private in the same way.

Discussion. Since our algorithm introduces three addends that

sum to δ , its a good idea to set λ = log(4/δ) for the goal of (ε, δ)-
DP. This will make ν and ρ both less than or equal to δ/4, mak-

ing their sum less than or equal to δ/2. If κ is set such that δ ′ =

2e−(2
κ ε−lnd) ≤ δ/2 as well (which happens when κ = O(λ+ logd)),

we have δ ′ + ρ + ν ≤ δ . Choosing κ and λ this way yields a

complexity of O(d log2 log(d/δ)) for the first make-batch, and

O(d log(d/δ) log2 log(d/δ)) for the second. Since ε is a parameter

to the algorithm that determines the exact biases for computing

the bits of noise, it is already attained. It is worth noting however,

that smaller ε for the same desired δ may increase the algorithm’s

complexity slightly.

4 OPTIMIZATIONS
In this section we will describe some of the additional methods

used to further cut down gates when implementing MNM.

Special Values of ε . Our primary reduction comes from choices

of ε that have especially easy biases to produce, namely ε of the
form ε = 2

−i
ln 2 for i ∈ Z. When ε takes this form, the expression

for the probability of bit j being 1 is reduced from

1/(1 + exp(2j−1ε)) to 1/(1 + 22
j−i−1
).

When the expression j − i − 1 ≥ 0, we have a fully periodic binary

expansion for the probability that bit j is 1 (e.g. 01010101... for

j − i − 1 = 0). This allows us to produce the binary expansion for

P[bit j = 1] by simply taking bit j − i − 1 of count (see §2.3), making

get a 0 gate function! Thus, if one does not have precise needs for ε ,
one can find the first expression of the form 2

−i
ln 2 less than their

approximate ε threshold and have a number of periodic expansions

among the k biases flipped in the MNM protocol.

Remainder Batch. A lesser reduction we use is when finding the

optimal c and д for batches, having the last group be a potentially

smaller size, in order tomake the least amount of total coins possible.

With a total of d coins to make, this is done by simply takingw = d
(mod д) and finding the least expression of the form 3(2i) > w ,

which is then used as the size of the final group.

5 EVALUATION
The main contribution of this paper is the design of a new circuit

family for sampling biased coins that is suitable for use in secure

computation protocols. To illustrate the benefits of this new design,

Session 3C: Secure Computing II CCS ’19, November 11–15, 2019, London, United Kingdom

610

we have implemented our new sampling schemes, the ODO sam-

pling scheme, and the report-noisy-max mechanism. The focus of

the paper is not on secure computation, and therefore we consider

the simpler two-party honest-but curious model; our techniques,

however, apply equally to multi-party computation protocols that

handle a variety of adversarial models.

Implementation Details. Our code can be found at https://www.git

lab.com/neucrypt/securely_sampling. We implemented and bench-

marked both ODO and MNM, using Obliv-C [45], an extension of

C that compiles and executes Yao’s Garbled Circuits protocols with

many protocol-level optimizations.

Benchmarks were performed using Ubuntu 18.04 with Linux

kernel 4.18.0-1009-gcp 64-bit, running on pairs of identical Google

Cloud Instance n1-highcpu-4 instances. Code was compiled using

gcc version 8.2.0 (Ubuntu 8.2.0-7ubuntu1), with the -O3
-march=native flags.

We evaluated performance in two network settings. In the first

network setting that mimics a LAN setup, all instances ran in the

same us-east1-b datacenter. Using iperf, we measured the band-

width between the pairs of instances to be 7.5 gigabits per second

and the ping times to be 0.4ms. The second network setting reflects

a typical WAN in which one machine was in the us-east1 datacen-
ter while the others were in the us-west1 datacenter. Again using

iperf, we measured the bandwidth between the two instances to

be 330 megabits per second. These two network settings highlight

the difference in network communication requirements between

the various algorithms.

Selection of parameters. Using ourMNM sampler requires choos-

ing the following parameters:

(1) u: This parameter represents the number of pushes (cд as

described above) needed to produce д coins with a desired

chance of failure. In our experiments for ε = 2
−3

ln 2, δ =
2
−60

, this parameter ranged from 1941 to 6947.

(2) д: The primary batch size used to make all groups except for

the remainder group (which in some cases is still size д). In
our experiments for ε = 2

−3
ln 2, δ = 2

−60
, this parameter

ranged from 765 to 3069.

(3) ℓ: The length of the bias for a desired 2−λ statistical difference

overall (f in the MNM pseudocode). In our experiments for

ε = 2
−3

ln 2, δ = 2
−60

, this parameter ranged from 78 to 85.

(4) v : This represents the number of pushes needed to produce

q coins with the same desired chance of failure as each of the

batches of д. In our experiments for ε = 2
−3

ln 2, δ = 2
−60

,

this parameter ranged from 1066 to 6947.

(5) q: The remainder batch size, used as an optimization (to

make as few extra coins as possible). In our experiments for

ε = 2
−3

ln 2, δ = 2
−60

, this parameter ranged from 381 to

3069.

In choosing these parameters, we picked κ as in our differential

privacy discussion thus letting us solve for k as described in Theo-

rem 3.3. Then we iterated over the choices for д, which are 3(2i)

for i = 0, 1, 2, . . . , 15 (for i > 15, the cost per operation is too high

compared to the minor reduction of c). For each д, we found the

λ pop Method Predicate method

64 43.6 16

128 52.2 24

192 60.8 32

256 60.8 39

320 60.8 47

384 69.3 54

448 69.3 61

512 69.3 69
576 69.3 77

640 69.3 84

Table 2: Amortized number of AND gates for pop vs predi-
cate as the length of the bias λ increases. For popwe took the
average of 10000 iterations of calling pop and conditionally
resetting on a random bit. The crossover point is roughly
λ > 512 which is a highly secure setting, but certainly a rea-
sonable parameter setting.

minimum number of pushes needed to make

P[cд pushes yield < д coins] ≤ 2
−(f −logд),

with f ≥ λ + logκ + logd . By taking d (mod д) we could easily

deduce what the remainder group would be, and the number of

pushes needed for that to satisfy our desired overall chance of fail-

ure. With this done, we calculated what the total concrete gate

count would be for noisy max based on our benchmarks of data

structure operations and the cost of evaluating a log f bit predicate

using multiple efficient 6-bit predicates. When doing this we first

compared whether the pop-only stack or the predicate would be

faster and chose the appropriate one. Finally, we took the parame-

ters that yielded the lowest estimated concrete gate count for noisy

max.

5.1 Microbenchmarks of datastructures
In this section we present the gate complexity of our cpush, pop,

and creset operations, as well as the complexity of our predicate

implementations for different biases. To compute these, wemodified

our Obliv-C implementation to report specific gate counts.

Complexity of push. Here we empirically measure the gate com-

plexity of our cpush implementation. We consider stacks of size

n = 3 · 2t bits and then apply n conditional cpush operations while

measuring the number of gates required for each operation. Fig-

ure 2 graphs the number of gates for the first 6141 operations as

well the average number of gates for the first i operations.

Crossover for pop. In the section we compare the performance of

our predicate versus the pop operation for producing the jth bit of

the binary expansion of a bias p. We compute the average number

of gates required for pop operations, and the size of our predicate

solution for increasingly long binary expansions of the bias. Our

data is summarized in Table 2.

Session 3C: Secure Computing II CCS ’19, November 11–15, 2019, London, United Kingdom

611

https://www.gitlab.com/neucrypt/securely_sampling
https://www.gitlab.com/neucrypt/securely_sampling

0 1,000 2,000 3,000 4,000 5,000 6,000
0

1,000

2,000

3,000

4,000

Operation number

a
n
d
g
a
t
e
s

0 1,000 2,000 3,000 4,000 5,000 6,000
0

20

40

60

Operation number

A
v
e
r
a
g
e
a
n
d
g
a
t
e
s

Figure 2: The top plot shows the exact number of AND gates
in ith cpush operation. The bottom plot show a running av-
erage number of gates for the first i operations, which fits
closely the amortized O(logn) complexity we analyze.

5.2 Two Party d-Sample Benchmarks
We benchmarked the action of generating d samples from Geo(2/ε)
using the second version of make-batch, which uses a predicate

function to generate the bias. For comparison purposes, we also

benchmarked the ODO implementation. For both implementations

we varied the number of samples to make between 2
12

and 2
19
.

We also sampled with two different ε : one of the form ε = 2
−i

ln 2

(ε = 2
−3

ln 2), and one not in that form (ε = 0.1). For each value

of ε , we benchmarked for δ = 2
−60

and δ = 2
−80

. We recorded the

wall-clock time for the two aforementioned network settings and

present our results for this in Figures 3a and 3c. The total number

of bytes transmitted among both parties and the sum of the number

of non-free Yao gates and the number of unbiased coins used are

shown in Figures 3b and 3d, respectively. We note that cost and

communication are static across different networks.

As we expected, our protocol scales very well with d in all cat-

egories. Despite the asymptotic behavior with the second make-

batch being sub-optimal, it is understandable that it scales well,

as for lower values of λ + logd the cost of the predicate function

is roughly constant, meaning the complexity is just as good as our

protocol with the first make-batch.

5.3 Two Party Noisy Max Benchmarks
Next we report on our full implementation of the noisy max

algorithm using our improved biased coin sampling procedure. We

expect the performance for noisy-max to be dominated by the cost

of the sampling, and the data below supports this claim. In our

two-party setup, we have each party contribute half of the dataset.

We vary the size of the dataset from 2
12 = 4096 to 2

19
, using 32-

bit integer entries for the data. The benchmarks are run with 2

machines running in the same us-east1 datacenter. The results

are presented in Table 3.

As predicted by our analysis, the cost grows slowly between

δ = 2
−60

and δ = 2
−80

; at d = 2
19
, the difference is only 10s or 2%.

We note that the communication overhead is quite high but feasible

for moderate-sized domains.

δ d and gates Comm (10
6
b) Time (s)

2
−60

4096 8,349,483 340.3 4.40

8192 16,454,933 670.6 8.11

16384 32,751,039 1335.3 17.87

32768 64,584,144 2632.7 31.32

65536 129,371,034 5271.8 63.53

131072 259,005,597 10554.2 126.31

262144 515,833,031 21020.8 242.69

524288 1,033,115,150 42099.7 488.05

2
−80

4096 8,613,824 351.0 4.78

8192 16,841,275 686.2 8.91

16384 33,408,111 1360.9 16.07

32768 66,031,953 2691.0 32.45

65536 131,256,973 5347.8 62.46

131072 262,730,472 10704.4 124.87

262144 523,257,767 21320.0 254.11

524288 1,047,606,374 42683.8 493.63

Table 3: Summary of costs for running report-noisy-max
mechanism with ε = 2

−3
ln 2 = 0.0866 on datasets of increas-

ing size and δ ∈ {2−60, 2−80}.

ACKNOWLEDGMENTS
The authors were supported by NSF grant CNS-1816028. Part of

this work was done while JU was visiting the Simons Institute for

Theory of Computing. We thank Jack Doerner for his help with the

implementation.

Session 3C: Secure Computing II CCS ’19, November 11–15, 2019, London, United Kingdom

612

2
12

2
14

2
16

2
18

0

200

400

600

800

1,000

Size of Dataset

E
x
e
c
u
t
i
o
n
T
i
m
e
(
s
e
c
o
n
d
s
)

2
12

2
14

2
16

2
18

0

1

2

3

·1010

Size of Dataset

T
o
t
a
l
C
o
m
m
u
n
i
c
a
t
i
o
n
(
b
y
t
e
s
)

2
12

2
14

2
16

2
18

0

1,000

2,000

3,000

Size of Dataset

E
x
e
c
u
t
i
o
n
T
i
m
e
(
s
e
c
o
n
d
s
)

2
12

2
14

2
16

2
18

0

5 · 108

1 · 109

Number of Dataset Entries

N
o
n
-
f
r
e
e
G
a
t
e
s
+
R
a
n
d
o
m

B
i
t
s

(a) d-Sample Wall-clock Time, east-east (b) d-Sample Communication

(c) d-Sample Wall-clock, east-west (d) d-Sample Yao Gates + Random Bits

MNM (ε = 2
−3

ln 2) MNM (ε = 0.1) ODO (ε = 0.1, 2−3 ln 2)

δ = 2
−60 δ = 2

−80

Figure 3: d-Sample Benchmark Results. We measure time and communication to produce d samples from Geo(2/ε) in two
network settings. In these graphs, d varies for two choices of ε and two δ for each ε . We note that ODO does not change based
on the form of ε , so we use one plot for the two values of ε . Across all of these parameters, theMNM technique dominates the
ODO. In graph (c), the gray lines represent the same MNM performance lines from graph (a) for comparison purposes.

Session 3C: Secure Computing II CCS ’19, November 11–15, 2019, London, United Kingdom

613

REFERENCES
[1] Balamurugan Anandan and Chris Clifton. 2015. Laplace noise generation for

two-party computational differential privacy. In 2015 13th Annual Conference on

Privacy, Security and Trust (PST).

[2] Gilles Barthe, George Danezis, Benjamin Grégoire, César Kunz, and Santiago

Zanella-Beguelin. 2013. Verified computational differential privacy with ap-

plications to smart metering. In 2013 IEEE 26th Computer Security Foundations

Symposium. IEEE, 287–301.

[3] Amos Beimel, Kobbi Nissim, and Eran Omri. 2008. Distributed private data anal-

ysis: Simultaneously solving how and what. In Annual International Cryptology

Conference. Springer, 451–468.

[4] Raghav Bhaskar, Srivatsan Laxman, Adam Smith, and Abhradeep Thakurta. 2010.

Discovering frequent patterns in sensitive data. In Proceedings of the 16th ACM

SIGKDD international conference on Knowledge discovery and data mining. ACM,

503–512.

[5] Andrea Bittau, Ulfar Erlingsson, Petros Maniatis, Ilya Mironov, Ananth Raghu-

nathan, David Lie, Mitch Rudominer, Usharsee Kode, Julien Tinnes, and Bernhard

Seefeld. 2017. PROCHLO: Strong Privacy for Analytics in the Crowd. In Proceed-

ings of the Symposium on Operating Systems Principles (SOSP).

[6] Avrim Blum, Katrina Ligett, and Aaron Roth. 2013. A learning theory approach

to noninteractive database privacy. J. ACM 60, 2 (2013), 12.

[7] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H. Bren-

dan McMahan, Sarvar Patel, Daniel Ramage, Aaron Segal, and Karn Seth. 2017.

Practical Secure Aggregation for Privacy Preserving Machine Learning. IACR

Cryptology ePrint Archive (2017).

[8] Çagdas Çalik, Meltem Sönmez Turan, and René Peralta. 2018. The Multiplicative

Complexity of 6-variable Boolean Functions. (2018).

[9] T.-H. Hubert Chan, Mingfei Li, Elaine Shi, and Wenchang Xu. 2012. Differentially

Private Continual Monitoring of Heavy Hitters from Distributed Streams. In

Privacy Enhancing Technologies - 12th International Symposium, PETS 2012, Vigo,

Spain, July 11-13, 2012. Proceedings. 140–159.

[10] T-H Hubert Chan, Elaine Shi, and Dawn Song. 2011. Private and continual release

of statistics. ACM Transactions on Information and System Security (TISSEC) 14, 3

(2011), 26.

[11] Ruichuan Chen, Alexey Reznichenko, Paul Francis, and Johanes Gehrke. 2012.

Towards statistical queries over distributed private user data. In Presented as part

of the 9th USENIX Symposium on Networked Systems Design and Implementation

(NSDI 12). 169–182.

[12] Jack Doerner and abhi shelat. 2017. Scaling ORAM for Secure Computation. In

ACM CCS’17.

[13] John C Duchi, Michael I Jordan, and Martin J Wainwright. 2013. Local privacy

and statistical minimax rates. In Foundations of Computer Science (FOCS), 2013

IEEE 54th Annual Symposium on. IEEE, 429–438.

[14] Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya Mironov, and

Moni Naor. 2006. Our Data, Ourselves: Privacy Via Distributed Noise Generation.

In EUROCRYPT.

[15] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. 2006. Cali-

brating Noise to Sensitivity in Private Data Analysis. In Theory of Cryptography

Conference (TCC).

[16] Cynthia Dwork and Aaron Roth. 2014. The Algorithmic Foundations of Differen-

tial Privacy. Foundations and Trends in Theoretical Computer Science 9, 3-4 (2014),

211–407.

[17] Fabienne Eigner, Aniket Kate, Matteo Maffei, Francesca Pampaloni, and Ivan

Pryvalov. 2014. Differentially private data aggregation with optimal utility. In

Proceedings of the 30th Annual Computer Security Applications Conference. ACM,

316–325.

[18] Úlfar Erlingsson, Vasyl Pihur, and Aleksandra Korolova. 2014. RAPPOR: Ran-

domized aggregatable privacy-preserving ordinal response. In ACM Conference

on Computer and Communications Security (CCS).

[19] Oded Goldreich and Rafail Ostrovsky. 1996. Software Protection and Simulation

on Oblivious RAMs. Journal of the ACM 43, 3 (1996).

[20] Vipul Goyal, Dakshita Khurana, Ilya Mironov, Omkant Pandey, and Amit Sahai.

2016. Do Distributed Differentially-Private Protocols Require Oblivious Transfer?.

In 43rd International Colloquium on Automata, Languages, and Programming,

ICALP 2016, July 11-15, 2016, Rome, Italy.

[21] Vipul Goyal, Ilya Mironov, Omkant Pandey, and Amit Sahai. 2013. Accuracy-

Privacy Tradeoffs for Two-Party Differentially Private Protocols. In Advances in

Cryptology - CRYPTO 2013 - 33rd Annual Cryptology Conference, Santa Barbara,

CA, USA, August 18-22, 2013. Proceedings, Part I.

[22] Samuel Haney, Ashwin Machanavajjhala, John M Abowd, Matthew Graham,

Mark Kutzbach, and Lars Vilhuber. 2017. Utility Cost of Formal Privacy for

Releasing National Employer-Employee Statistics. In Proceedings of the 2017 ACM

International Conference on Management of Data. ACM, 1339–1354.

[23] Moritz Hardt, Katrina Ligett, and Frank McSherry. 2012. A Simple and Prac-

tical Algorithm for Differentially Private Data Release. In Advances in Neural

Information Processing Systems 25: 26th Annual Conference on Neural Information

Processing Systems 2012. Proceedings of a meeting held December 3-6, 2012, Lake

Tahoe, Nevada, United States. 2348–2356.

[24] Xi He, Ashwin Machanavajjhala, Cheryl Flynn, and Divesh Srivastava. 2017.

Composing Differential Privacy and Secure Computation: A case study on scaling

private record linkage. arXiv preprint arXiv:1702.00535 (2017).

[25] Shiva Prasad Kasiviswanathan, Homin K. Lee, Kobbi Nissim, Sofya Raskhod-

nikova, and Adam Smith. 2008. What Can We Learn Privately?. In Foundations

of Computer Science (FOCS). IEEE.

[26] Steve Lu and Rafail Ostrovsky. 2014. Garbled RAM Revisited, Part II. Cryptology

ePrint Archive, Report 2014/083.

[27] Andrew McGregor, Ilya Mironov, Toniann Pitassi, Omer Reingold, Kunal Talwar,

and Salil Vadhan. 2010. The limits of two-party differential privacy. In Foundations

of Computer Science (FOCS), 2010 51st Annual IEEE Symposium on. IEEE, 81–90.

[28] Frank McSherry and Kunal Talwar. 2007. Mechanism Design via Differential

Privacy. In IEEE Foundations of Computer Science (FOCS).

[29] Ilya Mironov. 2012. On significance of the least significant bits for differential

privacy. In Proceedings of the 2012 ACM Conference on Computer and cCommuni-

cations Security (CCS). ACM.

[30] Ilya Mironov, Omkant Pandey, Omer Reingold, and Salil Vadhan. 2009. Compu-

tational differential privacy. In Advances in Cryptology-CRYPTO 2009. Springer,

126–142.

[31] Sarvar Patel, Giuseppe Persiano, Mariana Raykova, and Kevin Yeo. 2018.

PanORAMa: Oblivious RAMwith logarithmic overhead. In 2018 IEEE 59th Annual

Symposium on Foundations of Computer Science (FOCS). IEEE, 871–882.

[32] Martin Pettai and Peeter Laud. 2015. Combining Differential Privacy and Secure

Multiparty Computation. In ACSAC 2015. ACM, New York, NY, USA, 421–430.

https://doi.org/10.1145/2818000.2818027

[33] Vibhor Rastogi and Suman Nath. 2010. Differentially private aggregation of

distributed time-series with transformation and encryption. In Proceedings of

the 2010 ACM SIGMOD International Conference on Management of data. ACM,

735–746.

[34] Elaine Shi, T.-H. Hubert Chan, Eleanor G. Rieffel, Richard Chow, and Dawn Song.

2011. Privacy-Preserving Aggregation of Time-Series Data. In Proceedings of the

Network and Distributed System Security Symposium, (NDSS) 2011.

[35] Elaine Shi, T.-H. Hubert Chan, Emil Stefanov, and Mingfei Li. 2011. Oblivious

RAM with O((logN)3) Worst-Case Cost. In Advances in Cryptology - ASIACRYPT

2011 - 17th International Conference on the Theory and Application of Cryptology

and Information Security, Seoul, South Korea, December 4-8, 2011. Proceedings.

197–214.

[36] Kunal Talwar, Abhradeep Thakurta, and Li Zhang. 2015. Nearly optimal private

LASSO. In Advances in Neural Information Processing Systems, NIPS. 3025–3033.

[37] Abhradeep Guha Thakurta, Andrew H Vyrros, Umesh S Vaishampayan, Gaurav

Kapoor, Julien Freudiger, Vivek Rangarajan Sridhar, and Doug Davidson. 2017.

Learning new words. US Patent 9,645,998.

[38] Abhradeep Guha Thakurta, Andrew H Vyrros, Umesh S Vaishampayan, Gaurav

Kapoor, Julien Freudinger, Vipul Ved Prakash, Arnaud Legendre, and Steven

Duplinsky. 2017. Emoji frequency detection and deep link frequency. US Patent

9,705,908.

[39] Jonathan Ullman. 2018. Tight lower bounds for locally differentially private

selection. arXiv preprint arXiv:1802.02638 (2018).

[40] Salil Vadhan. 2016. The complexity of differential privacy. http://privacytools.

seas. harvard. edu/publications/complexity-differential-privacy (2016).

[41] Ladislaus von Bortkiewicz. 1898. Das Gesetz der kleinen Zahlen [The law of

small numbers].

[42] XiaoWang, T.-H. Hubert Chan, and Elaine Shi. 2015. Circuit ORAM: On Tightness

of the Goldreich-Ostrovsky Lower Bound. In Proceedings of the 22nd ACM SIGSAC

Conference on Computer and Communications Security, Denver, CO, USA, October

12-6, 2015. 850–861.

[43] Stanley LWarner. 1965. Randomized response: A survey technique for eliminating

evasive answer bias. J. Amer. Statist. Assoc. 60, 309 (1965), 63–69.

[44] Samee Zahur and David Evans. 2013. Circuit Structures for Improving Efficiency

of Security and Privacy Tools. IEEE S & P (2013), 493–507.

[45] Samee Zahur and David Evans. 2015. Obliv-C: A Language for Extensible Data-

Oblivious Computation. Cryptology ePrint Archive, Report 2015/1153.

Session 3C: Secure Computing II CCS ’19, November 11–15, 2019, London, United Kingdom

614

https://doi.org/10.1145/2818000.2818027

	Abstract
	1 Introduction
	2 Securely Flipping Many Coins of the Same Bias
	2.1 Oblivous data structures
	2.2 Make-Batch 1
	2.3 Make-Batch 2

	3 Report-Noisy-Max Application
	3.1 Report-Noisy-Max
	3.2 Review: Sampling Exponential Noise via Poisson
	3.3 Implementing Report-Noisy-Max
	3.4 Complexity Theorems
	3.5 Proof of Differential Privacy

	4 Optimizations
	5 Evaluation
	5.1 Microbenchmarks of datastructures
	5.2 Two Party d-Sample Benchmarks
	5.3 Two Party Noisy Max Benchmarks

	References

