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Several rotational invariant quantities for the lepton angular distributions in Drell-Yan and quarkonium
production were derived several years ago, allowing the comparison between different experiments
adopting different reference frames. Using an intuitive picture for describing the lepton angular
distribution in these processes, we show how the rotational invariance of these quantities can be
obtained. This approach can also be used to determine the rotational invariance or non-invariance of

various quantities specifying the amount of violation for the Lam-Tung relation. While the violation
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of the Lam-Tung relation is often expressed by frame-dependent quantities, we note that alternative
frame-independent quantities are preferred.
© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
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The angular distributions of leptons produced in the Drell-Yan
process [1] and the quarkonium production in hadron-hadron col-
lisions [2,3] remain a subject of considerable interest. The polar
and azimuthal angular distributions of leptons produced in unpo-
larized and polarized Drell-Yan process allow the extraction of var-
ious types of transverse-momentum dependent distributions [4,5].
First (leading order) results on the extraction of the Boer-Mulders
functions [6,7] have been obtained from unpolarized Drell-Yan ex-
periments using pion [8,9] or proton [10] beams, indicating that
the quark transverse spin is correlated with the quark transverse
momentum inside unpolarized protons. A more precise determi-
nation of the amount of quark polarization requires inclusion of
higher order perturbative corrections because gluon radiation can
also affect the lepton angular distributions [11-14]. Recent mea-
surement of Drell-Yan angular distributions with a pion beam on
a transversely polarized proton target provided the first informa-
tion from Drell-Yan on the correlation between the quark trans-
verse momentum and the spin direction of a transversely polarized
proton [15]. For quarkonium production, the lepton angular dis-
tributions reveal sensitively the underlying partonic mechanisms,
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as various subprocesses could lead to distinct polarizations for the
quarkonium [3,16,17].

The lepton angular distributions in Drell-Yan and quarkonium
production are generally measured in the rest frame of the dilep-
tons. Many different choices of the reference frames exist in the
literature, depending on how the axes of the coordinate system are
chosen. While it is common to define the y axis to be along the di-
rection normal to the reaction plane (which is the plane containing
the beam axis and the dilepton’s momentum vector) and the x and
z axes lying on the reaction plane, the specific direction of the z
axis is chosen differently for different reference frames. In particu-
lar, the Collins-Soper frame [18] has the z axis bisecting the beam
and target momentum vectors, while the helicity frame aligns the
z axis with the dilepton momentum vector in the center-of-mass
frame. The Gottfried-Jackson frame [19] and the u-channel frame
have the z axis parallel to the beam and target momentum di-
rection, respectively. These various reference frames are related to
each other by rotations along the y axis by certain angles [8,20].

A general expression for the lepton angular distribution in the
Drell-Yan process or quarkonium production is given as

d
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where 6 and ¢ refer to the polar and azimuthal angles of I~ (e~
or ;) in the rest frame of the dilepton. While the polar angle
dependence is specified by the parameter Ay, the azimuthal de-
pendencies of the lepton angular distributions are described by
the parameters Agy and XAy. Note that these parameters are re-
lated to the parameters A, i, v in Ref. [21] as A9 =X, L9y = ¢ and
Ay = v/2. The values of Ag,Lgy and Ay depend on the choice of
the coordinate system. While the Collins-Soper frame is chosen
by many experiments for the data analysis, other reference frames
are also utilized by some experiments. Going from one frame to
another acts as a nonlinear transformation on these three parame-
ters [22], making it hard to connect the results in different frames.

The frame-dependence of the angular distribution parameters
could potentially lead to confusion when comparing results of lep-
ton angular distributions or quarkonium polarizations measured
in different experiments [20,23]. In order to mitigate the confu-
sion caused by the frame dependence of the parameters A, Agg
and Ag, Faccioli et al. [24-26] pointed out that various quanti-
ties can be formed from Ay, gy and A, with the property that
they are invariant under the transformations among different ref-
erence frames. The comparison between measurements obtained
with different reference frames could be performed, if such rota-
tion invariant quantities are used rather than the individual A9, Ag¢
and Ay parameters. Examples of such rotational invariant quanti-
ties include [25,26]

_1+)\0+2)\¢ (2)
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The reason for considering these particular combinations is not
just the rotational invariance, but also that they are measures for
the deviation of the Lam-Tung relation [27], 1 — ¢ = 4A4, that is
satisfied in the Drell-Yan process at order «; in case of collinear
parton distributions. Its violation results from the acoplanarity of
the partonic subprocess, as discussed in detail in Refs. [12,14].
This acoplanarity can arise from intrinsic transverse momentum
of quarks inside the proton, but also from perturbative gluon radi-

ation beyond order os. They lead to a deviation of F from % and

of A from 1. In contrast, the deviation of 1 — Ao — 4ry from zero
often considered in experimental and theoretical studies [7-11] is
not a rotationally invariant quantity, pointed out first in Ref. [26],
and hence a potential source of confusion when comparing its val-
ues obtained in different frames.

Another rotation-invariant quantity invoking all three parame-
ters is [3,28]

/
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Although not immediately obvious from their definition in terms
of X9, Agy and Ay, the above three quantities, F, X, A/, are invari-
ant only under rotations around the y axis, which includes the
transformations connecting the various references frames in the
literature. On the other hand, the quantity G is invariant under
the rotation along the x axis [26],

(4)
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Finally, Ag is invariant under the rotation along the z-axis [26].

(5)

Fig. 1. Definition of the Collins-Soper frame and various angles and planes in the
rest frame of y*/Z or a vector quarkonium. The hadron plane is formed by Py and
131, the momentum vectors of the two interacting hadrons. The X and Z axes of
the Collins-Soper frame both lie in the hadron plane with Z axis bisecting the 133
and —137 vectors. The quark (q) and antiquark (g) annihilate collinearly with equal
momenta to form y*/Z or a vector quarkonium, while the quark momentum vector
7" and the Z axis form the quark plane. The polar and azimuthal angles of 2’ in the
Collins-Soper frame are 61 and ¢;. The [~ and I are emitted back-to-back with 6
and ¢ as the polar and azimuthal angles for [~.

The rotational invariance of F, A, ' and G was obtained in
Refs. [25,26,28,29] from the consideration of the covariance prop-
erties of angular momentum eigenstates of a vector meson. In a
recent study [12,14], it was shown that some salient features of the
parameters Ag, Aoy and Ly in the Drell-Yan process and Z-boson
production can be well described by an intuitive approach. In par-
ticular, the pronounced transverse-momentum dependence of iy
and A4 for Z-boson production and the clear violation of the Lam-
Tung relation at the LHC [30,31] can be well described by this
approach. In this paper, we show how the rotational invariance
properties of F, X, A’ and G can be deduced using the approach
of Refs. [12,14]. It is also clear from the analysis below that the
rotational invariance or non-invariance of various quantities char-
acterizing the violation of the Lam-Tung relation can be obtained.

In the dilepton rest frame, we first define three different planes,
namely, the hadron plane, the quark plane, and the lepton plane,
shown in Fig. 1. For dileptons with non-zero transverse momen-
tum, qr, the momenta of the two interacting hadrons, 133 and
Pr, are not collinear in the rest frame of y*/Z, and they form
the “hadron plane” shown in Fig. 1. Fig. 1 also shows the “lep-
ton plane”, formed by the momentum vector of the I~ and the 2
axis. In the rest frame of the dilepton, the I~ and I are emitted
back-to-back with equal momenta.

In the dilepton rest frame, a pair of collinear ¢ and q with equal
momenta annihilate into a y*/Z or a vector quarkonium, as illus-
trated in Fig. 1. We define the momentum unit vector of q as Z/,
and the “quark plane” is formed by the z' and z axes. The po-
lar and azimuthal angles of the Z’ axis in the Collins-Soper frame
are denoted as 0; and ¢;. For the coplanar case, ¢1 =0 and the
hadron plane coincides with the quark plane. When ¢ # 0, ¢ sig-
nifies the acoplanarity angle. With respect to the g — g axis, called
the natural axis [32], the I~ has an azimuthally symmetric angular
distribution, namely,

do
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where 6 is the polar angle between the I~ momentum vector and
the Z' axis (see Fig. 1), and a is the forward-backward asymmetry
originating from the parity-violating coupling, which is important
only when the dilepton mass is close to the Z boson mass. The
parameter A9 depends on the reaction mechanism. For Drell-Yan
process in which a virtual photon decays into a lepton pair, we
have Ao = 1. This is a consequence of helicity conservation lead-
ing to a transversely polarized virtual photon with respect to the
natural axis. For quarkonium production, the value of 1y depends
on the specific mechanism. We note that 1o = 0 for unpolarized
quarkonium production, while 1o = —1 for production of longitu-
dinally polarized quarkonium.

The angles 6 and ¢ are experimental observables, and it is nec-
essary to express g in terms of 0 and ¢. This can be accomplished
using the following trigonometric relation:

€0s By = cosB cos B + sind sinby cos(¢p — ¢1). (7)
Substituting Eq. (7) into Eq. (6), we obtain

do (1+1k sin?61) + (& 3x sin ;) cos> 6
9 2 _2
ds 270 ! 07370 !

1
+ (Ekg sin 261 cos ¢ ) sin 26 cos ¢

1
+ (iko sin® 1 cos 2¢) sin® 6 cos 2¢
+ (asinBy cos ¢1) sinH cos ¢ + (acosdy) cosb

1
+ (iko sin? 61 sin2¢1) sin® 6 sin 2¢

1
+ (EAO sin 207 sin ¢y) sin 26 sin ¢
+ (asin# sin¢gq) sinf sin¢. (8)

A comparison between Eq. (1) and Eq. (8) shows that Ag, Ag4,
and A4 can be expressed as a function of Ag, 61 and ¢ (cf.
with [32] for zero acoplanarity angle ¢ =0):

= 200 — 3o sin? 61
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The terms proportional to sin2¢ and sin¢ do not appear due to
Lorentz invariance, provided there are no vectors (like transverse
polarization) normal to the hadron plane. Such terms in Eq. (8)
integrate to zero due to the acoplanarity angle average. Unless
one considers polarized leptons, parity or time-reversal violation,
Eq. (8) reduces to Eq. (1).

First, we consider the quantity F in Eq. (2). From Eq. (9), we
obtain

14+ X0 —2X0 sin® 61 sin? b1 _ 1+ 2o —Zkoy%
3+ 2o Y

where y; = sinf;sing; is the component of the unit vector Z’
along the y-axis in the dilepton rest frame. The invariance of F
with respect to a rotation along the y axis is clearly shown in
Eq. (10), since Ap and y; are both invariant under such a rota-
tion. It is interesting to note that for the Drell-Yan process, where
Ao =1, F becomes (1 — y%)/Z. As pointed out in Refs. [12,14],
y1, or the non-coplanarity angle ¢; between the hadron and the
quark planes in Fig. 1, is in general not equal to zero. For the spe-
cial case of ¢1 =0 (or y; =0), F=1/2 and F is invariant under

F=

) (10)

any arbitrary rotation in the dilepton’s rest frame. As discussed in
Refs. [12,14], the Lam-Tung relation in the Drell-Yan process is
satisfied when the angle ¢; vanishes. This is verified from Eq. (9),
when the values of 1o and ¢ are set at 1 and 0, respectively.

We next consider the quantity . Using Eq. (9), Eq. (3) becomes

%o + 3o sin? 6y sin? ¢
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1+ 2o sin? 61 sin? b1
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(11)

Again, X must be invariant under a rotation along the y axis, since
Ao and yq are both invariant under such rotation. In the special
case of coplanarity between the hadron plane and the quark plane,
we have y; =0, and Eq. (11) becomes X = Aq. In that case, A is
invariant under rotation along any axis. However, % is in general
not the same as Ao, and A is in general not invariant under an
arbitrary rotation.

We turn our attention next to the quantity A’ in Eq. (4). All
three parameters, Ag, Ag¢, and Ay are involved in A'. Using Eq. (9),
we obtain

5 ME A2 A5 —y]?
- B+1r0? B+ro)?
where z; is the component of the unit vector Z' along the z axis
and the identity x2 +y2 +2% = 1 is used. Thus, 2’ is invariant under
a rotation along the y axis. For the coplanar case, y; =0 and A’ is

invariant under rotation along any axis.
In an analogous fashion, one can show the invariance of G and

Ag under the rotation along the x and z axis, respectively. Using
Eq. (9), Eq. (5) becomes

(12)

14 Ag — 2Ag sin? §; cos? 14 g — 220x2
G- 0 0 1 ¢1= 0 0 1 (13)

3+ Xo 34+ Ao
where X7 = sinf; cos¢; is the component of the unit vector z’

along the x axis in the dilepton rest frame. Similarly, from Eq. (9),
the parameter 1y can be written as

—Xo+ 3rgcos? e —Xo + 31022
g = 0+ 3A0 21: 0 0127 (14)
2+ Ao — ApCOS® b1 2+ o — A0Z]

where z1 = cos6; is the component of the unit vector z' along the
z axis in the dilepton rest frame. From Eq. (13) and Eq. (14) we
note that G and Ay are invariant under the rotation along the x
and z axis, respectively.

Using the above results one can see that despite the nonlin-
ear transformation of Ag,%gy and A4 under rotations, the linear
combination 1 — Ay — 4X, remains zero in all other rotated frames
if it is zero in one particular frame, as was observed for specific
rotations in [22]. If the combination is nonzero however, then its
value will change under rotations, even around the y axis. From
Eq. (9), it follows that the quantity 1 — g — 4Xg4 is not invariant
under rotations along the y axis. On the other hand, the quantity,
(1 —2x¢ —4rg)/(3 + Ap), is invariant under such rotations, namely

2
1—)»9—4)\(15=‘1_2}_=1—k0+4)\0y1. (15)
34X 34+ Xo
Therefore, to examine the amount of the violation of the Lam-Tung
relation, the quantity, (1 — g —4Xy)/(3 4 Ag), is preferred.

Often in the literature for the Drell-Yan process, another set of
angular coefficients are considered: Ag, A1, Ay, where
do

A
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The Lam-Tung relation is then expressed as Ag = A,. The viola-
tion of the Lam-Tung relation, Ag — A» = 2(1 — 2.F), is rotation-
ally invariant around the y axis. On the other hand, the quantity
At =1—Ay/Ap of [33] is not.

In conclusion, we have presented an intuitive derivation for
rotation-invariant quantities for lepton angular distributions in
Drell-Yan and vector quarkonium production. By expressing these
quantities in terms of the Ao and the x, y and z components of the
unit vector of the quark momentum in the dilepton rest frame, the
invariant properties of these quantities become transparent. This
approach offers a useful insight regarding the roles of Ao and the
acoplanarity of the partonic subprocesses in determining the ap-
plicability and values of these invariant quantities. This approach
could also be extended to other hard processes, such as hadron
pair production in e*e~ annihilation, which is closely connected
to the Drell-Yan and vector quarkonium production.
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