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Several rotational invariant quantities for the lepton angular distributions in Drell–Yan and quarkonium 
production were derived several years ago, allowing the comparison between different experiments 
adopting different reference frames. Using an intuitive picture for describing the lepton angular 
distribution in these processes, we show how the rotational invariance of these quantities can be 
obtained. This approach can also be used to determine the rotational invariance or non-invariance of 
various quantities specifying the amount of violation for the Lam–Tung relation. While the violation 
of the Lam–Tung relation is often expressed by frame-dependent quantities, we note that alternative 
frame-independent quantities are preferred.
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The angular distributions of leptons produced in the Drell–Yan 
process [1] and the quarkonium production in hadron–hadron col-
lisions [2,3] remain a subject of considerable interest. The polar 
and azimuthal angular distributions of leptons produced in unpo-
larized and polarized Drell–Yan process allow the extraction of var-
ious types of transverse-momentum dependent distributions [4,5]. 
First (leading order) results on the extraction of the Boer–Mulders 
functions [6,7] have been obtained from unpolarized Drell–Yan ex-
periments using pion [8,9] or proton [10] beams, indicating that 
the quark transverse spin is correlated with the quark transverse 
momentum inside unpolarized protons. A more precise determi-

nation of the amount of quark polarization requires inclusion of 
higher order perturbative corrections because gluon radiation can 
also affect the lepton angular distributions [11–14]. Recent mea-

surement of Drell–Yan angular distributions with a pion beam on 
a transversely polarized proton target provided the first informa-

tion from Drell–Yan on the correlation between the quark trans-
verse momentum and the spin direction of a transversely polarized 
proton [15]. For quarkonium production, the lepton angular dis-
tributions reveal sensitively the underlying partonic mechanisms, 
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as various subprocesses could lead to distinct polarizations for the 
quarkonium [3,16,17].

The lepton angular distributions in Drell–Yan and quarkonium 
production are generally measured in the rest frame of the dilep-
tons. Many different choices of the reference frames exist in the 
literature, depending on how the axes of the coordinate system are 
chosen. While it is common to define the y axis to be along the di-
rection normal to the reaction plane (which is the plane containing 
the beam axis and the dilepton’s momentum vector) and the x and 
z axes lying on the reaction plane, the specific direction of the z
axis is chosen differently for different reference frames. In particu-
lar, the Collins–Soper frame [18] has the z axis bisecting the beam 
and target momentum vectors, while the helicity frame aligns the 
z axis with the dilepton momentum vector in the center-of-mass 
frame. The Gottfried–Jackson frame [19] and the u-channel frame 
have the z axis parallel to the beam and target momentum di-
rection, respectively. These various reference frames are related to 
each other by rotations along the y axis by certain angles [8,20].

A general expression for the lepton angular distribution in the 
Drell–Yan process or quarkonium production is given as

dσ

d�
∝ 1+ λθ cos

2 θ + λθφ sin2θ cosφ + λφ sin2 θ cos2φ, (1)
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where θ and φ refer to the polar and azimuthal angles of l− (e−
or μ−) in the rest frame of the dilepton. While the polar angle 
dependence is specified by the parameter λθ , the azimuthal de-
pendencies of the lepton angular distributions are described by 
the parameters λθφ and λφ . Note that these parameters are re-
lated to the parameters λ, μ, ν in Ref. [21] as λθ = λ, λθφ = μ and 
λφ = ν/2. The values of λθ , λθφ and λφ depend on the choice of 
the coordinate system. While the Collins–Soper frame is chosen 
by many experiments for the data analysis, other reference frames 
are also utilized by some experiments. Going from one frame to 
another acts as a nonlinear transformation on these three parame-

ters [22], making it hard to connect the results in different frames.

The frame-dependence of the angular distribution parameters 
could potentially lead to confusion when comparing results of lep-
ton angular distributions or quarkonium polarizations measured 
in different experiments [20,23]. In order to mitigate the confu-
sion caused by the frame dependence of the parameters λθ , λθφ

and λφ , Faccioli et al. [24–26] pointed out that various quanti-
ties can be formed from λθ , λθφ and λφ with the property that 
they are invariant under the transformations among different ref-
erence frames. The comparison between measurements obtained 
with different reference frames could be performed, if such rota-
tion invariant quantities are used rather than the individual λθ , λθφ

and λφ parameters. Examples of such rotational invariant quanti-
ties include [25,26]

F = 1+ λθ + 2λφ

3+ λθ

, (2)

and

λ̃ = λθ + 3λφ

1− λφ

. (3)

The reason for considering these particular combinations is not 
just the rotational invariance, but also that they are measures for 
the deviation of the Lam–Tung relation [27], 1 − λθ = 4λφ , that is 
satisfied in the Drell–Yan process at order αs in case of collinear 
parton distributions. Its violation results from the acoplanarity of 
the partonic subprocess, as discussed in detail in Refs. [12,14]. 
This acoplanarity can arise from intrinsic transverse momentum 
of quarks inside the proton, but also from perturbative gluon radi-
ation beyond order αs . They lead to a deviation of F from 1

2
and 

of λ̃ from 1. In contrast, the deviation of 1 − λθ − 4λφ from zero 
often considered in experimental and theoretical studies [7–11] is 
not a rotationally invariant quantity, pointed out first in Ref. [26], 
and hence a potential source of confusion when comparing its val-
ues obtained in different frames.

Another rotation-invariant quantity invoking all three parame-

ters is [3,28]

λ̃′ = (λθ − λφ)2 + 4λ2
θφ

(3+ λθ )2
. (4)

Although not immediately obvious from their definition in terms 
of λθ , λθφ and λφ , the above three quantities, F , ̃λ, λ̃′ , are invari-
ant only under rotations around the y axis, which includes the 
transformations connecting the various references frames in the 
literature. On the other hand, the quantity G is invariant under 
the rotation along the x axis [26],

G = 1+ λθ − 2λφ

3+ λθ

. (5)

Finally, λθ is invariant under the rotation along the z-axis [26].

Fig. 1. Definition of the Collins–Soper frame and various angles and planes in the 
rest frame of γ ∗/Z or a vector quarkonium. The hadron plane is formed by �P B and 
�PT , the momentum vectors of the two interacting hadrons. The x̂ and ẑ axes of 
the Collins–Soper frame both lie in the hadron plane with ẑ axis bisecting the �P B

and −�PT vectors. The quark (q) and antiquark (q̄) annihilate collinearly with equal 
momenta to form γ ∗/Z or a vector quarkonium, while the quark momentum vector 
ẑ′ and the ẑ axis form the quark plane. The polar and azimuthal angles of ẑ′ in the 
Collins–Soper frame are θ1 and φ1. The l− and l+ are emitted back-to-back with θ
and φ as the polar and azimuthal angles for l− .

The rotational invariance of F , λ̃, λ̃′ and G was obtained in 
Refs. [25,26,28,29] from the consideration of the covariance prop-
erties of angular momentum eigenstates of a vector meson. In a 
recent study [12,14], it was shown that some salient features of the 
parameters λθ , λθφ and λφ in the Drell–Yan process and Z -boson 
production can be well described by an intuitive approach. In par-
ticular, the pronounced transverse-momentum dependence of λθ

and λφ for Z -boson production and the clear violation of the Lam–

Tung relation at the LHC [30,31] can be well described by this 
approach. In this paper, we show how the rotational invariance 
properties of F , λ̃, λ̃′ and G can be deduced using the approach 
of Refs. [12,14]. It is also clear from the analysis below that the 
rotational invariance or non-invariance of various quantities char-
acterizing the violation of the Lam–Tung relation can be obtained.

In the dilepton rest frame, we first define three different planes, 
namely, the hadron plane, the quark plane, and the lepton plane, 
shown in Fig. 1. For dileptons with non-zero transverse momen-

tum, qT , the momenta of the two interacting hadrons, �P B and 
�PT , are not collinear in the rest frame of γ ∗/Z , and they form 
the “hadron plane” shown in Fig. 1. Fig. 1 also shows the “lep-
ton plane”, formed by the momentum vector of the l− and the ẑ
axis. In the rest frame of the dilepton, the l− and l+ are emitted 
back-to-back with equal momenta.

In the dilepton rest frame, a pair of collinear q and q̄ with equal 
momenta annihilate into a γ ∗/Z or a vector quarkonium, as illus-
trated in Fig. 1. We define the momentum unit vector of q as ẑ′ , 
and the “quark plane” is formed by the ẑ′ and ẑ axes. The po-
lar and azimuthal angles of the ẑ′ axis in the Collins–Soper frame 
are denoted as θ1 and φ1. For the coplanar case, φ1 = 0 and the 
hadron plane coincides with the quark plane. When φ1 �= 0, φ1 sig-

nifies the acoplanarity angle. With respect to the q − q̄ axis, called 
the natural axis [32], the l− has an azimuthally symmetric angular 
distribution, namely,

dσ

d�
∝ 1+ a cos θ0 + λ0 cos

2 θ0, (6)
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where θ0 is the polar angle between the l− momentum vector and 
the ẑ′ axis (see Fig. 1), and a is the forward–backward asymmetry 
originating from the parity-violating coupling, which is important 
only when the dilepton mass is close to the Z boson mass. The 
parameter λ0 depends on the reaction mechanism. For Drell–Yan 
process in which a virtual photon decays into a lepton pair, we 
have λ0 = 1. This is a consequence of helicity conservation lead-
ing to a transversely polarized virtual photon with respect to the 
natural axis. For quarkonium production, the value of λ0 depends 
on the specific mechanism. We note that λ0 = 0 for unpolarized 
quarkonium production, while λ0 = −1 for production of longitu-
dinally polarized quarkonium.

The angles θ and φ are experimental observables, and it is nec-
essary to express θ0 in terms of θ and φ. This can be accomplished 
using the following trigonometric relation:

cos θ0 = cos θ cos θ1 + sin θ sin θ1 cos(φ − φ1). (7)

Substituting Eq. (7) into Eq. (6), we obtain

dσ

d�
∝ (1+ 1

2
λ0 sin

2 θ1) + (λ0 − 3

2
λ0 sin

2 θ1) cos
2 θ

+ (
1

2
λ0 sin2θ1 cosφ1) sin2θ cosφ

+ (
1

2
λ0 sin

2 θ1 cos2φ1) sin
2 θ cos2φ

+ (a sin θ1 cosφ1) sin θ cosφ + (a cos θ1) cos θ

+ (
1

2
λ0 sin

2 θ1 sin2φ1) sin
2 θ sin2φ

+ (
1

2
λ0 sin2θ1 sinφ1) sin2θ sinφ

+ (a sin θ1 sinφ1) sin θ sinφ. (8)

A comparison between Eq. (1) and Eq. (8) shows that λθ , λθφ , 
and λφ can be expressed as a function of λ0, θ1 and φ1 (cf.

with [32] for zero acoplanarity angle φ1 = 0):

λθ = 2λ0 − 3λ0 sin
2 θ1

2+ λ0 sin
2 θ1

λθφ = λ0 sin2θ1 cosφ1

2+ λ0 sin
2 θ1

λφ = λ0 sin
2 θ1 cos2φ1

2+ λ0 sin
2 θ1

. (9)

The terms proportional to sin2φ and sinφ do not appear due to 
Lorentz invariance, provided there are no vectors (like transverse 
polarization) normal to the hadron plane. Such terms in Eq. (8)

integrate to zero due to the acoplanarity angle average. Unless 
one considers polarized leptons, parity or time-reversal violation, 
Eq. (8) reduces to Eq. (1).

First, we consider the quantity F in Eq. (2). From Eq. (9), we 
obtain

F = 1+ λ0 − 2λ0 sin
2 θ1 sin

2 φ1

3+ λ0
= 1+ λ0 − 2λ0 y

2
1

3+ λ0
, (10)

where y1 = sin θ1 sinφ1 is the component of the unit vector ẑ′
along the y-axis in the dilepton rest frame. The invariance of F
with respect to a rotation along the y axis is clearly shown in 
Eq. (10), since λ0 and y1 are both invariant under such a rota-
tion. It is interesting to note that for the Drell–Yan process, where 
λ0 = 1, F becomes (1 − y21)/2. As pointed out in Refs. [12,14], 
y1, or the non-coplanarity angle φ1 between the hadron and the 
quark planes in Fig. 1, is in general not equal to zero. For the spe-
cial case of φ1 = 0 (or y1 = 0), F = 1/2 and F is invariant under 

any arbitrary rotation in the dilepton’s rest frame. As discussed in 
Refs. [12,14], the Lam–Tung relation in the Drell–Yan process is 
satisfied when the angle φ1 vanishes. This is verified from Eq. (9), 
when the values of λ0 and φ1 are set at 1 and 0, respectively.

We next consider the quantity λ̃. Using Eq. (9), Eq. (3) becomes

λ̃ = λ0 + 3λ0 sin
2 θ1 sin

2 φ1

1+ λ0 sin
2 θ1 sin

2 φ1

= λ0 + 3λ0 y
2
1

1+ λ0 y
2
1

. (11)

Again, λ̃ must be invariant under a rotation along the y axis, since 
λ0 and y1 are both invariant under such rotation. In the special 
case of coplanarity between the hadron plane and the quark plane, 
we have y1 = 0, and Eq. (11) becomes λ̃ = λ0. In that case, λ̃ is 
invariant under rotation along any axis. However, λ̃ is in general 
not the same as λ0, and λ̃ is in general not invariant under an 
arbitrary rotation.

We turn our attention next to the quantity λ̃′ in Eq. (4). All 
three parameters, λθ , λθφ , and λφ are involved in λ̃′ . Using Eq. (9), 
we obtain

λ̃′ = λ2
0(z

2
1 + x21)

2

(3 + λ0)2
= λ2

0(1 − y21)
2

(3 + λ0)2
, (12)

where z1 is the component of the unit vector ẑ′ along the z axis 
and the identity x21+ y21+ z21 = 1 is used. Thus, λ̃′ is invariant under 
a rotation along the y axis. For the coplanar case, y1 = 0 and λ̃′ is 
invariant under rotation along any axis.

In an analogous fashion, one can show the invariance of G and 
λθ under the rotation along the x and z axis, respectively. Using 
Eq. (9), Eq. (5) becomes

G = 1+ λ0 − 2λ0 sin
2 θ1 cos

2 φ1

3+ λ0
= 1+ λ0 − 2λ0x

2
1

3+ λ0
, (13)

where x1 = sin θ1 cosφ1 is the component of the unit vector ẑ′
along the x axis in the dilepton rest frame. Similarly, from Eq. (9), 
the parameter λθ can be written as

λθ = −λ0 + 3λ0 cos
2 θ1

2+ λ0 − λ0 cos2 θ1
= −λ0 + 3λ0z

2
1

2+ λ0 − λ0z
2
1

, (14)

where z1 = cos θ1 is the component of the unit vector ẑ′ along the 
z axis in the dilepton rest frame. From Eq. (13) and Eq. (14) we 
note that G and λθ are invariant under the rotation along the x
and z axis, respectively.

Using the above results one can see that despite the nonlin-
ear transformation of λθ , λθφ and λφ under rotations, the linear 
combination 1 − λθ − 4λφ remains zero in all other rotated frames 
if it is zero in one particular frame, as was observed for specific 
rotations in [22]. If the combination is nonzero however, then its 
value will change under rotations, even around the y axis. From 
Eq. (9), it follows that the quantity 1 − λθ − 4λθφ is not invariant 
under rotations along the y axis. On the other hand, the quantity, 
(1 − λθ − 4λφ)/(3 + λθ ), is invariant under such rotations, namely

1 − λθ − 4λφ

3+ λθ

= 1− 2F = 1− λ0 + 4λ0 y
2
1

3+ λ0
. (15)

Therefore, to examine the amount of the violation of the Lam–Tung 
relation, the quantity, (1 − λθ − 4λφ)/(3 + λθ ), is preferred.

Often in the literature for the Drell–Yan process, another set of 
angular coefficients are considered: A0, A1, A2, where

dσ

d�
∝ (1+ cos2 θ) + A0

2
(1− 3cos2 θ) + A1 sin2θ cosφ

+ A2

2
sin2 θ cos2φ. (16)
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The Lam–Tung relation is then expressed as A0 = A2. The viola-
tion of the Lam–Tung relation, A0 − A2 = 2(1 − 2F), is rotation-
ally invariant around the y axis. On the other hand, the quantity 

LT = 1 − A2/A0 of [33] is not.

In conclusion, we have presented an intuitive derivation for 
rotation-invariant quantities for lepton angular distributions in 
Drell–Yan and vector quarkonium production. By expressing these 
quantities in terms of the λ0 and the x, y and z components of the 
unit vector of the quark momentum in the dilepton rest frame, the 
invariant properties of these quantities become transparent. This 
approach offers a useful insight regarding the roles of λ0 and the 
acoplanarity of the partonic subprocesses in determining the ap-
plicability and values of these invariant quantities. This approach 
could also be extended to other hard processes, such as hadron 
pair production in e+e− annihilation, which is closely connected 
to the Drell–Yan and vector quarkonium production.
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