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Abstract: The optical beam splitter is a widely-used device in photonics-based quantum information
processing. Specifically, linear optical networks demand large numbers of beam splitters for unitary
matrix realization. This requirement comes from the beam splitter property that a photon cannot go
back out of the input ports, which we call “directionally-biased”. Because of this property, higher
dimensional information processing tasks suffer from rapid device resource growth when beam
splitters are used in a feed-forward manner. Directionally-unbiased linear-optical devices have been
introduced recently to eliminate the directional bias, greatly reducing the numbers of required beam
splitters when implementing complicated tasks. Analysis of some originally directional optical
devices and basic principles of their conversion into directionally-unbiased systems form the base of
this paper. Photonic quantum walk implementations are investigated as a main application of the use
of directionally-unbiased systems. Several quantum walk procedures executed on graph networks
constructed using directionally-unbiased nodes are discussed. A significant savings in hardware and
other required resources when compared with traditional directionally-biased beam-splitter-based
optical networks is demonstrated.

Keywords: quantum walks; linear optics; quantum information processing

1. Introduction

The quantum approach to computing attracts public attention mainly because of its capability
to execute some computational tasks faster when compared to classical computational devices [1,2].
Several physical platforms exist to realize quantum computation procedures. Linear optics has been one
of the candidates because of its robustness against noise and the ease of quantum state manipulation
at room temperature. The design of quantum computing gates with single photons has been proposed
and is known as the Knill, Laflamme and Milburn (KLM) model [3]. This design makes use of
linear-optical devices such as beam splitters and phase shifters. The quantum gate performance is
executed probabilistically by the process of measuring auxiliary photons. While the KLM model
has been used for gate-based quantum computation, other quantum-optical approaches to execute
computational tasks have been developed. For example, quantum walks (QW) over optical networks of
scattering centers have been considered as another promising tool in executing certain computational
tasks [4–8]. The construction of such optical networks for quantum walks relies on the use of multiple
beam splitters and phase shifters connected in a particular spatial graph pattern. A beam splitter is
used as an elementary scattering center during the propagation, and many of them must be cascaded
by connecting consecutively in order to form an extensive tree-like network [9,10]. Truly quantum
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mechanical information processing requires unitarity at every operation. The beam splitter in optics
implements two-dimensional unitary transformations and can be seen as a probabilistic mixer of two
spatial field modes.

The increase in dimensionality enables employing and manipulating more information, and
this needs to be achieved in a coherent way. Optical networks are constructed to perform this task
by constructing higher dimensional unitary matrices. It is known that higher dimensional unitary
matrices can be decomposed using lower dimensional unitary matrices. By repeating this procedure,
any complex unitary matrix can be eventually decomposed using only two-dimensional ones. The Reck
decomposition model has been introduced to describe this procedure [11]. A symmetric version
of the Reck model is often called the Clements model [12]. For instance, these two models have
been used by researchers in designing and building experimental linear-optical networks for boson
sampling purposes [13–16]. During the boson sampling process, photons propagate from one side of a
complex nodal structure to the other side of the optical network, thus performing a computational task.
Direct implementation of multimode optical device has been experimentally verified in integrated
platforms [17–20]. Quantum walks over the network of quantum nodes represent another form of
quantum information processing, as an alternative to the quantum gate model. QW can also perform
certain computations more efficiently than classical algorithms [6,21–28]. Quantum walks in 1D and
2D systems have been experimentally demonstrated in optical systems [29–40].

The traditional quantum walk approach uses a coin operator and a shift operator to execute
each elementary step. An alternative description of a quantum walk can be implemented using the
scattering quantum walk, also known as the edge walk [41,42], which has been introduced to describe
the quantum walk based on scattering at the nodes or vertices of a lattice on which the walk occurs.
There is no need for a coin operator in this model. In order to execute some specific type of quantum
walk, we need first to identify a network of scattering centers (a graph) on which the walk is performed.
Many different special-purpose graphs can be formed using linear-optical devices in order to execute a
particular computational procedure. Thanks to the Reck and Clements decomposition models, the
majority of experimental demonstrations in this field, even some complex ones, could be realized
using multiple directionally-biased two-dimensional optical devices such as beam splitters. However,
the execution of such quantum walks calls for a large number of optical devices when the complexity
and the required number of steps in the system increase. This is why quantum walks based on the use
of directional devices demand a great deal of costly hardware real estate, which limits their scalability
in the long run.

Recently, the original design of a directionally-unbiased linear-optical multiport was
introduced [43]. This is a unitary coherent optical quantum information processing device that
addresses two issues simultaneously: (i) it executes a higher dimensional unitary scattering process at
every node of the network with fewer numbers of two-dimensional units for the device construction,
and (ii) it scales down significantly the required amount of hardware resources by offering the
possibility of reusing scattering units of the graph again and again. An array of such multiports
can then form a graph upon which a photon can execute a quantum walk. In principle, the feature
of full reversibility can be realized using special designs by incorporating commonly-used optical
elements. This is referred to as “directional” or “directionally-biased” when a photon propagates only
in one direction, meaning the input port and the output ports are never the same. This directionality
could be circumvented in optics by placing mirrors so that a photon can leave the input port as well.
This report will address multiple issues involved in designing, executing, testing, and applying both
directional and directionally-unbiased devices. A higher dimensional quantum walk over a graph
network based on the use of directionally-unbiased devices will be considered as an example of their
practical applications.
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2. Two-Dimensional Linear Optical Devices

Two-dimensional devices including interferometers are the main building blocks for any
applications in classical and in quantum optics. These devices are unitary transformers that mix
spatial optical modes without losses and realize the group of 2 × 2 unitary matrices denoted as
U(2). It has been shown that high-dimensional unitary matrices can be decomposed using U(2)
matrices [44]. In order to have flexibility in quantum information processing, one needs to have
some means of manipulating amplitude transition coefficients between the input and output fields.
In principle, this could be achieved in two ways in optics: (i) by some kind of dynamic change in the
input/output splitting ratio of a single beam splitter (BS) or (ii) by forming an interferometer with
several beam splitters, thus offering tunability between output ports. In this section, we start with
the basic properties of a beam splitter implementing the U(2) operation and discuss its features as
a directionally-biased coupler. It will be followed by the consideration of integrated waveguided
couplers and some well-known interferometers for implementing 2 × 2 transformations.

2.1. Lossless Optical Beam Splitter

A lossless beam splitter introduced in Figure 1 redirects incoming photons into two outgoing
ports while maintaining energy conservation [45,46]. A BS can be represented using a 2 × 2 matrix,
acting on two input and two output ports, denoted as E1, E2 and E3, E4, as indicated in Figure 1.
The transformation of the fields E1, E2 is given by:(

E3

E4

)
=

(
T13 R23

R14 T24

)(
E1

E2

)
, (1)

where T13, T24 are the transmission from Port 1 to 3 and 2 to 4 and R23, R14 are reflection for Port 2 to 3
and Port 1 to 4, respectively. The probability conservation relation between the input and output is:

|E3|2 + |E4|2 = |E1|2 + |E2|2. (2)

Figure 1. Description of a beam splitter. A beam splitter is a device with two input and two output
ports. A photon can enter the port E1 and/or E2 and will leave the port E3 and/or E4.

By substituting Equation (1) in Equation (2),

|E3|2 + |E4|2 = (|T13|2 + |R14|2)|E1|2 + (|T24|2 + |R23|2)|E2|2

+ T13R∗23E1E∗2 + R23T∗13E2E∗1 + T24R∗14E2E∗1 + R14T∗24E1E∗2 ,
(3)
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and by comparing the result with Equation (2):

|T13|2 + |R14|2 = |T24|2 + |R23|2 = 1

T13R∗23 + R14T∗24 = R23T∗13 + T24R∗14 = 0.
(4)

Transmission and reflection coefficients T and R can be rewritten using amplitude and phase.
Define T13 = |T13|eiφ13 , and so on, for all the transmission and reflection coefficients. Then, Equation (4)
is reduced to:

|R23|
|T24|

= −|R14|
|T13|

ei(φ14+φ23−φ24−φ13). (5)

In order to satisfy Equation (5), the phase values must be: φ14 + φ23− φ24− φ13 = ±π. This phase
relation offers some flexibility in choosing the phase settings. Two different phase settings often
appear in the literature for a beam splitter with a 50/50 power splitting ratio. When |R23| = |R14| =
|R| = 1√

2
, |T13| = |T24| = |T| = 1√

2
, one could choose φ14 = φ13 = φ23 = 0, φ24 = π as an example.

Other splitting ratios can be chosen as long as |T|2 + |R|2 = 1 is satisfied.

Example 1:

BS1 =
1√
2

(
1 1
1 −1

)
. (6)

Other phase settings could be φ23 = φ14 = φR, φ13 = φ24 = φT with |R23| = |R14| = |R|, |T13| =
|T24| = |T| and substituting these in Equation (5).

|R|
|T| = −

|R|
|T| e

2i(φT−φR), (7)

where φR − φT = π
2 .

By choosing the phase settings φT = 0, φR = π
2 , another example of the BS matrix can be produced.

Example 2:

BS2 =
1√
2

(
1 i
i 1

)
. (8)

Both examples are equivalent when appropriate phase shifters have been introduced before and
after the beam splitter:

1√
2

(
1 1
1 −1

)
=

(
1 0
0 e−i π

2

)
1√
2

(
1 i
i 1

)(
1 0
0 e−i π

2

)
. (9)

2.2. Directionality of a Beam Splitter

A beam splitter is a symmetric device, meaning that any one of four ports can be used as an input,
and its action is invariant under time reversal. At the same time, the device is not symmetric in the sense
that the incoming photon cannot leave through the input port. We call this feature “directional-bias”;
the choice of an input port biases the output to be in only two of the four possible output directions.
This directional bias increases the required number of beam splitters when one enters the realm of
higher dimensionality. In principle, this directional bias could be circumvented by placing external
mirrors after the beam splitters so that they reverse the light propagation direction. This would allow
the photon to leave through the input ports, and the system now becomes “directionally-unbiased”;
all four output possibilities can still be realized, regardless of an input direction. Examples of ways to
achieve this will be discussed in the coming sections.
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2.3. 2 × 2 Integrated Directional Waveguide Coupler

A directional coupler is an integrated optics analog of a beam splitter. When two waveguides are
brought close together, evanescent waves overlap and start coupling in the neighboring waveguide.
Figure 2 illustrates a 2 × 2 integrated directional coupler and its cross-section. The coupling strength κ

can be controlled by changing the distance between two waveguides. The BS and a directional coupler
are both directionally-biased devices. The propagation of a photon through these devices can be
described using a transfer matrix U. Eout = UEin, where Ein and Eout are the input and output fields.

k1

k2

k1

k2

Cross section

(a)

𝛽 𝛽
𝜅

𝟏 𝟐

(b)
Figure 2. (a) A 2 × 2 directional coupler. k1 and k2 represent input and output spatial modes. A photon
can enter either k1 or k2, and a coupler transforms the input state. Two waveguides are closely located to
allow evanescent coupling at the cross-section in the figure. (b) The cross-section area in the directional
coupler illustrated in (a). The coupling strength between two waveguides is κ, and the propagation
constant in each waveguide is β.

The transfer matrix of the directional coupler can be derived using coupled mode equations based
on the Heisenberg equation [19,47]. The evolution in the z direction is given by:

i
dA†

1
dz

= βA†
1 + κA†

2,

i
dA†

2
dz

= κA†
1 + βA†

2,

(10)

where A†
j {j = 1, 2} are creation operators for a photon in the jth waveguide. β is a waveguide

propagation constant, and κ is a coupling coefficient between the two waveguides.
Equation (10) can be rewritten in a matrix form: dA†

1
dz

dA†
2

dz

 = −i

(
β κ

κ β

)(
A1

A2

)
. (11)

We can solve for A1 and A2 by Equation (10) using differential equation solutions in the form of
Equation (11) and finding eigenvalues and eigenvectors.

Eigenvalues with corresponding eigenvectors are given by:

λ1 = −βi− κi :

(
1
1

)
, λ2 = −βi + κi :

(
−1
1

)
,

(
A1

A2

)
= c1e−(βz+κz)i

(
1
1

)
+ c2e−(βz−κz)i

(
−1
1

)
, (12)

Initial conditions are given by: A1(0) = 1, A2(0) = 0, and c1 = 1
2 , c2 = − 1

2 . The full transfer
matrix can be reconstructed after solving also for the alternative initial condition: A1(0) = 0, A2(0) = 1.
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UCoupler =
e−βzi

2

(
e−κzi + eκzi e−κzi − eκzi

e−κzi − eκzi e−κzi + eκzi

)
= e−βzi

(
cos(κz) −isin(κz)
−isin(κz) cos(κz)

)
. (13)

2.4. Interferometers as Two-Dimensional Devices

Interferometers are essential tools in quantum information processing and usually involve
multiple beam splitters. The amplitude of each of the two outgoing modes can be modified by
changing the relative phase between two paths. There are several major interferometer designs that
offer 2 × 2 mode transformation. The Mach–Zehnder interferometer is a directionally-biased device
that could be useful in realizing the Reck decomposition model, while the Michelson interferometer
does not suffer from directional bias.

2.4.1. Mach–Zehnder Interferometer

The Mach–Zehnder interferometer shown in Figure 3 is a directionally-biased interferometer.
Assume that each beam splitter has a 50/50 power splitting ratio between the two outgoing fields and
the device is symmetric because the path length between two arms can be made identical. The beam
splitter matrix UBS is applied twice, and the relative phase shift φ between the two modes by applying
the matrix Uphase is introduced before the photon encounters the second beam splitter.

UMZ = UBSUphaseUBS. (14)

Figure 3. The Mach–Zehnder interferometer. A photon can enter either the port E1 or E2 and will be
transformed by the first beam splitter. The photon can leave either through a superposition of E3 and
E4 and be transformed by the second beam splitter. Finally, the photon leaves the device either through
E5 and/or E6 modes.

By introducing expressions for the above matrices, one would obtain a specific formulation of the
Mach–Zehnder transformation:

UMZ =
1√
2

(
1 i
i 1

)(
eiφ 0
0 1

)
1√
2

(
1 i
i 1

)
=

1
2

(
eiφ − 1 i(eiφ + 1)

i(eiφ + 1) 1− eiφ

)

=
1
2

(
ei φ

2 (ei φ
2 − e−i φ

2 ) iei φ
2 (ei φ

2 + e−i φ
2 )

iei φ
2 (ei φ

2 + e−i φ
2 ) −iei φ

2 (ei φ
2 − e−i φ

2 )

)
= ei( φ

2 +
π
2 )

(
sin( φ

2 ) cos( φ
2 )

cos( φ
2 ) −sin( φ

2 )

)
.

(15)
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The element-wise multiplication leads to the following input-output probability distribution:

PMZ = UMZU∗MZ =
1
2

(
1− cosφ 1 + cosφ

1 + cosφ 1− cosφ

)
, (16)

where U∗ is a complex conjugate of U.
One can easily see that the Mach–Zehnder interferometer effectively serves as a tunable

directionally-biased variable beam splitter, and this tunability plays a key role in higher dimensional
interferometer-based optical networks.

2.4.2. Michelson Interferometer

The Michelson interferometer in Figure 4 is one example of the directionally-unbiased 2× 2 device.
Its layout could be used as an illustration of a general optical design principle that the directional bias
within a 2 × 2 device could be circumvented by placing mirrors after the first beam splitter encounter
and reversing directions of the optical flux.

Phase shift

Phase shift

Figure 4. The Michelson interferometer. A photon can enter either the port E1 and/or E2. The photon
interacts with a beam splitter, mirror, and again with a beamsplitter. The photon leaves through either
E1 and/or E2, which are the same as the input ports. The phase can be controlled by translating mirrors
in the system.

A state of the input photon will be transformed by the first interaction with a BS.(
E3

E4

)
= UBS

(
E1

E2

)
, (17)

where UBS represents a linear transformation between the input fields and output fields of a beam
splitter. In order to consider the transformation of fields from E3 and E4 to E1 and E2, one must
multiply the outcome with the inverse of matrix UBS from the left.

U−1
BS

(
E3

E4

)
= U−1

BS UBS

(
E1

E2

)
. (18)

Since UBS is a unitary matrix U−1
BS = U†

BS, then:(
E1

E2

)
= U†

BS

(
E3

E4

)
. (19)
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This describes the transformation from E3 and E4 to E1 and E2. This still represents a forward
propagation; therefore, we must take a complex conjugate to reverse the propagation direction.(

E∗1
E∗2

)
= UT

BS

(
E∗3
E∗4

)
. (20)

This equation is read as a reverse propagation from E3 and E4 to E1 and E2. Now, the 2 × 2
transformation of optical modes by the Michelson interferometer is described as:

UMichelson = UT
BSUPhaseUBS. (21)

The first transformation UBS describes the propagation from E1 and E2 to E3 and E4, and then,
phase shift Uphase introduces phase shifts between the two fields. The phases can be controlled by
translating mirrors in the system as indicated in Figure 4. Finally, the reversed propagation and
transformation from E3 and E4 to E1 and E2 is given by UT

BS. These transformations complete the
transformation of input fields by the Michelson interferometer. Such 2 × 2 directionally-unbiased
devices based on the Michelson interferometer configuration could be used as elements for building
higher dimensional interferometric systems. The Michelson interferometer is essentially the two-port
version of the unbiased multiports introduced below, with Uphase providing the tunability.

3. Three- and Four-Dimensional Linear Optical Devices

The dimensionality of the 2 × 2 linear-optical device investigated in the previous section can
be expanded to a more general situation covering a greater number of spatial modes. It has been
shown in the past that one has to rely on using multiple 2 × 2 beam splitters in order to execute
a high-dimensional transformation. This relationship is often called a Reck decomposition model
(Reck model) [11]. The Reck model has been demonstrated experimentally [9]. There is also a
symmetric directional alternative to Reck’s approach that is called Clements’ design [12,48]. This design
can realize any unitary matrices and will be discussed in the 4 × 4 device section. In addition to
Reck’s and Clements’ decomposition via multiple lower dimensional devices, a 3 × 3 directional
transformation could be realized directly by exploiting a 3D optical integrated device in a waveguide
configuration that is called an optical tritter [20,49,50]. Another decomposition model has been
proposed as well [51]. This section examines these possible designs for 3 × 3 and 4 × 4 devices in
detail. Four-dimensional devices are not just a simple extension of the three-dimensional devices.
When the numbers of ports exceeds three, the distances between couplers are not identical. This means
coupling strength would not be the same between couplers; therefore, it can change the final transfer
matrix between the input fields and the output fields.

3.1. Reck Decomposition Design

It has been shown theoretically [11] that an arbitrary single N × N unitary matrix, U(N), can
be decomposed into a succession of N(N−1)

2 numbers of 2 × 2 mode mixing matrices. In order to
understand the decomposition procedure, it is useful to understand the decomposition procedure for
the 2 × 2 unitary matrix. Higher dimensional decomposition examples will be provided after the 2 × 2
example. An arbitrary unitary 2 × 2 matrix U(2) is defined as:

U(2) =

(
A B
C D

)
, (22)
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where A, B, C, D ∈ C. C is a set of complex numbers. It is always possible to find a unitary matrix T
such that U(2) becomes diagonal after it is multiplied by the matrix T.

U(2)T =

(
A′ 0
0 D′

)
, (23)

where A′, D′ ∈ C.
The resulting diagonalized matrix will be turned into an identity matrix by multiplying it with an

additional diagonal matrix P.

U(2)TP =

(
1 0
0 1

)
. (24)

This procedure shows that any U(2) matrix can be transformed into an identity matrix. This result
indicates that the inverse matrix (TP)−1 is the original U(2) we wanted. T and P are both unitary
matrices; therefore, T−1 = T† and P−1 = P† where † is complex conjugate and transpose.

U(2)TP = I(2)→ U(2) = (TP)−1 = P†T†. (25)

This procedure shows that a matrix U(2) is decomposed into matrices P† and T†. Such a
diagonalization process can be applied in higher dimensions as well. In the 3 × 3 case, arbitrary
U(3) matrices can be diagonalized using multiple 3 × 3 matrices with each matrix containing U(2)
inside. T3,1, T2,1, and T3,2 are the matrices containing U(2) inside. T3,1 mixes spatial Modes 3 and 1;
T2,1 mixes spatial Modes 2 and 1; and T3,2 mixes spatial Modes 3 and 2.

T3,1 =

U(2)1,1 0 U(2)1,2

0 1 0
U(2)2,1 0 U(2)2,2

 , T3,2 =

(
1 0
0 U(2)

)
, T2,1 =

(
U(2) 0

0 1

)
, (26)

where U(2)1,1 is the element of U(2) from the first row and the first column. The rest of three elements
U(2)1,2, U(2)2,1, U(2)2,2 follow the same rule. Our goal is to find a decomposition for an arbitrary
matrix U(3). Assume that the U(3) matrix has the form of:

U(3) =

A1 B1 C1

D1 E1 F1

G1 H1 I1

 . (27)

As a first step, elements from the first row and the third column U(3)1,3 and the third row and the
first column U(3)3,1 can be eliminated by multiplying a matrix T3,2.

U(3)T3,2 =

A2 B2 0
D2 E2 F2

0 H2 I2

 . (28)

Repeat the elimination procedure for all the non-diagonal elements of U(3).

U(3)T3,2T3,1 =

A3 B3 0
D3 E3 0
0 0 I3

 , (29)

U(3)T3,2T3,1T2,1 =

A4 0 0
0 E4 0
0 0 I4

 . (30)
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U(3) is transformed into an identity matrix after multiplying by a diagonal matrix P. U(3) can be
obtained by taking the inverse of (T3,2T3,1T2,1P).

U(3)T3,2T3,1T2,1P = I(3)→ U(3) = (T3,2T3,1T2,1P)−1 = P†T†
2,1T†

3,1T†
3,2. (31)

Matrix elements Ai through Ii, i ∈ Z belong to C. Z is a set of integers. The U(3) matrix is
decomposed into matrices P†, T†

2,1, T†
3,1, and T†

3,2. This concludes that the knowledge of each individual
beam splitter (or interferometer) in the system allows reconstructing a transfer matrix of the whole
system. The same reconstruction process can be applied in the 4 × 4 case of U(4) decomposition.

U(4)T4,3T4,2T4,1T3,2T3,1T2,1P = I(4)

→ U(4) = (T4,3T4,2T4,1T3,2T3,1T2,1P)−1 = P†T†
2,1T†

3,1T†
3,2T†

4,1T†
4,2T†

4,3.
(32)

The matrices Ti,j, i, j ∈ Z are 4 × 4 matrices, which contain U(2) matrices inside. The experimental
setup in the case of 3× 3 transformation is illustrated in Figure 5. The order of embedded U(2) matrices’
multiplication and their action is equivalent to the physical diagram outlined. The 4 × 4 case is given
in Figure 6. Subfigures (a) and (b) in Figures 5 and 6 are equivalent.

3

2

1 3’

2’

1’

(a)

1

2

3

1’

2’

3’
U32
†

U31
†

U31
†

U21
†

Phase Plates

Unitary Matrices

(b)
Figure 5. (a) The 3 × 3 Reck model realization using three beam splitters. A photon can enter either
Port 1, 2, or 3 and the photon leave either Port 1’, 2’, and/or 3’. A beam splitter in the system can be
substituted by a Mach–Zehnder interferometer if one wants to give amplitude tuning at each beam
splitter encounter. The beam splitter requirement will be increased to six when amplitude tuning by
interferometers is imposed. (b) The information flow decomposition of the bulk 3 × 3 setup using a set
of 2 × 2 unitary matrices. This is equivalent to the physical setup in (a).

3

2

1

3’

2’

1’4

4’

(a)

1

2

3

1’

2’

3’

U43
†

U42
†

U42
†

U21
†

Phase Plates

Unitary Matrices

4 4’U41
†

U41
†

U32
†

U31
†

U31
†

(b)
Figure 6. (a) The 4 × 4 Reck model using six beam splitters (12 with tunability). A photon can enter
either one of four input ports and can leave through any of the four output ports. (b) The information
flow representation in the case of decomposing a bulk 4 × 4 setup using 2 × 2 unitary matrices
illustrated in (a).
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3.2. Clements Decomposition Design

The unitary matrix decomposition can also be realized in a slightly different configuration.
The Clements design transforms the originally non-symmetric Reck configuration into a symmetric
form [12], by which we mean that the situation is non-symmetric when photons in different input ports
experience different numbers of beam splitters during their propagation and before exiting the unit.
It would be helpful for any future consideration to introduce a simplified mesh representation for the
systems outlined in Figure 7. For example, in the case of 4 × 4 transformation, its mesh decomposition
via U(2) embedded matrices could be represented either by the original decomposition proposed by
Reck. The crossing parts in the mesh designs mix spatial modes and consist of integrated couplers.
The tunability of the power splitting ratio can be obtained either through the dynamical change of
the coupling ratio between two waveguides in an integrated coupler or by forming an interferometer
using two integrated couplers executed the same task. The graphical detail of the crossing parts in
mesh design is indicated in Figure 8.

(a) (b)
Figure 7. (a) 4 × 4 mesh of the Reck design. Input photons flow from the left to the right. Each line
cross-section consists of the two-dimensional two-mode mixer illustrated in Figure 8. This is identical
to the setup in Figure 6a. (b) 4 × 4 mesh of symmetric Clements design.

Figure 8. An integrated coupler requires tunability to change a transfer matrix of the system.
The tunability is acquired through an interferometer with phase shifters. θ is an external phase
shift, and φ is an internal phase shift.

The mesh designs are illustrated in Figure 7. They are equivalent to the 4 × 4 Reck model and
4 × 4 Clements model. It is easy to note that a photon in the first path of the 4 × 4 Reck design
illustrated in Figure 7a could encounter only one beam splitter, while the photon in the lowest path
encounters at least three beam splitters prior to exiting the device. In the Clements symmetric design
illustrated in Figure 7b, a photon in the first path and a photon in the last path encounter the same
number of beam splitters. The loss tolerance of a quantum state becomes higher when a photon
experiences the same number of beam splitter interactions [12]. The Clements designs are widely used
instead of Reck decomposition, exactly because of its loss tolerance in quantum information processing.

In a similar way to the Reck model, a unitary matrix can be decomposed using multiple U(2)-based
matrices. Unitary matrices’ realization based on the Reck model is decomposed by multiplying matrices
from one side in succession. It is not necessary to multiply matrices from only one side to decompose
the unitary matrix. The decomposition can be done by multiplying matrices from both sides. The U(3)
case and U(4) case are given as an example.

U(3) case:

T2,3T1,2U(3)T−1
1,2 = P→ U(3) = T−1

1,2 T−1
2,3 PT1,2. (33)
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U(4) case:

T3,4T2,3U(4)T−1
1,2 T−1

3,4 T−1
2,3 T−1

1,2 = P→ U(4) = T−1
2,3 T−1

3,4 PT1,2T2,3T3,4T1,2. (34)

The unitary matrix decomposition is possible, and this has been experimentally realized and
demonstrated [12,52].

3.3. Integrated Optical Tritter and Quarter

Three- and four-dimensional directional linear optical devices will be introduced in this section.
Integrated waveguide couplers [19,20,53,54] can be used to implement an optical tritter illustrated in
Figure 9a and its cross-section shown in Figure 9b. The propagation dynamics of such a system can be
described using the same formalism as in the previous case of the directional 2 × 2 coupler:

k1
k2
k3

k1

k2

k3

Cross section

(a)

𝟏 𝟐

𝟑

𝛽

𝛽

𝛽

𝜅

𝜅

𝜅

(b)
Figure 9. (a) Integrated optical tritter. ki {i = 1, 2, 3} represent input and output spatial modes.
(b) Coupling region of the integrated tritter. β is a waveguide propagation coefficient, and κ is a
coupling coefficient between the couplers.

i
dA†

1
dz

= βA†
1 + κA†

2 + κA†
3,

i
dA†

2
dz

= κA†
1 + βA†

2 + κA†
3,

i
dA†

3
dz

= κA†
1 + κA†

2 + βA†
3,

(35)

where A†
j {j = 1, 2, 3} are creation operators for a photon in the jth waveguide; β is a propagation

constant in each waveguide; and κ is a coupling coefficient. It is assumed that all waveguides are
identical and the distances between them are the same.

One could solve these equations using a matrix formalism in a similar way as the two-
dimensional case: 

dA1
dz

dA2
dz

dA3
dz

 = −i

β κ κ

κ β κ

κ κ β


A1

A2

A3

 . (36)

One could find eigenvalues and corresponding eigenvectors:

λ1 = −βi + κi :

−1
1
0

 ,

−1
0
1

 , λ2 = −βi− 2κi :

1
1
1

 ,

A1

A2

A3

 = c1e−βzi+κzi

−1
1
0

+ c2e−βzi+κzi

−1
0
1

+ c3e−βzi−2κzi

1
1
1

 . (37)
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When the initial conditions are given by: A1(0) = 1, A2(0) = 0, A3(0) = 0, then c1 =

c2 = − 1
3 , c3 = 1

3 , where z is the propagation length. Other initial conditions are given as
A1(0) = 0, A2(0) = 1, A3(0) = 0, and A1(0) = 0, A2(0) = 0, A3(0) = 1. After solving for all
initial conditions, we can obtain a total transfer matrix for the system.

UIntTritter =
e−βzi

3

 2eκzi + e−2κzi −eκzi + e−2κzi −eκzi + e−2κzi

−eκzi + e−2κzi 2eκzi + e−2κzi −eκzi + e−2κzi

−eκzi + e−2κzi −eκzi + e−2κzi 2eκzi + e−2κzi

 . (38)

Unlike two- and three-dimensional couplers where the distances between each pair of couplers are
the same, for the four-dimensional coupler with its cross-section in Figure 10b, the coupling coefficients
between diagonal coupling regions are different from those on the edges of the square. We again
assume the coupling strength can be controlled.

i
dA†

1
dz

= βA†
1 + κ1 A†

2 + κ2 A†
3 + κ1 A†

4,

i
dA†

2
dz

= κ1 A†
1 + βA†

2 + κ1 A†
3 + κ2 A†

4,

i
dA†

3
dz

= κ2 A†
1 + κ1 A†

2 + βA†
3 + κ1 A†

4,

i
dA†

4
dz

= κ1 A†
1 + κ2 A†

2 + κ1 A†
3 + βA†

4,

(39)

where A†
j {j = 1, 2, 3, 4} are creation operators for a photon in the jth waveguide, β is a propagation

constant, κ1 is a coupling coefficient between two non-diagonal couplers, and κ2 is a coupling coefficient
for two diagonal couplers.

k3

k2

k3

k4

k1

k2

k1

k4

Cross section

(a)

𝟏 𝟐

𝟑𝟒
𝛽

𝛽

𝛽

𝛽

𝜅1

𝜅1

𝜅1

𝜅1

𝜅2

𝜅2

(b)
Figure 10. (a) Integrated quarter. ki {i = 1, 2, 3} represent input and output spatial modes. (b) Cross-
section area of the integrated quarter. A waveguide propagation constant is β, and coupling coefficients
are κ1 for the neighboring couplers and κ2 for the diagonal couplers.

One could solve this combination of equations using matrix formalism
dA1
dz

dA2
dz

dA3
dz

dA4
dz

 = −i


β κ1 κ2 κ1

κ1 β κ1 κ2

κ2 κ1 β κ1

κ1 κ2 κ1 β




A1

A2

A3

A4

 . (40)

and by finding its eigenvalues and eigenvectors:

λ1 = βi− κ2i :


−1
0
1
0

 ,


0
−1
0
1

 , λ2 = βi− 2κ1i + κ2i :


−1
1
−1
1

 , λ3 = βi + 2κ1i + κ2i :


1
1
1
1

 , (41)
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
A1

A2

A3

A4

 = c1eβzi−κ2zi


−1
0
1
0

+ c2eβzi−κ2zi


0
−1
0
1

+ c3eβzi−2κ1zi+κ2zi


−1
1
−1
1

+ c4eβzi+2κ1zi+κ2zi


1
1
1
1

 . (42)

When the initial conditions are given by: A1(0) = 1, A2(0) = 0, A3(0) = 0, A4(0) = 0, then
c1 = − 1

2 , c2 = 0, c3 = − 1
4 , c4 = 1

4 where z is the propagation length. After imposing the initial
conditions and solving, we obtain a total transfer matrix for the system:

UIntQuarter =
eβzi

4


A B C B
B C B A
C B A B
B A B C

 , (43)

where:

A = 2e−κ2zi + e(−2κ1+κ2)zi + e(2κ1+κ2)zi,

B = −e(−2κ1+κ2)zi + e(2κ1+κ2)zi,

C = −2e−κ2zi + e(−2κ1+κ2)zi + e(2κ1+κ2)zi.

(44)

4. Directionally-Unbiased Linear-Optical Designs

Directional devices were introduced in the previous sections. In this section, directionally-unbiased
optical devices will be introduced. Some types of directionally-unbiased systems have existed
in the literature for a long time [55,56], while new beam splitter-based designs have been
introduced recently [43,57]. The new beam splitter-based design will be reviewed first, and then,
a directionally-unbiased design based on an optical tritter will be introduced. These devices are
the building blocks for quantum information processing applications, especially quantum walks.
Three- and four-port designs will be reviewed in the following subsections.

4.1. Directionally-Unbiased Linear-Optical Three- and Four-Port Devices

Recently, several new designs for directionally-unbiased linear-optical multiports have been
introduced, and they have applications in quantum simulations of Hamiltonians and topological
phase simulations [43,58–60]. A three-port operation has been experimentally demonstrated using
bulk optical devices [57]. The basic components of the multiport devices are beam splitters, mirrors,
and phase shifters. The three-port operation is given in Figure 11. The entrance and exit ports are
denoted as Port A, Port B, and Port C. A photon can enter any of the three ports, and the photon
can leave any of the three ports. When a photon enters the system, the photon amplitude will be
split at each beam splitter in the system. The final output photon amplitudes can be described by a
transfer matrix constructed by adding all the possible paths the photon would take before it leaves
the system. The coherence of the photon needs to be long enough to add all amplitudes coherently
within the system. The four ports illustrated in Figure 12 will be introduced, as well as three ports in
this subsection.
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Port C

Port A

Port B

Mirror Unit

P M

BS

BS

BS

P

P

M

M

Mirror Unit

Mirror Unit

Figure 11. Directionally-unbiased linear-optical three-port operation. Input ports can be used as
outputs in this system. For example, if a photon is inserted at Port A, then the photon would leave
Ports A, B, and C. The beam splitter (BS) splits the incoming photon into two outgoing directions.
Mirror units are necessary to reverse the propagation direction so that the directional system becomes
directionally-unbiased. Mirror units consist of a phase shifter P and mirror M, as illustrated in the figure.

Port A
Port B

Port CPort D

BS BS

BSBS

P

P

P

P

M

M

M

M

Mirror Unit

Mirror Unit

Mirror Unit

Mirror Unit

Figure 12. Directionally-unbiased linear-optical four-port operation. It has the same configuration as
Figure 11 with one extra input/output port.

All input-output transfer elements for three ports could be considered as a coherent superposition
of all possible paths inside the device:

A→ A =
1
4

eiφC +
1
4

eiφB − i
1
8

ei(φB+φC) − i
1
8

ei(φB+φC) +
1
16

ei(φA+φB+φC) +
1
16

ei(φA+φB+φC)

− 1
16

ei(φB+φC+φB) − 1
16

ei(φC+φB+φC) − 1
16

ei(φB+φA+φB) − 1
16

ei(φC+φA+φC) + . . . ,
(45)

A→ B = i
1
2
− 1

4
eiφC − i

1
8

ei(φA+φB) + i
1
8

ei(φA+φC) + i
1
8

ei(φB+φC) +
1

16
ei(φA+φB+φC)

− 1
16

ei(φA+φB+φC) − 1
16

ei(φA+φB+φC) +
1
16

ei(φC+φB+φC) +
1

16
ei(φC+φA+φC) + . . . ,

(46)
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A→ C = i
1
2
− 1

4
eiφB + i

1
8

ei(φA+φB) − i
1
8

ei(φA+φC) + i
1
8

ei(φB+φC) +
1
16

ei(φA+φB+φC)

− 1
16

ei(φA+φB+φC) − 1
16

ei(φA+φB+φC) +
1
16

ei(φB+φC+φB) +
1
16

ei(φB+φA+φB) + . . . .
(47)

A→ A represents a transfer amplitude for the input A back to the output A. A similar geometric
sum can be constructed for elements describing the photon coming in at B and leaving through Ports
A, B, and C and, similarly, for an input C and the output through A, B, and C. Using the values above,
a transfer matrix for this system can be reconstructed:

Umultiport =

UA→A UB→A UC→A
UA→B UB→B UC→B
UA→C UB→C UC→C

 . (48)

Here, UA→A represents a transition from Port A to Port A. All terms are coherently summed;
therefore, these transition amplitudes are for the long-time limit. The rest of the elements describe
other possible (input→ output) transitions.

The dimensionality and the number of optical elements is increased in the case of a four-port
device as illustrated in Figure 12. It needs to be noted that four ports are slightly different from the
three ports because of the numbers of beam splitter encounters before the input photon leaves the
system. For example, the shortest path for Port A to Port B would be A→ B with one beam splitter
encounter. Similarly, the shortest path for Port A to Port C would be A → B → C or A → D → C
with two beam splitter encounters. The probability amplitude is lower for the path A to C because
the photon encounters one extra beam splitter. This path-dependent amplitude difference needs to be
considered for higher dimensional multiport implementation.

A→ A =
1
4

eiφB +
1
4

eiφD − 1
16

ei(φB+φC+φB) +
1

16
ei(φB+φC+φD) − 1

16
ei(φD+φC+φD)

+
1

16
ei(φD+φC+φB) − 1

16
ei(φB+φA+φB) − 1

16
ei(φD+φA+φD) + . . . ,

(49)

A→ B = i
1
2
− i

1
8

ei(φD+φC) − i
1
8

ei(φB+φA) + i
1
8

ei(φB+φC) + i
1
8

ei(φD+φA) + . . . , (50)

A→ C = −1
4

eiφB − 1
4

eiφD − 1
16

ei(φB+φC+φD) +
1

16
ei(φB+φA+φB) +

1
16

ei(φD+φC+φD)

− 1
16

ei(φD+φC+φB) +
1

16
ei(φB+φA+φB) +

1
16

ei(φD+φA+φD) + . . . ,
(51)

A→ D = i
1
2
− i

1
8

ei(φB+φC) − i
1
8

ei(φD+φC) − i
1
8

ei(φD+φA) + i
1
8

ei(φB+φA) + . . . . (52)

The final transfer matrix consists of 16 (input→ output) transition amplitudes:

Umultiport =


UA→A UB→A UC→A UD→A
UA→B UB→B UC→B UD→B
UA→C UB→C UC→C UD→C
UA→D UB→D UC→D UD→D

 . (53)

4.2. Constructing Reversible Optical Tritter and Quarter

It has been shown earlier that traditional integrated optical 3 × 3 and 4 × 4 couplers are
directionally-biased devices. However, placing mirrors at each of the output ports of the device
helps to eliminate this directional bias and return the optical signal back to any of the input ports.
This type of reversible design has been also introduced in the area of linear interferometric networks
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and has been sometimes called a generalized Michelson interferometer [61,62]. The reversibility is
introduced by mirrors, while additional phase shifters can be introduced before the mirrors. Both 3 × 3
and 4 × 4 implementations are illustrated in Figure 13. The reversed tritter can be realized using
the same design formalism as a generalized Michelson interferometer. The input photon state is
transformed by a tritter matrix, phase shifters, and a transposed tritter matrix.

k1

k2
k3

Mirrors

(a)

k1

k2

k3

k4

Mirrors

(b)
Figure 13. (a) Reversible integrated tritter. The photon propagation direction is reversed by placing
mirrors at the end of the coupling region. (b) Reversible integrated quarter. It has the same configuration
as (a) with an extra input and output port.

URevTritter = UT
IntTritterUphaseUIntTritter, (54)

Uphase =

eiφA 0 0
0 eiφB 0
0 0 eiφC

 , (55)

UIntTritter =
e−βzi

3

 2eκzi + e−2κzi −eκzi + e−2κzi −eκzi + e−2κzi

−eκzi + e−2κzi 2eκzi + e−2κzi −eκzi + e−2κzi

−eκzi + e−2κzi −eκzi + e−2κzi 2eκzi + e−2κzi

 =
e−βzi

3

A B B
B A B
B B A

 , (56)

where A = 2eκzi + e−2κzi and B = −eκzi + e−2κzi. Putting all the pieces together, the final expression is:

URevTritter =
e−2βzi

9

eiφA AA + eiφB BB + eiφC BB eiφA AB + eiφB BA + eiφC BB eiφA AB + eiφB BB + eiφC BA
eiφA BA + eiφB AB + eiφC BB eiφA BB + eiφB AA + eiφC BB eiφA BB + eiφB AB + eiφC BA
eiφA BA + eiφB BB + eiφC AB eiφA BB + eiφB BA + eiφC AB eiφA BB + eiφB BB + eiφC AA

 . (57)

Uphase =


eiφA 0 0 0

0 eiφB 0 0
0 0 eiφC 0
0 0 0 eiφD

 , (58)

where φA, φB, φC and φD are phase shifts introduced before the second device encounter.

UIntQuarter =
eβzi

4


A B C B
B C B A
C B A B
B A B C

 , (59)

where A = 2e−κ2zi + e−2κ1zi+κ2zi + e2κ1zi+κ2zi, B = −e−2κ1zi+κ2zi + e2κ1zi+κ2zi, and C = −2e−κ2zi +

e−2κ1zi+κ2zi + e2κ1zi+κ2zi. The reversible quarter matrix is then derived from the equation below.

URevQuarter = UT
IntQuarterUphaseUIntQuarter. (60)
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5. Discrete-Time Quantum Walks

Up to this section, photonics-based linear optical devices have been investigated. A major
motivation for focusing on the directionally-unbiased versions is in their potential for implementing
quantum walk applications. Quantum walks are motivated from classical random walks.
Quantum walks can support superposition states and interference in the system where interference
is absent in classical random walks. There are two types of quantum walks, discrete-time quantum
walks and continuous-time quantum walks. During the discrete-time quantum walk, the evolution
operator is applied in a discrete time fashion while the operator application timing is irrelevant in
the continuous case. We focus on the discrete case in this review. The simplest classical and quantum
walk design would be a walk performed on a line. In the case of a classical random walk on a line
with an unbiased two-dimensional coin, a walker can hop one step to the right or to the left with
equal probability depending on the result of a coin-toss event. The walker walks on a line for certain
steps, and the probability at a specific position can be obtained by repeating the process. By recording
all the probability at each location on the line, a probability distribution associated with that coin is
constructed. Classical random walks involve intermediate measurement, meaning the position of the
walker is measured right after a coin-toss event. In contrast, the quantum approach to random walks
preserves the coherence of all possible paths by not measuring an intermediate state of the walker and,
as a consequence, enables the quantum interference of available probability amplitudes. It is known
that the probability distribution spreads faster in quantum walks compared to classical random walks.
Classical random walks are useful for many randomized algorithm implementations [63]. It is natural
to consider that quantum walks could achieve better outcomes than classical random walk-based
algorithms, and it is indeed possible to gain algorithmic speedup using the fact that quantum walks can
spread faster than classical random walks. Several different algorithms have been developed through
quantum walks, and some are faster than classical algorithms. Hitting time, graph traversal speed
from a point to another point in a graph, on a hypercube [21,22], and a glued tree are known to be
exponentially faster in the quantum case [23,24]. Element distinctness [25], triangle finding [26], matrix
product verification [27], and group commutativity testing [28] have been also investigated. Flexible
graph construction is necessary to perform quantum walk-based algorithms. Any graphs consist of
vertices and edges, and these need to be prepared in an experimentally realizable way. This task can
be achieved through linear-optical devices, which have several input and output ports as discussed in
previous sections. An experimental quantum walk implementation has been demonstrated in optical
systems using optical cavities [29,30], optical rings [31], time-bins [32], Michelson interferometers [33],
optical network [34], beam displacers [35], orbital angular momentum manipulation [36–38], and
optical refraction [64]. The majority of these implementations are based on directional-optical devices;
therefore, their implementation costs would rapidly increase as the dimensionality of the quantum
walk system becomes higher. This applies to spatially-multiplexed quantum walk systems as they
need to use beam splitters in a feed-forward manner. Time-multiplexed quantum walks are also
commonly used since they can be compact. However, it would be challenging to perform node-by-node
amplitude tuning. Integrated waveguide-based systems can be made directionally-unbiased and have
been experimentally demonstrated [39,65,66]. Directionally-unbiased linear-optical multiport-based
quantum walk configurations, which can realize amplitude tunability while offering an implementation
resource reduction, will be introduced in the following several subsections.

5.1. Coin Walk: Quantum Walk on Vertices

The traditional quantum walk is illustrated using a position Hilbert space HP and a “coin”
Hilbert space HC. A quantum walker’s position is described by the amplitudes in a position space
spanned by {|m〉 , m ∈ Z}, and a coin space is spanned by a two-dimensional computational basis
{|R〉 ≡ (1, 0)T , |L〉 ≡ (0, 1)T}. The Hilbert space of the system is given by H = HP ⊗ HC. We define
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a coin operator Ĉ and a shift operator Ŝ acting on each Hilbert space. The shift operator translates a
walker’s position from |m〉 to |m− 1〉 or |m + 1〉 depending on the result of the coin operation.

Ŝ |m〉 |R〉 = |m + 1〉 |R〉 and Ŝ |m〉 |L〉 = |m− 1〉 |L〉 . (61)

We can deduce a linear operator Ŝ.

Ŝ =
∞

∑
n=−∞

|m + 1〉 〈m| ⊗ |R〉 〈R|+
∞

∑
n=−∞

|m− 1〉 〈m| ⊗ |L〉 〈L| . (62)

The walker’s direction of the walk is decided by the result of the coin operator. The walk consists
of applying, at each step, the coin operator, then the shift operator. The combined operation is given by:

V̂ = Ŝ · ( Î ⊗ Ĉ). (63)

This V̂ is applied on an initial state multiple times to perform walks with multiple steps.

|ψ(t = N)〉 = V̂N |ψ(t = 0)〉 . (64)

The Hadamard coin operator Ĥ2 can be used to demonstrate the quantum walk. The coin operator
Ĉ in Equation (63) is substituted by Ĥ2.

Ĥ2 =
1√
2

(
1 1
1 −1

)
. (65)

One cycle of the quantum walk is completed by applying Ĥ ⊗ Î followed by Ŝ. This process is
performed multiple times without making intermediate measurements. Final measurements are made
after a certain number of time steps. The probability distribution generated using a quantum walk
behaves differently than a classical random walk. The standard deviation of the classical random walk
on a line with N step is known to have a size of

√
N [4]; on the other hand, a quantum walk on a line

has a standard deviation of the order of N. This indicates that the quantum walk spreads faster than
the classical random walk and can result in large speed increases in searching applications.

5.2. Scattering Quantum Walk: Quantum Walk on Edges

A different picture of the quantum walk is provided by the scattering model introduced [41,42].
This discrete-time scattering-based quantum walk is also called an edge walk. Unlike the coin model,
the interference occurs on edges instead of performing the walk only on vertices. Each vertex works
as a scattering center in this model. An input photon amplitude and phase will be controlled by a
transmission and reflection coefficient at the scattering center. This model starts with a photon in a
state |m− 1, m〉, representing a photon propagating from a vertex location m− 1 to m, hence describing
a state on an edge.

In this scattering model, a Michelson interferometer can serve as a vertex with two edges. One-step
propagation starting at a specific edge is given by:

ÛMichelson |m− 1, m〉 → 1√
2
(|m, m + 1〉+ i |m, m− 1〉).

ÛMichelson |m + 1, m〉 → 1√
2
(|m, m− 1〉+ i |m, m + 1〉).

(66)
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We will introduce a simplified description for a single scattering center, but we present the
full description first. The unitary transformation represented by the Michelson interferometer in
Equation (66) and illustrated in Figure 14b can be rewritten using the matrix below:

UFull =


AR → AR AL → AR BR → AR BL → AR
AR → AL AL → AL BR → AL BL → AL
AR → BR AL → BR BR → BR BL → BR
AR → BL AL → BL BR → BL BL → BL

 =
1√
2


0 i 1 0
i 0 0 1
1 0 0 i
0 1 i 0

 . (67)

ÛFull |AR〉 →
1√
2
(|BR〉+ i |AL〉),

ÛFull |BL〉 →
1√
2
(|AL〉+ i |BR〉).

(68)

BA

(a)

AR BR

BLAL
(b)

Figure 14. (a) Directionally-insensitive description for a scattering center. A photon can enter Port A
and then leave either Port A or B. (b) Directionally-sensitive description for a scattering center. If the
photon is initially in the state AR, then the photon will have an amplitude in the AL direction and the
BR direction. Photon in states AR and AL do not interact, so they need to be distinguished when a
graph is formed based on scattering centers.

|AR〉, |AL〉, |BR〉, and |BL〉 correspond to |m− 1, m〉, |m, m− 1〉, |m, m + 1〉, and |m + 1, m〉,
respectively. The propagation direction needs to be distinguished when multiple scattering centers
are connected, but a simplified version can be used for a single scattering center. We will use the
simplified matrix for a single scattering element in the upcoming sections so that we can directly make
a comparison to the coin operators:

ÛSimpli f ied =

(
A→ A B→ A
A→ B B→ B

)
=

1√
2

(
i 1
1 i

)
(69)

By repeating this unitary matrix transformation process from an initial state, a walk can be
implemented on a line. This scattering model is unitarily equivalent to the coin walk [67,68]. To see
the unitary equivalence between the two models, we define a unitary operator Ê.

Ê |m− 1, m〉 = |m〉 ⊗ |R〉 ,

Ê |m + 1, m〉 = |m〉 ⊗ |L〉 ,
(70)

where |R〉 and |L〉 are defined in the coin model section. Consider a state evolution by operators ÊÛ
with an initial condition |m− 1, m〉 .

Û |m− 1, m〉 = 1√
2
(|m, m + 1〉+ i |m, m− 1〉),

ÊÛ |m− 1, m〉 = 1√
2
(|m + 1〉 ⊗ |R〉+ i |m− 1〉 ⊗ |L〉).

(71)
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V̂Ê |m− 1, m〉 = V̂ |m〉 ⊗ |R〉 = Ŝ |m〉 ⊗ 1√
2
(|R〉+ i |L〉)

=
1√
2
(|m + 1〉 ⊗ |R〉+ i |m− 1〉 ⊗ |L〉).

(72)

The former represents the edge walk, and the latter represents the coin walk. The outcomes are
the same when the evolution operators Û and V̂ are multiplied by the operator Ê; therefore, these two
formalisms are unitarily equivalent. This unitary equivalence ÊÛ = V̂Ê can be also seen as Û = Ê†V̂Ê.
Ûn = Ê†V̂nÊ because of unitarity of the operator Ê where n is an integer. This result can be extended
to higher dimensional walks. We can find the same equivalence for an initial state |m + 1, m〉.

5.3. Higher Dimensional Coin Operators and Scattering Vertices

Quantum walks can be extended to higher dimensions by changing the dimension of the operators
in the system and attaching additional edges to each vertex. It is possible to introduce scattering
centers with different scattering amplitude ratios between output modes using directionally-unbiased
devices. We will introduce several different coin operators and corresponding scattering centers in
this section. The relationship between the coin model and the scattering model is deduced using an
additional unitary operator as discussed in the previous subsection. There are several quantum coin
operators with specific characteristics. The Hadamard coin, an unbiased coin, is one example.

The four-dimensional real-valued Hadamard coin H4 is given as an example. This matrix is
obtained by taking tensor product of two two by two real Hadamard matrices H2.

H4 = H2 ⊗ H2 =
1
2


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 . (73)

In addition to the Hadamard coin, there are two other major specific coins used in quantum
information processing. The first coin is motivated by Grover’s search algorithm [2].

Cd =


2
d − 1 2

d . . . 2
d

2
d

2
d − 1 . . . 2

d
...

...
. . .

...
2
d

2
d . . . 2

d − 1

 , (74)

where d is the size of the matrix.
Matrices for d = 3 and 4 are given.

C3 =
1
3

−1 2 2
2 −1 2
2 2 −1

 and C4 =
1
2


−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1

 . (75)
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This coin is biased in amplitudes (except for d = 4), yet symmetric under permutations of matrix
labels. Another coin is a discrete Fourier transform (DFT) coin; this coin is unbiased; however, it is not
symmetric under permutations. The Fourier transform matrix is given by:

UFourier =
1√
d


1 1 1 . . . 1
1 ω ω2 . . . ωd−1

1 ω2 ω4 . . . ω2(d−1)

...
...

...
. . .

...
1 ω(d−1) ω2(d−1) . . . ω(d−1)(d−1)

 , (76)

where ω = e−
2πi

d .
Three-dimensional and four-dimensional Fourier coins are given by:

UFourier =
1√
3

1 1 1
1 ω3 ω2

3
1 ω2

3 ω3

 , (77)

where ω3 = e−
2πi

3 .

UFourier =
1
2


1 1 1 1
1 ω4 ω2

4 ω3
4

1 ω2
4 ω4

4 ω6
4

1 ω3
4 ω6

4 ω9
4

 =
1
2


1 1 1 1
1 i 1 −i
1 −1 1 −1
1 −i −1 i

 , (78)

where ω4 = e−
2πi

4 .

5.4. Equivalence between Higher Dimensional Coin Walk and Scattering Quantum Walk

The coin walk and the scattering walk were introduced in the previous subsections, as well as
higher dimensional coin operators. It is possible to give a unitary equivalence relation between the two
walks in higher dimensions as well. Consider a quantum walk on a 2D rectangular lattice. The center
of the grid is given by coordinate (m, n). A photon on one of the edges around that grid is defined as
|m, m, n− 1, n〉. This state is read as a photon propagation from a vertex location (m, n− 1) to (m, n).
The unitary operator for one propagation step of an edge is defined as:

Û |m− 1, m, n, n〉 → 1
2
(|m, m− 1, n, n〉+ |m, m, n, n + 1〉 − |m, m + 1, n, n〉+ |m, m, n, n− 1〉),

Û |m, m, n + 1, n〉 → 1
2
(|m, m− 1, n, n〉+ |m, m, n, n + 1〉+ |m, m + 1, n, n〉 − |m, m, n, n− 1〉),

Û |m + 1, m, n, n〉 → 1
2
(− |m, m− 1, n, n〉+ |m, m, n, n + 1〉+ |m, m + 1, n, n〉+ |m, m, n, n− 1〉),

Û |m, m, n− 1, n〉 → 1
2
(|m, m− 1, n, n〉 − |m, m, n, n + 1〉+ |m, m + 1, n, n〉+ |m, m, n, n− 1〉).

(79)

The corresponding coin operator of the coin walk is given by:

Ĉ =
1
2


−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1

 . (80)
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The operator transforms an initial coin state into a superposition state:

Ĉ |L〉 = 1
2
(− |L〉+ |U〉+ |R〉+ |D〉), (81)

where |L〉 = (1, 0, 0, 0)T , |U〉 = (0, 1, 0, 0)T , |R〉 = (0, 0, 1, 0)T , |D〉 = (0, 0, 0, 1)T . A new shift operator
is defined as follows:

Ŝ = ∑
m

∑
n
(|m, n + 1〉 〈m, n| ⊗ |U〉 〈U|+ |m, n− 1〉 〈m, n| ⊗ |D〉 〈D|

+ |m + 1, n〉 〈m, n| ⊗ |R〉 〈R|+ |m− 1, n〉 〈m, n| ⊗ |L〉 〈L|).
(82)

One step of the coin walk is given by:

V̂ = Ŝ( Î ⊗ Ĉ). (83)

We wish to find equivalence between the edge walk and the coin walk by finding a unitary
operator Ê. Define an operator Ê transforming edge states into vertex states.

Ê |m− 1, m, n, n〉 = |m, n〉 ⊗ |R〉
Ê |m, m, n + 1, n〉 = |m, n〉 ⊗ |D〉
Ê |m + 1, m, n, n〉 = |m, n〉 ⊗ |L〉

Ê |m, m, n− 1, n〉 = |m, n〉 ⊗ |U〉 .

(84)

Consider two cases for the coin-based walk and edge walk starting with an initial state
|m, m, n− 1, n〉.

Unitary transformation of the coin-based walk:

Ê |m, m, n− 1, n〉 = |m, n〉 ⊗ |U〉 . (85)

V̂Ê |m, m, n− 1, n〉 = S |m, n〉 ⊗ (
1
2
(|L〉 − |U〉+ |R〉+ |D〉)

= S
1
2
(|m, n〉 ⊗ |L〉 − |m, n〉 ⊗ |U〉+ |m, n〉 ⊗ |R〉+ |m, n〉 ⊗ |D〉)

=
1
2
(|m− 1, n〉 ⊗ |L〉 − |m, n + 1〉 ⊗ |U〉+ |m + 1, n〉 ⊗ |R〉+ |m, n− 1〉 ⊗ |D〉).

(86)

Unitary transformation of the edge-based walk:

Û |m, m, n− 1, n〉 = 1
2
(|m, m− 1, n, n〉 − |m, m, n, n + 1〉+ |m, m + 1, n, n〉+ |m, m, n, n− 1〉). (87)

ÊÛ |m, m, n− 1, n〉 = 1
2
(|m− 1, n〉 ⊗ |L〉 − |m, n + 1〉 ⊗ |U〉+ |m + 1, n〉 ⊗ |R〉+ |m, n− 1〉 ⊗ |D〉). (88)

V̂Ê and ÊÛ both transform the initial state into the same state. Therefore, the outcomes are
equivalent, and the coin walk and the scattering walk are unitarily equivalent. We went through a
specific equivalence, which is the quantum walk generalized equivalence between two models, as
found elsewhere [41,67].

5.5. Examples of Multi-Dimensional Quantum Walks on Graphs

The two types of quantum walks, the coin quantum walk and the scattering (edge) quantum
walk, are both performed on graphs. Graphs with nodes implemented by higher dimensional coins are
applicable to algorithm development. For example, the Grover search algorithm, when implemented
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via quantum walks on certain graphs with a superposition initial state, demonstrates significant
speedup over classical algorithms. Many quantum walk applications are based on undirected graphs,
meaning a walker can travel forward and backward in the system. Directionally-unbiased linear-optical
devices possess reversibility and therefore can implement such undirected graphs. It is shown that a
spatial search performed on a 2D lattice is faster than similar classical algorithms [69–74]. To observe
the spatial search on a 2D lattice, the scattering centers have transmission and reflection coefficients
equal to the Grover coin setting. One node in a graph is “marked” by introducing a different matrix on
one specific scattering center in the lattice. Localization occurs on edges around the marked scattering
center when the superposition state is sent in the system as an initial state. The graph geometry can
be configured using directionally-unbiased devices. The rectangular lattice illustrated in Figure 15a
would require four-port devices. Similarly, the hexagonal lattice illustrated in Figure 15b would
require three-port devices. These optical quantum walk implementations through these optical devices
are advantageous because of their amplitude tunability. The graphs can be implemented with the
same Grover coin matrix setting throughout the graph vertices initially, then a marked coin can be
introduced by tuning one of the vertices into a different coin. A quantum walk search can find the
marked point faster than any classical search algorithms.

(a) (b)
Figure 15. (a) Rectangular lattice. This structure has four edges for every vertex. (b) Hexagonal lattice.
This structure has three edges for every vertex.

Other graph structures can be considered using directionally-unbiased devices. Quantum walks
on a glued tree have been investigated theoretically and experimentally [39,75]. Hitting time, the time
required to reach one point to another point on a graph, is commonly used to evaluate propagation
speed on a specific graph. A quantum walk on a glued tree with three nodes gives exponential speedup
when the three-dimensional Grover coin is used at the nodes [76]. We can form hypercubes using
unbiased multiports, and it has been shown that the quantum walk hitting time is shorter than the
classical walk case [22]. A walker starts on the left side of the graph, and the walker tries to reach the
other end in a short amount of time. As indicated in Figure 16a, the randomly-connected middle part
in the glued tree complicates the path finding procedure to reach the other end. The speedup applies
in the case of the hypercube as well. A four-dimensional hypercube is illustrated in Figure 16b as an
example. Classical algorithms cannot perform this search efficiently. On the other hand, quantum
walks can perform exponentially faster than any classical algorithms to find the other end of the path.



Entropy 2019, 21, 853 25 of 32

(a) (b)
Figure 16. (a) Glued tree. Two trees are glued in a random manner in the middle part of the graph.
A photon’s hitting time from one red circle to the other red circle is shorter than the classical walk on
this graph. (b) Four-dimensional hypercube. Every vertex has four edges. A photon’s hitting time from
one red circle to the other red circle is shorter than the classical walk on this graph.

6. Specific Transfer Matrix Examples Using Reversible Linear-Optical Devices

We consider several specific experimental configurations for an efficient realization of quantum
walks in higher dimensions using linear optical devices and exploiting the very important feature of
optical reversibility. We look into specific phase values and corresponding transfer matrices using
formalisms covered in previous sections. The focus here is on realization of the Fourier coin and the
Grover coin using directionally-unbiased linear-optical multiports, and reversible optical tritter and
quarter configurations.

6.1. The Fourier Coin Realization

A three-dimensional Fourier coin has the form (see Section 5.3):

UFourier =
1√
3

1 1 1
1 ω3 ω2

3
1 ω2

3 ω3

 , (89)

where ω3 = e−
2πi

3 .
This matrix can be generated with a reversible tritter containing phase shifters at all three ports,

and directionally-unbiased linear-optical three-ports can perform the same job as well. For a reversible
system, an input photon experiences the same phase shifts twice from the same phase shifters. Uphasein
and Uphaseout would take care of such phase shifts. Figure 17 is a reversible tritter with phase shifters.
Multiport designs are introduced in Section 4.1.

k1
k2
k3

MirrorsPhase Plates

Figure 17. Reversible tritter with phase shifters. The yellow squares are phase shifters, and the green
squares are mirrors.

The matrix generation is performed by multiplying Uphasein, Udevice, and Uphaseout in sequence.
Udevice can be any reversible optical device. The Fourier coin using the optical tritter is realized by the
following procedure.

UFourier = UphaseoutUTritterUphasein. (90)
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Uphasein = Uphaseout =

eiφa 0 0
0 eiφb 0
0 0 eiφc

 , (91)

UFourier =

e−i π
3 0 0

0 ei π
3 0

0 0 ei π
3

 i√
3

ei 2π
3 1 1

1 ei 2π
3 1

1 1 ei 2π
3


e−i π

3 0 0
0 ei π

3 0
0 0 ei π

3



=
i√
3

1 1 1
1 e−i 4π

3 e−i 2π
3

1 e−i 2π
3 e−i 4π

3

 ,

(92)

where φa, φb, φc are the phase shifts from phase shifters at the entrance ports. The reversible optical
tritter and quarter can realize the Fourier coin when phases are set at specific values:

(φA, φB, φC, κz, φa, φb, φc) = (
10π

9
,

10π

9
,

10π

9
,

10π

9
,−π

3
,

π

3
,

π

3
), (93)

where φA, φB, φC, and κz are phase values from mirror units of the reversible tritter and propagation
distance of the coupling region.

Similarly, the unbiased three-port operation can realize the same matrix with the settings:

UFourier = UphaseoutUThree−portUphasein. (94)

UFourier =

ei π
3 0 0

0 e−i π
3 0

0 0 e−i π
3

 1√
3

ei 2π
3

e−i 2π
3 1 1

1 e−i 2π
3 1

1 1 e−i 2π
3


ei π

3 0 0
0 e−i π

3 0
0 0 e−i π

3



=
1√
3

ei 2π
3

1 1 1
1 e−i 4π

3 e−i 2π
3

1 e−i 2π
3 e−i 4π

3

 ,

(95)

when:

(φA, φB, φC, φa, φb, φc) = (
π

6
,

π

6
,

π

6
,

π

3
,−π

3
,−π

3
), (96)

where φA, φB, and φC are the phase values for the directionally-unbiased three-port operation.
Four-dimensional matrices are generated using the same methods. The reversible quarter with

phase shifters is given in Figure 18. Multiport designs are introduced in Section 4.1.

k1

k2

k3

k4

MirrorsPhase Plates

Figure 18. Reversible quarter with phase shifters. The yellow squares are phase shifters, and the green
squares are mirrors.
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The four-dimensional Fourier coin has the form of:

UFourier =
1
2


1 1 1 1
1 ω4 ω2

4 ω3
4

1 ω2
4 ω4

4 ω6
4

1 ω3
4 ω6

4 ω9
4

 , (97)

where ω4 = e−
2πi

4 .

UFourier = UphaseoutUQuarterUphasein, (98)

Uphasein = Uphaseout =


eiφa 0 0 0
0 eiφb 0 0
0 0 eiφc 0
0 0 0 eiφd

 . (99)

The reversible quarter can realize the Fourier coin as well with the phase settings equal to:

(φA, φB, φC, φD, κz1, κz2, φa, φb, φc, φd) = (π,
π

4
, π,

5π

4
,

7π

4
,

7π

8
,−π

4
,−π

2
,−π

4
,

π

2
), (100)

where φA, φB, φC, φD, and κz1, κz2 are phase values from the mirror units of the reversible tritter and
propagation distance of the coupling region.

Four ports:
UFourier = UphaseoutU f ourportUphasein, (101)

when:

(φA, φB, φC, φD, φa, φb, φc, φd) = (0,
π

2
, 0,

π

2
,−π

4
,−π

4
,

3π

4
,−π

4
), (102)

where φA, φB, φC, φD are the phase settings of the four-port operation.

6.2. The Grover Coin Realization

The Grover coin is realized using reversible designs as well. The procedure is identical to the
Fourier coin case. The three-dimensional Grover coin takes the form of:

C3 =
1
3

−1 2 2
2 −1 2
2 2 −1

 . (103)

This can be realized using a reversible tritter with phase settings equal to:

(φA, φB, φC, κz) = (
11π

6
,

11π

6
,

11π

6
,

11π

6
), (104)

or using an unbiased three-port with settings:

(φA, φB, φC) = (
3π

2
,

3π

2
,

3π

2
). (105)

The four-dimensional Grover coin operator is given by:

C4 =
1
2


−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1

 , (106)
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which can be realized with a reversible quarter,

UGrover = UphaseoutUQuarterUphasein. (107)

The phase settings for this Grover coin realization is done by:

(φA, φB, φC, φD, κz1, κz2) = (0, 0, 0, 0,
π

8
,

π

8
). (108)

Similarly for the four ports:

UGrover = UphaseoutUFour−portsUphasein, (109)

(φA, φB, φC, φD) = (
3π

2
,

3π

2
,

3π

2
,

3π

2
). (110)

7. Comparison between Directional- and Directionally-Unbiased Devices

Directional devices (the Reck and Clements decomposition model) can produce any unitary
matrices U(N). However, when reversibility is introduced in the system (reversible tritters and
directionally-unbiased linear-optical multiports), it imposes symmetry or the self-transpose property
Ui,j = Uj,i, where i, j are matrix indices. Hence, reversible designs only produce the subset of symmetric
unitary matrices. As an example, Equation (111) is a unitary matrix, but it is not a self-transpose matrix.

U =

0 1 0
0 0 1
1 0 0

 . (111)

Nevertheless, this reversible design can produce important coins, such as Grover and Fourier
coins, for quantum walks. The properties of each directional- and directionally-unbiased design
are compared in Table 1. In this table, directionally-unbiased three-port and four-port operations
are denoted as 3-port and 4-port; Reversible tritter and quarters are denoted as Rev Tritter and Rev
Quarter; 3-port Reck, 4-port Reck, and 4-port Clements represent the directional three-port Reck model,
the directional four-port Reck model, and the directional four-port Clements model, respectively.
In the table, we consider several different conditions for comparing different optical devices: the
numbers of beam splitters used to form a device, the coherence length requirement to generate the
final unitary matrix, and dense unitary matrix generation. The Grover and the Fourier coin generation
are considered as indicated in the Conditions column in Table 1. The number of beam splitters
varies depending on the design. Directionally-unbiased linear-optical multiports require the fewest
beam splitters among all the devices in the table. A directionally-unbiased N-port requires N beam
splitters, while other devices with N input and N output ports would require N(N + 1) beam splitters.
The multiport device demands a long coherence length because different photons traveling paths with
different travel lengths need to be coherently summed. In the reversible designs, Reck decomposition,
and the Clements decomposition model, the input photon does not need long coherence lengths
because the devices consist of balanced interferometers. All the devices listed in the table can realize
both the Grover and the Fourier coins.
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Table 1. Comparison between reversible and non-reversible designs. In the table, 3-port and 4-port
represent directionally-unbiased linear-optical multiports; Rev Tritter and Rev Quarter represent
reversible tritter and reversible quarter; 3-Reck, 4-Reck and 4-Clements represent the three-port and
four-port Reck decomposition models and the four-port Clements decomposition model.

Conditions 3-port 4-port Rev Tritter Rev Quarter 3-Reck 4-Reck 4-Clements

# of Beam splitters 3 4 - - 12 20 20

Coherence Length Long Long Short Short Short Short Short

U Generation 7 7 7 7 3 3 3

Grover Coin 3 3 3 3 3 3 3

Fourier Coin 3 3 3 3 3 3 3

8. Summary

Directional optical designs and directionally-unbiased linear-optical designs were reviewed
and investigated closely. We studied the use of directionally-unbiased linear-optical designs in
quantum walk applications. This directionally-unbiased system allowed us to generate reversible
graphs with vertices having multiple edges. This flexibility in graph generation can be useful in
quantum walk-based algorithmic speedup as briefly mentioned in the introduction part of Section 5 .
Previously introduced directionally-unbiased designs [43,57], reversible optical tritter and quarter, can
work as scattering centers having three and four edges for quantum walk applications. These designs
are advantageous because of the implementation cost reduction by removing directional bias in the
system. We focused on Grover and Fourier coin implementations, which are important matrices in
quantum information processing. Grover and Fourier matrices can be realized when all the phases
are at proper settings. Any unitary matrices can be realized using directional devices; however, this
is not the case for the directionally-unbiased design. Directionally-unbiased designs cannot realize
non-self-transpose unitary matrices. We have focused on quantum walk and search applications,
but similar designs can be applied in other applications. For example, Hamiltonian simulations
and topological phase simulations are possible immediate applications of directionally-unbiased
designs [58–60].
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Mančinska, L.; Bacco, D.; et al. Multidimensional quantum entanglement with large-scale integrated
optics. Science 2018, 360, 285–291. [CrossRef]

11. Reck, M.; Zeilinger, A.; Bernstein, H.J.; Bertani, P. Experimental realization of any discrete unitary operator.
Phys. Rev. Lett. 1994, 73, 58–61. [CrossRef]

12. Clements, W.R.; Humphreys, P.C.; Metcalf, B.J.; Kolthammer, W.S.; Walmsley, I.A. Optimal design for
universal multiport interferometers. Optica 2016, 3, 1460–1465. [CrossRef]

13. Spring, J.B.; Metcalf, B.J.; Humphreys, P.C.; Kolthammer, W.S.; Jin, X.M.; Barbieri, M.; Datta, A.;
Thomas-Peter, N.; Langford, N.K.; Kundys, D.; et al. Boson sampling on a photonic chip. Science 2013,
339, 798–801. [CrossRef] [PubMed]

14. Broome, M.A.; Fedrizzi, A.; Rahimi-Keshari, S.; Dove, J.; Aaronson, S.; Ralph, T.C.; White, A.G.
Photonic boson sampling in a tunable circuit. Science 2013, 339, 794–798. [CrossRef] [PubMed]
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