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This letter presents a combination of searches for Higgs boson pair production using up to 36.1 fb−1 of 
proton–proton collision data at a centre-of-mass energy 

√
s = 13 TeV recorded with the ATLAS detector at 

the LHC. The combination is performed using six analyses searching for Higgs boson pairs decaying into 
the bb̄bb̄, bb̄W+W−, bb̄τ+τ−, W+W−W+W−, bb̄γ γ and W+W−γ γ final states. Results are presented 
for non-resonant and resonant Higgs boson pair production modes. No statistically significant excess in 
data above the Standard Model predictions is found. The combined observed (expected) limit at 95% 
confidence level on the non-resonant Higgs boson pair production cross-section is 6.9 (10) times the 
predicted Standard Model cross-section. Limits are also set on the ratio (κλ) of the Higgs boson self-
coupling to its Standard Model value. This ratio is constrained at 95% confidence level in observation 
(expectation) to −5.0 < κλ < 12.0 (−5.8 < κλ < 12.0). In addition, limits are set on the production 
of narrow scalar resonances and spin-2 Kaluza–Klein Randall–Sundrum gravitons. Exclusion regions are 
also provided in the parameter space of the habemus Minimal Supersymmetric Standard Model and the 
Electroweak Singlet Model.

© 2019 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The discovery of the Higgs boson (H) [1,2] at the Large Hadron 
Collider (LHC) [3] in 2012 has experimentally confirmed the Brout–
Englert–Higgs (BEH) mechanism of electroweak symmetry break-
ing and mass generation [4–6]. The BEH mechanism not only pre-
dicts the existence of a massive scalar particle, but also requires 
this scalar particle to couple to itself. Therefore, observing the pro-
duction of Higgs boson pairs (HH) and measuring the Higgs boson 
self-coupling λHHH is a crucial validation of the BEH mechanism. 
Any deviation from the Standard Model (SM) predictions would 
open a window to new physics. Moreover, the form of the Higgs 
field potential, which generates the Higgs boson self-coupling after 
electroweak symmetry breaking, can have important cosmological 
implications, involving, for example, predictions for vacuum stabil-
ity or models in which the Higgs boson acts as the inflation field 
[7–10].

In the SM, the gluon–gluon fusion pp → HH process (ggF) 
accounts for more than 90% of the Higgs boson pair production 
cross-section, and only this production mode is considered here. It 
proceeds via two amplitudes: the first (A1) represented by the dia-
grams (a) and (b), and the second (A2) represented by the diagram 
(c) in Fig. 1. The interference between these two amplitudes is de-
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structive and yields an overall cross-section of σ SM
ggF (pp → HH) =

33.5+2.4
−2.8 fb at 

√
s = 13 TeV [11], calculated first at next-to-leading 

order (NLO) in QCD with the heavy top-quark approximation [12], 
then numerically with full top-quark mass dependence [13] (con-

firmed later in Ref. [14] and analytically computed with some ap-
proximation in Ref. [15]) corrected at next-to-next-to-leading order 
(NNLO) [16] in QCD matched with next-to-next-to-leading loga-
rithmic (NNLL) resummation in the heavy top-quark limit [17,18]. 
The Higgs boson mass used in these calculations and for all re-
sults in this paper is mH = 125.09 GeV [19]. Beyond-the-Standard-
Model (BSM) scenarios can bring substantial enhancement of this 
cross-section by modifying the relative sign of A1 and A2, and by 
increasing A2. The A2 amplitude is proportional to the Higgs self-
coupling λHHH . The Higgs boson self-coupling modifier due to BSM 
scenarios is defined as κλ = λHHH/λSM

HHH . In this analysis, all other 
Higgs boson couplings are assumed to have SM values. Indirect 
limits on κλ have been obtained using the measurements of single 
Higgs boson production and decay [20] and electroweak precision 
observables [21,22], constraining κλ to the range −8 < κλ < 14 at 
95% confidence level (CL). The Higgs boson self-coupling is dis-
cussed in the context of BSM models in Refs. [22,23].

Several BSM models also predict the existence of heavy parti-
cles decaying into a pair of Higgs bosons. Two-Higgs-Doublet Mod-

els [24], models inspired by the Minimal Supersymmetric Standard 
Model (MSSM) like habemus MSSM (hMSSM) [25–28], and Elec-
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Fig. 1. Examples of leading-order Feynman diagrams for Higgs boson pair production: the diagrams (a) and (b) are proportional to the square of the heavy-quark Yukawa 
couplings, while the diagram (c) is proportional to the product of the heavy-quark Yukawa coupling and the Higgs boson self-coupling. Here κλ is the ratio of the beyond-
the-Standard-Model Higgs boson self-coupling to that of the SM. The diagram (d) represents the production of the Higgs boson pair through an intermediate resonance (X ) 
that couples to gluons through an effective coupling and to the SM Higgs boson.

troweak Singlet Models (EWK-singlet) [11,29–31] predict, in addi-
tion to the Higgs boson, a second, heavier, CP-even scalar that can 
decay into two SM Higgs bosons. In the EWK-singlet model, the 
scalar states are mixed, with a mixing angle α. The ratio of the 
vacuum expectation value of the additional singlet to that of the 
SM Higgs doublet, tanβ , is a free parameter. In the hMSSM, the 
CP-even states also mix, and the model’s phenomenology can be 
described by the mass (mA ) of a third, CP-odd, resonance and the 
ratio of the vacuum expectation values of the two Higgs doublets, 
tanβ . Alternatively, the Higgs boson pair can be produced reso-
nantly through the decay of a spin-2 Kaluza–Klein (KK) graviton, 
as predicted in the Randall–Sundrum (RS) model of warped extra 
dimensions [32]. A schematic diagram for production of a heavy 
resonance followed by its decay into a Higgs boson pair is shown 
in Fig. 1(d).

This letter presents a combination of results from searches 
for both non-resonant and resonant Higgs boson pair produc-
tion in proton–proton (pp) collisions at 

√
s = 13 TeV. The data 

were collected with the ATLAS detector [33–35] and correspond 
to an integrated luminosity of up to 36.1 fb−1. The combination 
includes all published ATLAS HH search analyses using 

√
s =

13 TeV data, namely those studying the final states bb̄bb̄ [36], 
bb̄W+W− [37], bb̄τ+τ− [38], W+W−W+W− [39], bb̄γ γ [40]

and W+W−γ γ [41].

Previous combinations of searches for HH pair production were 
performed at 

√
s = 8 TeV by the ATLAS experiment [42] and at √

s = 13 TeV by the CMS experiment [43] combining the final 
states bb̄bb̄ [44–47], bbVV [48], bb̄τ+τ− [49] and bb̄γ γ [50].

2. Analysis description

The analysis strategies for each of the final states considered in 
this letter are summarised below.

• The bb̄bb̄ analysis is performed using four anti-kt jets recon-
structed with a radius parameter R = 0.4 [51,52] (resolved 
analysis) or two large-R jets with R = 1.0 (boosted analysis). 
The dataset of the resolved analysis is split according to the 
years 2015 and 2016, and then statistically combined taking 
into account the different trigger algorithms used in 2015 and 
2016. In part of the 2016 data period, inefficiencies in the 
online vertex reconstruction affected b-jet triggers that were 
used in the resolved analysis, reducing the total available inte-
grated luminosity to 27.5 fb−1. The boosted analysis searches 
for two large-R jets containing the b-quark pairs from the de-

cays of the two Higgs bosons. The large-R jets are identified 
as originating from b-quarks using a b-tagging algorithm ap-
plied to R = 0.2 track-jets [53] associated with the large-R
jet [54]. The analysis is divided into three categories: the first 
category selects events in which each of the two large-R jets 
has one b-tagged track-jet; the second category requires that 
one large-R jet contains two b-tagged track-jets and the other 
large-R jet contains one b-tagged track-jet; the third category 
requires that both large-R jets contain two b-tagged track-jets. 
For the SM HH search, only the resolved analysis is used, with 
two categories, one for the 2015 and another for the 2016 
dataset. The resonant search is instead performed with the re-
solved analysis for masses in the range 260–1400 GeV, with 
the boosted analysis for masses in the range 800–3000 GeV, 
and with the combination of the two for masses in the over-
lapping range 800–1400 GeV.

• The bb̄W+W− analysis looks for the WW → 
νqq decay 
channel, where 
 is an electron or muon, and q is a u, d, s, c
quark or anti-quark. The bb̄ pair is selected from two R = 0.4

jets (resolved analysis) or one R = 1.0 large-R jet (boosted 
analysis), while the jets from the W decay are reconstructed 
with R = 0.4 jets. The resolved analysis is used in the SM HH

search, in the search for a scalar resonance with a mass be-
tween 500 and 1400 GeV, and in the search for a KK graviton 
in the mass range 500 to 800 GeV. The boosted analysis looks 
for scalar resonances in the mass range 1400 to 3000 GeV and 
for KK gravitons between 800 and 3000 GeV. The resolved and 
boosted analyses each use one category. The two analyses are 
not statistically combined due to a significant overlap between 
the two signal regions.

• The bb̄τ+τ− analysis looks for final states with two R = 0.4

b-tagged jets and two τ -leptons. One of the two τ -leptons 
of the τ+τ− pair is required to decay hadronically, while 
the other decays either hadronically (τhadτhad) or leptonically 
(τlepτhad). In the τlepτhad channel, events are triggered by sin-
gle lepton triggers (SLT), requiring an electron or a muon 
in the final state, or by the coincidence of a lepton trig-
ger with a hadronic τ trigger (LTT). In the τhadτhad channel, 
events are triggered by single hadronic τ triggers (STT) or 
double hadronic τ triggers (DTT). The analysis is divided into 
three categories: one selects τhadτhad events, a second selects 
τlepτhad events triggered by the SLT, and a third selects τlepτhad
events triggered by the LTT. The τhadτhad and the SLT τlepτhad
categories are used for all model interpretations, while the LTT 
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Table 1
Summary of the main characteristics of the analyses used in the non-resonant and resonant searches. The resonant analysis char-
acteristics are indicated between square brackets. “B(HH → xx̄y ȳ)” indicates the branching fraction of the HH pair where one 
H decays into xx̄ and the other decays into y ȳ. The branching fraction values are taken from Ref. [11] for a Higgs boson mass 
mH = 125.09 GeV. “Lint” indicates the integrated luminosity of the dataset used in the analysis. “Categories” indicates the number 
of signal categories. “Discriminant” indicates the distribution used in the final limit-setting fit (“c.e.” stands for counting events and 
indicates that a simple event counting was used in the final fit rather than a distribution shape). “Model” indicates which models 
each analysis tested: NR stands for SM HH signal model, S for a spin-0 scalar model, and G for a KK graviton model. “mS/G ” gives 
the probed mass range for the resonant search. “Ref.” reports the reference to the individual final state papers.

bb̄bb̄ bb̄W+W− bb̄τ+τ− W+W−W+W− bb̄γ γ W+W−γ γ

B(HH → xx̄y ȳ) 0.34 0.25 0.073 0.046 2.6 · 10−3 1.0 · 10−3

Lint [fb−1] 27.5 [36.1] 36.1 36.1 36.1 36.1 36.1

Categories 2 [2–5] 1 [1] 3 [2–3] 9 [9] 2 [2] 1 [1]

Discriminant mHH [mHH ] c.e. [mHH ] BDT [BDT] c.e. [c.e.] mγ γ [mHH ] mγ γ [mγ γ ]

Model NR [S/G] NR [S/G] NR [S/G] NR [S] NR [S] NR [S]

mS/G [TeV] [0.26–3.00] [0.50–3.00] [0.26–1.00] [0.26–0.50] [0.26–1.00] [0.26–0.50]

Ref. [36] [37] [38] [39] [40] [41]

τlepτhad category is used in the SM HH search (excluding the 
κλ analysis) and in resonant searches up to a mass of 800 GeV.

• The W+W−W+W− analysis looks for channels with lep-
tonic and/or hadronic W decays. Three channels are identified: 

ν 
ν 4q, 
ν 
ν 
ν 2q, and 
ν 
ν 
ν 
ν , with 
 being an electron 
or muon, q a quark, and ν a neutrino. The q momentum is 
reconstructed from R = 0.4 jets. In order to suppress Z + jets

and tt̄ background, dilepton events are required to have two 
leptons of the same charge. Events are categorised according 
to the lepton flavour (ee, eμ and μμ). Three-lepton events 
are selected if the sum of the lepton charges is ±1. They are 
divided into two categories according to the number of same-

flavour, opposite-charge (SFOS) lepton pairs; one category se-
lects zero SFOS lepton pairs and a second category selects one 
or two SFOS lepton pairs. Four-lepton events are categorised 
according to the number of SFOS lepton pairs and the invari-
ant mass (m4
) of the four-lepton system. Four categories are 
defined, requiring that the number of SFOS lepton pairs is less 
than two or equal to two, and m4
 is smaller or larger than 
180 GeV. A total of nine categories are fit simultaneously in 
the searches for both non-resonant and resonant HH produc-

tion.

• The bb̄γ γ analysis searches for a HH pair decaying into bb̄
and γ γ . Two high-pT isolated photons are required to have 
ET/mγ γ > 0.35 and 0.25 respectively. The events are then 
analysed using two selections: a ‘loose selection’ requiring a 
jet with pT > 40 GeV and a second jet with pT > 25 GeV, and 
a ‘tight selection’ where the two jets are required to have pT

larger than 100 and 30 GeV. All jets have a radius parame-

ter R = 0.4. Both selections are subdivided into two categories 
requiring one b-tagged jet or two b-tagged jets. The tight se-
lection is used in the SM HH search and in the search for 
resonances with masses higher than 500 GeV, while the loose 
selection is used in the κλ analysis and in the search for res-
onances with masses smaller than 500 GeV. The analysis is 
therefore divided into four categories, but only two of them 
are simultaneously fit to extract each result.

• The W+W−γ γ analysis searches for a HH pair decaying into 
γ γ and WW . The analysis uses the same photon selection as 
the bb̄γ γ channel and looks for one W decaying leptonically 
and a second W decaying hadronically (WW → 
νqq). The 
hadronic W decay is reconstructed from R = 0.4 jets. Only one 
category is used in the searches for both non-resonant and 
resonant HH production.

A summary of the main analysis characteristics is given in Ta-
ble 1. All analyses impose a series of sequential requirements on 
kinematic variables to select signal events and suppress back-

grounds. The bb̄τ+τ− analysis uses a boosted decision tree 
(BDT) [55] distribution as the final discriminant for both the non-
resonant and resonant searches. For the resonant searches, the 
bb̄bb̄, bb̄W+W− and bb̄γ γ analyses use the HH invariant mass 
(mHH ) as the final discriminant, the W+W−γ γ analysis uses 
the γ γ invariant mass (mγ γ ), while W+W−W+W− uses sim-

ple event counting. For the SM HH search, the bb̄bb̄ analysis uses 
the mHH distribution as a discriminant, profiting from the differ-
ence between the shapes of the signal and the dominant multi-jet 
background. The bb̄γ γ and W+W−γ γ analyses fit the mγ γ dis-

tribution to extract both the signal yield and the background ex-
pectation, while the bb̄W+W− and W+W−W+W− analyses use 
event counting.

3. Statistical treatment

The statistical interpretation of the combined search results is 
based on a simultaneous fit to the data for the cross-section of the 
signal process and nuisance parameters that encode statistical and 
systematic uncertainties, using the CLS approach [56]. The asymp-

totic approximation [57] is used in the analysis of all final states 
and their combination.

All signal regions considered in the simultaneous fit are either 
orthogonal by construction or have negligible overlap. The over-
lap due to object misidentification between bb̄γ γ and bb̄τ+τ− , 
and between W+W−γ γ and W+W−W+W− , which are not or-
thogonal by construction, is evaluated by running the signal and 
data samples from each channel through the analysis selection of 
each other channel. Less than 0.1% of simulated signal events over-
lap between analyses, and no overlap is found in data. There is 
some irreducible contamination from bb̄W+W− and bb̄Z Z events 
with τ ’s in the final state passing the bb̄τ+τ− selection. This con-
tamination is less than 8% of the bb̄τ+τ− selected events, and 
it is not taken into account in the bb̄τ+τ− analysis, note that 
including this contribution would increase the analysis sensitiv-
ity therefore the results obtained here are slightly conservative. 
The detector systematic uncertainties, such as those in jet recon-
struction, b-jet tagging, electron, muon and photon reconstruction 
and identification, as well as the uncertainty on the integrated lu-
minosity [58], are correlated across all final states. Uncertainties 
on the signal acceptance derived by varying the renormalisation 
and factorisation scales, the parton distribution functions and the 
parton shower are correlated too. Theoretical and modelling sys-
tematic uncertainties of the backgrounds derived using simulated 
events are not correlated across different analyses because the 
overlap among their contributions to the different analyses is neg-
ligible.
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Fig. 2. Upper limits at 95% CL on the cross-section of the ggF SM HH production 
normalised to its SM expectation σ SM

ggF (pp → HH) from the bb̄τ+τ− , bb̄bb̄, bb̄γ γ , 
W+W−W+W− , W+W−γ γ and bb̄W+W− searches, and their statistical combi-

nation. The column “Obs.” lists the observed limits, “Exp.” the expected limits with 
all statistical and systematic uncertainties, and “Exp. stat.” the expected limits ob-
tained including only statistical uncertainties in the fit.

4. Combination of results on non-resonant Higgs boson pair 
production

The SM HH analyses use signal samples generated at next-to-
leading order (NLO) in QCD with Madgraph5_aMC@NLO [59] using 
the CT10 NLO parton distribution function (PDF) set [60]. Parton 
showers and hadronisation were simulated with Herwig++ [61]

using parameter values from the UE-EE-5-CTEQ6L1 tune [62]. The 
so-called FTApprox method [63] is applied in the event generation 
to include finite top-quark mass effects in the real-radiation NLO 
corrections. The virtual-loop corrections are realised with Higgs ef-
fective field theory (HEFT) assuming infinite top-quark mass. The 
generated events are then corrected with a generator level bin-by-
bin reweighting of the mHH distribution, which is calculated with 
finite top-quark mass in full NLO corrections [13]. The branch-
ing fractions of the Higgs boson are assumed to be equal to the 
SM predictions [11]. For the SM HH search, upper limits are ex-
tracted for the cross-section σggF(pp → HH) of HH production 
and are normalised by the SM HH cross-section σ SM

ggF(pp → HH). 
The limits are determined assuming that all kinematic properties 
of the HH pair are those predicted by the SM, particularly the 
mHH distribution, and only the total ggF production cross-section, 
σggF(pp → HH), is allowed to deviate from its SM value. The the-
oretical uncertainties of σ SM

ggF are less than 10% [11] and are not 
included in the fit results.

The upper limits at 95% CL on the cross-section of the ggF Higgs 
boson pair production normalised to σ SM

ggF are shown in Fig. 2 for 
the individual final states and their combination. The upper limit 
for each final state is obtained from a fit with minimal changes 
from previously published results. The changes include an update 
of the ggF Higgs boson pair production cross-section from 33.4 
fb to 33.5 fb for all final states. Additionally, the bb̄τ+τ− final 
state included theoretical uncertainties on the ggF inclusive cross-
section, σ SM

ggF , which are not considered in the present treatment, 
and the bb̄γ γ final state is updated to use an asymptotic ap-
proximation to calculate the observed limit instead of the pseudo-
experiment method used for its publication. This results in a 10% 
change in the observed limit of bb̄γ γ . Moreover, the impact of the 

asymptotic approximation on all final states combined is found to 
be 5%.

The combined observed (expected) upper limit on the SM HH

production is 6.9 (10) × σ SM
ggF(pp → HH). The expected limit is 

similar to the CMS result of 12.8 × σ SM
ggF(pp → HH). The observed 

limit is more stringent for the ATLAS result than the CMS result of 
22.2 × σ SM

ggF(pp → HH) because the three leading channels (bb̄bb̄, 
bb̄τ+τ− and bb̄γ γ ) have a data deficit in ATLAS and an excess 
in CMS [43], remaining however within the two 2σ uncertainty 
interval. Detailed comparisons can be found in Ref. [64].

The impact of the systematic uncertainties has been evaluated 
by recomputing the limit without their inclusion. The limit is then 
reduced by 13% when removing all of them. The main sources of 
systematic uncertainty are the modelling of the backgrounds, the 
statistical uncertainty of simulated events and the τ -lepton recon-
struction and identification. When removed the limit reduces by 
5%, 3% and 2%, respectively.

5. Constraints on the Higgs boson self-coupling

The results in Fig. 2 show that the sensitivity of the SM HH

search is driven by the final states bb̄bb̄, bb̄τ+τ− and bb̄γ γ . These 
final states are used to set constraints on the Higgs boson self-
coupling modifier κλ = λHHH/λSM

HHH . After setting all couplings to 
fermions and bosons to their SM values, a scan of the self-coupling 
modifier κλ is performed. The κλ factor affects both the production 
cross-section and the kinematic distributions of the Higgs boson 
pairs, by modifying the A2 production amplitude. It can also af-
fect the Higgs boson branching fractions due to NLO electroweak 
corrections [20], but this dependence is neglected in the follow-

ing.

The signal used in the κλ fit was simulated according to the 
following procedure. For each value of κλ the mHH spectrum is 
computed at the generator-level, using the leading-order (LO) ver-
sion of MadGraph5_aMC@NLO [59] with the NNPDF 2.3 LO [65]

PDF set, together with Pythia 8.2 [66] for the showering model 
using the A14 tune [67]. Because only one amplitude of Higgs bo-
son pair production depends on κλ , linear combinations of three 
LO samples generated with different values of κλ are sufficient to 
make predictions for any value of κλ . Binned ratios of the mHH

distributions to the SM distribution are computed for all κλ values 
and then used to reweight the events of NLO SM HH signal sam-

ples, generated using the full detector simulation. This procedure 
is validated by comparing kinematic distributions obtained with 
the reweighting procedure applied to the LO SM sample and LO 
samples generated with the actual κλ values set in the event gen-
erator. The two sets of distributions are found to be in agreement. 
This procedure assumes that higher order QCD corrections on the 
differential cross-section as a function of mHH are independent of 
κλ . The reweighted NLO signal sample is used to compute the sig-
nal acceptance and the kinematic distributions for different values 
of κλ .

This letter presents κλ results for the first time in the AT-
LAS bb̄bb̄ and bb̄τ+τ− final states and incorporates the previously 
published result for the bb̄γ γ final state. The κλ analyses closely 
follow the SM HH search, with some exceptions which are dis-
cussed below for each final state.

• In the bb̄bb̄ final state, the same analysis selection and final 
discriminant are used in the κλ-scan analysis and in the SM 
HH search. The distribution of the final discriminant mHH is 
shown in Fig. 3(a), where, with the exception of a small excess 
in the region below 300 GeV [36] and a small deficit in the 
500-600 GeV region, good agreement between data and the 
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Fig. 3. Final discriminants used in the κλ-scan analysis for the bb̄bb̄ and the bb̄τ+τ− final states. (a) shows the reconstructed mHH distribution in the bb̄bb̄ analysis; 
backgrounds include data-driven multi-jet processes (Multijet), tt̄ → W+W−bb̄ with both W bosons decaying hadronically (Hadronic tt̄) and tt̄ → W+W−bb̄ with at least 
one of the W bosons decaying leptonically (Semileptonic tt̄). (b) and (c) show the BDT distributions in the bb̄τ+τ− analysis for the τlepτhad and the τhadτhad channels, 
respectively. The main backgrounds are tt̄ and single-top-quark production (Top-quark), the background arising from jets faking hadronic τ -lepton decays (jet → τhad fakes), 
Z → τ+τ− plus two heavy-flavour jets [Z → ττ + (bb, bc, cc)], SM single Higgs boson production (SM Higgs) and other minor backgrounds (Other). The shaded area includes 
the systematic uncertainty of the total background expectation due to the statistics of simulated events and all experimental and theoretical systematic uncertainties. In 
figures (b) and (c) the uncertainty band is not shown in the upper panes because it is too small to be seen. The signal distribution is overlaid for κλ = −5, 1, 10 and is 
normalised to its expected yield.

expected background is observed. The shape of the mHH dis-

tribution has a strong dependence on κλ , and the signal accep-
tance varies by a factor 2.5 over the probed range of κλ-values 
(−20 ≤ κλ ≤ 20) shown in Fig. 4(a). The two effects together 
determine how the exclusion limits on the cross-section of the 
HH production vary as a function of κλ .

• In the bb̄τ+τ− final state, as in the SM HH search, both 
τlepτhad and τhadτhad events are used. In contrast with the SM 
HH search, LTT τlepτhad events (see Section 2) are not used 
given their negligible contribution. The SM HH search and the 
κλ-scan analysis use the same sets of variables to build BDT 
discriminants. For the κλ-scan the BDTs are retrained using 
the NLO SM signal sample reweighted with κλ = 20, ensur-
ing good sensitivity over the whole range of probed κλ-values. 
The BDT score distributions are used in the fit to compute the 
final results. The shape of the bb̄τ+τ− BDT distributions does 

not show a κλ dependence as strong as in the bb̄bb̄ final state, 
as can be seen in Fig. 3. The sensitivity of this analysis is in-
stead affected by a variation in the signal acceptance by up to 
a factor of three over the probed range of κλ-values, as shown 
in Fig. 4(a).

• In the bb̄γ γ final state, the loose selection is used in the 
κλ-scan analysis because the average transverse momentum 
of the Higgs bosons is lower at large values of κλ , where 
|A2|2 dominates the production cross-section. As in the SM 
HH search, the statistical analysis is performed using the mγ γ

distribution, which does not depend on κλ . The signal accep-
tance varies by about 30% over the probed range of κλ-values, 
as shown in Fig. 4(a). In the previously published analysis [40], 
LO samples were used for the computation of the signal ac-
ceptance, while in this paper the NLO reweighted samples are 
used, as described above.
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Fig. 4. (a) Signal acceptance times efficiency as a function of κλ for the bb̄bb̄, bb̄τ+τ− and bb̄γ γ analyses. The bb̄bb̄ curve is the average of the 2015 and 2016 curves 
weighted by the integrated luminosities of the two datasets. (b) Upper limits at 95% CL on the cross-section of the ggF non-resonant SM HH production as a function of 
κλ . The observed (expected) limits are shown as solid (dashed) lines. In the bb̄γ γ final state, the observed and expected limits coincide. The ±1σ and ±2σ bands are 
only shown for the combined expected limit. The theoretical prediction of the cross-section as a function of κλ is also shown. The effect of non-SM Higgs decay branching 
fractions due to κλ variations is not taken into account, which impacts the κλ intervals by no more than 7%.

The signal acceptance times efficiency as a function of κλ is 
shown in Fig. 4(a). Given that, for each final state, the same selec-
tion was applied over the full scanned κλ range, the shape of the 
acceptance times efficiency curve is determined by the variation of 
the event kinematics as a function of κλ . For high values of |κλ|
the A2 term dominates the total amplitude, causing a softer mHH

spectrum, and thus a lower acceptance times efficiency. Around 
κλ = 2.4 the interference between A1 and A2 amplitudes is max-

imal, producing the hardest mHH spectrum and, consequently, the 
highest signal acceptance times efficiency.

In each analysis, and in their combination, the 95% CL upper 
limit on the σggF(pp → HH) cross-section is computed for differ-
ent values of κλ . The results are shown in Fig. 4(b). The theoret-
ical σggF(pp → HH) cross-section as a function of κλ is overlaid 
in the figure. It is computed by multiplying the HH SM cross-
section σ SM

ggF(pp → HH) by the ratio R (κλ) of the pp → HH cross-

section computed at κλ , σκλ

ggF(pp → HH) to the same quantity 
σκλ=1
ggF (pp → HH) computed at κλ = 1. The R(κλ) factor is com-

puted at NNLO+NNLL with the infinite top-quark mass approxi-
mation [68]. The resulting observed (expected) confidence interval 
at 95% CL for κλ is: −5.0 < κλ < 12.0 (−5.8 < κλ < 12.0).

In Fig. 4(b) the shape of the upper-limit curves approximately 
follows the inverse of the signal acceptance shown in Fig. 4(a). In 
the bb̄bb̄ analysis, the observed limits are more stringent than the 
expected limits at low values of κλ . For these κλ values the sig-
nal mHH distributions have significant populations in the region 
500-600 GeV, where the data deficit sits, as explained above. For 
larger values of κλ the mHH distribution is shifted to lower mHH

values, and thus the excess in data below 300 GeV leads to the 
observed limits being less stringent than expected. In the bb̄τ+τ−
final state the observed limits are more stringent than the ex-
pected limits over the whole range of κλ , due to a deficit of data 
relative to the background predictions at high values of the BDT 
score. The bb̄γ γ limit shows a weaker dependence on κλ than the 
bb̄bb̄ and bb̄τ+τ− limits because the bb̄γ γ acceptance varies less 
as function of κλ .

The 95% CL allowed κλ intervals are given in Table 2. The 
systematic uncertainties weaken the κλ limits by less than 10% 
relative to those obtained with only statistical uncertainties. The fi-
nal state least (most) affected by systematic uncertainties is bb̄γ γ
(bb̄bb̄). The Higgs boson branching fraction depends on κλ due to 

Table 2
Allowed κλ intervals at 95% CL for the bb̄bb̄, bb̄τ+τ− and bb̄γ γ final states and 
their combination. The column “Obs.” lists the observed results, “Exp.” the expected 
results obtained including all statistical and systematic uncertainties in the fit, and 
“Exp. stat.” the expected results obtained including only the statistical uncertainties. 
The effect of non-SM Higgs decay branching fractions due to κλ variations is not 
taken into account, which impacts the κλ intervals by no more than 7%.
Final state Allowed κλ interval at 95% CL

Obs. Exp. Exp. stat.

bb̄bb̄ −10.9 — 20.1 −11.6 — 18.8 −9.8 — 16.3

bb̄τ+τ− −7.4 — 15.7 −8.9 — 16.8 −7.8 — 15.5

bb̄γ γ −8.1 — 13.1 −8.1 — 13.1 −7.9 — 12.9

Combination −5.0 — 12.0 −5.8 — 12.0 −5.3 — 11.5

NLO electroweak corrections [20]. This dependence is neglected in 
the present treatment, but its overall impact on the allowed κλ in-

terval is evaluated to be no more than 7%. Theory uncertainties on 
the signal cross section shown in Fig. 4(b) are not taken into ac-
count when computing the κλ limits in Table 2, they affect the 
limit by less than 8%.

6. Combination of results for resonant Higgs boson pair 
production

The resonance decaying into a pair of Higgs bosons is assumed 
to be either a heavy spin-0 scalar particle, S , with a narrow width 
or a spin-2 KK graviton, GKK.

The search for the heavy scalar particle S is performed with 
all six final states included in this combination. With the excep-
tion of bb̄τ+τ− and bb̄bb̄, all signal samples were simulated at 
NLO with MadGraph5_aMC@NLO using the CT10 PDF set. The 
matrix-element generator was interfaced to Herwig++ with the
UE-EE-5-CTEQ6L1 tune. The bb̄τ+τ− final state uses an LO model 
generated with MadGraph5_aMC@NLO using the NNPDF 2.3 LO 
PDF set interfaced to Pythia 8.2 with the A14 tune, while the bb̄bb̄
final state uses the same LO event generator but interfaced to Her-

wig++ with the UE-EE-5-CTEQ6L1 tune.

The scalar resonance search is performed in the mass range 
260–3000 GeV, and within this range no statistically significant ex-
cess is observed. In the combination, the largest observed deviation 
from the background expectation is 1σ for the search mass range. 
The combined upper limit on the cross-section is shown as a func-
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Fig. 5. Upper limits at 95% CL on the cross-section of the resonant Higgs boson pair production for (a) a spin-0 heavy scalar, (b) a spin-2 KK graviton with k/MPl = 1 and 
(c) a spin-2 KK graviton with k/MPl = 2. The observed (expected) limits are shown as solid (dashed) lines. The ±1σ and ±2σ bands are only shown for the expected limits 
of the combination. Only the bb̄bb̄, bb̄W+W− and bb̄τ+τ− search results are used in the spin-2 resonant combination. The vertical black lines in each panel indicate mass 
intervals where different final states are combined.

tion of the resonance mass in Fig. 5(a). Systematic uncertainties 
have a sizeable effect on the upper limits depending on the probed 
resonance mass. The total impact of systematics or the impact of 
a single systematic uncertainty has been evaluated by computing 
the percentage reduction of the upper limit obtained by removing 
all systematic uncertainties or a particular source. Overall the sys-
tematic uncertainties affect the limit by 12% (11%) for a resonance 
mass of 1 (3) TeV. Among them, the largest systematic uncertain-
ties are due to the modelling of the backgrounds, impacting the 
upper limit by 7% (9%) at 1 (3) TeV. The second leading system-

atic uncertainty comes from b-tagging, that affects the upper limit 
by 2% at 1 TeV, but its impact is negligible at 3 TeV where relative 
background and statistical uncertainties increase significantly. At 
3 TeV the second leading systematic uncertainty is related to the 
jet energy scale and resolution, changing the limit by 2%. Interpre-
tations in specific spin-0 BSM models are provided in Section 7.

The search for a spin-2 KK graviton is performed with the bb̄bb̄, 
bb̄W+W− and bb̄τ+τ− final states only. Gravitons were simulated 
using an LO model in MadGraph5_aMC@NLO with the NNPDF 2.3 
LO PDF set interfaced to Pythia 8.2 with the A14 tune. The reso-
nance width changes with the graviton mass and depends on the 
parameter k/MPl, where k is the curvature of the warped extra di-
mension in the bulk RS model and MPl = 2.4 × 1018 GeV is the 
effective four-dimensional Planck mass. The search is performed 

for models with k/MPl equal to 1 and 2. For k/MPl = 1 (2), the 
width ranges from 3% (11%) for a 0.3 TeV graviton mass to 6% (25%) 
for a 3 TeV graviton mass.

The upper limits in the GKK search are shown as a function 
of the resonance mass in Figs. 5(b) and 5(c) for k/MPl equal to 1 
and 2, respectively. In the combination, the largest observed de-
viation from the background expectation is 1.5σ (0.7σ ) for the 
search mass range with k/MPl = 1 (2). Exclusion ranges on the K K

graviton mass are obtained by comparing the upper limit with the 
production cross section calculated at LO. In the case of k/MPl = 1, 
the bulk RS model is excluded at 95% CL in the graviton mass range 
from 310 GeV to 1380 GeV. In the case of k/MPl = 2, the model is 
excluded at 95% CL for graviton masses from 260 GeV, where the 
scan starts, to 1760 GeV.

The impact of the systematic uncertainties on the upper limits 
on GKK has a small dependence on the resonance mass. It is ∼20% 
over the whole mass range for k/MPl = 1, and 29% (25%) at a mass 
of 1 TeV (3 TeV) for k/MPl = 2. The largest systematic uncertainties 
are from the modelling of the backgrounds, affecting the limit by 
11% (15%) at 1 TeV (3 TeV) for k/MPl = 1 and 16% (21%) at 1 TeV 
(3 TeV) for k/MPl = 2. For k/MPl = 1, the subleading systematic 
uncertainties come from b-tagging at low GKK mass, that affect 
the limit by 3%, and from jet energy scale and resolution at high 
mass, that affect the upper limit by 2% (3%) at 1 TeV (3 TeV). For 
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Fig. 6. Excluded regions for the EWK-singlet model for two values of the tan β parameter: (a) tan β = 1 and (b) tan β = 2. Indirect constraints from SM Higgs coupling 
measurements [74] are shown with horizontal lines. The dotted lines indicate the separation between regions where the resonance width is larger than 2% and 5% of 
the resonance mass. The hatch-marked area corresponds to regions that cannot be excluded because the width of the resonance exceeds 10% of the resonance mass, 
corresponding to the maximum of the experimental mass resolution among all analysed final states.

Fig. 7. Excluded regions in (a) the EWK-singlet model for mS = 260 GeV and (b) the hMSSM model using the experimental upper limits obtained in the spin-0 resonance 
searches. In the EWK-singlet exclusion, the indirect constraints from SM Higgs coupling measurements [74] are shown with vertical lines.

k/MPl = 2, subleading systematic uncertainties are from jet energy 
scale and resolution, impacting the upper limits by 5% at 1 TeV 
and 4% at 3 TeV. The systematic uncertainties affect upper limits 
more for k/MPl = 2 than for k/MPl = 1, because the natural width 
of the signal graviton is four times larger with k/MPl = 2.

7. Constraints on the hMSSM and EWK-singlet models

Exclusion limits are also presented for two specific models, 
namely the EWK-singlet model [11,29–31] and the hMSSM model 
[11,26–28,69]. The sensitivity of the bb̄W+W− , W+W−W+W−
and W+W−γ γ final states to these models is negligible, so the 
presented results combine only the bb̄bb̄, bb̄τ+τ− and bb̄γ γ final 
states.

For the EWK-singlet model, the experimental limits on the spin-
0 resonance (as reported in Section 6) are interpreted as con-
straints in the mS–sinα plane (where mS is the resonance mass) 
for tanβ = 1 and tanβ = 2, shown in Fig. 6(a) and Fig. 6(b) re-
spectively. The expected cross-section for each point in the param-

eter space is obtained by scaling the heavy Higgs cross-section 
calculated at NNLO+NNLL [11] with singlet coupling modifiers. 
The branching fractions are computed with sHDECAY [70]. In this 
model, the width of the heavy scalar can be large in some regions 

of the parameter space. Due to the use of narrow-width signal 
models in the event generation, results presented here are valid 
only in regions of the model parameter-space where the resonance 
width (�S ) is smaller than the experimental resolution at the res-
onance mass. This holds when �S/mS < 2% for bb̄γ γ , �S/mS < 5%

for bb̄bb̄ and �S/mS < 10% for bb̄τ+τ− . Therefore, the excluded 
region in the plot is obtained by combining the three final states 
for �S/mS < 2%, by combining the bb̄bb̄ and bb̄τ+τ− final states 
for 2% < �S/mS < 5%, and using only bb̄τ+τ− for 5% < �S/mS <

10%. The hatched region shows points where �S/mS ≥ 10%, where 
no exclusion can be provided. Fig. 7(a) shows limits for the (sin α, 
tan β) parameter space for mS = 260 GeV where, due to the lim-

ited decay phase space, the resonance width is narrow in a wide 
region of the parameter space.

The experimental limits on a spin-0 resonance are also in-
terpreted as constraints in the mA–tanβ plane of the hMSSM 
model in Fig. 7(b). The expected cross-section for each point in the 
parameter space is obtained using the gluon-gluon fusion cross-
section from SUSHI 1.5.0 [71,72] and the branching fractions com-

puted with HDECAY 6.4.2 [73].
The excluded region is more than doubled along tanβ relative 

to the previous combined results in Ref. [42] at 8 TeV, and excludes 
values of mA from 190 GeV to 560 GeV depending on tanβ . The 
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kink at low tanβ and high mA values is caused by removing the 
bb̄γ γ final state from the combination in the region where the 
predicted width of the heavy CP-even Higgs boson is larger than 
the experimental resolution on mS in the bb̄γ γ analysis.

8. Conclusion

A statistical combination of six final states bb̄bb̄, bb̄W+W− , 
bb̄τ+τ− , W+W−W+W− , bb̄γ γ and W+W−γ γ , is presented for 
the search for non-resonant and resonant production of Higgs bo-
son pairs. These searches use up to 36.1 fb−1 of proton–proton 
collision data at 13 TeV recorded with the ATLAS detector at the 
LHC.1

In both resonant and non-resonant searches, no statistically sig-
nificant excess of events above the Standard Model predictions is 
found. For the Standard Model HH production mode, the observed 
(expected) 95% confidence level upper limit on the gluon–gluon fu-
sion pp → HH cross-section is 6.9 (10) times the Standard Model 
prediction. The expected limit is comparable to the CMS result, 
while the observed limit is significantly stronger than CMS’s due 
to a data deficit compared to expected background in ATLAS and 
an excess in CMS. For the resonant case, upper limits are set 
on the production cross-section of heavy spin-0 and spin-2 res-
onances decaying into pairs of Higgs bosons in the mass range 
260–3000 GeV.

Upper limits on the pp → HH cross-section are also com-

puted as a function of the Higgs boson self-coupling modifier 
κλ = λHHH/λSM

HHH , by combining the bb̄bb̄, bb̄τ+τ− and bb̄γ γ fi-

nal states. The combination excludes κλ values outside the range 
−5.0 < κλ < 12.0 (−5.8 < κλ < 12.0) at 95% confidence level in 
observation (expectation). The three final states are also combined 
to constrain the Electroweak Singlet Model in the (mS , sin α) and 
the (sin α, tan β) parameter spaces and the habemus Minimal Su-
persymmetric Standard Model in the (mA , tan β) parameter space.
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