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structive and yields an overall cross-section of ogsé‘ﬁ(pp — HH) =

33.51’%:; fb at /s =13 TeV [11], calculated first at next-to-leading

1. Introduction

The discovery of the Higgs boson (H) [1,2] at the Large Hadron
Collider (LHC) [3] in 2012 has experimentally confirmed the Brout-
Englert-Higgs (BEH) mechanism of electroweak symmetry break-
ing and mass generation [4-6]. The BEH mechanism not only pre-
dicts the existence of a massive scalar particle, but also requires
this scalar particle to couple to itself. Therefore, observing the pro-
duction of Higgs boson pairs (HH) and measuring the Higgs boson
self-coupling Ayyy is a crucial validation of the BEH mechanism.
Any deviation from the Standard Model (SM) predictions would
open a window to new physics. Moreover, the form of the Higgs
field potential, which generates the Higgs boson self-coupling after
electroweak symmetry breaking, can have important cosmological
implications, involving, for example, predictions for vacuum stabil-
ity or models in which the Higgs boson acts as the inflation field
[7-10].

In the SM, the gluon-gluon fusion pp — HH process (ggF)
accounts for more than 90% of the Higgs boson pair production
cross-section, and only this production mode is considered here. It
proceeds via two amplitudes: the first (A7) represented by the dia-
grams (a) and (b), and the second (.A;) represented by the diagram
(c) in Fig. 1. The interference between these two amplitudes is de-
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order (NLO) in QCD with the heavy top-quark approximation [12],
then numerically with full top-quark mass dependence [13] (con-
firmed later in Ref. [14] and analytically computed with some ap-
proximation in Ref. [15]) corrected at next-to-next-to-leading order
(NNLO) [16] in QCD matched with next-to-next-to-leading loga-
rithmic (NNLL) resummation in the heavy top-quark limit [17,18].
The Higgs boson mass used in these calculations and for all re-
sults in this paper is my = 125.09 GeV [19]. Beyond-the-Standard-
Model (BSM) scenarios can bring substantial enhancement of this
cross-section by modifying the relative sign of .4; and A, and by
increasing A,. The .4, amplitude is proportional to the Higgs self-
coupling Agyy. The Higgs boson self-coupling modifier due to BSM
scenarios is defined as k; = AHHH/AE‘;{,H. In this analysis, all other
Higgs boson couplings are assumed to have SM values. Indirect
limits on k; have been obtained using the measurements of single
Higgs boson production and decay [20] and electroweak precision
observables [21,22], constraining «; to the range —8 < «; < 14 at
95% confidence level (CL). The Higgs boson self-coupling is dis-
cussed in the context of BSM models in Refs. [22,23].

Several BSM models also predict the existence of heavy parti-
cles decaying into a pair of Higgs bosons. Two-Higgs-Doublet Mod-
els [24], models inspired by the Minimal Supersymmetric Standard
Model (MSSM) like habemus MSSM (hMSSM) [25-28], and Elec-
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Fig. 1. Examples of leading-order Feynman diagrams for Higgs boson pair production: the diagrams (a) and (b) are proportional to the square of the heavy-quark Yukawa
couplings, while the diagram (c) is proportional to the product of the heavy-quark Yukawa coupling and the Higgs boson self-coupling. Here «; is the ratio of the beyond-
the-Standard-Model Higgs boson self-coupling to that of the SM. The diagram (d) represents the production of the Higgs boson pair through an intermediate resonance (X)

that couples to gluons through an effective coupling and to the SM Higgs boson.

troweak Singlet Models (EWK-singlet) [11,29-31] predict, in addi-
tion to the Higgs boson, a second, heavier, CP-even scalar that can
decay into two SM Higgs bosons. In the EWK-singlet model, the
scalar states are mixed, with a mixing angle «. The ratio of the
vacuum expectation value of the additional singlet to that of the
SM Higgs doublet, tan g, is a free parameter. In the hMSSM, the
CP-even states also mix, and the model’s phenomenology can be
described by the mass (my) of a third, CP-odd, resonance and the
ratio of the vacuum expectation values of the two Higgs doublets,
tan 8. Alternatively, the Higgs boson pair can be produced reso-
nantly through the decay of a spin-2 Kaluza-Klein (KK) graviton,
as predicted in the Randall-Sundrum (RS) model of warped extra
dimensions [32]. A schematic diagram for production of a heavy
resonance followed by its decay into a Higgs boson pair is shown
in Fig. 1(d).

This letter presents a combination of results from searches
for both non-resonant and resonant Higgs boson pair produc-
tion in proton-proton (pp) collisions at /s = 13 TeV. The data
were collected with the ATLAS detector [33-35] and correspond
to an integrated luminosity of up to 36.1fb~'. The combination
includes all published ATLAS HH search analyses using /s =
13 TeV data, namely those studying the final states bbbb [36],
bbWTW~ [37], bbttt~ [38], WrW-W+W~ [39], bbyy [40]
and WTW~yy [41].

Previous combinations of searches for HH pair production were
performed at /s =8 TeV by the ATLAS experiment [42] and at
/s =13 TeV by the CMS experiment [43] combining the final
states bbbb [44-47], bbVV [48], bbt Tt~ [49] and bby y [50].

2. Analysis description

The analysis strategies for each of the final states considered in
this letter are summarised below.

e The bbbb analysis is performed using four anti-k; jets recon-
structed with a radius parameter R = 0.4 [51,52] (resolved
analysis) or two large-R jets with R = 1.0 (boosted analysis).
The dataset of the resolved analysis is split according to the
years 2015 and 2016, and then statistically combined taking
into account the different trigger algorithms used in 2015 and
2016. In part of the 2016 data period, inefficiencies in the
online vertex reconstruction affected b-jet triggers that were
used in the resolved analysis, reducing the total available inte-
grated luminosity to 27.5 fb~'. The boosted analysis searches
for two large-R jets containing the b-quark pairs from the de-

cays of the two Higgs bosons. The large-R jets are identified
as originating from b-quarks using a b-tagging algorithm ap-
plied to R = 0.2 track-jets [53] associated with the large-R
jet [54]. The analysis is divided into three categories: the first
category selects events in which each of the two large-R jets
has one b-tagged track-jet; the second category requires that
one large-R jet contains two b-tagged track-jets and the other
large-R jet contains one b-tagged track-jet; the third category
requires that both large-R jets contain two b-tagged track-jets.
For the SM HH search, only the resolved analysis is used, with
two categories, one for the 2015 and another for the 2016
dataset. The resonant search is instead performed with the re-
solved analysis for masses in the range 260-1400 GeV, with
the boosted analysis for masses in the range 800-3000 GeV,
and with the combination of the two for masses in the over-
lapping range 800-1400 GeV.

e The bbW*W ™ analysis looks for the WW — ¢vqq decay
channel, where ¢ is an electron or muon, and q is a u,d,s,c
quark or anti-quark. The bb pair is selected from two R = 0.4
jets (resolved analysis) or one R = 1.0 large-R jet (boosted
analysis), while the jets from the W decay are reconstructed
with R = 0.4 jets. The resolved analysis is used in the SM HH
search, in the search for a scalar resonance with a mass be-
tween 500 and 1400 GeV, and in the search for a KK graviton
in the mass range 500 to 800 GeV. The boosted analysis looks
for scalar resonances in the mass range 1400 to 3000 GeV and
for KK gravitons between 800 and 3000 GeV. The resolved and
boosted analyses each use one category. The two analyses are
not statistically combined due to a significant overlap between
the two signal regions.

o The bbt*7~ analysis looks for final states with two R = 0.4
b-tagged jets and two t-leptons. One of the two T7-leptons
of the T+t~ pair is required to decay hadronically, while
the other decays either hadronically (ThaqThad) Or leptonically
(TlepThad)- In the TjepThaq channel, events are triggered by sin-
gle lepton triggers (SLT), requiring an electron or a muon
in the final state, or by the coincidence of a lepton trig-
ger with a hadronic t trigger (LTT). In the ThaqThaq channel,
events are triggered by single hadronic 7 triggers (STT) or
double hadronic t triggers (DTT). The analysis is divided into
three categories: one selects ThiqThad €vents, a second selects
TlepThad €Vents triggered by the SLT, and a third selects TjepThad
events triggered by the LTT. The ThadThad and the SLT TiepThad
categories are used for all model interpretations, while the LTT
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Table 1

Summary of the main characteristics of the analyses used in the non-resonant and resonant searches. The resonant analysis char-
acteristics are indicated between square brackets. “B(HH — xxyy)” indicates the branching fraction of the HH pair where one
H decays into xx and the other decays into yy. The branching fraction values are taken from Ref. [11] for a Higgs boson mass
my = 125.09 GeV. “Lin" indicates the integrated luminosity of the dataset used in the analysis. “Categories” indicates the number
of signal categories. “Discriminant” indicates the distribution used in the final limit-setting fit (“c.e.” stands for counting events and
indicates that a simple event counting was used in the final fit rather than a distribution shape). “Model” indicates which models
each analysis tested: NR stands for SM HH signal model, S for a spin-0 scalar model, and G for a KK graviton model. “ms;c" gives
the probed mass range for the resonant search. “Ref.” reports the reference to the individual final state papers.

bbbb bbW T W bbrtr— wrw-wtw- bbyy wHtw-yy
B(HH — xxyy) 0.34 0.25 0.073 0.046 2.6-1073 1.0-1073
Line [ 27.5 [36.1] 36.1 36.1 36.1 36.1 36.1
Categories 2 [2-5] 11[1] 3 [2-3] 91[9] 2 (2] 11[1]
Discriminant myy [munl ce. [munl BDT [BDT] ce. [ce] Mmyy [myp] myy [myy]
Model NR [S/G] NR [S/G] NR [S/G] NR [S] NR [S] NR [S]
ms,c [TeV] [0.26-3.00] [0.50-3.00] [0.26-1.00] [0.26-0.50] [0.26-1.00] [0.26-0.50]
Ref. [36] [37] [38] [39] [40] [41]

TlepThad Category is used in the SM HH search (excluding the
K, analysis) and in resonant searches up to a mass of 800 GeV.

e The WTW-WTW~ analysis looks for channels with lep-
tonic and/or hadronic W decays. Three channels are identified:
LvLv4q, Lv v Ly 2q, and v Ly Ly Ly, with £ being an electron
or muon, q a quark, and v a neutrino. The ¢ momentum is
reconstructed from R = 0.4 jets. In order to suppress Z + jets
and tt background, dilepton events are required to have two
leptons of the same charge. Events are categorised according
to the lepton flavour (ee, ept and pp). Three-lepton events
are selected if the sum of the lepton charges is +1. They are
divided into two categories according to the number of same-
flavour, opposite-charge (SFOS) lepton pairs; one category se-
lects zero SFOS lepton pairs and a second category selects one
or two SFOS lepton pairs. Four-lepton events are categorised
according to the number of SFOS lepton pairs and the invari-
ant mass (mga¢) of the four-lepton system. Four categories are
defined, requiring that the number of SFOS lepton pairs is less
than two or equal to two, and my, is smaller or larger than
180 GeV. A total of nine categories are fit simultaneously in
the searches for both non-resonant and resonant HH produc-
tion.

e The bEyy analysis searches for a HH pair decaying into bb
and yy. Two high-pr isolated photons are required to have
Et/my, > 035 and 0.25 respectively. The events are then
analysed using two selections: a ‘loose selection’ requiring a
jet with pt > 40 GeV and a second jet with pr > 25 GeV, and
a ‘tight selection’” where the two jets are required to have pr
larger than 100 and 30 GeV. All jets have a radius parame-
ter R = 0.4. Both selections are subdivided into two categories
requiring one b-tagged jet or two b-tagged jets. The tight se-
lection is used in the SM HH search and in the search for
resonances with masses higher than 500 GeV, while the loose
selection is used in the x;, analysis and in the search for res-
onances with masses smaller than 500 GeV. The analysis is
therefore divided into four categories, but only two of them
are simultaneously fit to extract each result.

e The WTW ~yy analysis searches for a HH pair decaying into
yy and WW. The analysis uses the same photon selection as
the bby y channel and looks for one W decaying leptonically
and a second W decaying hadronically (WW — ¢vqq). The
hadronic W decay is reconstructed from R = 0.4 jets. Only one
category is used in the searches for both non-resonant and
resonant HH production.

A summary of the main analysis characteristics is given in Ta-
ble 1. All analyses impose a series of sequential requirements on
kinematic variables to select signal events and suppress back-

grounds. The bbttt~ analysis uses a boosted decision tree
(BDT) [55] distribution as the final discriminant for both the non-
resonant and resonant searches. For the resonant searches, the
bbbb, bbW+W ™~ and bbyy analyses use the HH invariant mass
(myp) as the final discriminant, the W*W~yy analysis uses
the yy invariant mass (my, ), while WHW~-W*™W~ uses sim-
ple event counting. For the SM HH search, the bbbb analysis uses
the myy distribution as a discriminant, profiting from the differ-
ence between the shapes of the signal and the dominant multi-jet
background. The bbyy and WHW~yy analyses fit the m,,,, dis-
tribution to extract both the signal yield and the background ex-
pectation, while the bbW+W~ and WHW~W™W ™ analyses use
event counting.

3. Statistical treatment

The statistical interpretation of the combined search results is
based on a simultaneous fit to the data for the cross-section of the
signal process and nuisance parameters that encode statistical and
systematic uncertainties, using the CLs approach [56]. The asymp-
totic approximation [57] is used in the analysis of all final states
and their combination.

All signal regions considered in the simultaneous fit are either
orthogonal by construction or have negligible overlap. The over-
lap due to object misidentification between bbyy and bbttt~,
and between WTW~yy and WTW~W*W~, which are not or-
thogonal by construction, is evaluated by running the signal and
data samples from each channel through the analysis selection of
each other channel. Less than 0.1% of simulated signal events over-
lap between analyses, and no overlap is found in data. There is
some irreducible contamination from bb WTW~ and bbZZ events
with 7’s in the final state passing the_bbr*r* selection. This con-
tamination is less than 8% of the bbr_*r‘ selected events, and
it is not taken into account in the bbtT7~ analysis, note that
including this contribution would increase the analysis sensitiv-
ity therefore the results obtained here are slightly conservative.
The detector systematic uncertainties, such as those in jet recon-
struction, b-jet tagging, electron, muon and photon reconstruction
and identification, as well as the uncertainty on the integrated lu-
minosity [58], are correlated across all final states. Uncertainties
on the signal acceptance derived by varying the renormalisation
and factorisation scales, the parton distribution functions and the
parton shower are correlated too. Theoretical and modelling sys-
tematic uncertainties of the backgrounds derived using simulated
events are not correlated across different analyses because the
overlap among their contributions to the different analyses is neg-
ligible.
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Fig. 2. Upper limits at 95% CL on the cross-section of the ggF SM HH production
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WHW-WHW~=, WTW~yy and bbW W~ searches, and their statistical combi-
nation. The column “Obs.” lists the observed limits, “Exp.” the expected limits with
all statistical and systematic uncertainties, and “Exp. stat.” the expected limits ob-
tained including only statistical uncertainties in the fit.

4. Combination of results on non-resonant Higgs boson pair
production

The SM HH analyses use signal samples generated at next-to-
leading order (NLO) in QCD with MADGRAPH5_AMC®@NLO [59] using
the CT10 NLO parton distribution function (PDF) set [60]. Parton
showers and hadronisation were simulated with HERwIG++ [61]
using parameter values from the UE-EE-5-CTEQ6L1 tune [62]. The
so-called FTApprox method [63] is applied in the event generation
to include finite top-quark mass effects in the real-radiation NLO
corrections. The virtual-loop corrections are realised with Higgs ef-
fective field theory (HEFT) assuming infinite top-quark mass. The
generated events are then corrected with a generator level bin-by-
bin reweighting of the myy distribution, which is calculated with
finite top-quark mass in full NLO corrections [13]. The branch-
ing fractions of the Higgs boson are assumed to be equal to the
SM predictions [11]. For the SM HH search, upper limits are ex-
tracted for the cross-section oger(pp — HH) of HH production
and are normalised by the SM HH cross-section O'gsg]\l/:[(pp — HH).
The limits are determined assuming that all kinematic properties
of the HH pair are those predicted by the SM, particularly the
mpypy distribution, and only the total ggF production cross-section,
0ger(pp — HH), is allowed to deviate from its SM value. The the-
oretical uncertainties of Ggg'\{_.[ are less than 10% [11] and are not
included in the fit results.

The upper limits at 95% CL on the cross-section of the ggF Higgs
boson pair production normalised to as“ﬁ are shown in Fig. 2 for
the individual final states and their combination. The upper limit
for each final state is obtained from a fit with minimal changes
from previously published results. The changes include an update
of the ggF Higgs boson pair production cross-section from 33.4
fb to 33.5 fb for all final states. Additionally, the bbt*7~ final
state included theoretical uncertainties on the ggF inclusive cross-

section, agg'%, which are not considered in the present treatment,

and the bbyy final state is updated to use an asymptotic ap-
proximation to calculate the observed limit instead of the pseudo-
experiment method used for its publication. This results in a 10%
change in the observed limit of bby y. Moreover, the impact of the

asymptotic approximation on all final states combined is found to
be 5%.
The combined observed (expected) upper limit on the SM HH

production is 6.9 (10) x (rgglﬁ(pp — HH). The expected limit is

similar to the CMS result of 12.8 x agsé‘g(pp — HH). The observed
limit is more stringent for the ATLAS result than the CMS result of

222 x ogf(pp — HH) because the three leading channels (bbbb,

bbrTt~ and bbyy) have a data deficit in ATLAS and an excess
in CMS [43], remaining however within the two 20 uncertainty
interval. Detailed comparisons can be found in Ref. [64].

The impact of the systematic uncertainties has been evaluated
by recomputing the limit without their inclusion. The limit is then
reduced by 13% when removing all of them. The main sources of
systematic uncertainty are the modelling of the backgrounds, the
statistical uncertainty of simulated events and the t-lepton recon-
struction and identification. When removed the limit reduces by
5%, 3% and 2%, respectively.

5. Constraints on the Higgs boson self-coupling

The results in Fig. 2 show that the sensitivity of the SM HH
search is driven by the final states bbbb, bbt ™t~ and bbyy. These
final states are used to set constraints on the Higgs boson self-
coupling modifier k; = Appn /A3y, After setting all couplings to
fermions and bosons to their SM values, a scan of the self-coupling
modifier «; is performed. The «; factor affects both the production
cross-section and the kinematic distributions of the Higgs boson
pairs, by modifying the A, production amplitude. It can also af-
fect the Higgs boson branching fractions due to NLO electroweak
corrections [20], but this dependence is neglected in the follow-
ing.

The signal used in the «; fit was simulated according to the
following procedure. For each value of k; the mpyy spectrum is
computed at the generator-level, using the leading-order (LO) ver-
sion of MADGRAPH5_AMC@NLO [59] with the NNPDF 2.3 LO [65]
PDF set, together with PyTHIA 8.2 [66] for the showering model
using the A14 tune [67]. Because only one amplitude of Higgs bo-
son pair production depends on k;, linear combinations of three
LO samples generated with different values of «; are sufficient to
make predictions for any value of «;,. Binned ratios of the myy
distributions to the SM distribution are computed for all «; values
and then used to reweight the events of NLO SM HH signal sam-
ples, generated using the full detector simulation. This procedure
is validated by comparing kinematic distributions obtained with
the reweighting procedure applied to the LO SM sample and LO
samples generated with the actual «; values set in the event gen-
erator. The two sets of distributions are found to be in agreement.
This procedure assumes that higher order QCD corrections on the
differential cross-section as a function of myy are independent of
k. The reweighted NLO signal sample is used to compute the sig-
nal acceptance and the kinematic distributions for different values
of Kj.

This letter presents f; results for the first time in the AT-
LAS bbbb and bbt 1~ final states and incorporates the previously
published result for the bbyy final state. The «; analyses closely
follow the SM HH search, with some exceptions which are dis-
cussed below for each final state.

o In the bbbb final state, the same analysis selection and final
discriminant are used in the «;-scan analysis and in the SM
HH search. The distribution of the final discriminant myy is
shown in Fig. 3(a), where, with the exception of a small excess
in the region below 300 GeV [36] and a small deficit in the
500-600 GeV region, good agreement between data and the
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Fig. 3. Final discriminants used in the k;-scan analysis for the bbbb and the bbrt~ final states. (a) shows the reconstructed myp distribution in the bbbb analysis;
backgrounds include data-driven multi-jet processes (Multijet), tf — W W ~bb with both W bosons decaying hadronically (Hadronic tf) and tf — W+ W ~bb with at least
one of the W bosons decaying leptonically (Semileptonic tf). (b) and (c) show the BDT distributions in the bbt+7~ analysis for the TiepThad and the ThaqThaq channels,
respectively. The main backgrounds are tt and single-top-quark production (Top-quark), the background arising from jets faking hadronic 7-lepton decays (jet — Thaq fakes),
Z — T~ plus two heavy-flavour jets [Z — 7 + (bb, bc, cc)], SM single Higgs boson production (SM Higgs) and other minor backgrounds (Other). The shaded area includes
the systematic uncertainty of the total background expectation due to the statistics of simulated events and all experimental and theoretical systematic uncertainties. In
figures (b) and (c) the uncertainty band is not shown in the upper panes because it is too small to be seen. The signal distribution is overlaid for k; = —5,1,10 and is
normalised to its expected yield.

expected background is observed. The shape of the myy dis-
tribution has a strong dependence on «;, and the signal accep-
tance varies by a factor 2.5 over the probed range of «; -values
(=20 < k; < 20) shown in Fig. 4(a). The two effects together
determine how the exclusion limits on the cross-section of the
HH production vary as a function of ;.

In the bbt*t~ final state, as in the SM HH search, both
TlepThad aNd ThadThad €vents are used. In contrast with the SM
HH search, LTT TiepThag events (see Section 2) are not used
given their negligible contribution. The SM HH search and the
K-scan analysis use the same sets of variables to build BDT
discriminants. For the k;-scan the BDTs are retrained using
the NLO SM signal sample reweighted with «; = 20, ensur-
ing good sensitivity over the whole range of probed «; -values.
The BDT score distributions are used in the fit to compute the
final results. The shape of the bbt ™7~ BDT distributions does

not show a «; dependence as strong as in the bbbb final state,
as can be seen in Fig. 3. The sensitivity of this analysis is in-
stead affected by a variation in the signal acceptance by up to
a factor of three over the probed range of «; -values, as shown
in Fig. 4(a).

In the bbyy final state, the loose selection is used in the
Kkj-scan analysis because the average transverse momentum
of the Higgs bosons is lower at large values of «;, where
|A>|> dominates the production cross-section. As in the SM
HH search, the statistical analysis is performed using the m,,,
distribution, which does not depend on «;. The signal accep-
tance varies by about 30% over the probed range of k; -values,
as shown in Fig. 4(a). In the previously published analysis [40],
LO samples were used for the computation of the signal ac-
ceptance, while in this paper the NLO reweighted samples are
used, as described above.
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and bbyy analyses. The bbbb curve is the average of the 2015 and 2016 curves

weighted by the integrated luminosities of the two datasets. (b) Upper limits at 95% CL on the cross-section of the ggF non-resonant SM HH production as a function of
k. The observed (expected) limits are shown as solid (dashed) lines. In the bEyy final state, the observed and expected limits coincide. The +10 and +20 bands are
only shown for the combined expected limit. The theoretical prediction of the cross-section as a function of k; is also shown. The effect of non-SM Higgs decay branching
fractions due to k; variations is not taken into account, which impacts the «; intervals by no more than 7%.

The signal acceptance times efficiency as a function of «; is
shown in Fig. 4(a). Given that, for each final state, the same selec-
tion was applied over the full scanned «; range, the shape of the
acceptance times efficiency curve is determined by the variation of
the event kinematics as a function of ;. For high values of |« |
the A, term dominates the total amplitude, causing a softer myy
spectrum, and thus a lower acceptance times efficiency. Around
K = 2.4 the interference between A; and A, amplitudes is max-
imal, producing the hardest myy spectrum and, consequently, the
highest signal acceptance times efficiency.

In each analysis, and in their combination, the 95% CL upper
limit on the oggr(pp — HH) cross-section is computed for differ-
ent values of «;. The results are shown in Fig. 4(b). The theoret-
ical oggr(pp — HH) cross-section as a function of k; is overlaid
in the figure. It is computed by multiplying the HH SM cross-

section agg“é'(pp — HH) by the ratio R (k;) of the pp — HH cross-

section computed at «;, Ug"g*F(pp — HH) to the same quantity
agg}:](pp — HH) computed at «; = 1. The R(«x;) factor is com-
puted at NNLO+NNLL with the infinite top-quark mass approxi-
mation [68]. The resulting observed (expected) confidence interval
at 95% CL for k; is: —5.0 <k, <12.0 (—=5.8 <k; < 12.0).

In Fig. 4(b) the shape of the upper-limit curves approximately
follows the inverse of the signal acceptance shown in Fig. 4(a). In
the bbbb analysis, the observed limits are more stringent than the
expected limits at low values of «;. For these «;, values the sig-
nal myy distributions have significant populations in the region
500-600 GeV, where the data deficit sits, as explained above. For
larger values of k; the mypy distribution is shifted to lower myy
values, and thus the excess in data below 300 GeV leads to the
observed limits being less stringent than expected. In the bbt 7~
final state the observed limits are more stringent than the ex-
pected limits over the whole range of k;, due to a deficit of data
relative to the background predictions at high values of the BDT
score. The bbyy limit shows a weaker dependence on «; than the
bbbb and bbbt~ limits because the bbyy acceptance varies less
as function of k.

The 95% CL allowed «; intervals are given in Table 2. The
systematic uncertainties weaken the k; limits by less than 10%
relative to those obtained with only statistical uncertainties. The fi-
nal state least (most) affected by systematic uncertainties is bbyy
(bbbb). The Higgs boson branching fraction depends on «; due to

Table 2

Allowed «; intervals at 95% CL for the bbbb, bbt*7~ and bbyy final states and
their combination. The column “Obs.” lists the observed results, “Exp.” the expected
results obtained including all statistical and systematic uncertainties in the fit, and
“Exp. stat.” the expected results obtained including only the statistical uncertainties.
The effect of non-SM Higgs decay branching fractions due to «; variations is not
taken into account, which impacts the «; intervals by no more than 7%.

Final state Allowed «; interval at 95% CL

Obs. Exp. Exp. stat.
bbbb -10.9 - 20.1 —11.6 — 18.8 -9.8 163
bbrtT- ~74—157 -89 —168 -78-155
bbyy -8.1—13.1 -8.1—13.1 -7.9 - 12.9
Combination —5.0 — 12.0 —5.8 — 12.0 -53—115

NLO electroweak corrections [20]. This dependence is neglected in
the present treatment, but its overall impact on the allowed «; in-
terval is evaluated to be no more than 7%. Theory uncertainties on
the signal cross section shown in Fig. 4(b) are not taken into ac-
count when computing the k; limits in Table 2, they affect the
limit by less than 8%.

6. Combination of results for resonant Higgs boson pair
production

The resonance decaying into a pair of Higgs bosons is assumed
to be either a heavy spin-0 scalar particle, S, with a narrow width
or a spin-2 KK graviton, Ggg.

The search for the heavy scalar particle S is performed with
all six final states included in this combination. With the excep-
tion of bbttt~ and bbbb, all signal samples were simulated at
NLO with MADGRAPH5_AMC@NLO using the CT10 PDF set. The
matrix-element generator was interfaced to HERwIG++ with the
UE-EE-5-CTEQ6L1 tune. The bbt+ 7~ final state uses an LO model
generated with MADGRAPH5_AMC@NLO using the NNPDF 2.3 LO
PDF set interfaced to PyTHIA 8.2 with the A14 tune, while the bbbb
final state uses the same LO event generator but interfaced to HER-
wiG++ with the UE-EE-5-CTEQ6L1 tune.

The scalar resonance search is performed in the mass range
260-3000 GeV, and within this range no statistically significant ex-
cess is observed. In the combination, the largest observed deviation
from the background expectation is 1o for the search mass range.
The combined upper limit on the cross-section is shown as a func-
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intervals where different final states are combined.

tion of the resonance mass in Fig. 5(a). Systematic uncertainties
have a sizeable effect on the upper limits depending on the probed
resonance mass. The total impact of systematics or the impact of
a single systematic uncertainty has been evaluated by computing
the percentage reduction of the upper limit obtained by removing
all systematic uncertainties or a particular source. Overall the sys-
tematic uncertainties affect the limit by 12% (11%) for a resonance
mass of 1 (3) TeV. Among them, the largest systematic uncertain-
ties are due to the modelling of the backgrounds, impacting the
upper limit by 7% (9%) at 1 (3) TeV. The second leading system-
atic uncertainty comes from b-tagging, that affects the upper limit
by 2% at 1 TeV, but its impact is negligible at 3 TeV where relative
background and statistical uncertainties increase significantly. At
3 TeV the second leading systematic uncertainty is related to the
jet energy scale and resolution, changing the limit by 2%. Interpre-
tations in specific spin-0 BSM models are provided in Section 7. _

_ The search for a spin-2 KK graviton is performed with the bbbb,
bbW*W ~ and bbt ™7~ final states only. Gravitons were simulated
using an LO model in MADGRAPH5_AMC@NLO with the NNPDF 2.3
LO PDF set interfaced to PyTHIA 8.2 with the A14 tune. The reso-
nance width changes with the graviton mass and depends on the
parameter k/Mp, where k is the curvature of the warped extra di-
mension in the bulk RS model and Mp = 2.4 x 10! GeV is the
effective four-dimensional Planck mass. The search is performed

for models with k/Mp, equal to 1 and 2. For k/Mp =1 (2), the
width ranges from 3% (11%) for a 0.3 TeV graviton mass to 6% (25%)
for a 3 TeV graviton mass.

The upper limits in the Ggg search are shown as a function
of the resonance mass in Figs. 5(b) and 5(c) for k/Mp equal to 1
and 2, respectively. In the combination, the largest observed de-
viation from the background expectation is 1.50 (0.70) for the
search mass range with k/Mp; =1 (2). Exclusion ranges on the KK
graviton mass are obtained by comparing the upper limit with the
production cross section calculated at LO. In the case of k/Mp =1,
the bulk RS model is excluded at 95% CL in the graviton mass range
from 310 GeV to 1380 GeV. In the case of k/Mp = 2, the model is
excluded at 95% CL for graviton masses from 260 GeV, where the
scan starts, to 1760 GeV.

The impact of the systematic uncertainties on the upper limits
on Ggg has a small dependence on the resonance mass. It is ~20%
over the whole mass range for k/Mp; = 1, and 29% (25%) at a mass
of 1 TeV (3 TeV) for k/Mp, = 2. The largest systematic uncertainties
are from the modelling of the backgrounds, affecting the limit by
11% (15%) at 1 TeV (3 TeV) for k/Mp, =1 and 16% (21%) at 1 TeV
(3 TeV) for k/Mp = 2. For k/Mp; = 1, the subleading systematic
uncertainties come from b-tagging at low Ggx mass, that affect
the limit by 3%, and from jet energy scale and resolution at high
mass, that affect the upper limit by 2% (3%) at 1 TeV (3 TeV). For
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k/Mp, = 2, subleading systematic uncertainties are from jet energy
scale and resolution, impacting the upper limits by 5% at 1 TeV
and 4% at 3 TeV. The systematic uncertainties affect upper limits
more for k/Mp; =2 than for k/Mp = 1, because the natural width
of the signal graviton is four times larger with k/Mp = 2.

7. Constraints on the hMSSM and EWK-singlet models

Exclusion limits are also presented for two specific models,
namely the EWK-singlet model [11,29-31] and the hMSSM model
[11,26-28,69]. The sensitivity of the bbOWTW~—, WTW - WTW~
and WTW~yy final states to these models is negligible, so the
presented results combine only the bbbb, bbt*t~ and bbyy final
states.

For the EWK-singlet model, the experimental limits on the spin-
0 resonance (as reported in Section 6) are interpreted as con-
straints in the mg-sina plane (where mg is the resonance mass)
for tanf =1 and tanpB = 2, shown in Fig. 6(a) and Fig. 6(b) re-
spectively. The expected cross-section for each point in the param-
eter space is obtained by scaling the heavy Higgs cross-section
calculated at NNLO+NNLL [11] with singlet coupling modifiers.
The branching fractions are computed with sHDECAY [70]. In this
model, the width of the heavy scalar can be large in some regions

of the parameter space. Due to the use of narrow-width signal
models in the event generation, results presented here are valid
only in regions of the model parameter-space where the resonance
width (T's) is smaller than the experimental resolution at the res-
onance mass. This holds when I's /ms < 2% for bby y, I's/ms < 5%
for bbbb and I's/ms < 10% for bbt ™t ~. Therefore, the excluded
region in the plot is obtained by combining the three final states
for I's/ms < 2%, by combining the bbbb and bbt*t~ final states
for 2% < I's/ms < 5%, and using only bbttt~ for 5% < I's/ms <
10%. The hatched region shows points where I's/ms > 10%, where
no exclusion can be provided. Fig. 7(a) shows limits for the (sin «,
tan B) parameter space for ms =260 GeV where, due to the lim-
ited decay phase space, the resonance width is narrow in a wide
region of the parameter space.

The experimental limits on a spin-O resonance are also in-
terpreted as constraints in the ma-tang plane of the hMSSM
model in Fig. 7(b). The expected cross-section for each point in the
parameter space is obtained using the gluon-gluon fusion cross-
section from SUSHI 1.5.0 [71,72] and the branching fractions com-
puted with HDECAY 6.4.2 [73].

The excluded region is more than doubled along tan 8 relative
to the previous combined results in Ref. [42] at 8 TeV, and excludes
values of my from 190 GeV to 560 GeV depending on tanS. The
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kink at low tanp and high m,4 values is caused by removing the
bbyy final state from the combination in the region where the
predicted width of the heavy CP-even Higgs boson is larger than
the experimental resolution on mg in the bbyy analysis.

8. Conclusion

_ A statistical combination of six final states bbbb, bbW*+ W,
bbttt™, WTW-WTW~, bbyy and WTW~yy, is presented for
the search for non-resonant and resonant production of Higgs bo-
son pairs. These searches use up to 36.1fb~"' of proton-proton
collision data at 13 TeV recorded with the ATLAS detector at the
LHC.!

In both resonant and non-resonant searches, no statistically sig-
nificant excess of events above the Standard Model predictions is
found. For the Standard Model HH production mode, the observed
(expected) 95% confidence level upper limit on the gluon-gluon fu-
sion pp — HH cross-section is 6.9 (10) times the Standard Model
prediction. The expected limit is comparable to the CMS result,
while the observed limit is significantly stronger than CMS’s due
to a data deficit compared to expected background in ATLAS and
an excess in CMS. For the resonant case, upper limits are set
on the production cross-section of heavy spin-0 and spin-2 res-
onances decaying into pairs of Higgs bosons in the mass range
260-3000 GeV.

Upper limits on the pp — HH cross-section are also com-
puted as a function of the Higgs boson self-coupling modifier
K3 = Apn /A3y, by combining the bbbb, bbt*t~ and bbyy fi-
nal states. The combination excludes «; values outside the range
—5.0 < k; <12.0 (=5.8 < k3 < 12.0) at 95% confidence level in
observation (expectation). The three final states are also combined
to constrain the Electroweak Singlet Model in the (ms, sin o) and
the (sin «, tan B) parameter spaces and the habemus Minimal Su-
persymmetric Standard Model in the (m4, tan 8) parameter space.
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