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mass energy of 13 TeV with the ATLAS detector at the LHC. Events with a photon, an electron or muon,
a b-tagged jet, and missing transverse momentum are selected. A neural network based on kinematic
variables differentiates between events from signal and background processes. The data are consistent
with the background-only hypothesis, and limits are set on the strength of the tqy coupling in an
effective field theory. These are also interpreted as 95% CL upper limits on the cross section for FCNC
ty production via a left-handed (right-handed) tuy coupling of 36 fb (78 fb) and on the branching ratio
for t — yu of 2.8 x 107 (6.1 x 107>). In addition, they are interpreted as 95% CL upper limits on the
cross section for FCNC ty production via a left-handed (right-handed) tcy coupling of 40 fb (33 fb) and
on the branching ratio for t — yc of 22 x 107> (18 x 107°).
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1. Introduction FCNC contributions to the decay mode (t — qy) and the pro-
duction mode (q — ty) can be expressed in terms of effective
coupling parameters but also in terms of branching ratios and
cross sections [5,6]. In the former case and following the nota-
tion in Ref. [7], the corresponding operators are Of}é) and Ofll\],\),
where i # j are indices for the quark generation. In general, left-
handed (LH) and right-handed (RH) couplings could exist, which
result in different kinematic properties of the top-quark decay
products, such as the transverse momentum of the charged lep-
ton in semileptonic top-quark decays. The most stringent limits to
date are limits on branching ratios of B(t — uy) <1.3-107% and
B(t - cy) < 1.7-1073 set by the CMS Collaboration, assuming
equal left- and right-handed couplings [8].

Flavour-changing neutral currents (FCNCs) are forbidden at tree
level in the Standard Model (SM) and strongly suppressed at higher
orders via the GIM mechanism [1]. Several extensions to the SM
predict processes involving FCNCs. In particular, some of these
models predict the branching ratios of top-quark decays via FCNC
to be significantly larger [2] than those predicted by the SM, which
are of the order of 1014 [2]. Examples are R-parity-violating su-
persymmetric models [3] and models with two Higgs doublets [4].
Such models would allow the production of top quarks via FCNCs
at a measurable rate.

This Letter presents a search for FCNCs in processes with a top
quark (t) and a photon () based on data collected with the ATLAS 2. ATLAS detector
experiment at /s = 13 TeV. This analysis is most sensitive to the
production of a single top quark plus a photon, but also considers The ATLAS experiment [9] at the LHC is a multi-purpose par-
the decay of a pair-produced top quark into an up or charm quark ticle detector with a forward-backward symmetric cylindrical ge-
(q) plus a photon. Tree-level Feynman diagrams for these processes  ometry and a near 47 coverage in solid angle.! It consists of an

are shown in Fig. 1, where in both cases, exactly one top quark jnner tracking detector (ID) surrounded by a thin superconduct-
decays via the SM-favoured tWb coupling. Compared to the SM
production of a top quark and a photon, the FCNC processes result

in higher photon transverse momenta on average. 1 ATLAS uses a right-handed coordinate system with its origin at the nominal

interaction point (IP) in the centre of the detector and the z-axis along the beam

pipe. The x-axis points from the IP to the centre of the LHC ring, and the y-axis

- points upwards. Cylindrical coordinates (r,¢) are used in the transverse plane, ¢

* E-mail address: atlas.publications@cern.ch. being the azimuthal angle around the z-axis. The pseudorapidity is defined in terms
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Fig. 1. Tree-level Feynman diagrams for top-quark production (left) and decay (right) via FCNCs. The tqy vertex, which is not present in the SM, is highlighted.

ing solenoid providing a 2 T axial magnetic field, electromagnetic
and hadron calorimeters, and a muon spectrometer (MS). The ID
covers the pseudorapidity range |n| < 2.5. It consists of silicon
pixel, silicon microstrip, and transition radiation tracking detectors.
Lead/liquid-argon (LAr) sampling calorimeters provide electromag-
netic (EM) energy measurements with high granularity. A hadron
(steel/scintillator-tile) calorimeter covers the central pseudorapid-
ity range (|n| < 1.7). The end-cap and forward regions are instru-
mented with LAr calorimeters for both EM and hadronic energy
measurements up to || =4.9. The MS surrounds the calorimeters
and is based on three large air-core toroidal superconducting mag-
nets with eight coils each. The field integral of the toroids ranges
between 2.0 and 6.0 Tm across most of the detector. The MS in-
cludes a system of precision tracking chambers and fast detectors
for triggering. A two-level trigger system is used to select events.
The first-level trigger is implemented in hardware and uses a sub-
set of the detector information to reduce the accepted rate to at
most nearly 100 kHz. This is followed by a software-based trigger
that reduces the accepted event rate to 1 kHz on average depend-
ing on the data-taking conditions.

3. Analysis strategy

The search strategy selects events with a final state containing
one prompt photon and the decay products of a top quark, namely
an electron or a muon, a b-tagged jet, and missing transverse mo-
mentum, and estimates contributions from FCNC processes in this
background-dominated dataset. A signal region (SR) is defined by
loose requirements on the kinematic properties of the final-state
objects, giving rise to a large acceptance for signal events in the
production mode. With this selection, the search is most sensi-
tive to FCNCs in this mode, but the decay mode is included in the
analysis. The main background contribution stems from electrons
misidentified as photons, primarily in top-quark-anti-top-quark
events (tt). These contributions and contributions from hadrons
misidentified as photons (both labelled “fakes” in the following)
are modelled by Monte Carlo (MC) simulations and scaled to data-
driven estimates. Photons produced in association with a leptoni-
cally decaying W or Z boson are estimated in control regions (CRs)
which do not overlap with the SR but are kinematically similar to
it. The predictions for other small prompt-photon background pro-
cesses are taken from MC simulation and include tty production,
single-top quark production in association with a photon and the
production of two massive gauge bosons with a photon. As the
latter two processes result in a small contribution to the total back-
ground prediction, it is sufficient that in these processes prompt
photons are generated by the parton-shower program. Signal and
background events are distinguished using a neural network (NN).

of the polar angle 6 as n = —Intan(f/2). Angular distance is measured in units of
(A2 + (Ag)2.

Finally, the signal contribution is estimated in a profile likelihood
fit to the NN output distributions in the SR and the CRs, in which
each source of systematic uncertainty is modelled as a nuisance
parameter.

4. Data and simulation

The proton-proton (pp) collision data analysed were recorded
with the ATLAS detector from 2015 to 2017 at a centre-of-mass
energy of /s =13 TeV. The average number of interactions per
bunch crossing was 13.4, 25.1, and 37.8 in 2015, 2016 and 2017, re-
spectively. Events were selected by single-lepton triggers [10] and
required to have at least one reconstructed primary vertex with
at least three assigned tracks that have a transverse momentum
greater than 400 MeV. After the application of data-quality require-
ments, the data sample corresponds to an integrated luminosity of
81fb~1. It is obtained using the LUCID-2 detector [11] for the pri-
mary luminosity measurements.

The data were modelled by MC simulations of the signal and
background processes. After event generation, the response of the
ATLAS detector was simulated using GEANT 4 [12] with a full de-
tector model [13] or modelled by a fast simulation [14]. To account
for additional pp collisions (pile-up), inelastic pp interactions were
superimposed on the hard-scattering events and weighted accord-
ing to the observed pile-up distribution. The pile-up events were
simulated using PyTHIA 8.186 [15], with the A3 [16] set of tuned
parameters (A3 tune).

The simulated signal samples were generated using MAD-
GRAPH5_aMC@NLO 2.4.3 [17] with the TopFCNC model [6,18] at
next-to-leading order (NLO) in QCD and the NNPDF3.0NLO [19]
set of parton distribution functions (PDFs). The parton showering
was done with PyTHIA 8.212 with the A14 tune set [20]. Simu-
lated samples of SM tt and single-top-quark events were generated
using POWHEG-Box [21-27] with the NNPDF3.0NLO PDF set. The
parton showering, hadronisation, and the underlying event were
modelled using PyTHIA 8.230. The top-quark mass mp was set to
172.5 GeV in these samples, and the hgamp parameter that controls
the transverse momentum of the first gluon emitted was set to 1.5
times myop. Samples of tty events were generated as 2 — 7 pro-
cess at leading order using MADGRAPH5_aMC@NLO 2.3.3 and the
NNPDF2.3LO PDF [28] set and with the following fiducial photon
criteria [29]: photon pr > 15 GeV and |n| < 5.0, charged-lepton
pr > 15 GeV and |n] < 5.0, and AR < 0.2 between the photon and
any charged final-state particle. The cross sections for SM tt and
single-top-quark production are scaled to the NNLO+NNLL predic-
tions [30-33]. The leading-order cross section for tty production of
4.62 pb [29] is scaled to the NLO predictions [34] using a k-factor
of 1.24. The NNLO+NNLL cross section for SM tt production is also
used to normalise the signal in the decay mode, using the corre-
sponding FCNC branching ratio. The cross sections for the signal in
the production mode, however, are calculated at NLO with MAD-
GRAPH5_aMC@NLO.
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For the study of systematic uncertainties in the modelling
of processes involving top quarks, simulated tt samples were
produced with POwWHEG-Box + HERwIG 7.0.4 [35,36] and MAD-
GRAPH5_aMC@NLO 2.6.0 plus PyTHIA 8.212. The MMHT2014LO [37]
PDF set is used together with the H7-UE-MMHT [36] tune. An ad-
ditional tt sample was produced with hqamp set to three times
Mmgp and the factorisation and renormalisation scales set to half
their nominal values using the A14 tune. For the tW process, a
sample was produced with an alternative scheme for removing the
overlap with tf production [38]. Moreover, single-top-quark sam-
ples were produced with POwHEG-Box + HERwIG 7.0.4 and MAD-
GRAPH5_aMC@NLO 2.6.2 plus PyTHIA 8.212. The NNPDF2.3LO PDF
set is used as well as the A14 tune.

Processes with one or two heavy gauge bosons, in particu-
lar the processes W+y+jets and Z+y +jets, were simulated using
SHERPA 2.2.1 and 2.2.2 [39] with the matrix elements calculated
using Comix [40] and OpenLoops [41]. All matrix elements were
merged with the SHERPA parton showering [42] according to the
ME+PS@NLO [43] prescription. The NNPDF3.0NNLO PDF set was
used.

An overlap removal scheme was applied to remove double-
counting of events stemming from photon radiation in samples in
which a photon was not explicitly required in the final state [29].
This applies to the processes tt, W+jets and Z+jets in order to re-
move the overlap with the tty, W+y+jets and Z+y +jets samples.

Mismodelling of the photon pt distribution is observed in the
W+y+jet and Z+y CRs, which are defined in Section 5. The photon
pr spectrum in the W+y+jets and Z+y+jets processes was cor-
rected by adjusting the MC prediction to the data in five pr bins
using a linear function that only changes the shape of the distri-
bution and not its normalisation. This correction to the photon pr
improves the modelling of the NN output distribution in the CRs.

As discussed in Sections 6 and 7, the contribution of events
with electrons and hadrons misidentified as photons is corrected
using data. The contribution from processes with hadrons misiden-
tified as leptons is estimated to be negligible.

5. Object and event selection

Electrons are reconstructed from clusters of energy deposits in
the electromagnetic calorimeter cells with a matched ID track [44].
They are required to meet the tight identification criteria [44], and
their tracks must point to the primary vertex. They must have a
transverse momentum p larger than 27 GeV and |7¢jyster| < 2.47,
excluding 1.37 < |Nciuster| < 1.52, where |ncjuster| 1S the pseudora-
pidity of the electron’s energy cluster. Muons are reconstructed by
combining a track in the MS with a track in the ID [45]. They
are required to meet the medium identification criteria [45] and
must point to the primary vertex. They must have pr > 27 GeV
and |n| < 2.5. Isolated electrons and muons are selected by re-
quiring the amount of energy in nearby energy deposits in the
calorimeters and the scalar sum of the transverse momenta of
nearby tracks in the ID to be small.

Photons are reconstructed from clusters of energy deposits in
the electromagnetic calorimeter cells with no matched ID track
(unconverted photons) or with one or two matched ID tracks that
are compatible with the tracks from an electron or positron from a
photon conversion (converted photons) [44]. They must have pt >
20 GeV and |Nejuster| < 2.37, excluding 1.37 < [N¢juster| < 1.52. They
are required to meet the tight identification criteria for the shape
of the shower in the electromagnetic calorimeter (shower shape)
and for the energy deposited in the hadronic calorimeter [44]. Pho-
tons must be isolated from nearby energy deposits in the calorime-
ter and nearby tracks in the ID: the sum of the energy deposited
(pr of the tracks) within AR = 0.4 (AR = 0.2) of the photon

direction is required to be smaller than 0.022 x pt + 2.45 GeV
(0.065 x pr), excluding the photon energy deposition (tracks as-
sociated with the photon).

Jets are reconstructed from topological clusters [46,47] in the
calorimeters with the anti-k; algorithm [48] using Fast]Jet [49] and
a radius parameter of 0.4. Their energy is calibrated [50], and they
must fulfil pr > 25 GeV and |n| < 2.5. Jets with pt < 120 GeV and
In| < 2.4 are required to pass a requirement on the jet-vertex-
tagger (JVT) [51] to suppress pile-up jets. Jets are b-tagged with
the MV2c10 algorithm [52], which uses a boosted decision tree
with several b-tagging algorithms as input. The b-tagging efficiency
for jets that originate from the hadronisation of b-quarks is 60% in
simulated tf events. The b-tagging rejection” for jets that originate
from the hadronisation of c-quarks (u-, d-, s-quarks or gluons) is
23 (1200).

The magnitude of the missing transverse momentum E%’iss is
reconstructed from the vector sum of the pt of leptons, photons,
and jets, as well as ID tracks that point to the primary vertex but
are not associated with a reconstructed object (soft term) [53].

To avoid double-counting, objects are removed in the following
order: electrons sharing a track with a muon; jets within AR =
0.2 of an electron; electrons within AR = 0.4 of a jet; jets within
AR = 0.4 of a muon if they have at most two associated tracks;
muons within AR =0.4 of a jet; photons within AR = 0.4 of an
electron or muon; jets within AR = 0.4 of a photon.

Scale factors (SFs) are used to correct the efficiencies in simu-
lation in order to match the efficiencies measured in data for the
electron [44] and muon [45] trigger, reconstruction, identification,
and isolation criteria, as well as for the photon identification [44]
and isolation requirements. SFs are also applied for the JVT re-
quirement and for the b-tagging efficiencies for jets that originate
from the hadronisation of b-quarks [54], c-quarks [52], and u-, d-,
s-quarks or gluons [55].

The selected events have exactly one electron or muon, ex-
actly one photon, exactly one b-tagged jet and no further jets,
and E’T‘rliSS > 30 GeV. This selection defines the SR with signal ef-
ficiencies® for the production mode of 3.03% (2.45%) for the LH
(RH) tuy coupling and of 3.79% (3.14%) for the LH (RH) tcy cou-
pling. These efficiencies are defined with respect to signal events
that include a leptonic decay of the W boson, i.e. a decay with
an electron, muon or tau lepton. The efficiencies for the couplings
that involve a c-quark are larger than those that involve a u-quark
because of the difference in the kinematics that arises from the dif-
ference between the u- and c-quark PDFs. The difference between
the efficiencies for the LH and the RH couplings is due to the kine-
matic distributions of the W boson’s decay products, which differ
depending on the handedness of the top quark. The efficiencies for
the decay mode are 0.45% and 0.51% for the tuy and the tcy cou-
pling, respectively, and are lower due to the requirement of not
more than one jet in the final state, i.e. this analysis is optimised
for the production mode. The absolute statistical uncertainties in
the efficiencies are 0.03% or smaller. In the SR, 9557 data events
are selected. The ratio of production-mode to decay-mode event
yields is 4.2 (5.3) for the LH (RH) tuy coupling and it is 0.86 (0.68)
for the LH (RH) tcy coupling, i.e. in the case of tuy coupling, the
dominant signal process is indeed the production mode. However,
in the case of the tcy coupling, the decay mode also plays an im-
portant role, because the production mode is suppressed by the
c-quark PDF.

2 The rejection is defined as the inverse of the efficiency.
3 Here, the signal efficiency includes the signal loss due to the limited acceptance
of the detector.
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Two CRs are defined for the W+y +jets and Z+y +jets processes,
which are dominated by the respective background process and
kinematically close to the SR. The W+y+jet CR is defined by the
same criteria as the SR with two modifications: the jet must not
be b-tagged and the lepton-photon invariant mass must be outside
the range 60-100 GeV to suppress the contribution from Z+jets
events with one electron that is misidentified as a photon. The
Z+y CR is defined by requiring exactly one photon and exactly
two leptons with the same flavour but opposite electric charge. No
requirement is made in the Z+y CR on the number of jets or ET"*.
In the W+y +jet CR, a total number of 127 864 events are observed,
and in the Z+y CR, the total number is 85 347.

6. Data-driven estimate of electrons misidentified as photons

Electrons can be misidentified as photons, for example, if the
track of the electron is not reconstructed or if the matching criteria
between the track and cluster are not met. In particular, dileptonic
tt events with at least one electron in the final state can enter
the SR if an electron is misidentified as a photon. The probability
for an electron to be misidentified as a photon, f._.,, is measured
from data and simulation following the methodology used previ-
ously [56], and a SF is derived that is applied to the simulation.

Two regions are defined to measure fe_.,, called “electron
fake regions” (EFR) in the following. The Z — ey (Z — ee) EFR
is defined by requiring exactly one electron and one photon (ex-
actly two electrons with opposite electric charge and no photons)
with an electron-photon (dielectron) invariant mass in the range
60-120 GeV, a veto on the presence of jets, and E%“iss < 30 Gev.
Neither EFR overlaps with the SR nor the CRs. The Z — ey EFR is
rich in Z — ee events with one electron misidentified as a photon,
and the Z — ee EFR is rich in Z — ee events.

In the Z — ee and the Z — ey EFRs, the dielectron invariant
mass or the electron-photon invariant mass, respectively, is fitted
with analytic signal (for Z — ee with both electrons correctly iden-
tified or with one electron misidentified as a photon, respectively)
and background functions. The signal function is a double-sided
Crystal Ball function, and the background function is a fourth-order
Bernstein polynomial. The integrals of the aforementioned fitted
signal functions are divided in order to estimate 2 f,_.,,, where the
factor of two accounts for the two electrons in Z — ee events that
may be misidentified as a photon. In the Z — ey EFR, the ex-
pected contribution from Z — eey events, relative to the signal,
is 8.8% and it is subtracted from the integral, because this process
mainly contributes to events with prompt photons and in which
one electron was not reconstructed or did not pass the identifica-
tion or isolation criteria.

Systematic uncertainties from several sources are evaluated: the
range of the invariant-mass fit is changed from 60-120 GeV to
65-115 GeV; the parameters of the signal function, except for its
normalisation, are set to the values extracted from simulation and
a Gaussian function is used for the background; instead of sub-
tracting the expected relative contribution from Z — eey events in
the Z — ey EFR, the expected absolute contribution is subtracted.
For each of these variations, a systematic uncertainty for fe_., is
estimated as the deviation from the nominal value. The largest ef-
fect is due to the variation of the signal and background functions.
The value of fe_., is 3.11% £ 0.01% (stat.) £ 0.13% (syst.). The SF
for the simulation is 0.978 + 0.004 (stat.) - 0.040 (syst.).

The modelling of kinematic variables is checked in a validation
region. The event selection for this validation region is similar to
the SR selection, but a few changes are made in order to enhance
the contributions from Z — ee events and dileptonic tf events
with a misidentified electron, while ensuring no overlap with the
SR, the CRs, or the EFRs. The validation region is defined by requir-

ing exactly one photon and one electron with an invariant mass in
the range 70-110 GeV, at least one jet, and E%‘iss < 30 GeV. Satis-
factory modelling of the kinematic variables is observed, but the
relative uncertainty in fe_., is increased to 10% in order to cover
the difference in the normalisation observed between data and the
prediction.

7. Data-driven estimate of hadrons misidentified as photons

In some cases, hadrons can be misidentified as photons. For ex-
ample, this can happen when a meson decays into two photons
that are reconstructed as a single cluster in the electromagnetic
calorimeter. Processes such as tt production can enter the SR if a
high-energy hadron is misidentified as a photon. The number of
events with misidentified hadrons is estimated from data, and a SF
is applied to the simulation, defined as the estimated number of
events in data divided by the predicted number in simulation. The
SF is only used to correct the overall normalisation of this back-
ground, and the shapes of kinematic distributions are taken from
simulations with the associated systematic uncertainties.

Three hadron fake regions (HFR) are defined by the same cri-
teria as the SR but with modified photon criteria: HFRPasslfail
HFRR@IPass - and HERM@IMI If the first index is “pass”, the photon
has met the identification criteria defined in Section 5. If the first
index is “fail”, the photon has failed to meet at least one of the
criteria on the shower shapes that are calculated from the finely-
segmented first layer of the electromagnetic calorimeter; however,
it is required to meet all tight photon-identification criteria for the
other shower variables. The second index represents whether the
photon meets or fails to meet the isolation criterion.

Only the first-layer shower shapes are considered for the first
index because these are mostly sensitive to the core of the shower
and are expected to be only weakly correlated with the isola-
tion variables, which are sensitive to the energy surrounding the
photon. The number of SR events with misidentified hadrons is es-
timated as N(HFRPassifaily o N (HFRilPass) s (HFRfillfaily \where N is
the number of observed events after subtracting both the expected
number of events with misidentified electrons and the expected
fraction of events with prompt photons (leakage). This estimate
is additionally corrected for the non-zero correlation between the
criteria for the first-layer shower shapes and the isolation crite-
rion. The correction factor is determined using MC simulations and
amounts to 0.85 with a statistical uncertainty of 0.14.

Systematic uncertainties from several sources are evaluated: the
correction factor for the non-zero correlation is conservatively var-
ied by +50%; the SF for misidentified electrons, used for the sub-
traction discussed above, is varied by one standard deviation up
and down (+10), and the larger of the two deviations is consid-
ered as a systematic uncertainty; and instead of subtracting the
expected fraction of events with prompt photons, the expected
prompt-photon contribution is subtracted in each HFR. For each
of these variations, a systematic uncertainty is estimated as the
resulting deviation from the nominal value. The largest effect is
the variation of the correction factor. The SF for the simulations is
1.7 £ 0.3 (stat.) = 1.0 (syst.).

8. Neural network for discrimination between signal and
background

The signal is distinguished from the sum of the background
processes by a fully connected feed-forward neural network
(NN) with backpropagation, implemented in Keras [57] with the
TensorFlow [58] back end. Separate NNs are trained for FCNC pro-
cesses with a tuy or a tcy vertex and with LH or RH couplings.
For the signal sample, the production mode was chosen, since the
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kinematic differences between the production mode and the back-
ground are more pronounced than for the decay mode and thus
lead to better discrimination between signal and background.

Ten variables are inputs to the NN: the pt of the photon, the
lepton and the jet; the charge of the lepton; E?iss; the lepton-
photon and lepton-jet invariant masses; the AR between the lep-
ton and the photon, between the lepton and the jet, and between
the jet and the photon. Additional kinematic variables were tested
and did not improve the discrimination between signal and back-
ground. All variables are transformed using scikit-learn’s [59] Ro-
bustScaler.

The NN is trained with the Adam optimiser [60]. The MC sam-
ples are divided into 80% for training and 20% for testing, so that
approximately 63000 background MC events and approximately
10000-13 000 signal MC events are available for the training—
depending on the coupling. Two hidden layers with 11 nodes each
are used and the hyperparameters of the NN are chosen from a se-
ries of tested values in a procedure with threefold cross validation.

9. Systematic uncertainties

Systematic effects may change the expected numbers of events
from the signal and background processes and the shape of the fit-
ted discriminants in the SR and in the CRs. These effects are evalu-
ated by varying each source of systematic uncertainty by +10 and
considering the resulting difference from the nominal expectation
as the uncertainty. For some sources, only one variation is avail-
able and the difference is symmetrised using the full difference.
For sources with two variations, their effects are symmetrised us-
ing the average difference from the nominal prediction.

Uncertainties due to the theoretical cross sections are evaluated
by varying them by +5.6% for tt production [28,30,61-63], by £8%
for tt+y production [34], by *39% (*3:9%) for t-channel single-t
(single-t) production [31], by fg:?% (fijg%) for s-channel single-t
(single-t) production [32], by +5.3% for tW production [33], by
+5% for W+jets and Z+jets production [64], and by £6% for dibo-
son production [65]. No cross-section uncertainty is considered for
W+y+jets and Z+y+jets production, because their normalisations
are determined in the fit.

Uncertainties due to the modelling of the signal are estimated
by considering variations of the renormalisation and factorisation
scales by factors of 2 and 0.5, but normalising the signal to the
nominal cross section. In each bin of a distribution, the largest
deviation among all variations is considered as an uncertainty (en-
velope). In addition, uncertainties due to the PDFs are estimated
by following the PDFALHC prescription for Run 2 [G6].

Uncertainties due to the renormalisation and factorisation
scales and from the PDFs of the background processes are esti-
mated separately for each process following the same procedure
as for the signal. For the tf and single-top processes, however,
the scale variations are already included in the estimation of the
uncertainty in the modelling of the initial-state radiation (see be-
low). For the W+y+jets and the Z+y +jets processes, a correction
is applied to the photon pt spectrum, as described in Section 4.
To account for the uncertainty due to the photon pt correction, a
conservative uncertainty is applied, for which the prediction with
the correction applied is compared with the prediction without
the correction.

For all background processes—except for W+y +jets and Z+y+
jets production, for which the normalisation is estimated by a
free parameter in the fit—an uncertainty of 2% in the integrated
luminosity is included [67]. The uncertainty due to pile-up is de-
termined by varying the average number of interactions by 9% in
the simulation. The uncertainties due to the SFs for electrons and

Table 1

Expected number of events for the different background contributions in the SR and
the two CRs after the fit including all uncertainties, as well as the observed number
of events.

SR W+y+jet CR Z+y (R
e — y fake 4500 + 400 8200 =+ 1300 236 + 32
j— y fake 260 + 200 2900 + 2000 1300 =+ 1000
Z+yets 780 + 100 13400 + 1300 81400 + 1900
Wy Hets 2200 + 400 101200 + 2800 6+2
Other prompt y 1800 =+ 400 1900 + 500 2140 + 200
Total background 9500 + 220 127700 + 3000 85100 + 1600

Data 9557 127 864 85347

hadrons that are misidentified as photons are determined as de-
scribed in Sections 6 and 7.

To estimate the uncertainty due to the production of W and Z
bosons together with b-quarks, the shape of the SR distribution in
events with jets that originate from the hadronisation of a b-quark
is used for events with jets that originate from other quarks or glu-
ons (and vice versa) for the W+jets, W+y tjets, Z+jets, Z+y +jets,
and diboson processes. Differences between the shapes of these
backgrounds in association with b-quarks or with other quarks or
gluons are small, however. An additional uncertainty in the nor-
malisation of W+y production in association with b-quarks of 50%
is assigned, covering observed differences between data and pre-
dictions in measurements of W and Z bosons in association with
b-quarks [68-71].

To estimate the uncertainty due to the modelling of initial-
and final-state radiation in tf and single-top-quark production,
the effects of varying the A14 tune’s parameter values is eval-
uated. In addition, for tt production, the sample generated with
hdamp = 3Mtop, the factorisation and renormalisation scales set to
half their nominal values, and a variation of the A14 tune’s param-
eter values is used to estimate the uncertainty due to the mod-
elling of initial-state radiation. To estimate the uncertainty due to
our choice of generator and shower programs for tt and single-
top-quark production, the nominal MC samples, generated with
PowHEG-Box + PyYTHIA 8, are replaced with samples generated with
MADGRAPH5_aMC@NLO + PyTHIA 8 and with POWHEG-Box + HER-
WwIG 7. To evaluate the uncertainty due to the scheme for removing
the overlap with tt production for the tW process, the nominal
sample is compared with a sample produced with an alternative
scheme [38].

For the triggering, reconstruction, identification, and calibration
of the objects, the following systematic uncertainties are eval-
uated: electron and muon triggers, reconstruction, identification
and isolation SFs [44,45]; photon identification [44] and isolation
SFs; electron- and photon-energy and muon-momentum calibra-
tion and resolution [44,45]; jet energy scale (JES) [50] and jet
energy resolution (JER) [72]; JVT SF; b-tagging SFs [52,55,73]; E;“iss
soft term [53].

10. Results

The normalisations of the signal contribution and the two con-
tributions from W/Z+y +jets production are obtained from a si-
multaneous binned profile-likelihood fit to the NN-output distribu-
tion of the SR and W+y +jet CR as well as the photon-pr distribu-
tion of the Z+y CR. The signal contribution scales the production-
and decay-mode contributions consistently. Each source of system-
atic uncertainty is associated with a nuisance parameter. In Ta-
ble 1, the expected number of events after a background-only fit
to the SR and CRs for the case of the LH tuy coupling are shown,
as well as the observed number of events. Fig. 2 shows the cor-
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Fig. 2. Post-fit distributions of a background-only fit to the SR and the CRs of the NN output in the SR (top) and the W+y +jet CR (bottom left) and of the pr-distribution
of the Z+y CR (bottom right). The last bin of the distribution in the Z+y CR contains the overflow. In addition, in the SR and in the W+y+jet CR, the expected signal is
overlaid for an effective coupling strength corresponding to the observed limit multiplied by a factor of ten. In the Z+y CR, the expected signal is not shown, because it is

negligible.

responding post-fit distributions. The qualitative features of these
distributions are similar for the other couplings studied.

The data and SM predictions agree within uncertainties and no
significant FCNC contributions are observed. From the 95% confi-
dence level (CL) limits on the signal contribution, derived using
the CLs; method [74], the corresponding limits on the effective
coupling parameters are calculated, and from these the limits on
the production cross section and branching ratios are calculated.
The background contributions from photons produced in associ-
ation with a leptonically decaying W or Z boson are scaled by
normalisation factors estimated to be 1.25+0.09 and 1.12 +0.12,
respectively, from the fit for the LH tuy coupling. The normali-
sation values determined in the fits for the other couplings are
similar. The observed and expected 95% CL limits on the effective
coupling strengths, the production cross section and the branching

ratio are summarised in Table 2 for different vertices and cou-
plings. The sources of systematic uncertainty with the largest im-
pact on the estimated signal contribution depend on the coupling
studied. Among them are the jet energy resolution, the reweight-
ing of the photon pr, the factorisation and renormalisation scales,
the choice of generator for the simulation of the tt and single-
top processes, and the uncertainties due to the limited number of
Monte Carlo events. The resulting limits on the strength of the ef-
fective operators are complementary to current limits on the single
operators from a search for an FCNC tqZ coupling [75].

11. Conclusion

A search for flavour-changing neutral currents (FCNCs) in events
with one top quark and a photon is presented using 81 fb~! of
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Table 2

Observed (expected) 95% CL limits on the effective coupling strengths for different
vertices and couplings, the production cross section, and the branching ratio. For
the former, the energy scale is assumed to be A =1 TeV.

Observable Vertex Coupling Obs. Exp.
IS + g tuy LH 0.19 0.22700
|G +cBP| tuy RH 0.27 027700
| 4 3| tcy LH 0.52 0.57" 00
|cS + & tey RH 0.48 0591012
+21
o(pp—ty) [fb] tuy LH 36 52174
o (pp — ty) [fb] tuy RH 78 75+
+20
o(pp —ty) [fb] tey LH 40 49175
+22
o(pp —ty) [fb] tcy RH 33 52°7%
B(t — qy)[1075] tuy LH 2.8 4.0
B(t - qy)[107%] tuy RH 61 5.977%
-5 +11
B(t—qy)[107] tey LH 22 2775
- +12
B(t—qy)[107°] tey RH 18 2874

/s =13 TeV pp data collected with the ATLAS detector at the
LHC. Events with a photon, an electron or muon, a b-tagged jet,
and missing transverse momentum are selected. The contribution
from events with electrons or hadrons that are misidentified as
photons is estimated using data, and the two main background
processes with a prompt photon are estimated in control regions.
A neural network is used to distinguish the signal and background
events, and the data are consistent with the background-only hy-
pothesis. Limits are set on the strength of effective operators that
introduce a left- or right-handed flavour-changing tqy coupling
with an up-type quark g, on the production cross section for FCNC
ty production, and on the branching ratio t — yq. The limits on
the branching ratio and on the ty production cross section are
the most stringent to date. The resulting limits on the strength of
the effective operators are the most stringent limits obtained in
searches for events with a tqy vertex.
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