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This Letter presents direct searches for lepton flavour violation in Higgs boson decays, H → eτ and 
H → μτ , performed with the ATLAS detector at the LHC. The searches are based on a data sample 
of proton–proton collisions at a centre-of-mass energy 

√
s = 13 TeV, corresponding to an integrated 

luminosity of 36.1 fb−1. No significant excess is observed above the expected background from Standard 
Model processes. The observed (median expected) 95% confidence-level upper limits on the lepton-
flavour-violating branching ratios are 0.47% (0.34+0.13

−0.10%) and 0.28% (0.37+0.14
−0.10%) for H → eτ and H → μτ , 

respectively.
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1. Introduction

The search for processes beyond the Standard Model (SM) is 
one of the main goals of the Large Hadron Collider (LHC) pro-
gramme at CERN. A possible sign of such processes is lepton 
flavour violation (LFV) in decays of the Higgs boson [1,2]. Many 
beyond-SM theories predict LFV decays of the Higgs boson, such 
as supersymmetry [3,4], other models with more than one Higgs 
doublet [5,6], composite Higgs models [7], models with flavour 
symmetries [8] or warped extra dimensions [9–11] models and 
others [12,13].

In this Letter, searches for LFV decays of the Higgs boson, 
H → eτ and H → μτ , at the LHC with the ATLAS experiment are 
presented. Studies are based on proton–proton (pp) collision data 
recorded in 2015–2016 at a centre-of-mass energy 

√
s = 13 TeV. 

The dataset corresponds to an integrated luminosity of 36.1 fb−1.

Previous ATLAS searches [14,15] placed an upper limit of 1.04% 
(1.43%) on the H → eτ (H → μτ ) branching ratio (B) with a 95% 
confidence level (CL) using Run 1 data collected at 

√
s = 8 TeV, cor-

responding to an integrated luminosity of 20.3 fb−1. The CMS Col-
laboration recently provided 95% CL upper limits on these branch-
ing ratios of 0.61% and 0.25%, respectively, using data collected at √
s = 13 TeV, with an integrated luminosity of 35.9 fb−1 [16].

The searches presented here involve both leptonic (τ → �′νν̄1) 
and hadronic (τ → hadrons + ν) decays of τ -leptons, denoted τ�′
and τhad respectively. The dilepton final state �τ�′ only consid-
ers pairs of different-flavour leptons. Same-flavour lepton pairs are 

� E-mail address: atlas .publications @cern .ch.
1 Unless explicitly mentioned otherwise, leptons (denoted by � or �′) refer to 

electrons or muons.

rejected due to the large lepton pair-production Drell-Yan back-
ground. Two channels are considered for each of the two searches: 
eτμ and eτhad for the H → eτ search, μτe and μτhad for the 
H → μτ search. The analysis is designed such that any potential 
LFV signal overlap between the H → eτ and H → μτ searches is 
negligible. Many methods are reused from the measurement of the 
Higgs boson cross-section in the H → ττ final state [17].

The ATLAS detector2 is described in Refs. [18–20]. It con-
sists of an inner tracking detector covering the range |η| < 2.5, 
surrounded by a superconducting solenoid providing a 2 T ax-

ial magnetic field, high-granularity electromagnetic (|η| < 3.2) and 
hadronic calorimeters (|η| < 4.9), and a muon spectrometer (MS) 
which covers the range |η| < 2.7 and includes fast trigger cham-

bers (|η| < 2.4) and superconducting toroidal magnets.

2. Simulation samples

Samples of Monte Carlo (MC) simulated events are used to op-
timize the event selection, and to model the signal and several of 
the background processes. The samples were produced with the 
ATLAS simulation infrastructure [21] using the full detector simu-

lation performed by the Geant4 [22] toolkit. The Higgs boson mass 
was set to mH = 125 GeV [23]. The four leading Higgs boson pro-
duction mechanisms are considered: the gluon–gluon fusion (ggF), 
vector-boson fusion (VBF) and two associated production modes 

2 ATLAS uses a right-handed coordinate system with its origin at the nominal 
interaction point in the centre of the detector and the z-axis along the beam pipe. 
The azimuthal angle φ runs around the beam pipe, the pseudorapidity is defined in 
terms of the polar angle θ as η ≡ − ln tan(θ/2). Angular distance in the η–φ space 
is defined as 	R ≡ √

(	η)2 + (	φ)2.
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Table 1
Generators used to describe the signal and background processes, parton distribution function (PDF) sets for the hard process, and models used for parton showering, 
hadronization and the underlying event (UEPS). The orders of the total cross-sections used to normalize the events are also given. More details are given in Ref. [17].
Process Generator PDF UEPS Cross-section order

ggF Powheg-Box v2 [26–30] NNLOPS [31] PDF4LHC15 [32] NNLO Pythia 8.212 [25] N3LO QCD + NLO EW [33–36]

VBF Powheg-Box v2 MiNLO [30] PDF4LHC15 NLO Pythia 8.212 ∼NNLO QCD + NLO EW [37–39]

WH , ZH Powheg-Box v2 MiNLO PDF4LHC15 NLO Pythia 8.212 NNLO QCD + NLO EW [40–42]

W /Z + jets Sherpa 2.2.1 [43] NNPDF30NNLO [44] Sherpa 2.2.1 [45] NNLO [46,47]

V V /V γ ∗ Sherpa 2.2.1 NNPDF30NNLO Sherpa 2.2.1 NNLO

tt̄ Powheg-Box v2 [26–28,48] CT10 [49] Pythia 6.428 [50] NNLO+NNLL [51]

Single t Powheg-Box v1 [52,53] CT10 Pythia 6.428 NLO [54–56]

(WH , ZH), while the others give negligible contributions and are 
ignored. The cross-sections of all Higgs boson production processes 
were normalized to the SM predictions [24]. The LFV Higgs boson 
decays as well as the H → ττ and H → WW background decays 
were modelled with Pythia 8 [25]. Other background processes in-
volve electroweak production of W /Z bosons via VBF, Drell–Yan 
production of W /Z in association with jet(s) as well as diboson, 
single top-quark and top-quark pair (tt̄) production. The MC gen-
erators used for the SM H → ττ cross-section measurement [17]

were also employed here for all background components. The gen-
erators and parton shower models used to simulate different pro-
cesses are summarized in Table 1.

3. Object reconstruction

The correct identification of H → �τ events requires recon-
struction of several different objects (electrons, muons, and jets, 
including those initiated by hadronic decays of τ -leptons) and the 
missing transverse momentum �pmiss

T , whose magnitude is called 
Emiss
T .

Electrons are reconstructed by matching tracks in the in-

ner detector to clustered energy deposits in the electromagnetic 
calorimeter [57]. Loose likelihood-based identification [58], pT >

15 GeV and fiducial volume requirements (|η| < 2.47, excluding 
the transition region between the barrel and the endcap calorime-

ters 1.37 < |η| < 1.52) are applied. Medium identification, corre-
sponding to an efficiency of 87% at pT = 20 GeV, is imposed for 
the baseline electron selection.

Muons are identified by tracks reconstructed in the inner de-
tector and matched to tracks in the MS. Loose identification [59], 
pT > 10 GeV and |η| < 2.5 requirements are applied. Medium 
identification (efficiency of 96.1% for muons with pT > 20 GeV) is 
imposed for the baseline muon selection.

Isolation criteria exploiting calorimeter and track-based infor-
mation are applied to both electrons and muons. The gradient 
working point is used, featuring an efficiency of 90% (99%) ob-
tained for leptons with pT > 25 GeV (60 GeV) originating from the 
Z → �� process [58,59].

Jets are reconstructed using the anti-kt algorithm [60] as im-

plemented by the FastJet [61] package. The algorithm is applied 
to topological clusters of calorimeter cells [62] with a radius pa-
rameter R = 0.4. Only jets with pT > 20 GeV and |η| < 4.5 are 
considered. Jets from other pp interactions in the same and neigh-
bouring bunch crossings (pile-up) are suppressed using jet vertex 
tagger (JVT) algorithms [63,64]. Jets containing b-hadrons (b-jets) 
are identified by the MV2c20 algorithm [65,66] in the central re-
gion (|η| < 2.4). A working point corresponding to 85% average 
efficiency determined for b-jets in tt̄ simulated events is chosen, 
rejection factors are 2.8 and 28 against c-jets and light-flavour jets 
respectively.

The reconstruction of the object formed by the visible prod-
ucts of the τhad decay (τhad-vis) begins from jets reconstructed by 

the anti-kt jet algorithm with a radius parameter R = 0.4. Infor-
mation from the inner detector tracks associated with the energy 
deposits in the calorimeter is incorporated in the reconstruction. 
Only τhad-vis candidates with pT > 20 GeV and |η| < 2.5 are con-
sidered.3 One or three associated tracks with an absolute total 
charge |q| = 1 are required. An identification algorithm [67,68]

based on boosted decision trees (BDT) [69–71] is used to reject 
τhad-vis candidates arising from misidentification of jets or from 
decays of hadrons with b- or c-quark content. Unless otherwise 
indicated, a tight identification (ID) working point is used for the 
τhad-vis, corresponding to an efficiency of 60% (45%) for 1-prong 
(3-prong) candidates. Jets corresponding to identified τhad-vis can-

didates are removed from the jet collection. The τhad-vis candi-

dates with one track overlapping with an electron candidate with 
high ID score, as determined by a multivariate (MVA) approach, 
are rejected. Leptonic τ -decays are reconstructed as electrons or 
muons.

Events considered in the analysis are triggered with single-
electron or single-muon triggers. The pT thresholds depend on 
the isolation requirement and data-taking period [72,73]. The low-

est trigger thresholds correspond to 25 − 27 GeV (electrons) and 
21 − 27 GeV (muons).

4. Event selection and categorization

Events selected in the �τ�′ channel contain exactly one elec-
tron and one muon of opposite-sign (OS) charges. Similarly in the 
�τhad channel, a lepton and a τhad-vis of OS charges are required, 
and events with more than one baseline lepton are rejected. The 
selection criteria are summarized in Table 2 for the analysis cate-
gories as well as the control regions (CRs), which are described in 
Section 5.

In the �τ�′ channel, �1 and �2 denote the leading and sublead-
ing lepton in pT, respectively. Events where the leading lepton is 
an electron (muon) are used in the search for H → eτμ (H → μτe). 
A requirement on the dilepton invariant mass, equal to the in-
variant mass of the lepton and the visible τ -decay products, mvis , 
reduces backgrounds with top quarks, and the criterion applied to 
the track-to-cluster pT ratio of the electron reduces the Z → μμ
background where a muon deposits a large amount of energy in 
the electromagnetic calorimeter and is misidentified as an electron 
in the μτe channel. The contribution from the H → ττ decay is 
reduced by the asymmetric pT selection of the two leptons.

In the �τhad channel, the criterion based on the azimuthal

separations of lepton–Emiss
T and τhad-vis–E

miss
T ,∑

i=�,τhad-vis
cos	φ(i, Emiss

T ), reduces the W + jets background 
whereas the requirement on |	η(�, τhad-vis)| reduces backgrounds 
with misidentified τhad-vis candidates.

For both channels of each search, a b-veto requirement reduces 
the single-top-quark and tt̄ backgrounds. Events are further cate-

3 The transition region in η is excluded, similarly to electrons.



The ATLAS Collaboration / Physics Letters B 800 (2020) 135069 3

Table 2
Baseline event selection and further categorization for the �τ�′ and �τhad channels. The same criteria are also 
used for the control region (CR) definitions in the �τ�′ channel (Section 5), but one requirement of the baseline 
selection is inverted to achieve orthogonal event selection. There is no CR in the �τhad channel.

Selection �τ�′ �τhad

Baseline

exactly 1e and 1μ, OS exactly 1� and 1τhad-vis, OS

p
�1
T > 45 GeV p�

T > 27.3 GeV

p
�2
T > 15 GeV p

τhad-vis
T > 25 GeV, |ητhad-vis | < 2.4

30 GeV <mvis < 150 GeV
∑

i=�,τhad-vis

cos	φ(i, Emiss
T ) > −0.35

peT(track)/p
e
T(cluster) < 1.2 (μτe only) |	η(�, τhad-vis)| < 2

b-veto (for jets with pT > 25 GeV and |η| < 2.4)

VBF

Baseline

≥ 2 jets, p
j1
T > 40 GeV, p

j2
T > 30 GeV

|	η(j1, j2)| > 3, m(j1, j2) > 400 GeV

− p
τhad-vis
T > 45 GeV

Non-VBF

Baseline plus fail VBF categorization

mT(�1, E
miss
T ) > 50 GeV −

mT(�2, E
miss
T ) < 40 GeV −

|	φ(�2, E
miss
T )| < 1.0 −

pτ
T /p

�1
T > 0.5 −

Top-quark CR inverted b-veto:

VBF and non-VBF ≥ 1 b-tagged jet (pT > 25 GeV and |η| < 2.4)

Z → ττ CR inverted p
�1
T requirement:

VBF and non-VBF 35 GeV < p
�1
T < 45 GeV

gorized into VBF (with a focus on the VBF production of the Higgs 
boson) and non-VBF categories. The VBF selection is based on the 
kinematics of the two jets with the highest pT, where j1 and j2
denote the leading and subleading jet in pT, respectively. The vari-
ables m(j1, j2) and 	η(j1, j2) stand for the invariant mass and η
separation of these two jets. The non-VBF category contains events 
failing the VBF selection. In the dilepton channel, additional selec-
tion criteria are applied to further reject background events in this 
category. These criteria are also listed in Table 2, where mT stands 
for the transverse mass4 of the two objects listed in parentheses, 
and pτ

T represents the magnitude of the vector sum of p�2
T and 

Emiss
T . The requirement on pτ

T/p
�1
T reduces the background arising 

from jets misidentified as leptons. The VBF and non-VBF categories 
in each of the �τ�′ and �τhad channels give rise to four signal re-
gions in each search.

The analysis exploits BDT algorithms to enhance the signal sep-
aration from the background in the individual searches, channels 
and categories. The components of the four-momenta of the analy-
sis objects as well as derived event variables (e.g. invariant masses 
and angular separations) are the input variables of the BDT dis-
criminant. Correlations between these input variables have been 
carefully checked, highly correlated variables have been removed 
and the remaining ones are ranked according to their discrimi-

nation power [74,75]. The list of variables is then optimized, re-
moving the lowest-ranked variables with marginal contribution to 
the sensitivity. The final list of variables is presented in Table 3

for each channel and category. The invariant mass of the Higgs bo-
son reconstructed under the H → �τ decay hypothesis exhibits the 
highest signal-to-background separation power and it helps to dis-
tinguish LFV signal from H → ττ and H → WW backgrounds. For 
the �τ�′ channel the invariant mass is reconstructed with the MMC 
algorithm [76] and is denoted by mMMC; for the �τhad channel it 
is reconstructed with the collinear approximation [76] and is de-
noted by mcoll. The analysis CRs are used to validate the level of 

4 The transverse mass of two objects is defined as mT = √
2pT1pT2(1− cos	φ), 

where pT i are the individual transverse momenta and 	φ is the angle between the 
two objects in the azimuthal plane.

agreement between data and simulated distributions of the BDT 
score and input variables, as well as their correlations.

5. Background modelling

The most significant backgrounds in the search are from events 
with Z → ττ decays or with (single or pair-produced) top quarks, 
especially in the �τ�′ channel, as well as from events with misiden-

tified objects, which are estimated using data-driven (d.d.) tech-
niques. The relative contribution from misidentified objects to the 
total background yield is 5–25% in the �τ�′ channel and 25–45% 
in the �τhad channel, depending on the search and the analysis 
category. The shapes of distributions from the Z → ττ and top-
quark (single-top-quark and tt̄) processes are modelled by sim-

ulation in both the �τ�′ and �τhad decay channels. In the �τ�′
channel, the relative contributions of Z → ττ and top-quark pro-
duction processes are 20–35% and 20–55%, respectively; the top-
quark background dominates in the VBF category. In the �τhad
channel, the top-quark background fraction is 1–10%, while the 
Z → ττ process contributes to 45–55% of the total background. 
The individual contributions are listed in Tables 4 and 5. Smaller 
background components are also modelled by simulation and are 
grouped together: Z → μμ, diboson production, H → ττ and 
H → WW .

Good modelling of the background is demonstrated in Fig. 1 for 
a selection of important BDT input variables. Details of the back-
ground estimation techniques are given below.

5.1. �τ�′ channel

Two sets of CRs, as defined in Table 2, are used to constrain the 
normalization of Z → ττ and top-quark background components. 
These CRs inherit their definitions from the corresponding anal-
ysis category but invert one requirement to ensure orthogonality 
with the nominal selection. The normalization factors are deter-
mined during the statistical analysis by fitting the event yields 
in all signal and control regions simultaneously. For each search, 
separate Z → ττ normalization factors are used for the VBF and 
non-VBF categories. In the case of the top-quark background, in 
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Table 3
BDT input variables used in the analysis. For each channel and category, used input variables are marked with HR 
(indicating the five variables with the highest rank) or a bullet. Analogous variables between the two channels are 
listed on the same line.

�τ�′ �τhad

Variable VBF non-VBF Variable VBF non-VBF

mMMC HR HR mcoll HR HR

p
�1
T • • p�

T • HR

p
�2
T HR HR p

τhad-vis
T • HR

	R(�1, �2) HR • 	R(�, τhad-vis) • •
mT(�1, E

miss
T ) • HR mT(�, E

miss
T ) HR •

mT(�2, E
miss
T ) HR • mT(τhad-vis, E

miss
T ) HR HR

	φ(�1, E
miss
T ) • • 	φ(�, Emiss

T ) HR •
	φ(�2, E

miss
T ) HR 	φ(τhad-vis, E

miss
T ) •

m(j1, j2) • m(j1, j2) •
	η(j1, j2) HR 	η(j1, j2) •
pτ
T /p

�1
T HR

∑
i=�,τhad-vis

cos	φ(i, Emiss
T ) • •

Emiss
T HR •

mvis HR

	η(�, τhad-vis) •
η� •
ητhad-vis •
φ� •
φτhad-vis •
φ(Emiss

T ) •

Table 4
Event yields and predictions as determined by the background-only fit in different signal regions of the H → eτ analy-

sis. Uncertainties include both the statistical and systematic contributions. “Other” contains diboson, Z → ��, H → ττ
and H → WW background processes. For the eτhad channel the “Z → ee (d.d.)” component corresponds to electrons 
misidentified as τhad-vis . This contribution is summed with “Other” since there are few events in the VBF category. The 
uncertainty of the total background includes all correlations between channels. The normalizations of top-quark (�τ�′
channel only) and Z → ττ background components are determined by the fit, while the expected signal event yields 
are given for B(H → eτ ) = 1%.

eτμ non-VBF eτμ VBF eτhad non-VBF eτhad VBF

Signal 379 ± 31 19.8 ± 2.7 1180 ± 110 25 ± 4

Z → ττ 2470 ± 230 221 ± 34 73800 ± 1900 290 ± 40

Top-quark 1640 ± 140 490 ± 40 1580 ± 190 56 ± 12

Mis-identified 1330 ± 250 73 ± 33 74400 ± 1600 140 ± 50

Z → ee (d.d.) 15 900 ± 1800
82± 13

Other 1700 ± 80 220 ± 15 2960 ± 200

Total background 7130 ± 100 1003 ± 33 168700 ± 1000 570 ± 40

Data 7128 992 168883 572

Table 5
Event yields and predictions as determined by the background-only fit in different signal regions of the H → μτ
analysis. Uncertainties include both the statistical and systematic contributions. “Other” contains diboson, Z → ��, H →
ττ and H → WW background processes. The uncertainty of the total background includes all correlations between 
channels. The normalizations of top-quark (�τ�′ channel only) and Z → ττ background components are determined by 
the fit, while the expected signal event yields are given for B(H → μτ) = 1%.

μτe non-VBF μτe VBF μτhad non-VBF μτhad VBF

Signal 287 ± 23 14.6 ± 1.9 1200 ± 120 25 ± 5

Z → ττ 1860 ± 130 144 ± 26 96100 ± 2000 274 ± 33

Top quark 1260 ± 130 390 ± 34 1620 ± 210 51 ± 10

Misidentified 1340 ± 210 41 ± 21 63900 ± 1600 149 ± 33

Other 1180 ± 140 168 ± 18 23000 ± 1000 104 ± 15

Total background 5640 ± 100 743 ± 29 184500 ± 1200 580 ± 30

Data 5664 723 184508 583

which leading jets are produced at a lower order of the perturba-
tive expansion of the scattering process, a combined normalization 
factor across the two categories is used in the �τ�′ channel.

Top-quark CRs are almost exclusively composed of top-quark 
backgrounds: the purity is 95% across both searches and categories, 
with tt̄ process accounting for more than 90% of the top-quark 
backgrounds. The Z → ττ CRs achieved a purity of ∼80% in the 
non-VBF categories, while a lower purity of ∼60% is observed in 

the VBF categories. The contributions of all other background com-

ponents are normalized to their SM predictions when the likeli-
hood fit (Section 7) is applied.

The shape and normalization of diboson and Z → μμ back-

ground distributions are validated with data in dedicated regions 
where their contributions are enhanced. The latter process only 
contributes sizeably in the μτe channel, where it represents up to 
10% of the total background.
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Fig. 1. Distributions of representative kinematic quantities for different searches, channels and categories, before the fit as described in Section 7 is applied. Top row: 
transverse mass mT(�1, Emiss

T ) (eτμ non-VBF), collinear mass mcoll (eτhad non-VBF) and mMMC (eτμ VBF). Bottom row: mMMC (μτe non-VBF), muon pT (μτhad non-VBF) and 
mcoll (μτhad VBF). Entries with values that would exceed the x-axis range are included in the last bin of each distribution. The size of the combined statistical, experimental 
and theoretical uncertainties in the background is indicated by the hatched bands. The H → eτ (H → μτ ) signal overlaid in top (bottom) plots assumes B(H → �τ ) = 1%

and is enhanced by a factor 10. In the data/background prediction ratio plots, points outside the displayed y-axis range are shown by arrows.

Another source of background comes from W + jets, top-quark 
and multi-jet events, where jets are misidentified as leptons. This 
background is estimated directly from OS data events where an 
inverted isolation requirement is imposed on the subleading lep-
ton [17]. Normalization factors are applied to correct for the in-
verted isolation requirement. The normalization factors are derived 
in a dedicated region where the leptons are required to have same-

sign (SS) charges. Additional corrections are made by reweight-

ing the MC distributions of 	φ(�1, Emiss
T ) and 	φ(�2, Emiss

T ) to 
data in the SS region, which improves the modelling of azimuthal 
angles between leptons and the Emiss

T direction as well as the 
modelling of mT(�2, Emiss

T ). A similar improvement is observed 
in the nominal OS region. In most of the cases, the misidenti-

fied jet mimics the lepton of lower pT, �2, while the fraction of 
events where both leptons are misidentified varies between 2% 
to 8% across categories. The systematic uncertainties of the es-
timation of the misidentified lepton background include contri-
butions from closure tests in SS and OS regions enriched with 
misidentified leptons, from the corrections made to the 	φ dis-

tributions, and from the composition of the misidentified lepton 
background.

5.2. �τhad channel

The main background contributions come from the Z → ττ
process and events where either a jet or an electron is misiden-

tified as τhad-vis. The shape of the Z → ττ background distribution 
is modelled by simulation, and the corresponding normalization 
factors are determined from the simultaneous fit of the event 
yields in all signal and control regions. The Z → ττ normalization 
factors are fully correlated with those of the �τ�′ channel, in each 
VBF and non-VBF category. Top-quark production represents less 
than 1% of the total background in the �τhad channel and is de-
termined by simulation, including its normalization, which is kept 
fixed in the fit.

The main contributions to jets misidentified as τhad-vis come 
from multi-jet events and W -boson production in association with 
jets, and a fake-factor method is used to estimate the contribu-
tion of each component separately. A fake factor is defined as the 
ratio of the number of events where the highest-pT jet is identi-
fied as a tight τhad-vis candidate to the number of events where 
the highest-pT jet fails to satisfy this τ -ID criterion but satisfies 
a looser criterion. The procedure, including systematic uncertain-
ties, is described in Ref. [17]. Since a different τ -ID working point 
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is considered in this analysis, fake factors are re-derived as a func-
tion of pT and track multiplicity of the τhad-vis candidate.

Electrons misidentified as τhad-vis , denoted by “Z → ee (d.d.)” 
in the following figures and tables, represent another background 
component in the eτhad channel, with a contribution about five 
times smaller than that of jets misidentified as τhad-vis . While the 
rate of electrons misidentified as 3-prong τhad-vis makes a neg-
ligible contribution and is modelled by simulation, the rate of 
electrons misidentified as 1-prong τhad-vis is determined with a 
fake-factor method. This time, the fake factor is defined as the ratio 
of the number of events with tight τ -ID to the number of events 
with anti-identified τhad-vis (such a candidate satisfies all criteria 
but the requirement on the high electron ID score is inverted). 
These fake factors are derived in a dedicated Z → ee enriched re-
gion defined by |mvis − mZ | < 5 GeV, mT(�, Emiss

T ) < 40 GeV, and 
mT(τhad-vis, Emiss

T ) < 60 GeV, where the τhad-vis candidate satis-
fies the medium τ -ID (corresponding to an efficiency of 55% and 
40% for 1-prong and 3-prong candidates, respectively) but not the 
tight τ -ID criterion to avoid overlap with the �τhad signal region. 
These fake factors are applied to signal-like events with the anti-
identified τhad-vis to determine the background contribution in the 
categories of the analysis. The systematic uncertainties include the 
statistical uncertainty of the fake factors and account for looser 
τ -ID in the Z → ee enriched region as well as for the subtraction 
of the not misidentified components in this region.

6. Systematic uncertainties

The systematic uncertainties affect the normalization of signal 
and background, and/or the shape of their corresponding final dis-
criminant distributions. Each source of systematic uncertainty is 
considered to be uncorrelated with the other sources. The effect 
of each systematic uncertainty is fully considered in each category, 
including control regions. Correlations of each systematic uncer-
tainty are maintained across processes, channels, categories and 
regions. The size of the systematic uncertainties and their impact 
on the fitted branching ratio are discussed in Section 7. The main 
sources of systematic uncertainties are related to the estimation of 
the backgrounds originating from mis-identified leptons/jets and to 
the jet energy scale uncertainties.

Experimental uncertainties include those originating from the 
reconstruction, identification, tagging and triggering efficiencies of 
all physics objects as well as their momentum scale and resolution. 
These include effects from leptons [57–59], τhad-vis [68], jets [63,

64,77] and Emiss
T [78]. Uncertainties affecting the kinematics of the 

physics objects are propagated to the BDT input variables. The cor-
responding shape and normalization variations of the BDT discrim-

inant are considered in the statistical analysis. Uncertainties of the 
luminosity measurement [79], pile-up modelling and uncertainties 
specific to mis-identified background estimation techniques men-

tioned in Section 5 are included.
The procedures to estimate the uncertainty of the Higgs bo-

son production cross-sections follow the recommendations of the 
LHC Higgs Cross-Section Working Group [80]. Theoretical uncer-
tainties affecting the ggF signal originate from nine sources [24]. 
Two sources account for yield uncertainties, which are evaluated 
by an overall variation of all relevant scales and are correlated 
across all bins of the BDT discriminant distribution [81]. Another 
two sources account for migration uncertainties of zero to one jet 
and one to at least two jets in the event [81–83], two for Higgs bo-
son pT shape uncertainties, one for the treatment of the top-quark 
mass in the loop corrections, and two for the acceptance uncer-
tainties of ggF production in the VBF phase space from selecting 
exactly two and at least three jets, respectively [84,85]. For VBF 
and WH , ZH production cross-sections, the uncertainties due to 

missing higher-order QCD corrections are estimated by varying the 
factorization and renormalization scales up and down by factors of 
two around the nominal scale. For all signal samples, PDF uncer-
tainties are estimated using 30 eigenvector variations and two αs

variations using the default PDF set PDF4LHC15 [32]. Uncertainties 
related to the simulation of the underlying event, hadronization 
and parton shower are estimated by comparing the acceptances 
when using Pythia 8.212 [25] or Herwig 7.0.3 [86,87].

The sources of modelling uncertainties considered for the Z →
ττ process are the same as in Ref. [17] and their effect on the 
event migrations between categories and on the shape of the BDT 
discriminant are considered, since the overall normalizations are 
determined from data in the statistical analysis. These system-

atic uncertainties include variations of PDF sets, factorization and 
renormalization scales, CKKW matching [88], resummation scale 
and parton shower modelling. The other background processes are 
either normalized using data (processes with top-quarks and mis-

identified leptons and τhad-vis candidates) or their cross-section un-
certainties have negligible impact and therefore are not included. 
The shape uncertainties of these backgrounds originate from ex-
perimental uncertainties only.

7. Statistical analysis

The searches for H → eτ and H → μτ are treated indepen-
dently. For each search, the analysis exploits the four signal regions 
and the two control regions specified in Table 2. The BDT score dis-
tributions of all signal regions are analysed to test the presence of 
a signal, simultaneously with the event yields in control regions, 
which are included to constrain the normalizations of the ma-

jor backgrounds estimated from simulation. The statistical analysis 
uses a binned likelihood function L(μ, θ), constructed as a product 
of Poisson probability terms over all bins considered in the search. 
This function depends on the parameter μ, defined as the branch-
ing ratio B(H → �τ ), and a set of nuisance parameters θ that en-
code the effect of systematic uncertainties in the signal and back-
ground expectations. All nuisance parameters are implemented in 
the likelihood function as Gaussian or log-normal constraints. The 
normalization factors of the single-top-quark and tt̄ backgrounds 
in the �τ�′ channel and of the Z → ττ background component are 
unconstrained parameters of the fit. Estimates of the parameters of 
interest are calculated with the profile-likelihood-ratio test statistic 
q̃μ [89], and the upper limits on the branching ratios are derived 
by using q̃μ and the CLS method [90].

The discriminant distributions after the fit in each channel are 
shown in Figs. 2 and 3. Good agreement between data and the 
background expectation is observed. The event yields after the 
background-only fit are summarized in Tables 4 and 5. In the non-
VBF category, the yields in the �τhad channel are larger than in 
the �τ�′ channel due to the looser selection criteria defined for the 
former channel (Section 4). Table 6 shows a summary of the uncer-
tainties of B(H → �τ ). The uncertainties associated with misiden-

tified leptons and τhad-vis candidated and those related to the jet 
energy scale and resolution exhibit the highest impact on the best-
fit branching ratios in both searches. The combined impact from all 
systematic uncertainties and the data statistics ranges from 0.17%
to 0.19%.

8. Results

The best-fit branching ratios and upper limits are computed 
while assuming B(H → μτ) = 0 for the H → eτ search and 
B(H → eτ ) = 0 for the H → μτ search. The best-fit values of the 
LFV Higgs boson branching ratios are equal to (0.15+0.18

−0.17)% and 
(−0.22 ± 0.19)% for the H → eτ and H → μτ search, respectively. 
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Fig. 2. Distributions of the BDT score after the background+signal fit in each signal region of the eτ search, with the LFV signal overlaid, normalized with B(H → eτ ) = 1%

and enhanced by a factor 10 for visibility. The top and bottom plots display eτμ and eτhad BDT scores respectively, the left (right) column corresponds to the non-VBF (VBF) 
category. The size of the combined statistical, experimental and theoretical uncertainties of the background is indicated by the hatched bands. The binning is shown as in 
the statistical analysis.

Table 6
Summary of the systematic uncertainties and their impact on the best-fit value of B in the H → eτ and H → μτ searches. The 
measured values are obtained by the fit to data, while the expected values are determined by the fit to a background-only sample.

Source of uncertainty Impact on B(H → eτ ) [%] Impact on B(H → μτ) [%]

Measured Expected Measured Expected

Electron +0.05/ − 0.05 +0.06/ − 0.06 +0.03/ − 0.03 +0.02/ − 0.02

Muon +0.04/ − 0.04 +0.04/ − 0.04 +0.10/ − 0.10 +0.08/ − 0.10

τhad-vis +0.02/ − 0.02 +0.02/ − 0.02 +0.04/ − 0.04 +0.04/ − 0.05

Jet +0.09/ − 0.08 +0.09/ − 0.09 +0.11/ − 0.12 +0.11/ − 0.12

Emiss
T +0.02/ − 0.02 +0.02/ − 0.03 +0.05/ − 0.08 +0.03/ − 0.05

b-tag +0.02/ − 0.03 +0.03/ − 0.03 +0.01/ − 0.01 +0.01/ − 0.01

Mis-ID backg. (�τ�′ ) +0.08/ − 0.07 +0.09/ − 0.08 +0.07/ − 0.07 +0.07/ − 0.07

Mis-ID backg. (�τhad) +0.12/ − 0.11 +0.11/ − 0.12 +0.11/ − 0.11 +0.10/ − 0.10

Pile-up modelling +0.02/ − 0.01 +0.01/ − 0.01 +0.05/ − 0.03 +0.08/ − 0.06

Luminosity < 0.01 < 0.01 < 0.01 < 0.01

Background norm. +0.05/ − 0.04 +0.05/ − 0.03 +0.04/ − 0.02 +0.05/ − 0.03

Theor. uncert. (backg.) +0.04/ − 0.03 +0.04/ − 0.03 +0.08/ − 0.07 +0.09/ − 0.09

Theor. uncert. (signal) +0.01/ − 0.01 +0.01/ − 0.01 +0.04/ − 0.02 +0.02/ − 0.02

MC statistics +0.04/ − 0.04 +0.03/ − 0.03 +0.04/ − 0.04 +0.05/ − 0.04

Full systematic +0.17/ − 0.16 +0.17/ − 0.17 +0.18/ − 0.18 +0.19/ − 0.20

Data statistics +0.07/ − 0.07 +0.07/ − 0.07 +0.07/ − 0.07 +0.08/ − 0.08

Total +0.18/ − 0.17 +0.18/ − 0.18 +0.19/ − 0.19 +0.20/ − 0.21
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Fig. 3. Distributions of the BDT score after the background+signal fit in each signal region of the μτ search, with the LFV signal overlaid, normalized with B(H → μτ) = 1%

and enhanced by a factor 10 for visibility. The top and bottom plots display μτe and μτhad BDT scores respectively, the left (right) column corresponds to the non-VBF (VBF) 
category. The size of the combined statistical, experimental and theoretical uncertainties of the background is indicated by the hatched bands. The binning is shown as in 
the statistical analysis. In the data/background prediction ratio plots, points outside the displayed y-axis range are shown by arrows.

In the absence of a significant excess, upper limits on the LFV 
branching ratios are set for a Higgs boson with mH = 125 GeV. 
The observed (median expected) 95% CL upper limits are 0.47%
(0.34+0.13

−0.10%) and 0.28% (0.37+0.14
−0.10%) for the H → eτ and H → μτ

searches, respectively. These limits are significantly lower than the 
corresponding Run 1 limits of Refs. [14,15]. The breakdown of con-
tributions from different signal regions is shown in Fig. 4.

The branching ratio of the LFV Higgs boson decay is related 
to the non-diagonal Yukawa coupling matrix elements [91] by the 
formula

|Y�τ |2 + |Yτ�|2 = 8π

mH

B(H → �τ )

1−B(H → �τ )

H (SM),

where 
H (SM) = 4.07 MeV [92] stands for the Higgs boson width 
as predicted by the Standard Model. Thus, the observed lim-

its on the branching ratio correspond to the following limits 
on the coupling matrix elements: 

√|Yτe|2 + |Yeτ |2 < 0.0020, and √
|Yτμ|2 + |Yμτ |2 < 0.0015. Fig. 5 shows the limits on the individ-

ual coupling matrix elements Yτ� and Y�τ together with the limits 
from the ATLAS Run 1 analysis and from τ → �γ searches [91,93].

9. Conclusions

Direct searches for the decays H → eτ and H → μτ are per-
formed with proton–proton collisions recorded by the ATLAS de-
tector at the LHC corresponding to an integrated luminosity of 
36.1 fb−1 at a centre-of-mass energy of 

√
s = 13 TeV. No signifi-

cant excess is observed above the expected background from Stan-
dard Model processes. The observed (expected) upper limits at 95% 
confidence level on the branching ratios of H → eτ and H → μτ
are 0.47% (0.34+0.13

−0.10%) and 0.28% (0.37+0.14
−0.10%), respectively. These 

limits are more stringent by a factor of 2 (5) than the correspond-
ing limits for the H → eτ (H → μτ ) decay determined by ATLAS 
at 

√
s = 8 TeV.
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shown, when only the data of an individual channel or of an individual category are used; in these cases the signal and control regions from all other channels/categories 
are removed from the fit. These results are finally compared with the full fit displayed in the last row.
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T. Javůrek 36, M. Javurkova 52, F. Jeanneau 145, L. Jeanty 131, J. Jejelava 159a,ae, A. Jelinskas 178, P. Jenni 52,a, 
J. Jeong 46, N. Jeong 46, S. Jézéquel 5, H. Ji 181, J. Jia 155, H. Jiang 78, Y. Jiang 60a, Z. Jiang 153,o, S. Jiggins 52, 
F.A. Jimenez Morales 38, J. Jimenez Pena 115, S. Jin 15c, A. Jinaru 27b, O. Jinnouchi 165, H. Jivan 33c, 
P. Johansson 149, K.A. Johns 7, C.A. Johnson 65, K. Jon-And 45a,45b, R.W.L. Jones 89, S.D. Jones 156, S. Jones 7, 
T.J. Jones 90, J. Jongmanns 61a, P.M. Jorge 140a, J. Jovicevic 36, X. Ju 18, J.J. Junggeburth 115, 
A. Juste Rozas 14,w, A. Kaczmarska 84, M. Kado 72a,72b, H. Kagan 126, M. Kagan 153, C. Kahra 99, T. Kaji 179, 
E. Kajomovitz 160, C.W. Kalderon 96, A. Kaluza 99, A. Kamenshchikov 123, L. Kanjir 91, Y. Kano 163, 
V.A. Kantserov 112, J. Kanzaki 81, L.S. Kaplan 181, D. Kar 33c, K. Karava 135, M.J. Kareem168b, S.N. Karpov 79, 
Z.M. Karpova 79, V. Kartvelishvili 89, A.N. Karyukhin 123, L. Kashif 181, R.D. Kass 126, A. Kastanas 45a,45b, 
C. Kato 60d,60c, J. Katzy 46, K. Kawade 150, K. Kawagoe 87, T. Kawaguchi 117, T. Kawamoto 163, 
G. Kawamura 53, E.F. Kay 176, V.F. Kazanin 122b,122a, R. Keeler 176, R. Kehoe 42, J.S. Keller 34, 
E. Kellermann 96, D. Kelsey 156, J.J. Kempster 21, J. Kendrick 21, O. Kepka 141, S. Kersten 182, B.P. Kerševan 91, 
S. Ketabchi Haghighat 167, M. Khader 173, F. Khalil-Zada 13, M. Khandoga 145, A. Khanov 129, 
A.G. Kharlamov 122b,122a, T. Kharlamova 122b,122a, E.E. Khoda 175, A. Khodinov 166, T.J. Khoo 54, 
E. Khramov 79, J. Khubua 159b, S. Kido 82, M. Kiehn 54, C.R. Kilby 93, Y.K. Kim 37, N. Kimura 66a,66c, 
O.M. Kind 19, B.T. King 90,∗, D. Kirchmeier 48, J. Kirk 144, A.E. Kiryunin 115, T. Kishimoto 163, D.P. Kisliuk 167, 
V. Kitali 46, O. Kivernyk 5, T. Klapdor-Kleingrothaus 52, M. Klassen 61a, M.H. Klein 105, M. Klein 90, 
U. Klein 90, K. Kleinknecht 99, P. Klimek 121, A. Klimentov 29, T. Klingl 24, T. Klioutchnikova 36, 
F.F. Klitzner 114, P. Kluit 120, S. Kluth 115, E. Kneringer 76, E.B.F.G. Knoops 101, A. Knue 52, D. Kobayashi 87, 
T. Kobayashi 163, M. Kobel 48, M. Kocian 153, P. Kodys 143, P.T. Koenig 24, T. Koffas 34, N.M. Köhler 36, 
T. Koi 153, M. Kolb 61b, I. Koletsou 5, T. Komarek 130, T. Kondo 81, N. Kondrashova 60c, K. Köneke 52, 
A.C. König 119, T. Kono 125, R. Konoplich 124,al, V. Konstantinides 94, N. Konstantinidis 94, B. Konya 96, 
R. Kopeliansky 65, S. Koperny 83a, K. Korcyl 84, K. Kordas 162, G. Koren 161, A. Korn 94, I. Korolkov 14, 
E.V. Korolkova 149, N. Korotkova 113, O. Kortner 115, S. Kortner 115, T. Kosek 143, V.V. Kostyukhin 24, 
A. Kotwal 49, A. Koulouris 10, A. Kourkoumeli-Charalampidi 70a,70b, C. Kourkoumelis 9, E. Kourlitis 149, 
V. Kouskoura 29, A.B. Kowalewska 84, R. Kowalewski 176, C. Kozakai 163, W. Kozanecki 145, A.S. Kozhin 123, 
V.A. Kramarenko 113, G. Kramberger 91, D. Krasnopevtsev 60a, M.W. Krasny 136, A. Krasznahorkay 36, 
D. Krauss 115, J.A. Kremer 83a, J. Kretzschmar 90, P. Krieger 167, F. Krieter 114, A. Krishnan 61b, K. Krizka 18, 
K. Kroeninger 47, H. Kroha 115, J. Kroll 141, J. Kroll 137, J. Krstic 16, U. Kruchonak 79, H. Krüger 24, 
N. Krumnack 78, M.C. Kruse 49, J.A. Krzysiak 84, T. Kubota 104, O. Kuchinskaia 166, S. Kuday 4b, 
J.T. Kuechler 46, S. Kuehn 36, A. Kugel 61a, T. Kuhl 46, V. Kukhtin 79, R. Kukla 101, Y. Kulchitsky 107,ah, 
S. Kuleshov 147b, Y.P. Kulinich 173, M. Kuna 58, T. Kunigo 85, A. Kupco 141, T. Kupfer 47, O. Kuprash 52, 
H. Kurashige 82, L.L. Kurchaninov 168a, Y.A. Kurochkin 107, A. Kurova 112, M.G. Kurth 15a,15d, E.S. Kuwertz 36, 
M. Kuze 165, A.K. Kvam 148, J. Kvita 130, T. Kwan 103, A. La Rosa 115, L. La Rotonda 41b,41a, F. La Ruffa 41b,41a, 
C. Lacasta 174, F. Lacava 72a,72b, D.P.J. Lack 100, H. Lacker 19, D. Lacour 136, E. Ladygin 79, R. Lafaye 5, 
B. Laforge 136, T. Lagouri 33c, S. Lai 53, S. Lammers 65, W. Lampl 7, C. Lampoudis 162, E. Lançon 29, 
U. Landgraf 52, M.P.J. Landon 92, M.C. Lanfermann 54, V.S. Lang 46, J.C. Lange 53, R.J. Langenberg 36, 
A.J. Lankford 171, F. Lanni 29, K. Lantzsch 24, A. Lanza 70a, A. Lapertosa 55b,55a, S. Laplace 136, J.F. Laporte 145, 
T. Lari 68a, F. Lasagni Manghi 23b,23a, M. Lassnig 36, T.S. Lau 63a, A. Laudrain 132, A. Laurier 34, 
M. Lavorgna 69a,69b, M. Lazzaroni 68a,68b, B. Le 104, O. Le Dortz 136, E. Le Guirriec 101, M. LeBlanc 7, 
T. LeCompte 6, F. Ledroit-Guillon 58, C.A. Lee 29, G.R. Lee 17, L. Lee 59, S.C. Lee 158, S.J. Lee 34, 
B. Lefebvre 168a, M. Lefebvre 176, F. Legger 114, C. Leggett 18, K. Lehmann 152, N. Lehmann 182, 



16 The ATLAS Collaboration / Physics Letters B 800 (2020) 135069

G. Lehmann Miotto 36, W.A. Leight 46, A. Leisos 162,v, M.A.L. Leite 80d, C.E. Leitgeb 114, R. Leitner 143, 
D. Lellouch 180,∗, K.J.C. Leney 42, T. Lenz 24, B. Lenzi 36, R. Leone 7, S. Leone 71a, C. Leonidopoulos 50, 
A. Leopold 136, G. Lerner 156, C. Leroy 109, R. Les 167, C.G. Lester 32, M. Levchenko 138, J. Levêque 5, 
D. Levin 105, L.J. Levinson 180, D.J. Lewis 21, B. Li 15b, B. Li 105, C-Q. Li 60a, F. Li 60c, H. Li 60a, H. Li 60b, J. Li 60c, 
K. Li 153, L. Li 60c, M. Li 15a, Q. Li 15a,15d, Q.Y. Li 60a, S. Li 60d,60c, X. Li 46, Y. Li 46, Z. Li 60b, Z. Liang 15a, 
B. Liberti 73a, A. Liblong 167, K. Lie 63c, S. Liem 120, C.Y. Lin 32, K. Lin 106, T.H. Lin 99, R.A. Linck 65, 
J.H. Lindon 21, A.L. Lionti 54, E. Lipeles 137, A. Lipniacka 17, M. Lisovyi 61b, T.M. Liss 173,as, A. Lister 175, 
A.M. Litke 146, J.D. Little 8, B. Liu 78, B.L Liu 6, H.B. Liu 29, H. Liu 105, J.B. Liu 60a, J.K.K. Liu 135, K. Liu 136, 
M. Liu 60a, P. Liu 18, Y. Liu 15a,15d, Y.L. Liu 105, Y.W. Liu 60a, M. Livan 70a,70b, A. Lleres 58, 
J. Llorente Merino 15a, S.L. Lloyd 92, C.Y. Lo 63b, F. Lo Sterzo 42, E.M. Lobodzinska 46, P. Loch 7, 
S. Loffredo 73a,73b, T. Lohse 19, K. Lohwasser 149, M. Lokajicek 141, J.D. Long 173, R.E. Long 89, L. Longo 36, 
K.A. Looper 126, J.A. Lopez 147b, I. Lopez Paz 100, A. Lopez Solis 149, J. Lorenz 114, N. Lorenzo Martinez 5, 
M. Losada 22, P.J. Lösel 114, A. Lösle 52, X. Lou 46, X. Lou 15a, A. Lounis 132, J. Love 6, P.A. Love 89, 
J.J. Lozano Bahilo 174, M. Lu 60a, Y.J. Lu 64, H.J. Lubatti 148, C. Luci 72a,72b, A. Lucotte 58, C. Luedtke 52, 
F. Luehring 65, I. Luise 136, L. Luminari 72a, B. Lund-Jensen 154, M.S. Lutz 102, D. Lynn 29, R. Lysak 141, 
E. Lytken 96, F. Lyu 15a, V. Lyubushkin 79, T. Lyubushkina 79, H. Ma 29, L.L. Ma 60b, Y. Ma 60b, 
G. Maccarrone 51, A. Macchiolo 115, C.M. Macdonald 149, J. Machado Miguens 137, D. Madaffari 174, 
R. Madar 38, W.F. Mader 48, N. Madysa 48, J. Maeda 82, S. Maeland 17, T. Maeno 29, M. Maerker 48, 
A.S. Maevskiy 113, V. Magerl 52, N. Magini 78, D.J. Mahon 39, C. Maidantchik 80b, T. Maier 114, 
A. Maio 140a,140b,140d, O. Majersky 28a, S. Majewski 131, Y. Makida 81, N. Makovec 132, B. Malaescu 136, 
Pa. Malecki 84, V.P. Maleev 138, F. Malek 58, U. Mallik 77, D. Malon 6, C. Malone 32, S. Maltezos 10, 
S. Malyukov 36, J. Mamuzic 174, G. Mancini 51, I. Mandić 91, L. Manhaes de Andrade Filho 80a, 
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