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Many studies over the 1960’s reported failure in predicting accurate flutter boundaries
using the classical theory of unsteady aerodynamics even at zero angle of attack and/or
lift conditions. Since the flutter phenomenon lies in the intersection between unsteady
aerodynamics and structural dynamics, and because the structural dynamics of slender
beams can be fairly predicted, it was inferred that the problem stems from the classical
theory of unsteady aerodynamics. As a result, a research flurry occurred over the 1970’s
and 1980’s investigating such a theory, with particular emphasis on the applicability of
the Kutta condition to unsteady flows. There was almost a consensus that the Kutta
condition must to be relaxed at high frequencies and low Reynolds numbers, which was also
concluded from several recent studies of the unsteady aerodynamics of bio-inspired flight.
Realizing that vorticity generation and lift development are essentially viscous processes, we
develop a viscous extension of the classical theory of unsteady aerodynamics, equivalently
an unsteady extension of the boundary layer theory. We rely on a special boundary layer
theory that pays close attention to the details in the vicinity of the trailing edge: the
triple deck theory. We use such a theory to relax the Kutta condition and determine a
viscous correction to the inviscid unsteady lift. Using the developed viscous unsteady
model, we develop a Reynolds-number-dependent lift frequency response (i.e., a viscous
extension of Theodorsen’s). It is found that viscosity induces a significant phase lag to the
lift development beyond Theodorsen’s inviscid solution, particularly at high frequencies
and low Reynolds numbers. Since flutter, similar to any typical hopf bifurcation, is mainly
dictated by the phase difference between the applied loads and the motion, it is expected
that the viscosity-induced lag will affect the flutter boundary. To assess such an effect,
we couple the developed unsteady viscous aerodynamic theory with a structural dynamic
model of a typical section to perform aeroelastic simulation and analysis. We compare
the flutter boundary determined using the developed viscous unsteady model to that of
Theodorsen’s.

I. Introduction

Wing flutter is a crucial limit that confines the flight envelope of an airplane. It is a truly multi-
disciplinary phenomenon that lies in the intersection between aerodynamics and structure dynamics. That
is, a model for one of these two disciplines cannot alone capture the physics of the phenomenon. There
must be a representative model for each discipline. The aerodynamic loads provide a negative damping for
the structural deflections, which increases with the airplane speed. As such, beyond a certain speed, the
aerodynamic negative damping outweighs the structural positive damping resulting in flutter instability.

The structural dynamics of high aspect ratio wings can be fairly predicted using the Euler-Bernoulli beam
theory1 or its geometrically exact version.2,3 On the other side, while the steady aerodynamics of wings at
small angles of attack and high Reynolds numbers is well established (e.g., the vortex lattice method4), it is
well-known that the flutter is a highly unsteady aeroelastic phenomenon. That is, a quasi-steady aerodynamic
model usually results in a flutter boundary away from the actual limit. For example, the unsteady added
mass terms lead to a significant increase in the flutter speed: since increasing the structure mass (virtually
in this case) delays flutter.1 Moreover, the lag concomitant with the unsteady aerodynamic loads plays a
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crucial role in dictating the flutter boundary. Note that the flutter instability, similar to any typical hopf
bifurcation, is mainly dictated by when energy is added/subtracted during the cycle. That is, the phase
difference between the applied loads (aerodynamic loads) and the motion plays a crucial role in dictating
the stability boundary. In fact, even small changes in this phase difference (by say 10 degrees) leads to a
significant change in the flutter boundary.1,5

Unfortunately, the unsteady aerodynamics of wings or even two-dimensional airfoils does not enjoy the
same maturity as the steady counterpart or the structural dynamics theory. Tracing the origin of the classical
theory of unsteady aerodynamics, we find that it is mainly based on Prandtl’s assumption: for infinitely thin
airfoils at small angles of attack and high Reynolds numbers, separation or sheets of vorticity are shed from
the sharp edges only and the flow outside of these sheets can be modeled using inviscid assumptions.6,7 These
concepts, in addition to assuming small disturbance to the mean flow (flat wake assumption), form the heart
of the classical theory of unsteady aerodynamics, which has been extensively utilized throughout the years.
In 1925, Wagner8 used this formulation to solve the indicial problem (lift response due to a step change in the
angle of attack). In 1935, Theodorsen9 used the same formulation to solve the frequency response problem
(steady state lift response due to harmonic oscillation in the angle of attack) and applied it to the analysis
of wing flutter. In 1938, Von Karman and Sears10 provided a more general and elaborate representation of
the classical formulation. Also, the efforts of Kussner11 for the sharp edged gust problem, Schwarz12 for the
frequency response problem, and Lowey13 for the returning wake problem worth mentioning. In addition
to the classical developments, Prandtl’s formulation provides the basis for many recent developments.14–27

However, this framework using potential flow is not complete and invokes a closure or auxiliary condition
(e.g., the Kutta condition). This potential flow formulation cannot alone determine the amount of shed
vorticity at the trailing edge, which is a very crucial quantity as it determines the circulation bound the
airfoil (via conservation of circulation), which in turn dictates the generated lift force.

The most common auxiliary condition used in literature is the Kutta condition whose application to
steady flows has been very successful. However, its application to unsteady flows has been controversial (see
Crighton28 and the references therein). The need for an auxiliary condition alternative to Kutta’s goes as
early as the work of Howarth29 with a research flurry on the applicability of Kutta condition to unsteady
flows in the 1970’s and 1980’s.28,30–33 This research was mainly motivated by the failure to capture an
accurate flutter boundary.34–36 Since flutter simply lies in the intersection between unsteady aerodynamics
and structural dynamics, and because the structural dynamics theory is in a much better status (vibration
of slender beams can be accurately predicted using the exact beam theory for example), it has been deemed
that the flaw stems from the classical unsteady aerodynamic theory, particularly the Kutta condition, as
suggested by Chu37 and Shen and Crimi38 among others. Moreover, since these deviations occurred even at
zero angle of attack (or lift),39,40 it was inferred that there is a fundamental issue with such a theory that is
not merely a higher-order effect due to nonlinearities at high angles of attack.37 Therefore, there was almost
a consensus that the Kutta condition has to be relaxed particularly at large frequencies, large angles of attack
and/or low Reynolds numbers.32,41,42 In fact, Orszag and Crow43 regarded the full-Kutta-condition solution
as “indefensible”. Interestingly, this dissatisfaction of the Kutta condition and the need for its relaxation is
recently rejuvenated with the increased interests in the low Reynolds number, high frequency bio-inspired
flight.17,44–47

We note that the whole issue about the Kutta condition stems from the fact that it provides a remedy for
an inviscid theory of unsteady lift whereas the vorticity generation and lift development are essentially viscous
processes. To relax the Kutta condition, we recently developed a viscous extension of the classical theory of
unsteady aerodynamics,5,48 equivalently, an unsteady extension of the viscous boundary layer theory. It is
based on a special boundary layer theory that pays close attention to the details in the vicinity of the trailing
edge where the Blasius boundary layer interacts with the Goldstein near wake layer. Our viscous extension
resulted in a Reynolds number dependent extension of Theodorsen’s lift frequency response. It was found
that the viscous correction induces a significant phase lag to the circulatory lift component, particularly
at low Reynolds numbers and high-frequencies, that matches high-fidelity simulations of Navier-Stokes and
previous experimental results.33,36,40,49 This enhancement in the predicted phase of the unsteady loads is
expected to affect the flutter calculation as discussed above, which is the main motivation behind this work.

In this paper, we summarize the developed viscous unsteady aerodynamic model. Based on which, we
present a modified (viscous) Theodorsen function that depends on the Reynolds number. We then couple this
harmonic representation of the viscous unsteady aerodynamic forces with the standard structural dynamics
of a typical section1 to determine the effect of viscosity-induced lag on the flutter boundary.
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II. Viscous Unsteady Aerodynamic Model

A. Background: The Triple Deck Boundary Layer Theory

In the early 1900, Prandtl has formulated the well-known boundary layer equations:50 nonlinear partial
differential equations that approximate Navier-Stokes equations in the thin viscous layer around the airfoil.
In 1908, Blasius51 solved this set of equations over a flat plate at zero angle of attack subject to the no-
slip boundary condition on the plate, which lead to the celebrated Blasius boundary layer solution. Later
(in 1930), Goldstein52 solved the same boundary layer equations of Prandtl in the wake region behind the
plate, replacing the no-slip condition with a zero-stress condition on the wake center line. He found that the
removal of the wall accelerates the flow leading to a favorable pressure gradient. That is, near the trailing
edge, there are two boundary layers interacting with each other, as shown in Fig. 1: the Blasius boundary
layer, whose thickness is of order R−1/2, and Goldstein near-wake, whose thickness is scaled as R−1/2x1/3

where R is the Reynolds number and x is the distance downstream of the edge.28 The triple deck theory
has been devised to model such local interactions near the trailing edge of a flat plate in steady flow. In
contrast to the classical boundary layer theory where only the normal coordinate is scaled, the tangential
coordinate is also scaled (zoomed) in the triple deck theory to resolve such interactions. Scaling dictates
that the transition region between the two layers takes place over a short length of order R−3/8 (as shown
in Fig. 1), which is similar to Lighthill’s supersonic shock-wave-boundary-layer interaction.53 In conclusion,
the triple deck theory represents a solution to the discontinuity of the viscous boundary condition at the
edge:54 from a zero tangential velocity on the airfoil to a zero pressure discontinuity on the wake center line.

Figure 1: Triple deck structure and various flow regimes. Adapted from Messiter.55

Aerodynamicists modeled this transition through three decks (triple deck theory): (i) the upper deck
which constitutes of an irrotational flow outside of the main boundary layer, (ii) the main deck which
constitutes the main boundary layer (Blasius), and (iii) the lower deck, which is a sub-layer inside the main
boundary layer, as shown in Fig. 1. Stewartson56 and Messiter55 were the first to develop the triple deck
theory for a flat plate in a steady flow at zero angle of attack. Their efforts resulted in the the following
correction of the Blasius skin friction drag coefficient

CD ≃ 1.328√
Re

+
2.66

Re7/8
,

which is in an astonishingly good agreement with both Navier-Stokes simulations and experiments down to
R = 10 and even lower. Brown and Stewartson57 extended the work of Stewartson56 and Messiter55 to the
case of small but non-zero angle of attack αs, in the order of R−1/16. This range is of interest because (i)
if αs is much smaller, then the flow can be considered as a perturbation to the case of αs = 0 and (ii) if
it is much larger, then the flow would separate well before the trailing edge. Over this range, the resulting
adverse pressure gradient is of the same order as the favorable pressure gradient in the triple deck, leading
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to separation in the immediate vicinity of the trailing edge, which is called Trailing Edge stall. Brown and
Stewartson57 formulated such a problem and showed that the flow in the lower deck is governed by partial
differential equations that are solved numerically for each value of αe = R1/16λ−9/8αs, where λ = 0.332 is
the Blasius skin-friction coefficient. Chow and Melnik58 solved the triple deck boundary layer equations in
the case 0 < αe < 0.45 and concluded that the flow will separate from the suction side of the airfoil from
the trailing edge at αe = 0.47 (trailing edge stall angle). We remark that this αe value for trailing edge stall
corresponds to quite a small value for the actual angle of attack; α = 3.1◦ − 4.2◦ for R = 104 − 106.

Brown and Stewartson57 wrote the steady pressure distribution near the trailing edge (x̂ = 1) as

Ps(x̂ → 1) = ρU2αs

−√1− x̂

2
+

Bs/2

b
√

1−x̂
2

 sgn(y), (1)

where ρ is the fluid density, U is the free-stream, sgn(y) is positive on the upper surface, α is the angle of
attack and Bs is the trailing edge singularity term, which is supposed to be zero according to the Kutta
condition. In contrast, it is determined by matching the triple deck with the outer flow. The numerical
solution by Chow and Melnik58 provides Be as a nonlinear function of αe, which is represented here in Fig.
2, where

αe = αsϵ
−1/2λ−9/8 and Bs = 2bϵ3λ−5/4Be(αe). (2)

In other words, Fig. 2 and Eq. (2) provides the trailing edge singularity Bs as a nonlinear function of the
angle of attack αs in a steady flow.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

e

0.5

0.6

0.7

0.8

0.9

1

1.1

B e

Numerical Solution of the Steady Lower Deck by Chow & Melnik 1967

Figure 2: Numerical solution of the steady lower deck equations for 0 < αe < 0.45, adapted from Chow and Melnik.58

B. Viscous Unsteady Lift Frequency Response Using Triple Deck Theory

Brown and Daniels54 were the first to extend the steady triple deck theory to the case of an oscillatory
pitching flat plate. Unlike the steady case, there is a Stokes layer near the wall that is of order

√
ν/ω where

the viscous term is balanced by the time-derivative term in the equations. Brown and Daniels considered
the impractical, yet mathematically-appealing, case of very high-frequency k = O(R1/4) = 1

ϵ2 and very small

amplitude O(R−9/16), where k is the reduced frequency. Luckily, focusing on the more practical case of
0 < k << Re1/4 and α = O(R−1/16) results in vanishing the time-derivative term in both the the main deck
and lower deck equations as shown by Brown and Cheng.59 Therefore, the boundary layer equations look
the same as those governing the steady case at a non-zero αs (studied by Brown and Stewartson57) with
a proper definition for the equivalent steady angle of attack. However, we emphasize that this approach is
not a quasi-steady solution; although the time-derivative does not show up in the lower deck equations, the
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correspondence with the steady equations implies an equivalent angle of attack that is dependent on the
oscillation frequency, as will be shown below. Therefore, the lower deck system is dynamical (i.e., possesses
a non-trivial frequency response).

In our recent efforts,5,48 we have developed a viscous extension of the classical theory of unsteady aero-
dynamics using the triple deck theory results (discussed above). For an arbitrarily deforming thin airfoil in
the presence of a uniform stream U , the inviscid pressure distribution is typical written as1,60,61

P (θ, t) = ρ

[
1

2
a0(t) tan

θ

2
+

∞∑
n=1

an(t) sinnθ

]
, (3)

where θ is the tangential angular coordinate along the plate (0 at trailing edge and π at the leading edge).
Each term in the series (3) automatically satisfies the Kutta condition (zero loading at the trailing edge).
The pressure on the lower side is given by the negative of Eq. (3). The no-penetration boundary condition
will provide a means to determine all the coefficients an’s (except a0) in terms of the plate motion kinematics
as shown by Robinson and Laurmann,61 pp. 491. For example, for a pitching-plunging flat plate, as shown
in Fig. 3, the normal velocity of the plate (assuming small disturbances ḣ and α) is written as

vp(x, t) = ḣ(t)− α̇(t)(x− ab)− Uα, −b ≤ x ≤ b, (4)

where b is the half-chord length, h is the plunging displacement (positive upward), α is the pitching angle
(angle of attack, positive clockwise), and ab represents the chordwise distance from the mid point to the
hinge point, as shown in Fig. 3. This type of kinematics results in

a1(t) = bv̇1/2 − bUα̇(t), a2(t) = −b2α̈(t)

4
, and an = 0 ∀n > 2, (5)

where v1/2 is the normal velocity at the mid-chord point, which is given by

v1/2(t) = ḣ(t) + abα̇(t)− Uα.

The determination of a0 (leading edge singularity term) is more involved in the sense that it requires solving
an integral equation, which cannot be solved analytically for arbitrary time-varying wing motion. It has
been solved for some common inputs, e.g., step change in the angle of attack resulting in the Wagner’s
response,8 simple harmonic motion resulting in Theodorsen’s frequency response,9 and sharp-edged gust.11

Theodorsen’s harmonic solution implies,61 pp. 496 a

a0(t) = U
[
2V3/4C(k)eiωt + bα̇(t)

]
, (6)

where v3/4(t) = V3/4e
iωt is the normal velocity at the three-quarter-chord point, and C(k) is the Theodorsen’s

frequency response function, which depends on the reduced frequency k = ωb
U as

C(k) =
H

(2)
1 (k)

H
(2)
1 (k) + iH

(2)
0 (k)

, (7)

where H
(m)
n is the Hankel function of mth kind of order n. In the common classification proposed by

Theodorsen,9 the coefficient a0 represents the circulatory contribution while the other two coefficients a1,
a2 represent the non-circulatory contribution. Finally, the potential-flow lift force and pitching moment
(positive pitching up) at the mid-chord point are written as

LP = −πρb(a0 + a1) and M0P =
π

2
ρb2(a2 − a0). (8)

Following Brown and Stewartson,57 we added a trailing edge singularity term to the inviscid unsteady
pressure distribution (3) whose strength will be determined from the triple deck theory

P (θ, t) = ρ

[
1

2
a0(t) tan

θ

2
+

∞∑
n=1

an(t) sinnθ +
1

2
Bv(t) cot

θ

2

]
. (9)

aNote that the presentation of Robinson and Laurmann is adapted to a more common and modern notation.
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Figure 3: A schematic diagram for an oscillating flat plate.

It should be emphasized that the no-penetration boundary condition, alone, cannot determine Bv and an
auxiliary condition is invoked to determine its value within the framework of potential flow. In particular,
the Kutta condition dictates that Bv = 0 resulting in the potential-flow solution introduced above. In our
recent effort,5,48 we used the unsteady triple deck theory, exploiting the vanishing of the time-derivative
term from the boundary layer equations, to determine Bv in terms of k and R. Then, the viscous unsteady
lift and pitching moment will be written as

L = −πρb(a0 + a1 +Bv) and M0 =
π

2
ρb2(a2 − a0 +Bv). (10)

To determine the viscous correction Bv of the pressure distribution, consider approaching the trailing
edge (θ → 0 or x̂ = x

b → 1), the pressure distribution is then written as

P (x̂ → 1; t) = ρ

(1

2
a0(t) + 2

∞∑
n=1

nan(t)

)√
1− x̂

2
+

Bv(t)/2√
1−x̂
2

 , (11)

which has the same form as the steady distribution given in Eq. (1) with

αs(t) ≡
1

U2

∣∣∣∣∣12a0(t) + 2

∞∑
n=1

nan(t)

∣∣∣∣∣ and Bv(t) ≡ −

(
1

2
a0(t) + 2

∞∑
n=1

nan(t)

)
Bs(t)

b
, (12)

where αs and Bs are the equivalent steady angle of attack and trailing edge singularity term, respectively.
This comparison along with the fact that the time-derivative term does not enter the triple deck equations
points to the possibility of directly using the steady solution by Chow and Melnik58 of the inner deck
equations for the unsteady case with the equivalence shown above, valid in the range 0 < k < O(R1/4). In
the above equivalence, if the term 1

2a0(t) + 2
∑∞

n=1 nan(t) is negative, then the top of the oscillating thin
airfoil will correspond to the top of the steady plate and if is positive, then the top of the oscillating thin
airfoil should correspond to the bottom of the steady plate. In either case, αs would be positive.

For a harmonically oscillating flat plate at a given reduced frequency k and Reynolds number R, the
coefficients a0, a1, and a2 of the inviscid pressure distribution are given in Eqs. (5,6). Thus, αs can be
obtained accordingly from Eq. (12). Care should be taken when applying Eq. (12). It should be applied
instantaneously: at each time instant, the right hand side containing the a’s coefficients is complex because
a0 contains the complex-valued function C(k). The instantaneous αs(t) should be given by

αs(t) =
1

U2

∣∣∣∣ℜ [12a0(t) + 2a1(t) + 4a2(t)

]∣∣∣∣ ,
where ℜ(.) denotes the real part of its complex argument. As such, the equivalent angle of attack αe(t)
for the numerical solution of Chow and Melnik58 is obtained from Eq. (2) with ϵ = R−1/8. Note that
if αe(t) exceeds 0.47, then the simulation should be terminated because such a value implies trailing edge
stall beyond which the current analysis is not valid. Using, Fig. 2, one can obtain Be(t), which in turn is
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substituted in Eq. (2) to determine Bs and consequently the viscous correction Bv(t) from Eq. (12). Finally,
the unsteady viscous circulatory lift coefficient is written as

CLC
(t) = ℜ

[
2πα3/4(t)C(k)− πB̂v(t)

]
, (13)

where α3/4 is the local angle of attack at the three-quarter-chord point, as recommended by Pistolesi the-
orem,60 pp. 80. A spectral analysis (e.g., FFT) is applied to CLC

(t) to extract its relative amplitude and
phase shift with respect to the quasi-steady lift coefficient: CLQS

(t) = 2πα3/4(t). That is, the circulatory-lift
viscous transfer function Cv is defined as

Cv(k;R) , CLC
(k;R)

CLQS (k)
.

Figure 4 shows a block diagram for the dynamics of the unsteady viscous circulatory lift.

Figure 4: A block diagram showing the different components constituting the dynamics of the viscous circulatory lift.

Following the above procedure, we recently constructed a Reynolds number dependent lift frequency
response,5,48 which is shown in Fig. 5 in comparison to Theodorsen’s. Intuitively, as R increases, the
viscous response approaches the inviscid Theodorsen’s response and vice versa. In particular, viscosity leads
to a significantly more phase lag than Theodorsen’s at high reduced frequencies and lower Reynolds numbers,
which is in agreement with our computational simulations5,48,62 and the simulations of Othman et al.63 For
example, Fig. 6(a) shows a comparison for the pressure distribution over a flat plate using the inviscid theory,
the current viscous theory, and computational simulations in the case of a harmonically pitching airfoil about
its quarter-chord with 3◦ amplitude at R = 105, k = 1. The figure shows the pressure distribution at the
instant of maximum effective angle of attack (maximum α̇). The resulting pressure distribution from the
developed viscous theory well matches the URANS computational results. Moreover, Fig. 6(b) provides a
comparison for the viscous phase frequency response at R = 105, 104, which also shows a good matching
between the developed theory and higher-fidelity simulations.

The obtained phase results are also in accordance with the experimental results of Chu and Abramson,40

Henry,36 Abramson and Ransleben,49 and Bass et al.33 In these experimental efforts, the authors reconciled
the deviation between Theodorsen’s prediction of the unsteady aerodynamic loads and their measurements
by adding some suggested phase lag to Theodorsen function, which is naturally captured in the developed
viscous theory. This result is particularly important for flutter calculation. Note that the flutter instability,
similar to any typical hopf bifurcation, is mainly dictated by when energy is added/subtracted during the
cycle. That is, the phase difference between the applied loads (aerodynamic loads) and the system motion
(e.g., angle of attack) plays a crucial role in dictating the stability boundary. Therefore, if Theodorsen’s
model does not capture such a phase lag accurately, it may lead to a deviation in the flutter boundary. As
such, it is expected that the developed viscous frequency response will result in a more accurate, yet efficient,
estimate of the flutter boundary, which is the main subject of the current study. For more details about the
physics behind the observed viscosity-induced lag and its relation with the Kutta condition, the reader is
referred to the effort.5
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Figure 6: Validation of the pressure distribution and circulatory lift frequency response phase.
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III. Aeroelastic Modeling

The structural dynamic model of a typical section undergoing pitching-plunging motion is written as[
m −mbxα

−mbxα Iα

](
ḧ

α̈

)
+

[
Kh 0

0 Kα

](
h

α

)
=

(
L

Mh

)
, (14)

where m is the mass of the section, bxα is the offset of the section center of gravity (cg) behind its shear
center (SC) as shown in Fig. 7, Iα is the section pitching moment of inertia about the shear center, Kh and
Kα are the plunging and pitching stiffness, respectively, and Mh is the pitching moment at the shear center
point. Equation (14) can be written in the abstract form

[M s]q̈ + [Ks]q = Qa, (15)

where q = (h, α) is the vector of generalized coordinates, and M s and Ks are the mass and stiffness matrices
of the structure dynamics. Although, we use a typical section in this paper, the analysis is valid for a three-
dimensional linear structural model (e.g., Euler Bernoulli). The mass and stiffness matrices will be simply
replaced by those of the beam finite element model.

Figure 7: A schematic diagram for a typical section: pitching and plunging stiffness are represented by simple springs.

The viscous contribution Bv to the lift can be classified as a circulatory effect leading to a modified
(viscous) Theodorsen function Cv(k;R), which is shown in Fig. 5, or a non-circulatory effect leading to a
reduction in the added mass, as demonstrated in our earlier effort.5 As far as the lift force is concerned,
one can proceed with either choice. Since the former is more convenient (allows using the obtained viscous
transfer function Cv(k;R) in place of Theodorsen), it is adopted the following lift representation

L = LQSCv(k;R) + LNC = −2πρUbv3/4Cv(k;R)︸ ︷︷ ︸
Circulatory

+ −πρb2v̇1/2︸ ︷︷ ︸
Non−circulatory

. (16)

However, the same approach cannot be adopted in the moment representation because the lift viscous
contribution Lv = −πρbBv does not act at the same point as the inviscid circulatory contribution. It is
known that the latter acts at the quarter-chord point.1 In contrast, Eq. (10) implies that the viscous
contribution acts at the three-quarter-chord point. Hence, one can write the unsteady aerodynamic moment
at the shear center as

Mh = LQSC(k)b

(
1

2
+ a

)
︸ ︷︷ ︸

Circulatory

+ LNCab︸ ︷︷ ︸
Non−circulatory

+∆M

︸ ︷︷ ︸
Potential Flow

+ −Lvb

(
1

2
− a

)
︸ ︷︷ ︸

Viscous Contribution

, (17)
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where ∆M = −π
8 ρb

3 (4Uα̇+ bα̈) per Theodorsen’s theory.1 Realizing that Lv = LQS [Cv(k;R)− C(k)], Eq.
(17) can be simplified as

Mh = LQSbC̃(k;R) + LNCab+∆M, (18)

where C̃ = C − Cv

(
1
2 − a

)
.

In order to couple the developed viscous unsteady aerodynamic model with a structural model for an
aeroelastic analysis, we have to present the aerodynamic loads in terms of the structural degrees of freedom
(airfoil motion): q = [h, α]. Using Eqs. (16,18), we can write the unsteady aerodynamic loads as

Qa = −[Ma]q̈ − [Da]q̇ − [Ka]q, (19)

where the aerodynamic mass, damping, and stiffness matrices are given by

Ma = πρb2

[
1 ab

ab b2
(
a2 + 1

8

) ] , Da = 2πρUb

[
Cv −b

[
Cv

(
1
2 − a

)
+ 1

2

]
bC̃ b2

(
1
2 − a

) (
1
2 − C̃

) ]
, Ka = −2πρU2b

[
0 Cv

0 bC̃

]
.

Coupling the structural model (15), equivalently (14), with the aerodynamic model (19), as shown in
Fig. 8, we write the free aeroelastic system as

[M s +Ma]︸ ︷︷ ︸
M

q̈ + [Da(U, k)]q̇ + [Ks +Ka]︸ ︷︷ ︸
K(U,k)

q = 0. (20)

Since the focus is on the flutter boundary, one can assume a simple harmonic motion q = q̄eiωt, where q̄
represents the flutter mode shape. As such, Eq. (20) implies[

−ω2M + iωDa(U, k) +K(U, k)
]︸ ︷︷ ︸

Aae

q̄ = 0. (21)

A non-zero solution for q̄ is only possible when the aeroelastic system matrix Aae is singular. Hence, the
aeroelastic stability can be easily studied via the condition

det [Aae] = det
[
−ω2M + iωDa(U, k) +K(U, k)

]
= 0. (22)

This equation can be normalized by dividing the first equation by πρb3 and the second line by πρb4, to
obtain

det


[

1 + µ −µxα + a

−µxα + a µr2α + a2 + 1
8

]
︸ ︷︷ ︸

ˆM

−2i

k

[
Cv(k;R) −Cv(k;R)

(
1
2 − a

)
− 1

2

C̃(k;R)
(
1
2 − a

) (
1
2 − C̃(k;R)

) ]
︸ ︷︷ ︸

ˆD

−

[
µ

ω2
h

ω2
α
χ −2Cv

k2

0 µχr2α − 2 C̃
k2

]
︸ ︷︷ ︸

ˆK

 = 0,

(23)
where the over hat denotes normalized quantity, µ = m

πρb2 is the ratio between the airfoil mass and the

added (virtual) mass, rα =
√

Iα
m is the section radius of gyration about the shear center, ωh =

√
Kh

m and

ωα =
√

Kα

Iα
are the plunging and pitching natural frequencies, respectively, and χ =

ω2
α

ω2 , which is unknown.

The left hand side of Eq. (23) is usually referred to as the flutter determinant.1

The algebraic condition (23) results in two equations (because it is complex-valued) in the two unknowns
k, χ, given the section non-dimensional parameters µ, a, xα,

ωh

ωα
, and rα. They are typically solved via

iterative techniques such as the u−g method or the p−k method1 to determine the flutter reduced frequency
kF and the non-dimensional flutter speed UF

bωα
= 1

kF
√
χF

. However, in this case where the viscous transfer

function Cv depends on the Reynolds number, the situation is more involved; for a non-dimensional problem,
a Reynolds number must be assumed. For a dimensional problem, a double-iteration loop will be required.
That is, a value for R will be assumed to solve for UF

bωα
and consequently the flutter speed UF . The Reynolds

number would then be updated based on the computed flutter speed.
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Figure 8: A schematic diagram that shows the coupling between the aerodynamic and structural dynamics models.

IV. Simulation Results: Effect of Viscosity on Flutter Calculation

To assess the effect of viscosity and its associated phase lag on flutter, we compare the resulting flutter
boundary from the condition (22), which is based on the developed viscous unsteady aerodynamic theory,
with the inviscid flutter boundary based on Theodorsen’s theory.9 The latter can be determined from the
condition (22) by setting Cv(k;R) = C(k) and C̃(k;R) = C(k)

(
1
2 + a

)
. Also, the quasi-steady flutter

boundary can be obtained by neglecting all the non-circulatory contributions and setting Cv(k;R) = 1. In
this case, one must at least retain the moment term ∆M = −π

2 ρb
3Uα̇, which is reminiscent of the steady

solution of a pitching flat plate using thin airfoil theory.60 For comparison purposes, the following empirical
formula by Theodorsen and Garrick64 is included

UF

bωα
=

√
µr2α

1 + 2(a+ xα)

We studied the effect of the section parameters µ, a, xα,
ωh

ωα
on the inviscid and viscous flutter boundaries

as well as the quasi-steady one. For this steady, the following nominal values are used

µ = 4,
ωh

ωα
=

1

2
, rα = 0.5

Figures 9, 10 show the resulting effects of µ, ωh

ωα
, a, and xα on different estimates of the flutter boundary.

When studying one parameter, the others are held at the nominal values. Because the problem is sensitive
to variations of a or xα,

1 they are treated differently (no nominal values).
The results in Figs. 9, 10 show that the quasi-steady estimate is quite off, which is well known. The

flutter boundary predicted by the developed viscous theory is mostly closer to the empirical formula than
Theodorsen’s inviscid boundary. And a large values of the mass ratio µ, all three estimates become close.
However, the viscous boundary is consistently lower than Theodorsen’s inviscid boundary, which is a serious
finding that necessitates further validation with higher-fidelity (computational or experimental) simulations.
The implication is that Theodorsen’s boundary is misleading, indicating a seemingly higher flutter boundary,
which would jeopardize the designs of flying vehicles based on it (they can be susceptible to flutter). It may
be important to note that a value of R = 106 is assumed in this analysis along with a turbulent viscosity
ratio of 10; i.e., a value of R = 105 is used in the simulations of the viscous theory.

This issue is made clearer in the following dimensional case of

µ = 2.97, a = 0,
ωh

ωα
= 0.59, b = 3 ft, and ωα = 14.81 rad/s

where a double iteration loop is performed to iterate on the Reynolds number. Table 1 shows a comparison
among the flutter predictions using quasi-steady aerodynamics, Theodorsen’s inviscid unsteady model,9 and
the viscous unsteady aerodynamic model developed above at different values of xα. Since the shear center is
at the mid-chord point (a = 0), then xα represents the distance between the mid-chord point and the center
of gravity normalized by the half-chord length b. A larger xα means a more backward cg, which is expected
to lead to an earlier flutter (i.e., lower flutter speed and higher flutter reduced frequency) according to the
empirical formula above.

This trend is confirmed in the results of Table 1. As xα increases, the flutter speed, UF , decreases and
the flutter reduced frequency, kF , increases. The quasi-steady estimate is way off the unsteady estimates,
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Figure 9: Variation of flutter non-dimensional speed
UF
bωα

with the section parameters.
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Figure 10: Variation of flutter reduced frequency kF with the section parameters.
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which is expected. Moreover, the inviscid unsteady theory fails to predict flutter at negative values of xα; it
has been known that a center of gravity forward of the shear center precludes flutter. However, the viscous
theory asserts the existence of flutter at this forward cg location, yet with large speeds and low frequencies.
As discussed above, this is a serious finding as it points to the inadequacy of Theodorsen’s theory to capture
flutter in situations where it exists, which was encountered by earlier researchers.36,39 Even at backward cg
locations where the inviscid unsteady theory captures a flutter boundary, it is considerably deviated (higher)
from the viscous boundary: more than 25% deviation in flutter speed and 30% deviation in frequency.

xα Quasi-Steady Theodorsen Viscous Unsteady
UF

bωα
kF

UF

bωα
kF

UF

bωα
kF

-0.1 0.51 1.97 No Flutter 4.64 0.18

0 Unstable 1.41 0.55 1.13 0.71

0.1 0.24 4.16 0.89 0.90 0.7 1.23
Table 1: Comparison for the flutter boundary at different values of xα (cg locations) using (i) quasi-steady aerodynamics, (ii) inviscid
unsteady aerodynamics,9 and (iii) the developed viscoud unsteady aerodynamic theory.

V. Conclusion

In this paper, we demonstrate our recently developed viscous extension of the classical theory of unsteady
aerodynamics. In this theory, we relax the Kutta condition and induce a pressure singularity at the trailing
edge; we determine the strength of such a singularity by extending the triple deck boundary layer theory,
thereby providing a viscous correction to the unsteady lift. Based on this theory, a viscous (Reynolds-
number-dependent) frequency response is developed. That is, the inviscid Theodorsen function is extended
to the viscous case. It is found that viscosity induces a significant phase lag to the lift development beyond
Theodorsen’s inviscid solution, particularly at high frequencies and low Reynolds numbers, which is expected
to significantly affect the flutter boundary. To show that, couple the newly developed viscous unsteady
aerodynamic theory with a structural dynamic model of a typical section to perform aeroelastic simulation
and analysis. It is found that the inviscid flutter boundary using Theodorsen’s theory is non-conservative:
it fails to capture the flutter boundary in cases where flutter exists, which was encountered by earlier
researchers. Moreover, even in the cases where Theodorsen’s theory captures a flutter boundary, it is
typically higher than the viscous boundary. This finding has serious consequences because it will jeopardize
design of air vehicles based on Theodorsen’s theory: they can be susceptible to flutter.
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