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On the Dynamics of Unsteady Lift and Circulation and
the Circulatory-Non-circulatory Classification

Haithem Taha* and Amir Rezaeif
University of California, Irvine, CA 92697

In this paper, we emphasize the dynamical-systems aspect of unsteady aerodynamics.
That is, we consider the unsteady aerodynamics problem of a two-dimensional airfoil as a
dynamical system whose input is the angle of attack (or airfoil motion) and output is the lift
force. Based on this view, we discuss the lift evolution from a purely dynamical perspective
through the step response, frequency response, transfer function, etc. In particular, we
point to the relation between the high-frequency gain and the physics of circulatory lift
and circulation. Based on this view, we show the circulatory lift dynamics is different
from the circulation dynamics. That is, we show that the circulatory lift is not lift due to
circulation. In fact, we show that the circulatory-non-circulatory classification is arbitrary.
By comparing the steady and unsteady thin airfoil theory, we show that the circulatory lift
possesses some added-mass contributions. Finally, we perform high-fidelity simulations of
Navier Stokes equations to show that a non-circulatory maneuver in the absence of a free
stream induces viscous circulation over the airfoil.

I. Introduction

Interests in unsteady aerodynamics have been continuously increasing over the last century with a recent
research flurry because of the modern applications of rapidly maneuvering fighters, highly flexible airplanes,
bio-inspired flight, etc. The classical theory of unsteady aerodynamics, whose foundation was laid down
by Prandtl’ and Birnbaum~” in 1924, was mainly set for incompressible, slightly viscous flows around thin
airfoils with sharp trailing edges. The key concept is that the flow non-uniformity leads to vorticity generation
that emanates at the sharp trailing edge and freely shed behind the airfoil. In addition, the flow outside
these sheets can be considered inviscid (e.g., circulation is conserved). These concepts are not sufficient
to determine a unique solution for the wing and wake circulation distribution. Then, the Kutta condition
(smooth flow off the sharp trailing edge) comes to play an essential role in the problem closure. That is, no
flow around the sharp edge and hence, even within the framework of potential flow, the velocity has to be
finite at the edge. Finally, in order to obtain an explicit analytical solution of the governing equation (the
Laplace’s equation in the velocity potential in this case), one more assumption is usually adopted. Assuming
small disturbance to the mean flow (i.e., the vorticity sheet convects by the mean flow velocity: flat wake
assumption) completes the framework of the classical theory. In summary, the classical theory of unsteady
aerodynamics is based on replacing the airfoil and the wake by vorticity distributions (singularities) that
satisfy the Laplace’s equation everywhere in the flow field except at the surface of singularities. Three
main conditions are applied: (1) no-penetration boundary condition (fluid velocity is parallel to the wing
surface), (2) The Kutta condition (smooth flow off the sharp trailing edge), and (3) the conservation of total
circulation. This formulation along with the flat wake assumption constitute the classical theory of unsteady
aerodynamics.

The above formulation of the classical theory of unsteady aerodynamics was extensively used throughout
the years. In 1925, Wagner” used this formulation to solve the indicial problem (lift response due to a step
change in the angle of attack). In 1935, Theodorsen” used the same formulation to solve the frequency
response problem (steady state lift response due to harmonic oscillation in the angle of attack). In 1938,
Von Karman and Sears’ provided a more general and elaborate representation of the classical formulation.
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Also, the works of Kussner" for the sharp edged gust problem, Schwarz' for the frequency response problem,
and Lowey® for the returning wake problem worth mentioning. It should be noted that while there may
be different approaches within this framework, these efforts are essentially equivalent. For example, the lift
frequency response functions derived by Von Karman and Sears’ and Schwarz' are exactly the Theodorsen’s
function.” In addition, Garrick’ showed that the Theodorsen function and the Wagner function form a
Fourier transform pair.

It should be noted that the problem formulation of the classical theory of unsteady aerodynamics is
infinite dimensional. The need for calculating the aerodynamic loads due to arbitrary time variations of the
wing motion along with the need for structural and/or dynamic coupling (to analyze aeroelastic and/or flight
dynamic stability problems'”> ') invokes more compact representations of the lift dynamics than Theodorsen
or Wagner functions. Consequently, a number of finite-state approximations of these response functions were
developed. Jones'© and Jones'° provided a two-state approximation of the Wagner function in the time-
domain. Vepa " introduced the method of Pade approximants to determine a finite-state representation of
the Theodorsen function in the frequency domain. Of particular interest to the aeroelasticity and flight
dynamics community is the state space representation developed by Beddoes ’'" using the convolution
integral with Jones approximation of the Wagner’s step response function. In contrast to these finite-state
models that are based on approximating the Theodorsen function in the frequency domain or the Wagner
function in the time domain, Peters and his colleagues derived state space models from the basic governing
principles using Glauert expansion ‘ or the expansion of potential functions. '~ That is, the internal states
are of physical meaning in his formulation (they are the inflow distributions). Although the formulation
of Peters is quite neat, it necessitates a relatively large number (eight) of inflow states to provide a good
accuracy; two or three states were already shown to be sufficient for this simple linearized problem.

One of the well-known outcomes from Theodorsen’s seminal effort” is the classification of lift into circu-
latory and non-circulatory components. The latter is due to the instantaneous acceleration of the airfoil. It
represents the force required to accelerate the fluid surrounding the airfoil. Therefore, it is as if one has to
accelerate not only the mass of the airfoil, but also the mass of the surrounding fluid; hence, the name added
mass or virtual mass. This “lift” force, which is more of a resistance force, is characterized as non-circulatory
because the associated flow field has no net circulation around the airfoil. Note that this non-circulatory lift
force exists only in an unsteady flow as lift is solely due to circulation in steady flow according to the Kutta-
Joukowsky lift theorem.”" It should be noted that, according to Theodorsen’s model,” the non-circulatory
flow satisfies the no-penetration boundary condition but does not satisfy the Kutta condition; i.e., the ve-
locity is not finite at the trailing edge. As such, Theodorsen added vortices in the wake that (i) do not
disturb the no-penetration boundary condition (i.e., maintain the cylinder as a stream line), (ii) satisfy the
conservation of circulation, and (iii) together with the non-circulatory flow satisfy the Kutta condition at
the trailing edge. This last condition was used to write the governing integral equation for wake circulation.
The other lift component (circulatory component) is the lift contribution from the second flow field that
was added to satisfy the Kutta condition. The name and Theodorsen’s formulation give the impression that
the circulatory lift is due to circulation. One of the objectives of this paper is to emphasize that this is not
true: the circulatory lift is not solely due to circulation in an unsteady flow. In fact, we show that such a
classification is, in fact, arbitrary. Moreover, we show that the common definition of the circulatory lift, as
posed by the pioneers Wagner®’ and Theodorsen," is not lift due to circulation but it has some contribution
from the airfoil’s acceleration; i.e., it enjoys some non-circulatory aspects. Likewise, we also show that a
non-circulatory motion may induce circulation over the airfoil. This latter observation is demonstrated via
numerical simulation of the unsteady Reynolds-averaged Navier Stokes (URANS) equations on a dynamic
mesh around NACA 0012 undergoing pitching motion in a quiescent fluid (no free stream). The spirit and
illustrations will be imbued with the dynamical-systems aspect of unsteady aerodynamics.

II. Dynamical Systems Background

One of the main characteristics that distinguishes unsteady aerodynamics from steady aerodynamics is
the dynamical system aspect of the former. For example, it is well-known that the steady lift coefficient of a
flat plate at a small angle of attack is given by C;, = 2wa. If the angle of attack is time-varying, this relation
is written as Cp,(t) = 27a(t), which implies an instantaneous lift development. That is the angle of attack
a(t) at the instant ¢ dictates a lift force at the same instant, which is not physically possible. There must be
a finite time (i.e., lag) for the lift to build up, no matter how small this time is. This type of instantaneous
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behavior is called quasi-steady which follows the same time-variation of the angle of attack, as shown in Fig.
1 for a 5° step change in the angle of attack. In reality, the lift will take some time to build up and reach
the steady value corresponding to the given angle of attack, as shown in the schematic of Fig. 1.

From the above discussion, one can infer that
the angle of attack (or airfoil motion) is the input
to the aerodynamic system and the lift is one of its

main outputs. For an unsteady aerodynamic model, nl i
the C'-a relation cannot be algebraic (e.g., CL(t) = °y

f(a(t)) for any function f). It also cannot be in 2t 1
the form CL(t) = f(a(t), &(t), @&(t)). Rather, it has

to be a dynamical relation described by a differen- S T

tial equation for Cf, (e.g., Cr = f(a(t), a(t), &(t))),

transfer function %, state space model, frequency 06 T e e e e
response, etc. In other words, the Cp-a relation is oal |
no longer a simple gain (27), but rather a dynami- - R oo Quasi-Steady
cal system. It should be noted that while this view 02k H Unsteady

is quite natural and intuitive, it was not explicitly

described by the efforts of the early pioneers,”™ ob- R T T

viously because the dynamical-systems theory was

not mature in their period as it Currently is. Some Figure 1: Illustration of the steady (quasi-steady) and unsteady
of the efforts that adopted this dynamical—systems behavior of lift due to a step change in the angle of attack «
perspective includes Beddoes, > " Leishman,”" Peters et al.,” Hemati et al.,”~ Brunton et al.,”’ Zakaria et
al.,” " and Shehata et al.

Having the above description in mind, we believe that it would be better to provide a quick review of some
of the standard dynamical-systems tools that will be used throughout the paper to describe the unsteady lift
and circulation dynamics. There are two main mathematical representations of linear dynamical systems:
the classical representation via transfer function and the modern representation after Kalman-® in a state
space form. This latter representation is written as

y(t) = [Clz(t) + [Dlu(d),

where @ is a vector of state variables (that define the system), u is the input vector, y is the output vector,
and the matrices A, B, C, D are constant matrices that define the system. On the other hand, the transfer
function is defined as the Laplace transform of the output divided by the Laplace transform of the input at

zero initial conditions Lyt ¥ (s)
y(t 5

G(s) = =—4 = )

LLu()} y0)=0,50)=0,... U(s)

where L is the Laplace transform and s is its variable. Also, there are two main response functions that
define the characteristics of a linear dynamical system: the step response (transient response due to a step
input) and the frequency response (the steady state response due to a harmonically oscillating input). It
should be noted that any of the two mathematical representations or any of the two response functions
completely define the dynamical characteristics of a linear system. Given any of the four, one can determine
the other three. For example, given a state space model (A, B, C, and D), the transfer function can be
obtained as

G(s)=C[sI - A"' B+ D,

where T is the identity matrix, from which the step response can be determined as y(t) = £7'{G(s).1} and
the frequency response can be determined by substituting s = jw.

Table 1 shows an illustration for the step and frequency response functions. The following transfer
function was used to generate the responses in Table 1

_03s°+5+3

3 —0.3w% + jw
Gls) = 2+ 5+ 2

Gls = jw) = 2 —w? + jw
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whose state space matrices can be written as

(2) = [ a0z ()

y = |24 07] ( n ) +0.3u.

Step Response

Frequency Response

u(t) =1forall ¢t >0
y(t) = L7HG(s)-5}

u(t) = Acoswt
Yss(t) = A|G(jw)| cos (wt + LG (jw))

Step Response Response Due to a Harmonic Input
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Table 1: The two main response functions describing a dynamical system.

The focus of this review is to recall the two concepts of the dc gain kq. and the high-frequency gain k.
The dc gain simply represents the steady amplification. That is, it is the steady state value of the output
due to a unit step input (kg. = lim;—, oo y(¢)). From the step response in Table 1, one can deduce its value
of 1.5. It can be determined from the transfer function as kg. = lims_o G(s), which results in 1.5 when
substituting s = 0 in the G(s) above. It can also be determined from the frequency response in Table 1: the
magnitude at zero frequency which gives the same value of 1.5.

On the other hand, the high-frequency gain represents the other end of the spectrum (at infinite frequency
and zero time). That is, it is defined as kj; = limy, oo |G(jw)|: the infinite-frequency amplification, whose
value is found to be 0.3 from the frequency response in Table 1. It can also be determined from the transfer
function as kq. = lims_, o, G(s). As such, its value is zero for a strictly proper transfer function (degree of
numerator is strictly lower than the degree of denominator). If the two polynomials have the same degree,
then ks is simply equal to the ratio of the coefficients of the highest power. This ratio is also the value of D
of the corresponding state space model. From the definition of kj; (the gain at infinite-frequency) and D,
it is understood that a system with nonzero kj,; = D will have some instantaneous response. In particular,
kns (or D) represents the instantaneous initial response in the time domain due to a unit step input, as can
be seen from the step response in Table 1. In this case of non-zero ks, the high-frequency phase is either
0 or 180°. In general, the high-frequency limit of the phase angle is —90° multiples of the relative degree
between the numerator and denominator provided that the system is minimum phase.

In conclusion, the numerator’s degree of a transfer function cannot be higher than the denominator’s
degree for causality (i.e., the current output depends on the current and past input). If there is dependence
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on the current input (i.e., non-zero D or kpy), then it implies that there is some immediate response from
the system, which is rare to find in mechanical systems. The most common case is for a strictly proper
transfer function where kjy = D = 0 for which the input «(¢) at an instant ¢ cannot dictate the output y
at the same instant or even part of it. Rather, it may dictate its rate of change at this instant, affecting its
value in the future.

ITII. Unsteady-Lift Step and Frequency Responses

In the previous section, we reviewed the two main response functions describing a linear dynamical
system: the step response and the frequency response. For the aerodynamic system whose input is the airfoil
motion (e.g., angle of attack) and output is the unsteady lift, these two fundamental response functions have
been determined in the first half of the past century, assuming potential flow. Wagner” solved the indicial
problem (lift response due to a step change in the angle of attack) and Theodorsen” solved the frequency
response problem (steady state lift response due to harmonic oscillation in the angle of attack). Therefore,
if the aerodynamic transfer function is denoted by G,(s), then the Wagner function ¢(¢) will be given by
¢(t) = L7{Ga(s).2} and the Theodorsen function C(w) will be given by C(w) = Ga(s = jw). It should
be noted that both Wagner and Theodorsen non-dimensionalized their solutions by the free-stream velocity
U and the semi-chord length b. That is, the Wagner function is given in terms of the non-dimensional time
T= % (traveled distance in semi-chord lengths) and the Theodorsen function is given explicitly in terms of

the non-dimensional frequency k = %2, called the reduced frequency, as

T

~ HPR Kk
CHO (k) +iHP (k) EKi(k) + Ko(jk)’

C(k) (1)

where H,Sm) is the Hankel function of m*™ kind of order n and K, is the modified Bessel function of second
kind of order n. Consequently, taking the Laplace transform from the non-dimensional time 7-domain, one
reaches the non-dimensional Laplace §-domain and the corresponding frequency domain is in terms of the
reduced frequency k. In other words, ¢(7) = L7{G,(5).1} and C(k) = G4(5 = jk). Thus, from Eq. (1),
one can write the aerodynamic transfer function in the Laplace domain as

Ki(3)

R O EE

(2)

Unlike Theodorsen function, the Wagner function ¢(7) is not written explicitly in 7, but rather is given
by the integral”
l1+7—-0

R 3)

where the function p is governed by the integral equation

2 —
ctToo UdU:
T—0

(4)

Wagner” provided tables for the functions p and ¢ in terms of 7.

As discussed above, either ¢(7) or C(k) completely characterize the inviscid lift dynamics. For example,
the circulatory lift response due to an arbitrary time-varying angle of attack (input) can be determined from
the step response ¢(7) using the Duhamel superposition principle”’> ' %2527~

da(o)

lo(T) = 27er2b {Q(O)(i)(ﬂ + /OT Tqb(T —o)do|, (5)

where p is the fluid density. On the other hand, the same response due to an arbitrary input can be
determined from the frequency response C(k) using the Fourier transform”

lo(7) = pU /_ T A C (k) dk, (6)
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where &(k) = ffooo a(7)e~I*7dr is the Fourier transform of the angle of attack aerodynamic input. Using

this analysis, and realizing that the Fourier transform of a unit step angle of attack is &(k) = jik, Garrick
showed that the Wagner function and the Theodorsen function form a Fourier Transform pair:

o(r) = % /Z (Z,(:)ej“dk and C(k) = ]k/o:o o(r)e %" dr. M)

Figure 2 shows the inviscid circulatory lift step and frequency responses (i.e., Wagner and Theodorsen
functions). While Theodorsen function is shown exactly according to Eq. (1), Fig. 2(a) shows Garrick’s
742

approximation ¢(7) =~ ™ of the Wagner function. Recalling the review provided in Sec. II, one can

clearly see that the high-frequency gain associated with the inviscid circulatory lift is half: ¢(7 =0) = % =
limg o0 |C(k)| = limg_, oo Go(8). Actually, any approximation of the Wagner function in the time domain
T+2

will have to satisfy this property; e.g., the Garrick’s approximation 2" or the two-state approximations of

Jones“ and Jones
H(T) =1 — Ape™™7 — Ape 27,
1

Therefore, A; + A2 = 5 in all of their approximations. On the other side, any finite-state approximation
of the Theodorsen function in the frequency domain or its transfer function in the Laplace domain will
also have to satisfy this property; e.g., the Pade approximations of Theodorsen function by Vepa'® 2£9:5

2540.5°
m%, and the several ones by Dinyavari and Friedmann.”” This fact implies that half of the steady

lift is immediately generated (instantaneously developed) without any lag and the system dynamics apply
to the other half. This behavior is not physically appealing since there must be a finite time for the lift
to develop, particularly because we are concerned with the circulatory lift; it is understandable that the
non-circulatory lift responds instantaneously based on the instantaneous acceleration, at least in the absence
of viscosity and compressibility. However, this behavior cannot be true for the lift due to circulation even
when assuming potential flow. This point will be discussed in more detail in the next section.

Wagner Function Theodorsen Function

1

=
09t =
Sost 1
08 S
2
07t So6r i
©
=
06 04 :
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f 2
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02t N
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o ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ 20 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
0 2 4 6 8 10 12 14 16 18 20 0 05 1 15 2 25 3 35 4 45 5
Non-dimensional Time 7 Reduced Frequency k
(a) Wagner Function. (b) Theodorsen Function.

Figure 2: The step and frequency response functions (Wagner and Theodorsen functions) of the inviscid circulatory lift.

IV. Dynamics of the Circulatory Lift and Bound Circulation

It is well-known that at the very first moment (¢ = 07) right after an airfoil impulsive start, the flow
looks like an inviscid flow without circulation, as discussed in Prandtl’s lectures,”” pp. 158-168; Goldstein,
pp- 26-36; Milne-Thomson,”" pp. 89-90; and Schlichting and Truckenbrodt,”” pp. 33-35. That is, the initial
response (high-frequency response/gain) of the bound circulation around the airfoil is zero. This behavior
can be physically explained as follows. For an impulsive starting airfoil, at ¢+ = 07, the velocity everywhere
is zero except on the airfoil. There is an infinitely thin boundary layer taking care of the no-slip, but at
t = 07, it has to be infinitely thin so that if the airfoil is enclosed with any contour, no matter how close it
gets to the airfoil, the contour will pass through points outside of this layer. On this contour, the diffusion
term in Navier-Stokes equation is zero (i.e., the flow behaves like an inviscid flow temporarily). As such, the
Kelvin’s circulation theorem implies zero rate of change of circulation around that contour at ¢ = 0. Since
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the bound circulation I' was zero at ¢ = 0, it follows that the lim;_,o I'(¢) = 0, which is physically intuitive
because circulation needs time to build up even in potential flow.

It is interesting to point out that the fre-
quency response of circulation is not given by the , [Frequency Response of Circulatory Lift and Circulation
Theodorsen function C(k), as shown in Fig. 3. Fol- T
lowing Schwarz,” one can write the frequency re-
sponse of circulation as”

Thedorsen Function L /L

......... Circulation Frequency Reponse 1"/1"0

Magnitude
o
(3]

F _2e_jk llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll
F(k) = (2) L (2) ) (8) 0 . . . . . . . . .
0 jkm (H1 (k) +jH, (k)) o 05 1 15 2 25 3 35 4 45 5

where I'g is the quasi-steady circulation. The
potential-flow lift frequency response (Theodorsen
function C(k)) does not represent a physical sys-
tem in mechanics: from a dynamical system per-
spective, it does not act as a low pass filter. This
characteristic is apparent from its high frequency O s 1 15 2 25 3 35 4 a5 s
limit limg_, o C(k) = %: a non-zero high-frequency Reduced Frequency k
gain with zero phase lag That iS, there exists some Figur_e 3: Comp?‘rison bgtween_the.frequency response functions of
B . . . the circulatory lift and circulation in potential flow.

component in the circulatory lift that responds in-
stantaneously; i.e., it depends algebraically on the
current input (airfoil motion) without dynamics (lag). This characteristic is apparent in the non-zero initial-
time response due to a step input (¢(r = 0) = ).

On the other hand, the high-frequency limit of the circulation transfer function is given by

-20 *-".‘ 4

_407 ----------------------------------------------------------------------------- .

Phase Angle (deg)

r r
kli_}rgo Fo(k)‘ =0 and len;o lr—o(k:) = —m/4,
which points to a strictly proper transfer function. That is, in contrast to the circulatory lift response, there
is no instantaneous component of circulation. Indeed, the circulation development possesses lag similar to
a mechanical system with a strictly proper transfer function even within the framework of potential flow.
Therefore, lim;_,o ['(¢) = 0 due to a step input (i.e., an impulsive start), which conforms with the flow physics
due to an impulsive start as discussed above.

We note that Eq. (8) can be re-written as

r -2 eIk
— (k) = ———C(k). 9
1
As such, realizing that K;(jk) = —5H 52)(k)7 we write the following relation between the circulatory lift

transfer function G,(8) (i.e., corresponding to Theodorsen function: G,(ik) = C(k)) and the circulation
transfer function, denoted by Gr($)

1 e®
Gr(8) = = —=G4(3), 10
F( ) é Kl(é) a( ) ( )
Equation (10) is quite revealing for the relation
between the dynamics of the circulatory lift and cir- Theodorsen .

L . . . a(t) . L(t) e~$ I

culation in potential flow. Clearly, there is a time- ~ ————— Function . — .
integrator + and a time-delay e~ between the circu- Airfoil Motion | € (k) or Go(8) | Circulatory Lift | $K; ($) | Circulation

latory lift deve]opment and circulation deve]opment, Figure 4: Relation between the airfoil motion, circulatory lift, and
However, the term ﬁ(s) acts as a differentiator in Cireulation development in potential flow.

the low frequency range (K;(z) ~ % as z — 0,°" pp. 4). Therefore, it cancels the effect of the integrator,
hence, the circulation development follows the lift evolution with a time-delay in the low-frequency range.
On the other hand, the term ﬁ(g) cancels the delay effect in the high frequency range (Ki(z) ~ \/55€
\}g which explains the zero-high
frequency gain and the —45° high-frequency phase. Figure 4 shows the relation between the airfoil motion,
circulatory lift, and circulation development in potential flow. It is legitimate to think that the circulation

—Zz

as z — 00,”" pp. 236) leading to a circulation transfer function of the form
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leads the circulatory lift in development as the latter is mainly due to the former. That is, causality dictates
a proper transfer function from I" to Lo. However, in the potential-flow unsteady aerodynamics, Lo leads
T'; there is a delay from lift to circulation in the low-frequency range and a fractional integrator \}g in the

high-frequency range.

All of the above evidences support the fact that the circulatory lift is not the lift due to circulation
(Le # pUT). The pioneers’ ” opted to define the circulatory lift in a different way. This point becomes
clearer when the problem is formulated using thin airfoil theory, which is explained in the next section.

V. Relation Between Circulatory Lift and Circulation: Steady and Unsteady
Thin Airfoil Theory Perspective

To show how the steady lift is solely due to circulation (L = pUT') whereas the unsteady “circulatory”
lift is not lift due to circulation (Le # pUT), we recall the thin airfoil theory. In such a theory, a thin airfoil
is represented by a circulation distribution along the chord line (z-axis) and the no-penetration boundary
condition results in the integral equation for circulation

L (9 IV
o | 2ol =wle), Ve[, (11)

where v is the circulation distribution over the airfoil (i.e., I' = ffb ~v(z)dz) and w is the airfoil velocity
normal to the surface (positive downward). This integral equation is typically solved assuming the series
solution

V(p) =2U

o0

Agtanp/2 + ZA” sinmp] , (12)
n=1

where & = bcos ¢. Then, the no-penetration boundary condition (11) implies that the A,,’s are the coefficients

of the Fourier cosine representation of the normal velocity; that is,

1 [ 2 (7

Ag = 7/ w(p)dp, and A, = f/ w(y) cosnpdp, Vn > 1.
™ Jo T Jo

After solving for the series coefficients, and consequently the circulation distribution 7, the normalized

pressure difference can be determined from the steady Bernoulli equation as

AC(r) = Z(x), (13)

which implies that the local pressure is dependent only on the local circulation distribution; that is, ACp(x)
and y(z) possess the same distribution over the airfoil resulting in

I=0Cp =2m(Ag+ A1 /2), (14)

where I' = % is the non-dimensional bound circulation. Equation (14) is equivalent to L = pUT.

The unsteady thin airfoil theory has been introduced by Katz and Plotkin”’ and Peters.”™ " In contrast
to the steady thin airfoil theory discussed above, the wake effects must be taken into account for an unsteady
analysis. That is, in addition to the circulation distribution 7 bound the airfoil, there is a sheet of vorticity in
the wake whose circulation distribution -y, is also unknown. As such, the no-penetration boundary condition
(11) becomes

L[PG 1) L% (S 1)
— Ld¢ + — LAl = t), V —b,b 15
3 | Deace o [ 28 Dac—wien. Vae -, (15)
Assuming a similar series solution to that of the steady case (12), but with time-varying coefficients
Y, t) =2U | Ao(t) tanp/2 + Y  Ap(t)sin n(p] (16)
n=1

and expanding the normal velocity w in a Fourier cosine series similar to the steady case

w(z,t) =U

Bo(t) + i B, (t) cos mp] ,
n=1
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the no-penetration boundary condition (15) implies
Ap+ XAy =DB, Vn >0, (17)

where A,,’s are Peters inflow coefficients:'™ '’ the coefficients of the Fourier cosine representation of the
downwash A(z,t) on the plate due to wake vorticity. That is, A is defined as

I (¢ .-
)\(x,t):%/b Wx(_cg)dgzU )\o(t)—kg)\n(t)cosngo .

Unlike the steady case where the no-penetration boundary condition was sufficient to determine + (or its
coefficients A,,’s), Eq. (17) has two unknowns A,,, A, for each n and, hence, is not sufficient.
To achieve closure in the unsteady case, a relation must be established between the wake vorticity and

bound circulation. Peters ® '’ utilized the fact that the wake convects freely
Dy, Mw(x,t)  Ovw(z,t)
Dt Ox + ot

along with the Kutta condition (or conservation of total circulation) to derive the following equation

ONx,t)  ONa,t) 1 T
v Oz + ot  2rb—2’ (18)

which results in linear differential equations governing the inflow coefficients A,’s (i.e., a state space model
for A,’s): Peters finite state model. Equations (17, 18) can be used to determine the coefficients A,,’s and
An’s after truncating the series representations at a certain n. Peters'® '’ showed that eight terms (states)
may be sufficient to capture the inviscid unsteady lift dynamics.

Having solved for the circulation distribution « (and its coefficients), the non-dimensional circulation will
have the exact same form

D =21 (Ao + A1/2) =27 (Bo + B1/2 — Mo — M\ /2) (19)

as in the steady case (14) because v has the same series representation. However, the unsteady Bernoulli
equation implies
AC _2 29 ’ d 20

p(@) = 590 + g [ A0 (20)
which is different from its steady counterpart (13); the second term is due to the time-derivative term in the
unsteady Bernoulli equation. Consequently, in contrast to the steady case, Eq. (20) implies that the local
pressure distribution may be different from the circlation distribution. Integrating the pressure distribution
over the airfoil and utilizing Eq. (18), one obtains

CL:27T Bo—|—Bl/2—A0+%(BQ—BQ/2) (21)
~—_———
Circulatory Non—Circulatory
The common classification of the total unsteady lift into circulatory and non-circulatory components can
be clearly seen from Eq. (21). First, it should be pointed out that such a classification is arbitrary. For
example, one can add and subtract A;/2 to the terms inside the square bracket in Eq. (21) and collect the
terms that produce I' referring to them as circulatory lift (lift due to circulation in this case) and the rest
are non-circulatory terms. This classification has been adopted by Fung.”” In contrast, the most common
classification, adopted by Wagner,” Theodorsen,” Von Karman and Sears,” among many others~’ is that the
last two terms (acceleration terms) in Eq. (21) represent the non-circulatory loads and the first three terms
(velocity terms) represent the circulatory loads. According to this common classification, the circulatory lift
is not lift due to circulation (i.e., Lo # pUT). Rather, they are related as

Lo = pUT + mpU?b\y (22)
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Moreover, Eq. (18) can be used to write A; as

Lo
A= — ;*)\o+)\2/2, (23)

which implies that A; is related to the rate of change of circulation. That is, the common definition of
circulatory lift is not only lift due to instantaneous circulation but also due to its rate of change. Another
view of Egs. (22, 23) suggests that the circulatory lift L is obtained from the lift due to circulation pUT after
adding some acceleration terms. Therefore, the circulatory lift has indeed some “added mass” effects. This
fact explains the reason behind the non-zero high-frequency gain of the circulatory lift frequency response
(¢(0) = limg 00 |[C(K)] = limsoo Go(8) = %) half of the steady-state lift is immediately generated. This
instantaneous component of Lo must be the added mass part of its definition. Because Lo is composed of
lift due to circulation and some added-mass effects and since the latter is negligible at lower frequencies,
Theodorsen function behaves like a low pass filter in the low frequency range (following the circulation transfer
function) with a monotonically decreasing magnitude and phase, as shown in Fig. 3. On the other hand,
since the added mass (acceleration) terms are dominant in the high frequency range, the Theodorsen function
departs from the circulation transfer function and follows an algebraic-type relation with the input (with
half of the magnitude and zero phase difference), similar to the added mass effects which are proportional
to the instantaneous input acceleration.

VI. Circulation in a Non-circulatory Motion

As we showed that the circulatory-non-circulatory
classification is arbitrary and that the circulatory
lift actually possesses some added-mass contribu-
tion, it is interesting to investigate whether a non-
circulatory maneuver induces loads due to circula-
tion. To pursue such an investigation, we perform
numerical simulations of the unsteady Reynolds-
averaged Navier Stokes (URANS) equations on a dy-
namic mesh around NACA 0012 undergoing pitch-
ing motion in a quiescent fluid (no free stream).
Details about the computational setup and the
dynamic mesh can be found in our previous ef-

Theodorsen
--------- Viscous Computation

Normalized Lift

forts.” ™7 According to the classical inviscid the-
ory of unsteady aerodynamics,”~ the expected lift N T T T 0 0 os o os o8
is purely due to added mass effects, which is given [
by Figure 5: A comparison between the time history of the viscous
1 3. added-mass lift and the potential flow one, both normalized by the
L(t) = LNC (t) = Z’]pr Ck(t) added-mass m, = 7rpb2 and the maximum acceleration of the mid-

chord point. This run is at ﬁ =/ % = 141.4;
for pitching around the quarter-chord point. There- stokes

fore, the generated lift force is proportional to the instantaneous acceleration with no phase lag. Figure
5 shows a comparison between the computed lift time-history against the potential-flow one. Clearly, the
computed viscous lift possesses a phase lag with respect to the acceleration ¢ in contrast to the potential-flow
lift. It is quite interesting to conclude that even the added mass-effects possess non-trivial dynamics (lag),
induced by viscosity. In fact, the snapshots of the vorticity contours at some instants during the cycle, shown
in Fig. 6, point to the shedding of strong vortices from the airfoil trailing edge, which implies the develop-
ment of circulation over the airfoil by virtue of conservation of circulation. As such, it may be concluded
that viscosity (and perhaps compressibility) induces bound circulation over the airfoil even in the absence
of a free-stream. In other words, similar to the fact that the circulatory lift includes non-circulatory aspects
(even in potential flow), the non-circulatory lift seems to also enjoy some wiscous circulatory contributions.

Running this computational experiment at different frequencies to construct the frequency response of
the added mass contribution, we find that the potential flow theory predicts the magnitude (quadratic in
frequency) quite well, as shown in Fig. 7. However, interestingly, we observe a phase difference from the
potential flow results that is almost independent of frequency, quite similar to the flow behavior in the Stokes
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Figure 6: Vorticity contours at four time instants during a cycle of pure pitching in the absence of free stream at ﬁ =4/ % = 141.4.
stokes

second problem,** pp. 191-193:*" pp. 619-623;,* pp. 109-111. In fact, the only difference between the
current problem and that of Stokes is the finite length of the considered airfoil in contrast to Stokes infinite
plate. For more details about the viscosity-induced lag, the reader is referred to our recent effort*”** or the
work of Othman et al.*”

Viscous Computation
' Theodorsen

Viscous Computation
--------- Theodorsen

08

061

Magnitude of the Normalized Lift

A5} \—\__—M

Phase between lift and acceleration in degrees

20 . . .
0 0.5 1 1.5 2 25 3 0 0.5 1 15 2 25

Normalized Frequency w b%/2v x10* Normalized Frequency w b%/2v x10*
(a) Magnitude Variation. (b) Phase Variation.

Figure 7: Computational results of the non-circulatory lift frequency response versus Theodorsen’s potential flow results. Since the

L . . . 2 2 .
computation is performed at zero free-stream, the frequency is presented in terms of the ratio 2b = % between the semi-chord
stokes

and the Stokes layer.

VII. Conclusion

In this paper, we emphasize the dynamical-systems aspect of unsteady aerodynamics. That is, we consider
the unsteady aerodynamics problem of a two-dimensional airfoil as a dynamical system whose input is the
angle of attack (or airfoil motion) and output is the lift force. Based on this view, we discuss the lift
evolution from a purely dynamical perspective through the step response (Wagner function), frequency
response (Theodorsen function), transfer function, etc. In particular, we show that the circulatory lift
dynamics has a non-zero high-frequency gain. Therefore its transfer function is not strictly proper, which
points to the existence of a component in the circulatory lift that responds instantaneously without a lag;
half of the steady lift is immediately generated (instantaneously developed). In contrast, the circulation
transfer function is strictly proper with a zero high-frequency gain (i.e., acts as a low pass filter). We
show the dynamical relation between the circulatory lift and circulation. While it may be thought that
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circulation leads lift, as the latter is mainly due to the former, we find that the circulation follows the
circulatory lift with a delay in the low frequency range and a fractional integrator in the high frequency
range. These observations confirm the fact that the common definition of circulatory lift is not lift due
to circulation. Actually, by comparing the steady and unsteady versions of thin airfoil theory, we show
that the circulatory-non-circulatory classification is arbitrary. We show that the circulatory lift includes
some acceleration terms, which explain its high-frequency (instantaneous) response. On the other hand, we
perform numerical simulation of the unsteady Reynolds-averaged Navier Stokes (URANS) equations on a
dynamic mesh around NACA 0012 undergoing pitching motion in a quiescent fluid (no free stream) to show
that such a non-circulatory maneuver induces viscous circulation over the airfoil.

Acknowledgments

The authors would like to acknowledge the NSF grant CMMI-1635673.

References

IPrandtl, L., “Uber die Entstehung von Wirbeln in der idealen Fliissigkeit, mit Anwendung auf die Tragfliigeltheorie und
andere Aufgaben,” Vortrdge aus dem Gebiete der Hydro-und Aerodynamik (Innsbruck 1922), Springer, 1924, pp. 18-33.

2Birnbaum, W., “Der Schlagflugelpropeller und die Kleinen Schwingungen elastisch befestigter Tragfluegel,” Z Flugtech
Motorluftschiffahrt, Vol. 15, 1924, pp. 128—-134.

3Wagner, H., “Uber die entstehung des dynamischen auftriebs von tragflugeln,” ZAMM, Vol. 5, 1925.

4Theodorsen, T., “General Theory of Aerodynamic Instability and the Mechanism of Flutter,” Tech. Rep. 496, NACA,
1935.

5Von Karman, T. and Sears, W. R., “Airfoil theory for non-uniform motion.” J. Aeronautical Sciences, Vol. 5, No. 10,
1938, pp. 379-390.

6Kiissner, H. G., “Schwingungen von Flugzeugfliigeln,” Jahrbuch der deutscher Versuchsanstalt fir Luftfahrt especially
Section E8 Einfluss der Baustoff-Dampfung, 1929, pp. 319-320.

7Schwarz, L., “Brechnung der Druckverteilung einer harmonisch sich Verformenden Tragflache in ebener Stromung,”
Vol. 17, Luftfahrtforsch, Dec 1940.

8Loewy, R. G., “A two-dimensional approximation to unsteady aerodynamics in rotary wings,” Journal of Aeronautical
Sciences, Vol. 24, 1957, pp. 81-92.

9Garrick, I. E., “On some reciprocal relations in the theory of nonstationary flows,” Tech. Rep. 629, NACA, 1938.

0Hussein, A. A., Hajj, M. R., Elkholy, S. M., and ELbayoumi, G. M., “Dynamic Stability of Hingeless Rotor Blade in
Hover Using Padé Approximations,” AIAA Journal, 2016, pp. 1769-1777.

HHussein, A. A. and Canfield, R. A., “Unsteady Aerodynamic Stabilization of the Dynamics of Hingeless Rotor Blades in
Hover,” AIAA Journal, Vol. 56, No. 3, 2017, pp. 1298-1303.

12Jones, R. T., “Operational treatment of the nonuniform lift theory to airplane dynamics,” Tech. Rep. 667, NACA, 1938.

13 Jones, W. P., “Aerodynamic forces on wings in non-uniform motion,” Tech. Rep. 2117, British Aeronautical Research
Council, 1945.

4Vepa, R., “On the use of Pade approximants to represent unsteady aerodynamic loads for arbitrarily small motions of
wings,” AIAA-Paper 1976-17.

15Beddoes, T. S., “Representation of Airfoil Behavior,” Vertica, Vol. 7, No. 2, 1983, pp. 183-197.

16Beddoes, T. S., “Practical Computation of Unsteady Lift,” Vertica, Vol. 8, No. 1, 1984, pp. 55-71.

7Peters, D. A. and Karunamoorthy, S., “State-space inflow models for rotor aeroelasticity,” AIAA-paper 1994-1920-CP.

18Peters, D. A., Karunamoorthy, S., and Cao, W., “Finite-state induced flow models, Part I: two-dimensional thin airfoil.”
Journal of Aircraft, Vol. 44, 1995, pp. 1-28.

YPeters, D. A., “Two-dimensional incompressible unsteady airfoil theoryAn overview,” Journal of Fluids and Structures,
Vol. 24, 2008, pp. 295312.

208chlichting, H. and Truckenbrodt, E., Aerodynamics of the Airplane, McGraw-Hill, 1979.

21Leishman, J. G. and Nguyen, k. Q., “State-Space Representation of Unsteady Airfoil Behavior,” AIAA Journal, Vol. 28,
No. 5, 1990, pp. 836-844.

22Hemati, M. S., Dawson, S. T. M., and Rowley, C. W., “Parameter-Varying Aerodynamics Models for Aggressive Pitching-
Response Prediction,” AIAA Journal, 2016, pp. 1-9.

23Brunton, S. L., Dawson, S. T. M., and Rowley, C. W., “State-space model identification and feedback control of unsteady
aerodynamic forces,” Journal of Fluids and Structures, Vol. 50, 2014, pp. 253-270.

24Zakaria, M. Y., Taha, H., Hajj, M. R., and Hussein, A. A., “Experimental-Based Unified Unsteady Nonlinear Aerodynamic
Modeling For Two-Dimensional Airfoils,” AIAA-Paper 2015-3167.

25Zakaria, M. Y., Taha, H., and Hajj, M. R., “Measurement and Modeling of Lift Enhancement on Plunging Airfoils: A
Frequency Response Approach,” Journal of Fluids and Structures, Vol. 69, 2017, pp. 187-208.

26Shehata, H., Zakaria, M., Hussein, A., and Hajj, M. R., “Aerodynamic Analysis of Flapped Airfoil at High Angles of
Attack,” 2018 AIAA Aerospace Sciences Meeting, 2018, p. 0037.

270gata, K. and Yang, Y., “Modern control engineering,” 1970.

12 of 13

American Institute of Aeronautics and Astronautics



Downloaded by UC IRVINE on August 27, 2019 | http://arc.aiaa.org | DOI: 10.2514/6.2019-1853

28Kalman, R. E., “Mathematical description of linear dynamical systems,” Journal of the Society for Industrial and Applied
Mathematics, Series A: Control, Vol. 1, No. 2, 1963, pp. 152-192.

29Bisplinghoff, R. L., Ashley, H., and Halfman, R. L., Aeroelasticity, Dover Publications, New York, 1996.

30Leishman, G. J., Principles of helicopter aerodynamics with CD extra, Cambridge university press, 2006.

31Taha, H., Hajj, M. R., and Beran, P. S., “Unsteady Nonlinear Aerodynamics of Hovering MAVs/Insects,” ATAA-Paper
2013-0504.

32Taha, H., Hajj, M. R., and Beran, P. S., “State Space Representation of the Unsteady Aerodynamics of Flapping Flight,”
Aerospace Science and Technology, Vol. 34, 2014, pp. 1-11.

33Dinyavari, M. A. H. and Friedmann, P. P., “Unsteady aerodynamics in time and frequency domains for finite time
arbitrary motion of rotary wings in hover and forward flight,” No. 0988, ATAA, 1984.

34Tietjens, O. K. G. and Prandtl, L., Applied hydro-and aeromechanics: based on lectures of L. Prandtl, Courier Corpo-
ration, 1934.

35Goldstein, S., Modern developments in fluid dynamics: an account of theory and experiment relating to boundary layers,
turbulent motion and wakes, Clarendon Press, 1938.

36 Milne-Thomson, L. M., Theoretical hydrodynamics, Courier Corporation, 1962.

37Wolfram, “Modified  Bessel function of the second kind,” http://functions.wolfram.com/Bessel-
TypeFunctions/BesselK /introductions/Bessels/05/, 1998.

38Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P., Numerical recipes in Fortran 77: the art of
scientific computing, Cambridge university press Cambridge, 1992.

39Katz, J. and Plotkin, A., Low-speed aerodynamics, Cambridge University Press, 2001.

OFung, Y. C., An Introduction to the Theory of Aeroelasticity, New York: Dover., 1969.

41Rezaei, A. S. and Taha, H., “Computational Study of Lift Frequency Responses of Pitching Airfoils at Low Reynolds
Numbers,” ATAA-Paper 2017-0716, 2017.

42Taha, H. and Rezaei, A. S., “Unsteady Viscous Lift Frequency Response Using The Triple Deck Theory,” AIAA-Paper
2018-0038.

43Taha, H. and Rezaei, A. S., “Viscous Extension of Potential-Flow Unsteady Aerodynamics: The Lift Frequency Response
Problem,” Under Review in the Journal of Fluid Mechanics, 2018.

44Batchelor, G. K., An introduction to fluid dynamics, Cambridge university press, 2000.

45L,amb, H., Hydrodynamics, Cambridge university press, 1932.

46Langlois, W. E. and Deville, M. O., Slow viscous flow, Springer, 2014.

470thman, M., Ahmed, M. Y., and Zakaria, M. Y., “Investigating the Aerodynamic Loads and Frequency Response for a
Pitching NACA 0012 Airfoil,” 2018 AIAA Aerospace Sciences Meeting, 2018, p. 0318.

13 of 13

American Institute of Aeronautics and Astronautics



