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Abstract 
 

In the era of smart cities, Internet of Things, and Mobility-as-a-Service, private operators need to 

share data with public agencies to support data exchanges for “living lab” ecosystems more than 

ever before. However, it is still problematic for private operators to share data with the public due 

to risks to competitive advantages. A privacy control algorithm is proposed to overcome this key 

obstacle for private operators sharing complex network-oriented data objects. The algorithm is 

based on information-theoretic k-anonymity and, using tour data as an example, where an 

operator’s data is used in conjunction with performance measure accuracy controls to synthesize 

a set of alternative tours with diffused probabilities for sampling during a query. The algorithm is 

proven to converge sublinearly toward a constrained maximum entropy under certain asymptotic 

conditions with measurable gap. Computational experiments verify the applicability to multi-

vehicle fleet tour data; they confirm that reverse engineered parameters from the diffused data 

result in controllable sampling error; and tests conducted on a set of realistic routing records from 

travel data in Long Island, NY, demonstrate the use of the methodology from both the adversary 

and user perspectives. 
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1. Introduction 
 

With the development of Internet of Things (IoT), many new transport services are emerging. 

Just in New York City alone, ride-hail services tripled in ridership in one and a half years and 

reached 15 million a month (Bloomberg View, 2017). Global car-sharing users increased from 

350,000 in 2006 to almost five million in 2014 (Shaheen and Cohen, 2016). These services 

represent a new transport paradigm: Mobility-as-a-Service (MaaS), and it is becoming increasingly 

important in modern cities. Numerous studies have argued that for smart cities to thrive, public 

agencies and private operators need to work together (Djavadian and Chow, 2017; Hensher, 2017; 

Rasulkhani and Chow, 2019). Indeed, partnerships have sprung up in recent years between public 

agencies and mobility providers like Lyft, Uber, Via, Car2Go, etc. For example, the Dallas Area 

Rapid Transit (DART) collaborated with Uber to simplify the connections at transit stations (Jaffe, 

2015). These partnerships extend to companies providing services in car sharing, smart parking, 

incentives programs, real time traffic management, electric vehicle infrastructure provision, 

personal travel apps, among others. Fundamentally, mobility service provision requires both city 

agencies and private companies working together. Because of the emergence of MaaS and public-

private cooperation, there is a need for data sharing between operators and public agencies or even 

between multiple operators.  

Data sharing can be done in several ways. First, aggregate public data is generally available—

for example, the Taxi and Limousine Commission can require for-hire vehicles (FHVs) to share 

total trip data at certain zonal levels and even companies themselves initiate programs like “Uber 

Movement” to share average travel times and speeds with the public. Second, operators may share 

private data with a collaborator in which the results are not shared with the public without some 

aggregation, typically with a non-disclosure agreement (NDA). The third sharing approach is by 

an open data exchange. There is an increasing number of online sites serving as “data exchanges” 

for multiple cities and private operators. One such example is SharedStreets illustrated in Fig. 1; 

another is the creation of a “Mobility Data Specification” by Los Angeles Department of 

Transportation (LADOT, 2018; Sadik-Khan, 2019).  

This last approach is where we envision our proposed method to address. Open data exchanges 

are critical for supporting data-driven innovations in “living lab” ecosystems (Schaffers et al., 

2011). For example, for entrepreneurs interested in creating parking apps, they would need realistic 

parking occupancy and inventory data to test their algorithms against. Open data exchanges are 

also important for public agencies to provide decision support for their public services, which are 

becoming increasingly multi-stakeholder, interoperable (Colpaert et al., 2014), and information-

centric (Piro et al., 2014). For example, a city-operated Mobility-as-a-Service operation can 

involve multiple partners: multiple transit operators, a smart grid provider, a fare manager, a 

mobile app provider, among others. One might argue that the second approach of signing NDAs 

would suffice for sharing data in this arrangement. However, many of these operations require the 

public agencies to facilitate multi-stakeholder operations. Even with the NDA requiring providers 

not to share their data with other third parties, it is hard to control information sharing between 

natural competitors to ensure interoperability. In general, there is a problem of designing 

mechanisms to make it easier for private mobility providers to share their data with public agencies 

and with each other without significantly compromising competitiveness. 

This concept of data-driven innovations of “living lab” ecosystems will only succeed if 

operators are willing to share their operational data with public agencies and researchers. 

Convincing private operators to share data remains a major obstacle (Janssen et al., 2012). For 
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example, private mobility companies resist sharing their route data, instead offering in limited 

cases some passenger pickup information (e.g. FiveThirtyEight, 2016). In other cases, information 

is shared in such an aggregated form that it is rendered useless for high resolution analysis. An 

example is truck GPS data, which operators are generally unwilling to share publicly. Sharing a 

sample of such data from multiple carriers operating in a city like New York would help support 

urban freight policies. 

 

 
Fig. 1. SharedStreets, a non-profit digital commons and clearinghouse for data exchange toward public-private 

collaboration (www.sharedstreets.io). 

 

The reluctance to share more complete information with the public, e.g. complete breadcrumb 

data or transaction timestamps, makes sense from the private operator’s perspective. Such data, if 

exposed to adversaries, can be used to reverse engineer the operator’s algorithms to steal 

competitive algorithm designs and policies. Note that this is a different type of attack than a 

cybersecurity threat (as illustrated by Yuan et al., 2016, for MaaS). We illustrate this reverse 

engineering quantitatively with an example using shared taxi service, although other examples like 

truck GPS data or location-based service microtransactions also apply.  

Consider a route observed in Fig. 2(a) for a 2-passenger capacity shared taxi, where a vehicle 

is observed to pick up and then drop off passengers no. 1, 3, and then 2 in that order. Given the 

passenger capacity, the vehicle could have instead chosen to take the following path: 
(0,3𝑃, 2𝑃, 3𝐷, 2𝐷, 1𝑃, 1𝐷), where 0 is the vehicle’s location, and a P designation is for pickup 

and a D is for drop-off corresponding to the passenger. The routing algorithm and policies 

governing that algorithm are guarded secrets. We can descriptively fit a general mixed integer 

programming (MIP) structure of a Dial-a-Ride Problem (DARP) to that policy, as shown in Fig. 

2(b), where the constraint specifications and parameters (including objective weights 𝛾, 𝛼, 𝛽 

pertaining to travel cost, ride time, and wait time) need to be estimated to fit any open tour (route) 

policy in practice. These are relative measures; i.e. 𝛾 = 2, 𝛼 = 1, 𝛽 = 1 yield the same results as 

𝛾 = 4, 𝛼 = 2, 𝛽 = 2. To allow for operators that might impose a weight of zero to one or more of 

the objectives, we have to specify all three weights.  

http://www.sharedstreets.io/
http://www.sharedstreets.io/
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The model in Fig. 2(b) is a standard formulation from the literature and can be found in a less 

parametric form in Cordeau and Laporte (2007) so we only explain the terminology. The 𝑃 =
{1, … , 𝑛} is the set of pickup locations, 𝐷 = {𝑛 + 1, … ,2𝑛} is the set of drop-off locations, V is 

fleet size, vehicle “depots” are {01, … 0|𝑉|, 2𝑛 + 1}, 𝑁 is the set of all nodes, 𝑞𝑖 , 𝑖 ∈ 𝑃, is the group 

size, 𝑑𝑖 is the service duration (loading/unloading/waiting), 𝑢 is vehicle capacity, 𝑐𝑖𝑗 is the travel 

cost, 𝑡𝑖𝑗 is the travel time, 𝑅𝑚𝑎𝑥 is the maximum ride time, 𝑋𝑖𝑗𝑘 is the route decision of vehicle 𝑘, 

𝑇𝑖, 𝑖 ∈ {𝑃, 𝐷}, is the start of service at node 𝑖, 𝑊𝑖 is the load upon leaving node 𝑖, and 𝑅𝑖 , 𝑖 ∈ 𝑃, is 

the ride time of pickup 𝑖. Note that the Cordeau and Laporte (2007) formulation includes time 

windows as well, but as that is unobservable from cross-sectional route data we leave those 

constraints out as unidentifiable. If panel data is available then it is possible to infer time windows 

as well. For this study we assume only cross-sectional data is available without loss of generality. 

An adversary would then seek to learn the parameters used by the operator based on the 

observations of the routes. 

 

 
Fig. 2. (a) An observed open tour, and (b) a MIP formulation for a generic open tour DARP. 

 

Machine learning techniques designed for network optimization models can be used to learn 

the parameters of the routing policy. One such technique, for example, is inverse optimization 

(Ahuja and Orlin, 2001; Wang, 2009; Xu et al., 2018), which we discuss further in Section 2. We 

can readily show that solving an inverse optimization of the MIP based on 𝐿1-norm minimization 

from uninformed priors of 𝛼0 = 𝛽0 = 𝛾0 = 1 using the cutting plane method from Wang (2009) 

would converge in four iterations to an optimal solution in which 𝛼∗ = 2.1255, 𝛽∗ = 0.0245, and 

𝛾∗ = 1 with a MIP objective value of 110.195. By using a single sample of a vehicle’s trajectory 

data of pickups and drop-offs, a competitor can guess that this operator values passenger ride time 

highly compared to wait time, and has an effective objective value of 110.195 compared to a value 

of 151.642 under uninformed priors. From there, a competitor can further test different constraints 

If uninformed objective weight priors, i.e. 𝛼0 = 𝛽0 = 𝛾0 = 1, 

route would have been (0,3𝑃, 2𝑃, 3𝐷, 2𝐷, 1𝑃, 1𝐷). Instead, we 

observe (0,1𝑃, 1𝐷, 3𝑃, 3𝐷, 2𝑃, 2𝐷) (arrows shown). 

(a) (b) 
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or policies to see how they fare relative to the gap between the prior objective value and the 

effective objective value from the observed data. Additional route data would further improve the 

efficiency of this adversarial attack. 

Tour data can potentially be used by an adversary to infer the following information about the 

operator or their users: 

• Identification and prioritization of different routing objectives, e.g. travel times or route length, 

passenger wait times, passenger total journey times, or vehicle utilization 

• Identification of dispatch criteria and constraints 

• Existence and value of hard time windows or penalties for soft time windows (under panel data 

setting) 

• Importance placed on minimizing future costs in a dynamic algorithm 

• Presence and value of constraints to limit amount of passenger detours 

• Value of destinations in profitable tour problems in which destinations are chosen among a set 

of candidates 

 

Clearly, operators would not willingly share their data with an open data exchange unless their 

privacy was protected. Researchers have looked at this type of problem for over a decade. As 

suggested by Abowd and Lane (2004) and Dwork (2006), data privacy may be achieved in several 

ways, most of which involve the generation of synthetic noise. The crux of that research has either 

focused on user privacy, which differs from operator privacy, or it has not considered the 

complexity of network-oriented data objects like synthetic tours. The problem of constructing a 

synthetic route that (1) is representative of a real route, (2) provides sufficiently useful information 

to a public agency user, and (3) is noisy enough to confuse an adversarial attack has not been 

studied. 

Formally, our research problem is stated as follows. We seek a privacy control mechanism that 

can take network-oriented data objects in a data exchange and respond to data queries with 

synthetic data objects that: 

1) Are feasible network solutions; 

2) Would be, on average over multiple queries, sufficiently similar to the real data object with 

regard to a performance measure specified in the query; 

3) The diffusion of the real data object to the synthetic data objects maximizes the anonymity 

of the real object among the synthetic data objects. 

 

The first condition means that a synthetic object should look real; there should not be telltale 

signs in which an adversary can automatically remove the object, for example if a passenger is 

shown to be dropped off before being picked up. For the second condition, a query should be 

related to a performance measure of interest. For example, trip data might be queried because the 

data user making the query is either interested in (a) origin location distributions or (b) OD travel 

time distributions. Depending on the measure, the control should respond with the appropriate 

synthetic data. For the third condition, an observer should not be able to discern the real data object 

from synthetic data objects based on the diffusion probabilities.  

The proposed privacy control mechanism design is illustrated in Fig. 3. Operators provide 

historical operation data as the input. When a user (an open data researcher or a collaborator in the 

multi-operator MaaS system) queries data, they receive randomly synthetized data in order to 

protect the privacy of the operator. The synthetic data needs to be carefully designed to capture 
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aspects specified by the user sufficiently accurately while ensuring that the retrieved data cannot 

be easily used to reverse engineer the operator’s policies. 

 

 
Fig. 3. Privacy control mechanism design for data exchanges. 

 

In this study we test the mechanism on the criterion of having similar passenger journey times, 

but other criteria can also be used: location, time of pickup, vehicle identification, etc. In essence, 

this method introduces more control in how network-structured private data can be shared. 

We propose a privacy control mechanism based on “𝜅-anonymous diffusion”. For a given 

data object and a query’s desired performance measure and tolerance, the control produces a set 

of up to 𝜅 synthetic data objects with assigned probabilities of querying each object. This method 

can be applied to numerous types of network-oriented data objects, including vehicle assignment 

decisions, scheduling decisions involving continuous time variables, route/tour decisions, location 

decisions, etc. Throughout this study we focus on the open tour version of the DARP without time 

windows as shown in Fig. 2(b) because it falls on the complex end of the spectrum and any insights 

should be valid for simpler data objects. Furthermore, the methodology should be applicable to 

data exchanges beyond MaaS, where data objects may involve network elements: e.g. urban freight 

(private truck GPS data), smart grid (competing energy providers setting locational marginal 

prices), counterterrorism (geospatial intelligence data), cybersecurity (network security protocols), 

and social networks (social contacts’ data). 

The rest of the paper is organized as follows. Section 2 reviews the related research about 

privacy control. Section 3 proposes the methodology that we adopt to find an optimal privacy 

control mechanism. Numerical verification and a case study based on a large-scale simulated 

scenario drawn from real data in Long Island, NY, are reported in Section 4. Section 5 concludes 

the study. 

 

 

2. Literature review 
 

2.1. Prior studies 

Privacy control has become a well-established field in the last two decades. Privacy control 

methods deal with aggregating data or synthesizing data to create additional noise. However, much 

of the attention has focused on user privacy. For users, sharing data with the public makes it easier 

for their identities to be stolen or for personal information to be made available to the wrong 

Data Object 

Sampled 
synthetic object 

Privacy Control Query 

Data Object 

Sampler 

Performance 

measure, 

Noise tolerance 

Synthetic object set, 

Probability diffusion 

Random draw 



7 

 

people. One example of user privacy concerns is demonstrated with taxi data. Trotter (2014) shows 

how a combination of paparazzi photos and taxi breadcrumb data can reveal unsettling amounts of 

personal detail: origin/destination of the trip, fare paid, and tip amount.   

One of the prevailing methods in user privacy control is differential privacy (Dwork, 2006, 

2008). Differential privacy involves applying a function 𝒦 to a database that randomizes the data 

in such a way that the aggregate data output has at most 𝜖 difference when one element of the 

database is removed. By ensuring this, users can participate in the database without fear of being 

identified because the difference between the filtered databases with and without their data would 

be nominal (less than 𝜖). There is a wide range of applications of differential privacy in transport: 

Chen et al. (2012), Kargl et al. (2013), Le Ny and Pappas (2014), and Dong et al. (2015), among 

others.  

In the case of operators, the concern is the risk of even their operation strategies being reverse 

engineered by adversaries from the data they share. This risk exists even for a single observation 

of a data object because each can uniquely inform on the underlying policies. Unlike user privacy, 

the objective is not to “hide in a herd” because there is no herd to hide in. The objective is therefore 

to limit the amount or certainty of information shared to minimize this risk. This trade-off leads to 

an information control problem (Sankar et al., 2011; Dong et al., 2015; Belletti and Bayen, 2017). 

In the case of Belletti and Bayen (2017), for example, they formulated a model to limit information 

sharing without compromising operability in the case of matching MaaS fleet drivers with 

passengers. 

In general cases, limiting data can be done by providing it with noise created around it. An 

example of this type of privacy control is in Tsai et al. (2015) and Wang et al. (2017). The authors 

introduced the concept of 𝜅-shortest path privacy in which a network’s link costs are perturbed 

minimally such that at least 𝜅 shortest paths between given origin and destination vertices are 

identical in length. The 𝜅-anonymous, information-theoretic framework (Sweeney, 2002) provides 

uniform diffusion of a data object in the sense that each of the 𝐾 objects is equally likely to occur 

to an outsider observing this perturbed network. This approach allows a whole network to be 

shared while protecting the identity of its shortest path. However, in the case of transport networks, 

the link weights are often observable so this approach of 𝜅-anonymity is not applicable. He et al. 

(2017) addressed this research gap by proposing an alternative way of sharing network data 

objects. 

 

2.2. Overview of He et al. (2017) 

In a conference paper, the authors showed that the optimal diffusion of a data object into a set 

of 𝜅 synthetic data objects (such as a set of tours) for querying randomly can be modeled as an 

entropy maximizing convex optimization program (see Sun et al., 2013). If there are no constraints 

in diffusing the data object, the query probabilities would converge toward 1/𝜅 for each synthetic 

object. This makes sense because a discrete uniform diffusion exhibits the highest anonymity in 

the set. As an example, consider diffusing a single-vehicle tour (0,2,1,3,5,4,6,0), where {1,2,3} 

are pickup locations of three passengers and {4,5,6} are corresponding drop-offs. The tour is shown 

in Fig. 4(a) with details of the arrival times in Fig. 4(b). If the desired performance measure is 

average passenger travel time and there are only 90 feasible tours based on explicit enumeration, 

then the optimal diffusion with an average passenger arrival time error tolerance of ∆= 0.1 is 

shown in Fig. 5. The solution in Fig. 5 shows that the ∆= 0.1 tolerance is a binding constraint 

since different tours have different query probabilities while one cannot discern the true tour (first 

tour in Fig. 5) from those probabilities. 
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Fig. 4. (a) A tour data object, and (b) arrival time details of that tour (He et al., 2017). 

 

 

Fig. 5. Optimal probabilities assigned to tour set (He et al., 2017). 

 

Several research gaps associated with the methodology can be identified from this example. 

In practice, it is not possible to enumerate all possible tours because of its combinatorial nature. 

There needs to be a way of efficiently generating data objects. For example, if only 𝜅 = 10 tours 

were requested for this example, which ten tours should be generated? Some of the tours in Fig. 5 

are shown to exhibit probabilities of zero. Having them in the set would be useless because they 

would never be used. Similarly, tours that result in all zero (or infinite) valued objective 

coefficients from inverse optimization suggests they are not realistic and should also not be 

included. Tours need to be selected such that maximum anonymity is achieved as defined by 

(a) (b) 
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maximum entropy diffusion of probabilities of drawing each tour from the set in a query. For 

example, if the subset of first 10 tours in Fig. 5 were used as opposed to a subset of the last 10 

tours in the set, the achievable entropy can be different. This is verified with experiments in He et 

al. (2017). A tour generation algorithm needs to optimally select a set of tours to maximize 

anonymity. 

In the current study, we tackle these significant issues and propose a heuristic algorithm for 

privacy control for network-oriented data sharing. The algorithm is shown to be exact when the 

set of data objects is equal to the full enumerated set, and a gap can be quantified from smaller 

subsets using a relaxed constraint upper bound gap. Before presenting the algorithm, we provide 

a brief overview of inverse optimization as it is used to represent an adversarial attack. 

 

2.3. Overview of inverse optimization 

Inverse optimization (IO) is a parameter estimation methodology to align the optimal solutions 

of optimization models with observed outputs. A classic example is the inverse shortest path 

problem (Burton and Toint, 1992), where the link costs of a network are minimally perturbed from 

priors so that an observed path would be optimal. Ahuja and Orlin (2001) generalized the inverse 

optimization for linear programming (LP) problems. Consider an LP under matrix notation: 

min{𝑐𝑇𝑥: 𝐴𝑥 ≤ 𝑏, 𝑥 ≥ 0}. The 𝑛-dimensional vector 𝑥 is a set of decision variables, 𝑐 is an 𝑛-

dimensional vector of objective coefficients, 𝐴 is an 𝑚 × 𝑛 constraint matrix, and 𝑏 is an 𝑚-

dimensional vector of side constraint values. The inverse optimal set of parameters for a given set 

of objective coefficient priors 𝑐0 and observed decision vector 𝑥∗ under 𝐿1-norm is obtained with 

the problem in Eq. (1). The 𝐿1-norm minimization from a prior can provide regularity (Tenorio, 

2001) for the inverse problems. This ensures that a solution can be obtained given a prior 𝑐0. For 

example, even though objective weights for the DARP in Fig. 2(b) are relative (𝛾 = 2, 𝛼 = 1, 𝛽 =
1 is equivalent to 𝛾 = 4, 𝛼 = 2, 𝛽 = 2), the IO problem is formulated to perturb minimally from a 

prior to obtain a unique solution. Ahuja and Orlin (2001) showed that the inverse LP can be 

reformulated as an LP.  

 

min
c

 |𝑐0 − 𝑐|: 𝑥∗ = 𝑎𝑟𝑔𝑚𝑖𝑛{𝑐𝑇𝑥: 𝐴𝑥 ≤ 𝑏, 𝑥 ≥ 0} (1) 

There have been several advances and applications in IO. Xu et al. (2018) provide a summary 

of these advances. Among the applications, Xu et al. (2018) showed how network properties can 

be inferred by an external observer. Birge et al. (2017) used IO to monitor external influences on 

an electricity market. Chan et al. (2014) inferred revealed objective weights of a multiobjective 

program with unknown objective preferences to help cancer therapy. These applications suggest 

that IO can be an effective inference methodology, even for malevolent purposes. 

In the case of inverse integer programs (IPs), Wang (2009) proposed a cutting plane algorithm 

to solve the inverse IP as a series of LPs, which has been applied to vehicle routing problems 

(Chow and Recker, 2012; You et al., 2016). This is the method we use on the synthetic tours to 

determine the parameters corresponding to them. For a sample of synthetic tours, the inverse IP 

parameters should have maximum standard errors. 
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3. Proposed algorithm 
 

3.1. 𝛋-anonymous information-theoretic algorithmic framework for tours 

As an information-theoretic privacy control mechanism, the objective of anonymity is set 

equivalent to entropy maximization of query probabilities assigned to synthetic objects. A 

generalized formulation is presented in Eq. (2) for tours as the data objects, which can be readily 

adapted to other data objects. 

 

max
𝐾,𝑥𝑘

𝐸 = − ∑ 𝑥𝑘 ln 𝑥𝑘

𝑘∈𝐾

 (2a) 

Subject to   

∑ 𝑥𝑘

𝑘∈𝐾

≤ |𝑉| (2b) 

∑ 𝛿𝑗𝑘𝑥𝑘

𝑘∈𝐾

≥ 1, ∀𝑗 ∈ 𝑂 (2c) 

𝑆({𝑥𝑘, 𝑟𝑘}, ∆) ≤ 0 (2d) 

0 ≤ 𝑥𝑘 ≤ 1 (2e) 

|𝐾| = κ, 𝐾 ⊂ Ω (2f) 

 

 

where ∆ is a desired accuracy tolerance for a specified metric (e.g. travelers’ ride times), 𝑆 is a 

constraint set corresponding to that metric, 𝑟𝑘 is a tour from which metrics can be derived as 

parameters (e.g. travelers’ ride times), and 𝛿𝑗𝑘 is set to 1 when node 𝑗 is visited by tour 𝑘, and 0 

otherwise. For example, a tour may be a sequence of 2-tuples: 𝑟𝑘 =
[(0,0), (2,10), (4,25), (1,30), (3,45)], where each 2-tuple is a (𝑢, 𝑡𝑢𝑘) with arrival time 𝑡𝑢𝑘 at 

node 𝑢, {0} is the vehicle’s initial location, {1,2} are the pickup locations of two passengers, and 

{3,4} are their corresponding drop-off locations. This tour informs us that passenger 2 had a ride 

time of 𝑡4𝑘 − 𝑡2𝑘 = 25 − 10 = 15 minutes. The value ∆ would be negotiated between the operator 

and the public agency; the operator will generally want this value to be higher while the agency 

will want a lower value. Queries from users will abide by this agreed upon value. Entropy 

maximization of the probabilities 𝑥𝑘 of a set of tours 𝑟𝑘, 𝑘 ∈ 𝐾, is achieved with objective (2a) and 

constraints (2b) – (2f), where 𝐾 ⊂ Ω is an endogenous subset of all feasible tours Ω. Solving Eq. 

(2) requires determining 𝐾 ⊂ Ω that maximizes Eq. (2a).  

Here the definition of the problem differs from He et al. (2017) regarding the endogeneity of 

𝐾 and the constraints (2d). He et al. (2017) specify the constraints of the performance metric to be 

travelers’ ride times in constraint set (2d), whereas in this study we use a more general formulation 

applicable to other data objects. 

When unconstrained, the objective value reaches the maximum when all objects have the same 

likelihood. For example, if 𝜅 = 3, the maximum entropy 𝐸∗ = 1.099 with 𝑥1
∗ = 𝑥2

∗ = 𝑥3
∗ = 1/3. 

This unconstrained solution serves as a constraint-relaxed upper bound for Eq. (2).  

There are two primary components to the 𝜅-anonymous privacy control mechanism: (1) 

generating a set of 𝜅 data objects and (2) constructing a query probability filter to maximize the 



11 

 

anonymity of the real object among all synthetic ones. We can trivially see that a master problem 

with these two components can be decomposed into two subproblems; i.e. if we can find an entropy 

maximizing set of up to 𝜅 data objects and, sequentially, obtain an entropy maximizing set of 

probabilities associated with each of the given data objects, this solution would be optimal.  

Let us call the two components SP1 and SP2. SP1 generates a new tour {𝑟𝑘}𝑘≤𝜅. A loop can 

be used to call SP1 repeatedly until a set of 𝜅 tours are generated. SP2 is then called to assign a 

probability diffusion {𝑥𝑘}𝑘≤𝜅 of the real object to each object in the generated 𝜅 objects {𝑟𝑘}𝑘≤𝜅. 

Each iteration, SP1 generates a new tour 𝑟𝑘 to add to a dynamic set 𝐾̃. The structure is ideally a 

nested one; SP1 would obtain all the tours that would be assigned a non-zero probability in the 

entropy maximization step in SP2. An example of a structure without iteration would be an SP1 

that explicitly enumerates every tour, running SP2 to assign probabilities, and removing the subset 

of tours that do not have any probabilities assigned. However, SP1 is based on implicit 

enumeration and not guaranteed to find such a set that is fully assigned probabilities; some of the 

tours found may end up unused in SP2. As a result, those unused routes are removed from the list 

and SP1 is run again to find additional tours to fill in the remainder. The proposed iterative solution 

framework is shown in Fig. 6. 

 

 
Fig. 6. Algorithm for κ-anonymous privacy control mechanism. 

 

Aside from the two functions for solving SP1 and SP2, other functions are used to ensure that 

infeasible tours—those that result in unrealistic IO inferences (via IO check) or in tours with zero 

probability diffusion—are removed and stored in a “undesired” set 𝑈. This undesired set is used 

along with the dynamic set 𝐾̃ to ensure that deleted tours are discouraged while new tours are 

sought. 

As discussed in Section 1, the ride-sharing tour decision can be setup as a DARP. The IO can 

be used to infer the weights 𝛼, 𝛽, 𝛾 from observed tours. Denote 𝑥∗ = [𝑋∗, 𝑇∗, 𝑊∗, 𝑅∗] to represent 

the true tour data. The object of IO for the tour data is shown in Eq. (3).  
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min
𝛼,𝛽,𝛾

|𝛼 − 𝛼0| + |𝛽 − 𝛽0| + |𝛾 − 𝛾0|: 𝑥∗

= 𝑎𝑟𝑔𝑚𝑖𝑛 {𝛾 ∗ ∑ ∑ ∑ 𝑐𝑖𝑗𝑥𝑖𝑗𝑘

𝑗∈𝑁𝑖∈𝑁𝑘∈𝑉

+ α ∗ ∑ 𝑅𝑖

𝑖∈𝑃

+ 𝛽 ∗ ∑ 𝑇𝑖

𝑖∈𝑃

: 𝐴𝑥 ≤ 𝑏, 𝑥

≥ 0, 𝑥 ∈ ℤ+} 

(3) 

 

where 𝐴 is the constraint matrix for the DARP and 𝑏 is the original right side vector. By defining 

𝛼0 − 𝛼 = 𝑒𝛼 − 𝑓𝛼, 𝛽0 − 𝛽 = 𝑒𝛽 − 𝑓𝛽, and 𝛾0 − 𝛾 = 𝑒𝛾 − 𝑓𝛾, where the {𝑒, 𝑓} vectors are non-

negative variables, we can initiate Algorithm 1 to estimate posterior coefficients. The IO inference 

is used strictly as a constraint check; there is no guarantee in this mechanism that the entropy 

maximization is equivalent to maximizing IO error (and we do not make such an assertion).  

 

Algorithm 1. Wang’s (2009) cutting plan algorithm for inverse IP 

Inputs: observed decision variables of original IP 𝑥∗, parameters (𝐴, 𝑏, 𝐼) of IP max
x

{𝑐𝑇𝑥: 𝐴𝑥 ≤

𝑏, 𝑥 ≥ 0, 𝑥𝑖 ∈ ℤ, ∀𝑖 ∈ 𝐼} , prior objective coefficients 𝑐0 

0. Initiate an empty set 𝒮 = { } of constraints. 

1. Solve Eq. (4) to Eq. (7) and let (𝑦∗, 𝑒∗, 𝑓∗) be an optimal solution (for minimization IPs 

Eq. (6) would be “less than or equal to”). 

 

min
y,e,f

𝑤𝑇𝑒 + 𝑤𝑇𝑓 (4) 

Subject to  

𝐴𝑇𝑦 ≥ 𝑐0 − 𝑒 + 𝑓 (5) 

(𝑐0 − 𝑒 + 𝑓)𝑇𝑥∗ ≥ (𝑐0 − 𝑒 + 𝑓)𝑇𝑥̃𝑠, ∀𝑥̃𝑠 ∈ 𝒮 (6) 

𝑦, 𝑒, 𝑓 ≥ 0 (7) 

 

Note: other constraints may be added to this to ensure that the constraints in the original IP are 

met. For example, if 𝑐 ≥ 0 is needed to work, then the inverse problem should include constraints 

𝑐0 − 𝑒 + 𝑓 ≥ 0. 

 

2. 𝑥̃ = argmax
x

{(𝑐0 − 𝑒∗ + 𝑓∗)𝑇𝑥: 𝐴𝑥 ≤ 𝑏, 𝑥 ≥ 0, 𝑥𝑖 ∈ ℤ, ∀𝑖 ∈ 𝐼}. If (𝑐0 − 𝑒∗ + 𝑓∗)𝑇𝑥∗ ≥

(𝑐0 − 𝑒∗ + 𝑓∗)𝑇𝑥̃, then stop, and 𝑐∗ = 𝑐0 − 𝑒∗ + 𝑓∗. Otherwise, 𝒮 ≔ 𝒮 ∪ {𝑥̃} and go to 

Step 1.  

Outputs: Estimated posterior objective coefficients 𝑐∗ 

 

When SP1 selects a synthetic tour to generate, the “Check IO criteria” solves an inverse IP 

with Algorithm 1. If αk + 𝛽𝑘 + 𝛾𝑘 = 0, this means an IO inference would suggest the tour is not 

realistic and it is then discarded into the 𝑈 pool. The IO criteria may be “switched off” as well if 

the IO optimal parameters are not an issue to consider. Note also that the first tour when 𝑘 = 1 is 

the true tour.  
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This algorithm converges to a constrained maximum entropy solution if SP1 and SP2 combine 

to find an entropy maximizing diffusion and tour set. The subproblems are explored in greater 

detail to show that this algorithm should be convergent under certain conditions. 

 

 

3.2. Subproblem SP2: probability diffusion with “passenger ride time” accuracy 

SP2 takes a set 𝐾 of tours and assigns probabilities to each tour to maximize the entropy 

objective in Eq. (2a) while ensuring that a performance measure tolerance is met. In this case, we 

define a performance measure of “passenger ride time” (𝑡𝑗+𝑛,𝑘 − 𝑡𝑗𝑘) in the synthetic tour 𝑟𝑘 and 

compare that to the observed time 𝜏𝑗 to ensure that the expected relative difference does not exceed 

∆. Objective (2a) with exogenous 𝐾 is subject to constraints in Eq. (8) to Eq. (12), where Eq. (10) 

– (11) represent the passenger ride time specification for Eq. (2d). Since this subproblem is given 

a set 𝐾, Eq. (2f) is not needed. 

 

∑ 𝑥𝑘

𝑘∈𝐾

≤ |𝑉| (8) 

∑ 𝛿𝑗𝑘𝑥𝑘

𝑘∈𝐾

≥ 1, ∀𝑗 ∈ 𝑂 (9) 

∑(𝑡𝑗+𝑛,𝑘 − 𝑡𝑗𝑘)

𝑘∈𝐾

𝑥𝑘 − 𝜏𝑗 ∑ 𝑥𝑘

𝑘𝜖𝐾

≤ ∆𝜏𝑗 ∑ 𝑥𝑘

𝑘𝜖𝐾

, ∀𝑗 ∈ 𝑂 (10) 

− ∑(𝑡𝑗+𝑛,𝑘 − 𝑡𝑗𝑘)

𝑘∈𝐾

𝑥𝑘 + 𝜏𝑗 ∑ 𝑥𝑘

𝑘𝜖𝐾

≤ ∆𝜏𝑗 ∑ 𝑥𝑘

𝑘𝜖𝐾

, ∀𝑗 ∈ 𝑂 (11) 

0 ≤ 𝑥𝑘 ≤ 1 (12) 

 

 

where 𝛿𝑗𝑘 is 1 when node 𝑗 is visited by tour 𝑘, otherwise 0; and 𝑡𝑗𝑘 is the arrival time at node 𝑗 

via tour 𝑘. The problem defined by Eq. (2a) and (8) to (12) is a concave optimization program with 

linear constraints. The only decision variables are the probabilities 𝑥𝑘. The entropy maximization 

is known to be concave (see Wilson, 1967; He et al., 2017). As a result, any convex optimization 

algorithm can obtain a global optimum. For convenience we employ a Frank-Wolfe algorithm 

(Frank and Wolfe, 1956) to obtain the maximum entropy diffusion. 

 

3.3. Subproblem SP1: tour generation 

We propose a tour generation subproblem that solves a DARP as shown in Fig. 2(b), but 

modified such that the link costs in the objective function are constructed from the count of tours 

that have been visited beforehand, i.e. 𝐾̃ = {𝐾, 𝑈}. To illustrate this point, consider some nth 

iteration for a 4-node tour generation problem. Suppose the last iteration results in 3 tours forming 

𝐾 and 2 tours discarded in 𝑈: 

 

𝐾 = {

(0,1,2,3,4,0)
(0,2,4,3,1,0)
(0,2,1,3,4,0)

} , 𝑈 = {
(0,3,2,4,1,0)
(0,3,1,4,2,0)

} 

 



14 

 

In this case, the new cost matrix to be used in SP1 in the nth iteration should be as shown in 

Table 1. The route sequence obtained from the modified DARP is set as the candidate tour from 

SP1. Other tour or routing problems should be able to work with this methodology as well. 

 

 

 
Table 1. Illustration of constructed cost matrix for SP1 

𝑐𝑖𝑗
𝑛  0 1 2 3 4 

0 0 1 2 2 0 

1 2 0 1 1 1 

2 1 1 0 1 2 

3 0 2 1 0 2 

4 2 1 1 1 0 

 

The algorithm in Fig. 6 based on SP1 and SP2 is not guaranteed to converge to the constrained 

maximum entropy problem in general. As a special case, when κ is sufficiently large (essentially 

covering all feasible data objects) or ∆≥ 𝐷 (where 𝐷 is a sufficiently large number), it can be 

shown that the proposed algorithm would converge to the exact solution. A sketch of the proof is 

as follows. There are two cases of the problem to consider: tours without overlapping links 

(independent tours), and tours with overlapping links; for each case, we consider sufficiently large 

κ or ∆ for a total of four cases. For independent tours, let us consider 𝜅 = |Ω| with constraint set 

𝑆: ∑ 𝑥𝑘𝑔𝑘𝑗𝑘 ≤ ∆ where 𝑔𝑘𝑗 is a generic performance measure for passenger 𝑗 in tour 𝑟𝑘 and 𝑥𝑘 is 

the query probability for tour 𝑟𝑘. Eq. (10) – (11) fall under this structure with 𝑔𝑘,𝑗 =
|(𝑡𝑗+𝑛,𝑘−𝑡𝑗𝑘)−𝜏𝑘|

𝜏𝑘
. For the proposed algorithm, initially all tour costs are set to 𝑐𝑘 = 0. Since there is 

no overlap, each inner loop of SP1 would generate a new tour that has not yet been chosen until 

all tour costs are 𝑐𝑘 = 1 in 𝜅 = |Ω| iterations. For the case where 𝜅 < |Ω|, when ∆≥ 𝐷 the 

difference in entropy between {1, 2, 3} and {3, 4, 5} reduces toward 0 (the unconstrained case). 

This means convergence to Eq. (2) is attainable by either of two conditions: when 𝜅 → |Ω| or when 

∆≥ 𝐷. 

In the case where multiple tours share links, selecting one tour can mean adding to the cost 

for other tours that share links. In the case of 𝜅 = |Ω|, the algorithm will find all tours since 

differences in cost functions between a tour 𝑘 ∈ 𝑈 and an overlapping tour 𝑘′ ∉ 𝑈, |𝑐𝑘 − 𝑐𝑘′|, 
increases monotonically until tour 𝑘′ is an optimal solution to SP1. For 𝜅 < |Ω| and ∆≥ 𝐷, the 

∆≥ 𝐷 reduces the difference in entropy in the same way rendering the differences to be like the 

unconstrained case. In this way, the same conditions apply, although the rate of convergence may 

be much slower than in the case of completely independent tours. 

 

3.4. Algorithm performance 

Three insights of this algorithm need to be discussed. First, the rate of convergence of this 

algorithm, unfortunately, is not very efficient as indicated by Proposition 1. Its efficiency is on par 

with the well-known Method of Successive Averages.  

 

Proposition 1. The algorithm in Fig. 6 has a sublinear rate of convergence.  
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Proof.  

This can be verified by the cost function. By design, for a fixed set of 𝑛 tours the algorithm 

converges when every tour is found. In the fastest scenario, each tour would be identified once so 

each tour would contribute a weight to the cost function of 
1

𝑛
.  Assuming the total number of tours 

approaches infinity, then the weight trivially converges toward 0 in order to find all the tours. 

Sublinear convergence rate for a sequence {𝑥𝑛} toward 𝐿 occurs if lim
n→∞

|𝑥𝑛+1−𝐿|

|𝑥𝑛−𝐿|
= 1. In this case, 

𝑥𝑛 =
1

𝑛
 and 𝐿 = 0. Therefore, lim

n→∞

|
1

𝑛+1
|

|
1

𝑛
|

= lim
𝑛→∞

𝑛

𝑛+1
= 1. ∎ 

 

It can take many iterations to find a next feasible tour to add to the set, which is an issue that 

we experienced in some cases. Nonetheless, this brings us to the second insight. Since the 

algorithm is seeking a constrained maximum entropy, the maximum entropy with relaxed accuracy 

tolerance constraints provides an upper bound to the optimum. For a given 𝜅 it is easy to compute 

as 𝐸̂𝜅 shown in Eq. (13). This means any solution at any iteration can be evaluated for a gap relative 

to this upper bound, which we call an “upper bound gap”. 

 

𝐸̂𝜅 = − ln (
1

𝜅
) (13) 

 

Third, the upper bound gap can be used as a stopping condition. In the future, modifications will 

be investigated to speed up this algorithm. 

The performance of the algorithm can also be assessed from the perspective of the adversary. 

Once an operator defines a set of probabilities 𝑥𝑘 for a set of tours 𝐾 based on entropy 

maximization, an adversary can query the system repeatedly to sample the synthetic tours and 

solve the IO for each tour to obtain estimates 𝜃 for the parameters 𝜃 = {𝛼, 𝛽, 𝛾}. Based on the 

sample, the adversary’s standard error for each 𝜃 can serve as a measure of the algorithm 

performance; a higher adversary IO standard error (which differs from the operator’s entropy 

maximization probability distributions) reflects less reliability in using IO to infer the parameters. 

To further understand the proposed algorithm, a series of computational experiments are next 

conducted. 

 

 

4. Computational experiments 
 

Several experiments are conducted, first on two toy examples, one involving a single vehicle 

fleet and another with a two-vehicle fleet, and then a computational case study using simulated 

tours derived from real data in Long Island, New York. The first set of experiments on the toy 

instances are performed to verify and illustrate the proposed privacy control mechanism for single- 

and multi-vehicle fleets. The second set of experiments is conducted to evaluate the computational 

performance under real world data sharing scale and to demonstrate the value of the proposed 

algorithm. The experiments are run in MATLAB 2016a on a computer with an Intel Core™ i7-

6700 CPU@3.40GHz, 64-bit Windows 10 operating system. All instance data will be shared on 

https://github.com/BUILTNYU upon publication of this study. 

 

 

https://github.com/BUILTNYU
https://github.com/BUILTNYU
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4.1. Numerical verification 

Three experiments are conducted here to verify the methodology and to use the numerical 

examples to illustrate arguments made earlier in the study. The first and second experiments are 

conducted on the same one-vehicle fleet instance shown in Fig. 4. At first we run the algorithm 

without any IO filter, and in this case compare the optimality of the algorithm as 𝜅 is incrementally 

increased from 2 to 10 (keeping in mind that there are 90 feasible tours for this instance). The 

second experiment adds the IO filter to demonstrate how the solution changes with the additional 

condition for checking tour feasibility. The third experiment verifies that the method can be used 

to protect the privacy of multi-vehicle fleet tour data. 

 

Single vehicle fleet – no IO filter 

The real tour is a single vehicle serving three passengers with the pick-up and drop-off 

locations shown in Fig. 4(a). The sequence, arrival time at each node, and average travel times are 

shown in Fig. 4(b). The vehicle is assumed to have a capacity of three people so that potentially 

all three passengers can be picked up before any are dropped off. Dwell time is set to zero. 

The proposed algorithm in Fig. 6 is applied to the example for 𝜅 = 2, … , 10 and ∆= 0.1 while 

ignoring the IO filter. The entropy value as a function of the 𝜅 is shown in Fig. 7 alongside the 

unconstrained upper bound and the “naïve” solution based on sorting the shortest tours and adding 

them incrementally. First, we note that indeed, optimality is not guaranteed when 𝜅 is small, as the 

iteration with 𝜅 = 2 shows the proposed algorithm underperforming the naïve solution. This is 

likely because there are so many feasible tours that when simply searching the most different tour 

from the true tour results in one that doesn’t really perform well under the constrained SP2 

compared with the shortest tour. However, as 𝜅 increases to 10 we see that the proposed algorithm 

establishes a firm gap above the naïve algorithm. We can further see that, when compared against 

the unconstrained upper bound, the proposed algorithm cuts the entropy from the naïve algorithm 

by half upon reaching 𝜅 = 10. However, the entropy assumes all tours are realistic. 

 

 
Fig. 7. Comparison of algorithms against upper bound for 𝜅 = 1, … ,10. 

 

For the 𝜅 = 10 case, the ten tours found are shown in Table 2. When ignoring the IO filter, it 

is possible that many tours may be generated that would not be deemed “realistic” because the IO 

of that tour results in all zeros for the objective coefficients. In this table, 80% of the tours do not 
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pass that test. If we take a look at 𝑟2, for example, going from node 1 to node 2 and then to node 4 

and node 3 is highly illogical in terms of minimizing tour cost, wait time, and ride time.  

Based on only the tour diffusions, the anonymity of the true tour (first one) is successfully 

maintained since its probability is 0.33 while the highest probability is assigned to 𝑟5 (0.34). 

Adversaries would not able to identify which tour is the real one. The entropy and upper bound 

based on those two tours are 𝐸∗ = 0.631 and 𝐸̂2 = 0.693, respectively. 

 
Table 2 Tour-set diffusion and IO parameters without IO filter 

k tour 𝐫𝐤 𝛂 𝛃 𝛄 Passenger ride time 𝐱𝐤 

1 2 3 

1 0-2-1-3-5-4-6-0 1.00 0.25 1.00 13.596 13.262 14.891 0.33 

2 0-3-1-4-2-6-5-0 0.00 0.00 0.00 8.062 18.662 84 0.00 

3 0-1-2-5-3-4-6-0 0.00 0.25 0.00 34.322 7.28 8.485 0.13 

4 0-3-1-6-2-4-5-0 0.00 0.00 0.00 34.786 12.973 16.142 0.03 

5 0-1-4-3-2-5-6-0 0.00 0.00 0.00 8.062 7.28 20.28 0.34 

6 0-2-3-6-1-5-4-0 0.00 0.00 0.00 11.565 87.838 60.121 0.00 

7 0-1-3-4-2-6-5-0 0.00 0.00 0.00 10.214 18.662 28.857 0.04 

8 0-3-2-5-1-6-4-0 0.00 0.00 0.00 17.437 9.606 25.322 0.05 

9 0-2-1-5-3-4-6-0 0.00 0.00 0.00 82.048 11.232 11.508 0.00 

10 0-3-6-1-2-4-5-0 0.00 0.00 0.00 12.639 62.373 8.485 0.08 

 

Single vehicle fleet – IO filter 

Table 3 shows the results of the proposed algorithm with IO filter. Because of the additional 

feasibility condition of the IO filter, the resulting entropy is now 𝐸∗ = 1.317 with upper bound 

𝐸̂8 = 2.079. Even though there are only eight anonymous objects obtained out of 64 objects 

selected in total, all the objects are verified by the IO filter, which means they are all realistic. 

Based on this outcome, the standard errors are 0.105 for 𝛼 and 0.112 for 𝛾. Comparing the 

diffusions of the real object with IO filter to diffusions without IO filter, it is easy to conclude that 

the IO filter is necessary for the proposed algorithm. 

 
Table 3 Tour-set diffusion and IO parameters with IO filter 

k tour 𝐫𝐤 𝛂 𝛃 𝛄 Passenger ride time 𝐱𝐤 

1 2 3 

1 0-2-1-3-5-4-6-0 1.00 0.25 1.00 13.596 13.262 14.891 0.62 

2 0-1-2-5-3-4-6-0 0 0.25 0 34.322 7.28 8.485 0.01 

3 0-2-1-5-3-4-6-0 0.48 0.25 1.00 19.394 11.232 11.508 0.09 

4 0-1-3-4-6-2-5-0 0.87 0.25 0.01 10.214 7.28 11.508 0.10 

5 0-1-2-5-3-4-6-0 0.16 0.25 0.61 25.099 7.28 11.508 0.08 

6 0-1-2-4-3-5-6-0 0.34 0.25 1.00 12.639 20.801 10.606 0.06 

7 0-1-2-4-5-3-6-0 0.50 0.25 1.00 12.639 12.973 8.485 0.02 

8 0-2-1-5-4-3-6-0 0.56 0.25 1.00 11.565 11.232 8.485 0.02 

Average  0.80 0.25 0.86 15.779 12.765 12.917  

Std. error  0.105 0 0.112 2.190 0.992 0.941  

 

Multi-vehicle fleet 

Based on the same network, we run the Fig. 6 algorithm for the multi-vehicle scenario with a 

maximum of 6 iterations as the stopping condition. In Fig. 8, there are two vehicles serving three 

passengers simultaneously. The green and blue lines represent two observed tours. Travel 

sequences, arrival times at each node, and real travel time of each passenger are included in Table 

4. Similarly, we run the proposed algorithm with and without IO filter. 
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Fig. 8. Vehicle tours with a fleet of two vehicles. 

 
Table 4 Sequence and arrival time of real tour for two-vehicle fleet example 

Node Arrival Time Node Arrival Time 

0 0 0 0 

1 2.236 2 3 

4 10.298 3 7 

0 20.298 5 10.605 

  6 15.605 

  0 29.059 

Passenger True travel time Passenger True travel time 

Passenger 1 true travel time (𝐭𝟒 − 𝐭𝟏) 8.062 Passenger 2 true travel time 

(t5 − t2) 

7.605 

  Passenger 3 true travel time 

(t6 − t3) 

8.605 

 

 

Table 5 Tour-set diffusion and IO parameters without IO filter 

k tour set 𝒓𝒌 𝜶 𝜷 𝜸 Passenger ride time 𝒙𝒌 

1 2 3 

1 0-2-3-5-6-0 

0-1-4-0 

1 0.25 1 8.062 9.606 10.606 0.348 

2 0-2-5-3-6-0 

0-1-4-0 

1 0.25 0.2429 8.062 7.28 8.485 0.433 

3 0-3-1-6-4-0 

0-2-5-0 

0 0 0 17.437 7.28 16.142 0.017 

4 0-1-2-4-5-0 

0-3-6-0 

0 0 0 12.639 984.768 8.485 0.053 

5 0-3-2-6-5-0 

0-1-4-0 

0 0 0 8.062 18.662 17.662 0.149 

 

From Table 5, we conclude that even if the proposed algorithm without IO generates more 

diffused tour sets, most of them are unrealistic. Running the algorithm with IO filter, on the other 

hand, generates the k-anonymous dataset more efficiently as shown in Table 6. The standard error 



19 

 

of γ without the IO filter is 0.27. Note that with 2 realistic tours, the unconstrained upper bound 

entropy is Ê2 = 0.693 while the solution is E∗ = 0.687. 

 

Table 6 Tour-set diffusion and IO parameters with IO filter 
  k tour set 𝒓𝒌 𝜶 𝜷 𝜸 Passenger ride time 𝒙𝒌 

1 2 3 

1 0-2-3-5-6-0 

0-1-4-0 

1 0.25 1 8.062 9.606 10.606 0.794 

2 0-2-5-3-6-0 

0-1-4-0 

1 0.25 0.2429 8.062 7.28 8.485 0.103 

3 0-1-3-4-6-0 

0-2-5-0 

0.479 0.250 1.000 10.214 7.28 11.508 0.103 

Average  0.95 0.25 0.92 8.283656 9.126844 10.48044  

Std. error  0.09 0 0.13 0.377656 0.543116 0.420871  

 

We note that more of the parameters exhibit a standard error with the IO filter in place. The 

upper bound with three tours is 𝐸̂3 = 1.099 while the algorithm produces 𝐸∗ = 0.651. The 

experiments demonstrate that the proposed algorithm is effective in generating tours, although 

adding the IO filter can lead to poor performing entropy for a given tolerance.  

 

4.2. Case study: Long Island simulated rideshare data 

This section describes a real-world case study in Long Island, New York. Since the focus of 

this study is on the ability to control for the privacy of a data set, as long as the data is created from 

a methodology that is not a direct solution of a DARP it should be sufficiently valid. The data set 

is obtained from dynamic routing algorithms from Ma et al. (2019). This data set is used because 

the outcome tours are derived in a complex manner: they are the culmination of implementing 

policies for dynamic dispatch, routing, idle vehicle rebalancing, and drop-offs and pickups at 

transit stations. In addition, the vehicles act as microtransit by providing shared rides for up to 4 

passengers at a time.  

The policies are operated under a simulated scenario in which the demand data is drawn from 

real trip data from the 2010/2011 NYMTC Regional Household Travel Survey (NYMTC, 2018). 

The data corresponds to trips made between 7:00 to 9:00 AM for travelers commuting to and from 

Long Island to New York City. The rideshare algorithm in the Ma et al. study either drops 

passengers off at the final destination or at a LIRR commuter rail station (or vice versa).  

There are 1440 vehicle trajectories in total and distances between each two nodes are 

calculated using Euclidian distance. Assuming the travel speed in Long Island is 60 km/h (mostly 

express road speed in sub-urban area), the travel time between two nodes is calculated with Eq. 

(14). 

 

𝑡𝑖𝑗 =
𝑑𝑖𝑗

60
, ∀𝑖, 𝑗 ∈ 𝑁 (14) 

 

We assume that each vehicle tour is operated independently of the other vehicle tours. For 

demonstration purposes, we select only thirty tours, as shown in Fig. 9, from the full tour data set 

to make it easier to analyze them in detail. There are three depots for the thirty tours, which are 

shown as yellow stars in Fig. 9 and different tours are represented in different colors. The following 

tests are conducted: 
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• An evaluation of the computation time of the algorithm in the larger scale setting; 

• A sensitivity test of the privacy control under different Δ settings to demonstrate the use of the 

mechanism; 

• A test demonstrating the effectiveness of the algorithm to adversarial attack and to user queries. 

 

 
Fig. 9. Example vehicle tours in Long Island. 

 

 

4.3. Computation time analysis 

In this test we examine the computational performance of the algorithm. In the simulated tour 

data, most of tours have two or three passengers. For tours with two passengers, there are only 6 

different possible tours to select, which means 𝜅 ≤ 6. To keep a high computational efficiency, 

we define stop criteria for tour data selection: 𝑘 = 5 𝑜𝑟 |𝑈| = 200. Fig. 10(a) shows the 

breakdown of the computation time for one example tour with three passengers. 

 

 
Fig. 10. (a) Computation time of an example tour data of three passengers; (b) Computation time of applying IO 

filter to one tour data. 

 

In Fig. 10(a), we can see that most of computation time is spent on the IO filter. As the number 

of passengers increases, the computation time of applying IO filter to one tour data object increases 

exponentially, as Fig. 10(b) shows. The computation time for five passengers spikes up 

considerably, perhaps because of the implicit presence of the 4-passenger capacity.  
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Fig. 11 presents the relationship between the number of IO-feasible tour data objects selected 

among those identified in SP1. If it takes many tours to be filtered, i.e. selected with SP1, before 

reaching the desired 𝜅, that is inefficient. Two trends are observed. First, most of the 30 instances 

can be diffused to 𝜅 = 5 IO-feasible tours within 100 identified tours. For these tours, our method 

works very efficiently. Second, the rest of tours are unable to reach 𝜅 = 5 IO-feasible tours even 

after identifying 200 tours with SP1. As shown in Fig. 11, this subset obtains two, three or four 

tours efficiently but becomes inefficient beyond that. We assume that for these tours, they only 

have a limited number of feasible tour data objects and it’s necessary to set a stop criterion for the 

tour IO filtering in consideration of computational efficiency.  

 

 
Fig. 11. Relationship between number of IO-feasible tour data objects selected from those filtered. 

 

4.4. Results analysis 

Implementing the 𝜅-anonymous tour diffusion method on the 30 true tour data records leads 

to a diffused dataset. The IO-feasible 5-anonymous diffusion for one sample record (identified as 

1-2-4-3-5-6) is shown in Table 7 and the diffused tours are plotted in Fig. 12. The yellow star is 

the depot, where vehicle starts and ends tour. The red tour is the real tour. From Table 7, we can 

see that as Δ changes from 0.2 to 0.3, the probabilities assigned to each synthetic tour becomes 

more diffused, resulting in an increase in entropy from 1.463 to 1.593. 

 
Table 7 Example of tour diffusion with different delta 

number tours delta=0.2 

diffusion 

delta=0.3 

diffusion 

𝛂 𝛃 𝛄 

1 1-2-4-3-5-6 0.415 0.209 1 1 1 

2 1-4-2-5-3-6 0.138 0.220 1 0 0.1864 

3 1-4-2-3-5-6 0.217 0.220 1 0 1 

4 3-6-1-4-2-5 0.137 0.220 1 0 0.167 

5 1-3-2-6-5-4 0.093 0.131 0.0415 0 1 
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Fig. 12. An example of tour and diffusions. 

 

To demonstrate the standard error that arises from these average values, suppose an adversary 

runs the query ten times for one of these records. Each time, they run IO on the drawn results. The 

result of IO inference is shown in Table 8. The standard errors over these 10 queries under different 

values of ∆ are shown at the bottom of the table. The standard errors increase when ∆ increases. 

This empirically demonstrates how the privacy control can increase the standard error, and how 

this controlled by the degree of Δ in passenger ride time accuracy. Still, this result alone does not 

prove there is an explicit equivalency or relationship; further research is needed to study this 

relationship between the entropy maximization and the IO error maximization.  

 
Table 8 Average IO parameters of ten samples with different delta 

 𝚫 = 𝟎. 𝟐 

𝜶 

 

𝜷 

 

𝜸 

𝚫 = 𝟎. 𝟑 

𝜶 

 

𝜷 

 

𝜸 

1 0.35 0 1 0.35 0 1 

2 0.35 0 1 0.35 0 1 

3 0.35 0 1 0.35 0 1 

4 
0.35 0 1 0.35 0 1 

5 0.35 0 1 1 0 1 

6 1 0 1 1 0 0.77 

7 0.35 0 1 0.35 0 1 

8 0.35 0 1 0.35 0 1 

9 0.35 0 1 1 0 1 

10 1 0 0.77 1 0 0.86 

Average 0.48 0 0.98 0.61 0 0.96 

Std. error 0.28 0 0.07 0.34 0 0.08 
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Now suppose a user queries the dataset to access the 30 records. The privacy control 

mechanism would randomly draw from the diffused tours to return one synthesized set of 30 

records. Suppose the user runs the query ten times and average the passenger ride time across the 

30 synthetic records in each query. The Fig. 13 presents the passenger ride time accuracy under 

different values of Δ. The average passenger ride times under both Δ = 0.2 and Δ = 0.3 are within 

the error threshold. Comparing ride times under Δ = 0.2 with Δ = 0.3, we find that ride times 

under Δ = 0.2 are closer to the real travel time, like the 3rd object and 22nd object. Table 9 

summarizes the averages over the 10 queries and shows how the standard error increases with Δ. 

 

 
Fig. 13 Average passenger ride times of all 30 objects in one sample under different 𝛥. 

 

 
Table 9 Average passenger travel times of ten samples of one object with different 𝛥 

Sample 𝚫 = 𝟎. 𝟐 𝚫 = 𝟎. 𝟑 

1 3.90 3.90 

2 3.90 3.90 

3 3.90 3.90 

4 
3.90 2.75 

5 3.90 3.90 

6 3.90 2.75 

7 2.11 2.11 

8 3.90 3.90 

9 2.75 2.75 

10 3.90 3.90 

Average 3.61 3.37 

Std. error 0.64 0.70 
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5. Conclusion and future work 
 

Ultimately, operator data is exposed by virtue of operating in a public setting. The advantage 

of not making the data automatically public on an open data exchange is that building up 

adversarial databases take enough time and resources that an innovating company that 

continuously improves and modifies their algorithms should be able to nullify the value of older 

collected data. The key point is that the same network-oriented data set (e.g. vehicle route data) 

shown from different perspectives (vehicle locations, routes, pickups, etc.) can have different risks 

for adversarial attacks and it is a nontrivial problem to quantify these risks. Our study opens the 

door to studying the privacy control of network-oriented data sharing.  

We propose a first 𝜅-anonymous diffusion mechanism to control the privacy of operators’ 

network-oriented data to address the increasingly urgent problem of data sharing between private 

operators and public agencies. A heuristic algorithm that is shown to be exact when applied to the 

full enumerated data set has several applications in reality, including idle vehicle assignment 

decision, transaction timestamp, vehicle tour decision, etc. To summarize, we made the following 

contributions to the literature: 

• Proposed an algorithm to generate synthetic network data objects (tours) such that accuracy of 

certain desired performance measures of the data (e.g. passenger ride time) can be controlled 

for (generally a heuristic, but exact when applied with a full enumerated data object set); 

• Proved the sublinear convergence rate of the algorithm with measurable upper bound gap; 

• Numerically investigated the effectiveness of applying an IO filter to ensure only “realistic” 

data objects are generated, resulting in higher standard errors for reverse engineering attempts, 

but at a significant computational cost; 

• Numerically verified the applicability of the algorithm to multi-vehicle fleet tour data 

(although it is shown to have more significant performance issues in identifying realistic tours 

with IO filter); 

• Conducted a case study using realistic tour data from a Long Island travel study by Ma et al. 

(2018) and found: 

o A threshold in number of passengers for the tour where computational performance 

jumps; 

o Under certain stopping conditions the diffused data can be used to synthesize query 

responses that have Δ-controllable standard errors for IO-reversed parameters (for 

adversaries) and average passenger ride times (for users). 

 

In the future, other applications of the 𝜅-anonymous diffusion model should be tested and 

verified. For example, we can study 𝜅-anonymous idle vehicle assignment diffusion algorithms to 

preserve the privacy of operators’ vehicle dispatching strategies. Key points would be the design 

of SP2, how to select data objects to be diffused with the real data object in the direction of 

maximizing anonymity, and the definition of IO filter. A better search routine that more directly 

incorporates the IO filter as an explicit constraint or objective would likely lead to improved 

computational performance of the algorithm. For example, multi-armed bandit algorithms 

incorporate a nonlinear objective that maximizes the 𝐿2-norm of solutions found from prior 

solutions (see Zhou et al., 2019), which may be a more effective formulation for SP1. 

Alternatively, Bell et al. (1993) proposed a column generation approach that maximize entropy; 

this approach might be adapted to the original formulation of Eq. (2) to implicitly enumerate 

consistent routes. The IO constraints, i.e. the duality conditions in Eq. (1), would be modified to 
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be incorporated directly into the formulation of Eq. (2). These efforts will be investigated in future 

research. 

A prototype privacy mechanism applied to a real database of operator would be useful for 

practitioners. The error tolerance ∆ is a required variable from public agencies to ensure the 

accuracy of shared data. This may constrain the efficiency of privacy preservation methods. 

Another idea is designing the ∆ according to what kind of learning the public agencies are looking 

for. The level of tolerance may be subject to many factors, like size of market, the threat level over 

time, etc. Having designed a privacy control mechanism, we can embed this into a network design 

problem so that, in the same spirit of Dong et al. (2015), we can simultaneously design a network 

and the tolerance ∆ by endogenously capturing the effect on the data quality needed for calibrating 

the parameters. Blockchain designs can be considered for such data exchanges as well. 

In this study we chose the most complex type of network data object to test our mechanism 

on (NP-hard vehicle routing problems with integer programming inverse optimization) to get a 

sense of the computational boundaries. There are also many other network data objects that can be 

solved more efficiently without resorting to NP-hard problems or integer programming-based 

inverse optimization (e.g. shortest paths, assignment, passenger pickup/drop-off locations, fares 

paid, group sizes, etc.). In future research more efficient solution algorithms will be studied for 

this type of data object, but as other simpler data objects are explored we should likely see the 

computational burden taper down. For example, inverse shortest path problems can be solved very 

efficiently (Burton and Toint, 1992) so the hurdle that we are experiencing in the computational 

cost observed in Fig. 10 should subside significantly for that type of data.  
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