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Abstract

In the era of smart cities, Internet of Things, and Mobility-as-a-Service, private operators need to
share data with public agencies to support data exchanges for “living lab” ecosystems more than
ever before. However, it is still problematic for private operators to share data with the public due
to risks to competitive advantages. A privacy control algorithm is proposed to overcome this key
obstacle for private operators sharing complex network-oriented data objects. The algorithm is
based on information-theoretic k-anonymity and, using tour data as an example, where an
operator’s data is used in conjunction with performance measure accuracy controls to synthesize
a set of alternative tours with diffused probabilities for sampling during a query. The algorithm is
proven to converge sublinearly toward a constrained maximum entropy under certain asymptotic
conditions with measurable gap. Computational experiments verify the applicability to multi-
vehicle fleet tour data; they confirm that reverse engineered parameters from the diffused data
result in controllable sampling error; and tests conducted on a set of realistic routing records from
travel data in Long Island, NY, demonstrate the use of the methodology from both the adversary
and user perspectives.
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1. Introduction

With the development of Internet of Things (IoT), many new transport services are emerging.
Just in New York City alone, ride-hail services tripled in ridership in one and a half years and
reached 15 million a month (Bloomberg View, 2017). Global car-sharing users increased from
350,000 in 2006 to almost five million in 2014 (Shaheen and Cohen, 2016). These services
represent a new transport paradigm: Mobility-as-a-Service (MaaS), and it is becoming increasingly
important in modern cities. Numerous studies have argued that for smart cities to thrive, public
agencies and private operators need to work together (Djavadian and Chow, 2017; Hensher, 2017;
Rasulkhani and Chow, 2019). Indeed, partnerships have sprung up in recent years between public
agencies and mobility providers like Lyft, Uber, Via, Car2Go, etc. For example, the Dallas Area
Rapid Transit (DART) collaborated with Uber to simplify the connections at transit stations (Jaffe,
2015). These partnerships extend to companies providing services in car sharing, smart parking,
incentives programs, real time traffic management, electric vehicle infrastructure provision,
personal travel apps, among others. Fundamentally, mobility service provision requires both city
agencies and private companies working together. Because of the emergence of MaaS and public-
private cooperation, there is a need for data sharing between operators and public agencies or even
between multiple operators.

Data sharing can be done in several ways. First, aggregate public data is generally available—
for example, the Taxi and Limousine Commission can require for-hire vehicles (FHVs) to share
total trip data at certain zonal levels and even companies themselves initiate programs like “Uber
Movement” to share average travel times and speeds with the public. Second, operators may share
private data with a collaborator in which the results are not shared with the public without some
aggregation, typically with a non-disclosure agreement (NDA). The third sharing approach is by
an open data exchange. There is an increasing number of online sites serving as “data exchanges”
for multiple cities and private operators. One such example is SharedStreets illustrated in Fig. 1;
another is the creation of a “Mobility Data Specification” by Los Angeles Department of
Transportation (LADOT, 2018; Sadik-Khan, 2019).

This last approach is where we envision our proposed method to address. Open data exchanges
are critical for supporting data-driven innovations in “living lab” ecosystems (Schaffers et al.,
2011). For example, for entrepreneurs interested in creating parking apps, they would need realistic
parking occupancy and inventory data to test their algorithms against. Open data exchanges are
also important for public agencies to provide decision support for their public services, which are
becoming increasingly multi-stakeholder, interoperable (Colpaert et al., 2014), and information-
centric (Piro et al., 2014). For example, a city-operated Mobility-as-a-Service operation can
involve multiple partners: multiple transit operators, a smart grid provider, a fare manager, a
mobile app provider, among others. One might argue that the second approach of signing NDAs
would suffice for sharing data in this arrangement. However, many of these operations require the
public agencies to facilitate multi-stakeholder operations. Even with the NDA requiring providers
not to share their data with other third parties, it is hard to control information sharing between
natural competitors to ensure interoperability. In general, there is a problem of designing
mechanisms to make it easier for private mobility providers to share their data with public agencies
and with each other without significantly compromising competitiveness.

This concept of data-driven innovations of “living lab” ecosystems will only succeed if
operators are willing to share their operational data with public agencies and researchers.
Convincing private operators to share data remains a major obstacle (Janssen et al., 2012). For



example, private mobility companies resist sharing their route data, instead offering in limited
cases some passenger pickup information (e.g. FiveThirtyEight, 2016). In other cases, information
is shared in such an aggregated form that it is rendered useless for high resolution analysis. An
example is truck GPS data, which operators are generally unwilling to share publicly. Sharing a
sample of such data from multiple carriers operating in a city like New Y ork would help support
urban freight policies.
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Fig. 1. SharedStreets, a non-profit digital commons and clearinghouse for data exchange toward public-private
collaboration (www.sharedstreets.io).

The reluctance to share more complete information with the public, e.g. complete breadcrumb
data or transaction timestamps, makes sense from the private operator’s perspective. Such data, if
exposed to adversaries, can be used to reverse engineer the operator’s algorithms to steal
competitive algorithm designs and policies. Note that this is a different type of attack than a
cybersecurity threat (as illustrated by Yuan et al., 2016, for MaaS). We illustrate this reverse
engineering quantitatively with an example using shared taxi service, although other examples like
truck GPS data or location-based service microtransactions also apply.

Consider a route observed in Fig. 2(a) for a 2-passenger capacity shared taxi, where a vehicle
is observed to pick up and then drop off passengers no. 1, 3, and then 2 in that order. Given the
passenger capacity, the vehicle could have instead chosen to take the following path:
(0,3P,2P,3D,2D,1P,1D), where 0 is the vehicle’s location, and a P designation is for pickup
and a D is for drop-off corresponding to the passenger. The routing algorithm and policies
governing that algorithm are guarded secrets. We can descriptively fit a general mixed integer
programming (MIP) structure of a Dial-a-Ride Problem (DARP) to that policy, as shown in Fig.
2(b), where the constraint specifications and parameters (including objective weights y, a, 5
pertaining to travel cost, ride time, and wait time) need to be estimated to fit any open tour (route)
policy in practice. These are relative measures; i.e. y = 2, = 1, § = 1 yield the same results as
Yy =4,a =2, = 2. To allow for operators that might impose a weight of zero to one or more of
the objectives, we have to specify all three weights.
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The model in Fig. 2(b) is a standard formulation from the literature and can be found in a less
parametric form in Cordeau and Laporte (2007) so we only explain the terminology. The P =
{1, ...,n} is the set of pickup locations, D = {n + 1, ...,2n} is the set of drop-off locations, V is
fleet size, vehicle “depots” are {01, Oy, 2n + 1}, N is the set of all nodes, q;, i € P, is the group
size, d; is the service duration (loading/unloading/waiting), u is vehicle capacity, ¢;; is the travel
cost, t;; is the travel time, Ry,qy 1s the maximum ride time, Xj j is the route decision of vehicle &,
T;, i € {P, D}, is the start of service at node i, W; is the load upon leaving node i, and R;,i € P, is
the ride time of pickup i. Note that the Cordeau and Laporte (2007) formulation includes time
windows as well, but as that is unobservable from cross-sectional route data we leave those
constraints out as unidentifiable. If panel data is available then it is possible to infer time windows
as well. For this study we assume only cross-sectional data is available without loss of generality.
An adversary would then seek to learn the parameters used by the operator based on the
observations of the routes.
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Fig. 2. (a) An observed open tour, and (b) a MIP formulation for a generic open tour DARP.

Machine learning techniques designed for network optimization models can be used to learn
the parameters of the routing policy. One such technique, for example, is inverse optimization
(Ahuja and Orlin, 2001; Wang, 2009; Xu et al., 2018), which we discuss further in Section 2. We
can readily show that solving an inverse optimization of the MIP based on L;-norm minimization
from uninformed priors of @y = B, = ¥, = 1 using the cutting plane method from Wang (2009)
would converge in four iterations to an optimal solution in which a* = 2.1255, f* = 0.0245, and
y* = 1 with a MIP objective value of 110.195. By using a single sample of a vehicle’s trajectory
data of pickups and drop-offs, a competitor can guess that this operator values passenger ride time
highly compared to wait time, and has an effective objective value of 110.195 compared to a value
of 151.642 under uninformed priors. From there, a competitor can further test different constraints



or policies to see how they fare relative to the gap between the prior objective value and the

effective objective value from the observed data. Additional route data would further improve the

efficiency of this adversarial attack.

Tour data can potentially be used by an adversary to infer the following information about the

operator or their users:

e Identification and prioritization of different routing objectives, e.g. travel times or route length,
passenger wait times, passenger total journey times, or vehicle utilization

¢ Identification of dispatch criteria and constraints

e Existence and value of hard time windows or penalties for soft time windows (under panel data
setting)

e Importance placed on minimizing future costs in a dynamic algorithm

e Presence and value of constraints to limit amount of passenger detours

e Value of destinations in profitable tour problems in which destinations are chosen among a set
of candidates

Clearly, operators would not willingly share their data with an open data exchange unless their
privacy was protected. Researchers have looked at this type of problem for over a decade. As
suggested by Abowd and Lane (2004) and Dwork (2006), data privacy may be achieved in several
ways, most of which involve the generation of synthetic noise. The crux of that research has either
focused on user privacy, which differs from operator privacy, or it has not considered the
complexity of network-oriented data objects like synthetic tours. The problem of constructing a
synthetic route that (1) is representative of a real route, (2) provides sufficiently useful information
to a public agency user, and (3) is noisy enough to confuse an adversarial attack has not been
studied.

Formally, our research problem is stated as follows. We seek a privacy control mechanism that
can take network-oriented data objects in a data exchange and respond to data queries with
synthetic data objects that:

1) Are feasible network solutions;

2) Would be, on average over multiple queries, sufficiently similar to the real data object with

regard to a performance measure specified in the query;

3) The diffusion of the real data object to the synthetic data objects maximizes the anonymity

of the real object among the synthetic data objects.

The first condition means that a synthetic object should look real; there should not be telltale
signs in which an adversary can automatically remove the object, for example if a passenger is
shown to be dropped off before being picked up. For the second condition, a query should be
related to a performance measure of interest. For example, trip data might be queried because the
data user making the query is either interested in (a) origin location distributions or (b) OD travel
time distributions. Depending on the measure, the control should respond with the appropriate
synthetic data. For the third condition, an observer should not be able to discern the real data object
from synthetic data objects based on the diffusion probabilities.

The proposed privacy control mechanism design is illustrated in Fig. 3. Operators provide
historical operation data as the input. When a user (an open data researcher or a collaborator in the
multi-operator MaaS system) queries data, they receive randomly synthetized data in order to
protect the privacy of the operator. The synthetic data needs to be carefully designed to capture



aspects specified by the user sufficiently accurately while ensuring that the retrieved data cannot
be easily used to reverse engineer the operator’s policies.
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Fig. 3. Privacy control mechanism design for data exchanges.

In this study we test the mechanism on the criterion of having similar passenger journey times,
but other criteria can also be used: location, time of pickup, vehicle identification, etc. In essence,
this method introduces more control in how network-structured private data can be shared.

We propose a privacy control mechanism based on “k-anonymous diffusion”. For a given
data object and a query’s desired performance measure and tolerance, the control produces a set
of up to k synthetic data objects with assigned probabilities of querying each object. This method
can be applied to numerous types of network-oriented data objects, including vehicle assignment
decisions, scheduling decisions involving continuous time variables, route/tour decisions, location
decisions, etc. Throughout this study we focus on the open tour version of the DARP without time
windows as shown in Fig. 2(b) because it falls on the complex end of the spectrum and any insights
should be valid for simpler data objects. Furthermore, the methodology should be applicable to
data exchanges beyond MaaS, where data objects may involve network elements: e.g. urban freight
(private truck GPS data), smart grid (competing energy providers setting locational marginal
prices), counterterrorism (geospatial intelligence data), cybersecurity (network security protocols),
and social networks (social contacts’ data).

The rest of the paper is organized as follows. Section 2 reviews the related research about
privacy control. Section 3 proposes the methodology that we adopt to find an optimal privacy
control mechanism. Numerical verification and a case study based on a large-scale simulated
scenario drawn from real data in Long Island, NY, are reported in Section 4. Section 5 concludes
the study.

2. Literature review

2.1. Prior studies

Privacy control has become a well-established field in the last two decades. Privacy control
methods deal with aggregating data or synthesizing data to create additional noise. However, much
of the attention has focused on user privacy. For users, sharing data with the public makes it easier
for their identities to be stolen or for personal information to be made available to the wrong
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people. One example of user privacy concerns is demonstrated with taxi data. Trotter (2014) shows
how a combination of paparazzi photos and taxi breadcrumb data can reveal unsettling amounts of
personal detail: origin/destination of the trip, fare paid, and tip amount.

One of the prevailing methods in user privacy control is differential privacy (Dwork, 2006,
2008). Differential privacy involves applying a function K to a database that randomizes the data
in such a way that the aggregate data output has at most € difference when one element of the
database is removed. By ensuring this, users can participate in the database without fear of being
identified because the difference between the filtered databases with and without their data would
be nominal (less than €). There is a wide range of applications of differential privacy in transport:
Chen et al. (2012), Kargl et al. (2013), Le Ny and Pappas (2014), and Dong et al. (2015), among
others.

In the case of operators, the concern is the risk of even their operation strategies being reverse
engineered by adversaries from the data they share. This risk exists even for a single observation
of a data object because each can uniquely inform on the underlying policies. Unlike user privacy,
the objective is not to “hide in a herd” because there is no herd to hide in. The objective is therefore
to limit the amount or certainty of information shared to minimize this risk. This trade-off leads to
an information control problem (Sankar et al., 2011; Dong et al., 2015; Belletti and Bayen, 2017).
In the case of Belletti and Bayen (2017), for example, they formulated a model to limit information
sharing without compromising operability in the case of matching MaaS fleet drivers with
passengers.

In general cases, limiting data can be done by providing it with noise created around it. An
example of this type of privacy control is in Tsai et al. (2015) and Wang et al. (2017). The authors
introduced the concept of k-shortest path privacy in which a network’s link costs are perturbed
minimally such that at least k shortest paths between given origin and destination vertices are
identical in length. The k-anonymous, information-theoretic framework (Sweeney, 2002) provides
uniform diffusion of a data object in the sense that each of the K objects is equally likely to occur
to an outsider observing this perturbed network. This approach allows a whole network to be
shared while protecting the identity of its shortest path. However, in the case of transport networks,
the link weights are often observable so this approach of k-anonymity is not applicable. He et al.
(2017) addressed this research gap by proposing an alternative way of sharing network data
objects.

2.2. Overview of He et al. (2017)

In a conference paper, the authors showed that the optimal diffusion of a data object into a set
of k synthetic data objects (such as a set of tours) for querying randomly can be modeled as an
entropy maximizing convex optimization program (see Sun et al., 2013). If there are no constraints
in diffusing the data object, the query probabilities would converge toward 1/k for each synthetic
object. This makes sense because a discrete uniform diffusion exhibits the highest anonymity in
the set. As an example, consider diffusing a single-vehicle tour (0,2,1,3,5,4,6,0), where {1,2,3}
are pickup locations of three passengers and {4,5,6} are corresponding drop-offs. The tour is shown
in Fig. 4(a) with details of the arrival times in Fig. 4(b). If the desired performance measure is
average passenger travel time and there are only 90 feasible tours based on explicit enumeration,
then the optimal diffusion with an average passenger arrival time error tolerance of A= 0.1 is
shown in Fig. 5. The solution in Fig. 5 shows that the A= 0.1 tolerance is a binding constraint
since different tours have different query probabilities while one cannot discern the true tour (first
tour in Fig. 5) from those probabilities.
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Fig. 4. (a) A tour data object, and (b) arrival time details of that tour (He et al., 2017).
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Fig. 5. Optimal probabilities assigned to tour set (He et al., 2017).
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Several research gaps associated with the methodology can be identified from this example.
In practice, it is not possible to enumerate all possible tours because of its combinatorial nature.
There needs to be a way of efficiently generating data objects. For example, if only ¥ = 10 tours
were requested for this example, which ten tours should be generated? Some of the tours in Fig. 5
are shown to exhibit probabilities of zero. Having them in the set would be useless because they
would never be used. Similarly, tours that result in all zero (or infinite) valued objective
coefficients from inverse optimization suggests they are not realistic and should also not be
included. Tours need to be selected such that maximum anonymity is achieved as defined by




maximum entropy diffusion of probabilities of drawing each tour from the set in a query. For
example, if the subset of first 10 tours in Fig. 5 were used as opposed to a subset of the last 10
tours in the set, the achievable entropy can be different. This is verified with experiments in He et
al. (2017). A tour generation algorithm needs to optimally select a set of tours to maximize
anonymity.

In the current study, we tackle these significant issues and propose a heuristic algorithm for
privacy control for network-oriented data sharing. The algorithm is shown to be exact when the
set of data objects is equal to the full enumerated set, and a gap can be quantified from smaller
subsets using a relaxed constraint upper bound gap. Before presenting the algorithm, we provide
a brief overview of inverse optimization as it is used to represent an adversarial attack.

2.3. Overview of inverse optimization

Inverse optimization (IO) is a parameter estimation methodology to align the optimal solutions
of optimization models with observed outputs. A classic example is the inverse shortest path
problem (Burton and Toint, 1992), where the link costs of a network are minimally perturbed from
priors so that an observed path would be optimal. Ahuja and Orlin (2001) generalized the inverse
optimization for linear programming (LP) problems. Consider an LP under matrix notation:
min{cTx: Ax < b,x > 0}. The n-dimensional vector x is a set of decision variables, ¢ is an n-
dimensional vector of objective coefficients, A is an m X n constraint matrix, and b is an m-
dimensional vector of side constraint values. The inverse optimal set of parameters for a given set
of objective coefficient priors ¢, and observed decision vector x* under L,-norm is obtained with
the problem in Eq. (1). The L;-norm minimization from a prior can provide regularity (Tenorio,
2001) for the inverse problems. This ensures that a solution can be obtained given a prior cy. For
example, even though objective weights for the DARP in Fig. 2(b) are relative (y = 2, a = 1, =
1isequivalenttoy = 4,a = 2, = 2), the IO problem is formulated to perturb minimally from a
prior to obtain a unique solution. Ahuja and Orlin (2001) showed that the inverse LP can be
reformulated as an LP.

min |cq — c|: x* = argmin{cTx: Ax < b, x > 0} (1)
C

There have been several advances and applications in 0. Xu et al. (2018) provide a summary
of these advances. Among the applications, Xu et al. (2018) showed how network properties can
be inferred by an external observer. Birge et al. (2017) used IO to monitor external influences on
an electricity market. Chan et al. (2014) inferred revealed objective weights of a multiobjective
program with unknown objective preferences to help cancer therapy. These applications suggest
that 1O can be an effective inference methodology, even for malevolent purposes.

In the case of inverse integer programs (IPs), Wang (2009) proposed a cutting plane algorithm
to solve the inverse IP as a series of LPs, which has been applied to vehicle routing problems
(Chow and Recker, 2012; You et al., 2016). This is the method we use on the synthetic tours to
determine the parameters corresponding to them. For a sample of synthetic tours, the inverse IP
parameters should have maximum standard errors.



3. Proposed algorithm

3.1. xk-anonymous information-theoretic algorithmic framework for tours

As an information-theoretic privacy control mechanism, the objective of anonymity is set
equivalent to entropy maximization of query probabilities assigned to synthetic objects. A
generalized formulation is presented in Eq. (2) for tours as the data objects, which can be readily
adapted to other data objects.

rl?,fcl,i(E = — Z X In xy, (2a)
keK
Subject to
Z x, < |V| (2b)
keK
z 6jkxk = 1, Vj €0 (ZC)
keK
S{xp i}, 4) < 0 (2d)
0<x<1 (2e)
K| = x, KcQ (2f)

where A is a desired accuracy tolerance for a specified metric (e.g. travelers’ ride times), S is a
constraint set corresponding to that metric, 1, is a tour from which metrics can be derived as
parameters (e.g. travelers’ ride times), and §j is set to 1 when node j is visited by tour k, and 0
otherwise. ~For example, a tour may be a sequence of 2-tuples: 71, =
[(0,0),(2,10), (4,25), (1,30), (3,45)], where each 2-tuple is a (u, t,;) with arrival time t,; at
node u, {0} is the vehicle’s initial location, {1,2} are the pickup locations of two passengers, and
{3,4} are their corresponding drop-off locations. This tour informs us that passenger 2 had a ride
time of t,;, — ty, = 25 — 10 = 15 minutes. The value A would be negotiated between the operator
and the public agency; the operator will generally want this value to be higher while the agency
will want a lower value. Queries from users will abide by this agreed upon value. Entropy
maximization of the probabilities x;, of a set of tours 1y, k € K, is achieved with objective (2a) and
constraints (2b) — (2f), where K < Q is an endogenous subset of all feasible tours (2. Solving Eq.
(2) requires determining K < () that maximizes Eq. (2a).

Here the definition of the problem differs from He et al. (2017) regarding the endogeneity of
K and the constraints (2d). He et al. (2017) specify the constraints of the performance metric to be
travelers’ ride times in constraint set (2d), whereas in this study we use a more general formulation
applicable to other data objects.

When unconstrained, the objective value reaches the maximum when all objects have the same
likelihood. For example, if k = 3, the maximum entropy E* = 1.099 with x; = x;, = x5 = 1/3.
This unconstrained solution serves as a constraint-relaxed upper bound for Eq. (2).

There are two primary components to the x-anonymous privacy control mechanism: (1)
generating a set of k data objects and (2) constructing a query probability filter to maximize the
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anonymity of the real object among all synthetic ones. We can trivially see that a master problem
with these two components can be decomposed into two subproblems; i.e. if we can find an entropy
maximizing set of up to k data objects and, sequentially, obtain an entropy maximizing set of
probabilities associated with each of the given data objects, this solution would be optimal.

Let us call the two components SP1 and SP2. SP1 generates a new tour {ry }x<,. A loop can
be used to call SP1 repeatedly until a set of k tours are generated. SP2 is then called to assign a
probability diffusion {x; };<, of the real object to each object in the generated k objects {1y } <.
Each iteration, SP1 generates a new tour 73, to add to a dynamic set K. The structure is ideally a
nested one; SP1 would obtain all the tours that would be assigned a non-zero probability in the
entropy maximization step in SP2. An example of a structure without iteration would be an SP1
that explicitly enumerates every tour, running SP2 to assign probabilities, and removing the subset
of tours that do not have any probabilities assigned. However, SP1 is based on implicit
enumeration and not guaranteed to find such a set that is fully assigned probabilities; some of the
tours found may end up unused in SP2. As a result, those unused routes are removed from the list
and SP1 is run again to find additional tours to fill in the remainder. The proposed iterative solution
framework is shown in Fig. 6.

~ Check IO —
Solve SP1|K,U| criteria Update K

vk':r, unverified
orry €K,
U:={Ury}
K = K\U

Solve SP2[K]

Fig. 6. Algorithm for k-anonymous privacy control mechanism.

Aside from the two functions for solving SP1 and SP2, other functions are used to ensure that
infeasible tours—those that result in unrealistic IO inferences (via 1O check) or in tours with zero
probability diffusion—are removed and stored in a “undesired” set U. This undesired set is used
along with the dynamic set K to ensure that deleted tours are discouraged while new tours are
sought.

As discussed in Section 1, the ride-sharing tour decision can be setup as a DARP. The IO can
be used to infer the weights «, 5, y from observed tours. Denote x* = [X*, T, W*, R*] to represent
the true tour data. The object of IO for the tour data is shown in Eq. (3).
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where A is the constraint matrix for the DARP and b is the original right side vector. By defining
g — & = eq — fa, Po— B =€z — fg, and yo — ¥ = e, — f,, where the {e, f} vectors are non-
negative variables, we can initiate Algorithm 1 to estimate posterior coefficients. The IO inference
is used strictly as a constraint check; there is no guarantee in this mechanism that the entropy
maximization is equivalent to maximizing IO error (and we do not make such an assertion).

Algorithm 1. Wang’s (2009) cutting plan algorithm for inverse IP
Inputs: observed decision variables of original IP x*, parameters (4, b,I) of IP max{cTx: Ax <
X

b,x = 0,x; € Z,Vi € I}, prior objective coefficients ¢,
0. Initiate an empty set § = { } of constraints.
1. Solve Eq. (4) to Eq. (7) and let (y*,e*, f*) be an optimal solution (for minimization IPs
Eq. (6) would be “less than or equal to”).

: T T
r}glérgw e+w'f 4)
Subject to
ATy >co—e+f (5)
(co—e+f)Tx*=(co—e+ f)Tx5, VXIS ES (6)
y.ef=0 (7

Note: other constraints may be added to this to ensure that the constraints in the original IP are
met. For example, if ¢ > 0 is needed to work, then the inverse problem should include constraints
co—e+f=0.

2. ¥ =argmax{(co—e*+ ) x:Ax < b,x=0,x; €EZVie€l} If (¢co—e*+f)Tx*>
X

(co—e* + f*)TZ, then stop, and ¢* = ¢, — e* + f*. Otherwise, § := § U {&} and go to
Step 1.
Outputs: Estimated posterior objective coefficients c*

When SP1 selects a synthetic tour to generate, the “Check IO criteria” solves an inverse IP
with Algorithm 1. If ay + S5 + yx = 0, this means an IO inference would suggest the tour is not
realistic and it is then discarded into the U pool. The IO criteria may be “switched off” as well if
the IO optimal parameters are not an issue to consider. Note also that the first tour when k = 1 is
the true tour.
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This algorithm converges to a constrained maximum entropy solution if SP1 and SP2 combine
to find an entropy maximizing diffusion and tour set. The subproblems are explored in greater
detail to show that this algorithm should be convergent under certain conditions.

3.2. Subproblem SP2: probability diffusion with “passenger ride time” accuracy

SP2 takes a set K of tours and assigns probabilities to each tour to maximize the entropy
objective in Eq. (2a) while ensuring that a performance measure tolerance is met. In this case, we
define a performance measure of “passenger ride time” (¢jp x — tj) in the synthetic tour 7, and
compare that to the observed time 7; to ensure that the expected relative difference does not exceed
A. Objective (2a) with exogenous K is subject to constraints in Eq. (8) to Eq. (12), where Eq. (10)
— (11) represent the passenger ride time specification for Eq. (2d). Since this subproblem is given
a set K, Eq. (2f) is not needed.

z x, < |V (8)

keEK
Z Sjkxk = 1,V] €0 (9)
k€EK
Z(tj+n’k_ jk)xk—Tijk SAszxk,Vj €0 (10)
kEK keK keK
_z(tj+n_k—tjk)xk+rj2xk SAszxk,VjE 0 (11)
keK keK keK
0<x, <1 (12)

where 8 is 1 when node j is visited by tour k, otherwise 0; and ¢ is the arrival time at node j
via tour k. The problem defined by Eq. (2a) and (8) to (12) is a concave optimization program with
linear constraints. The only decision variables are the probabilities x;. The entropy maximization
is known to be concave (see Wilson, 1967; He et al., 2017). As a result, any convex optimization
algorithm can obtain a global optimum. For convenience we employ a Frank-Wolfe algorithm
(Frank and Wolfe, 1956) to obtain the maximum entropy diffusion.

3.3. Subproblem SP1: tour generation

We propose a tour generation subproblem that solves a DARP as shown in Fig. 2(b), but
modified such that the link costs in the objective function are constructed from the count of tours
that have been visited beforehand, i.e. K = {K,U}. To illustrate this point, consider some n"
iteration for a 4-node tour generation problem. Suppose the last iteration results in 3 tours forming
K and 2 tours discarded in U:

(0,1,2,3,4,0) (0,3,2,4,1,0)
K = (Op2p4p3)1P0) ’ U= (0 3 1 4- 2 O)
(0,2,1,3,4,0) e
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In this case, the new cost matrix to be used in SP1 in the n™ iteration should be as shown in
Table 1. The route sequence obtained from the modified DARP is set as the candidate tour from
SP1. Other tour or routing problems should be able to work with this methodology as well.

Table 1. Illustration of constructed cost matrix for SP1

o 0 1 2 3 4
0 0 1 2 2 0
1 2 0 1 1 1
2 1 1 0 1 2
3 0 2 1 0 2
4 2 1 1 1 0

The algorithm in Fig. 6 based on SP1 and SP2 is not guaranteed to converge to the constrained
maximum entropy problem in general. As a special case, when x is sufficiently large (essentially
covering all feasible data objects) or A> D (where D is a sufficiently large number), it can be
shown that the proposed algorithm would converge to the exact solution. A sketch of the proof is
as follows. There are two cases of the problem to consider: tours without overlapping links
(independent tours), and tours with overlapping links; for each case, we consider sufficiently large
K or A for a total of four cases. For independent tours, let us consider k¥ = |Q| with constraint set
S: Yk Xkgkj < A where g, ; is a generic performance measure for passenger j in tour 7y and xy is
the query probability for tour 7. Eq. (10) — (11) fall under this structure with g, ; =
|(t)4n =t jK)=Tk|

Tk
no overlap, each inner loop of SP1 would generate a new tour that has not yet been chosen until
all tour costs are ¢, = 1 in k = |Q| iterations. For the case where k < |Q|, when A> D the
difference in entropy between {1, 2,3} and {3, 4, 5} reduces toward 0 (the unconstrained case).
This means convergence to Eq. (2) is attainable by either of two conditions: when k¥ — |Q| or when
A= D.

In the case where multiple tours share links, selecting one tour can mean adding to the cost
for other tours that share links. In the case of k¥ = [Q|, the algorithm will find all tours since
differences in cost functions between a tour k € U and an overlapping tour k' € U, |c, — c;/|,
increases monotonically until tour k' is an optimal solution to SP1. For k < |Q| and A> D, the
A= D reduces the difference in entropy in the same way rendering the differences to be like the
unconstrained case. In this way, the same conditions apply, although the rate of convergence may
be much slower than in the case of completely independent tours.

. For the proposed algorithm, initially all tour costs are set to ¢, = 0. Since there is

3.4. Algorithm performance

Three insights of this algorithm need to be discussed. First, the rate of convergence of this
algorithm, unfortunately, is not very efficient as indicated by Proposition 1. Its efficiency is on par
with the well-known Method of Successive Averages.

Proposition 1. The algorithm in Fig. 6 has a sublinear rate of convergence.

14



Proof.
This can be verified by the cost function. By design, for a fixed set of n tours the algorithm
converges when every tour is found. In the fastest scenario, each tour would be identified once so

each tour would contribute a weight to the cost function of % Assuming the total number of tours
approaches infinity, then the weight trivially converges toward O in order to find all the tours.

) cpye |xne1—L|
Sublinear convergence rate for a sequence {x,} toward L occurs if lim —*=—

= 1. In this case,
n-ooo |xp—L|

Xp == and L = 0. Therefore, lim e
n—oo |n| n—-oo Tl+1

It can take many iterations to find a next feasible tour to add to the set, which is an issue that
we experienced in some cases. Nonetheless, this brings us to the second insight. Since the
algorithm is seeking a constrained maximum entropy, the maximum entropy with relaxed accuracy
tolerance constraints provides an upper bound to the optimum. For a given k it is easy to compute
as E,. shown in Eq. (13). This means any solution at any iteration can be evaluated for a gap relative
to this upper bound, which we call an “upper bound gap”.

E.=—In (1) (13)

K

Third, the upper bound gap can be used as a stopping condition. In the future, modifications will
be investigated to speed up this algorithm.

The performance of the algorithm can also be assessed from the perspective of the adversary.
Once an operator defines a set of probabilities x; for a set of tours K based on entropy
maximization, an adversary can query the system repeatedly to sample the synthetic tours and
solve the 10 for each tour to obtain estimates 6 for the parameters 6 = {a, 8,y}. Based on the
sample, the adversary’s standard error for each 8 can serve as a measure of the algorithm
performance; a higher adversary 10 standard error (which differs from the operator’s entropy
maximization probability distributions) reflects less reliability in using 1O to infer the parameters.
To further understand the proposed algorithm, a series of computational experiments are next
conducted.

4. Computational experiments

Several experiments are conducted, first on two toy examples, one involving a single vehicle
fleet and another with a two-vehicle fleet, and then a computational case study using simulated
tours derived from real data in Long Island, New York. The first set of experiments on the toy
instances are performed to verify and illustrate the proposed privacy control mechanism for single-
and multi-vehicle fleets. The second set of experiments is conducted to evaluate the computational
performance under real world data sharing scale and to demonstrate the value of the proposed
algorithm. The experiments are run in MATLAB 2016a on a computer with an Intel Core™ 17-
6700 CPU@3.40GHz, 64-bit Windows 10 operating system. All instance data will be shared on
https://github.com/BUILTNYU upon publication of this study.
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4.1. Numerical verification

Three experiments are conducted here to verify the methodology and to use the numerical
examples to illustrate arguments made earlier in the study. The first and second experiments are
conducted on the same one-vehicle fleet instance shown in Fig. 4. At first we run the algorithm
without any IO filter, and in this case compare the optimality of the algorithm as k is incrementally
increased from 2 to 10 (keeping in mind that there are 90 feasible tours for this instance). The
second experiment adds the 1O filter to demonstrate how the solution changes with the additional
condition for checking tour feasibility. The third experiment verifies that the method can be used
to protect the privacy of multi-vehicle fleet tour data.

Single vehicle fleet — no 10 filter

The real tour is a single vehicle serving three passengers with the pick-up and drop-off
locations shown in Fig. 4(a). The sequence, arrival time at each node, and average travel times are
shown in Fig. 4(b). The vehicle is assumed to have a capacity of three people so that potentially
all three passengers can be picked up before any are dropped off. Dwell time is set to zero.

The proposed algorithm in Fig. 6 is applied to the example for k = 2, ..., 10 and A= 0.1 while
ignoring the IO filter. The entropy value as a function of the k is shown in Fig. 7 alongside the
unconstrained upper bound and the “naive” solution based on sorting the shortest tours and adding
them incrementally. First, we note that indeed, optimality is not guaranteed when k is small, as the
iteration with k = 2 shows the proposed algorithm underperforming the naive solution. This is
likely because there are so many feasible tours that when simply searching the most different tour
from the true tour results in one that doesn’t really perform well under the constrained SP2
compared with the shortest tour. However, as k increases to 10 we see that the proposed algorithm
establishes a firm gap above the naive algorithm. We can further see that, when compared against
the unconstrained upper bound, the proposed algorithm cuts the entropy from the naive algorithm
by half upon reaching k = 10. However, the entropy assumes all tours are realistic.

2.5

NS}

Entropy

0.5

0 1 2 3 4 5 6 7 8 9 10

Number of tours

- ® = Naive ——— Proposed algorithm ++++@ -+« Unconstrained

Fig. 7. Comparison of algorithms against upper bound for ¥ = 1, ...,10.

For the k = 10 case, the ten tours found are shown in Table 2. When ignoring the IO filter, it
is possible that many tours may be generated that would not be deemed “realistic” because the 10
of that tour results in all zeros for the objective coefficients. In this table, 80% of the tours do not
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pass that test. If we take a look at 7, for example, going from node 1 to node 2 and then to node 4
and node 3 is highly illogical in terms of minimizing tour cost, wait time, and ride time.

Based on only the tour diffusions, the anonymity of the true tour (first one) is successfully
maintained since its probability is 0.33 while the highest probability is assigned to r5 (0.34).
Adversaries would not able to identify which tour is the real one. The entropy and upper bound
based on those two tours are E* = 0.631 and £, = 0.693, respectively.

Table 2 Tour-set diffusion and IO parameters without IO filter

k tour 1y o B Y Passenger ride time Xk
1 2 3

1 0-2-1-3-5-4-6-0 1.00 0.25 1.00 13.596 13.262 14.891 0.33
2 0-3-1-4-2-6-5-0 0.00 0.00 0.00 8.062 18.662 84 0.00
3 0-1-2-5-3-4-6-0 0.00 0.25 0.00 34.322 7.28 8.485 0.13
4 0-3-1-6-2-4-5-0 0.00 0.00 0.00 34.786 12.973 16.142 0.03
5 0-1-4-3-2-5-6-0 0.00 0.00 0.00 8.062 7.28 20.28 0.34
6 0-2-3-6-1-5-4-0 0.00 0.00 0.00 11.565 87.838 60.121 0.00
7 0-1-3-4-2-6-5-0 0.00 0.00 0.00 10.214 18.662 28.857 0.04
8 0-3-2-5-1-6-4-0 0.00 0.00 0.00 17.437 9.606 25.322 0.05
9 0-2-1-5-3-4-6-0 0.00 0.00 0.00 82.048 11.232 11.508 0.00
10 0-3-6-1-2-4-5-0 0.00 0.00 0.00 12.639 62.373 8.485 0.08

Single vehicle fleet — 10 filter

Table 3 shows the results of the proposed algorithm with IO filter. Because of the additional
feasibility condition of the 1O filter, the resulting entropy is now E* = 1.317 with upper bound
Eg = 2.079. Even though there are only eight anonymous objects obtained out of 64 objects
selected in total, all the objects are verified by the IO filter, which means they are all realistic.
Based on this outcome, the standard errors are 0.105 for @ and 0.112 for y. Comparing the
diffusions of the real object with IO filter to diffusions without IO filter, it is easy to conclude that
the IO filter is necessary for the proposed algorithm.

Table 3 Tour-set diffusion and 10 parameters with 1O filter

k tour 1y a B Y Passenger ride time XK
1 2 3

1 0-2-1-3-5-4-6-0 1.00 0.25 1.00 13.596 13.262 14.891 0.62
2 0-1-2-5-3-4-6-0 0 0.25 0 34.322 7.28 8.485  0.01
3 0-2-1-5-3-4-6-0 0.48 0.25 1.00 19.394 11.232 11.508 0.09
4 0-1-3-4-6-2-5-0 0.87 0.25 0.01 10.214 7.28 11.508 0.10
5 0-1-2-5-3-4-6-0 0.16 0.25 0.61 25.099 7.28 11.508 0.08
6 0-1-2-4-3-5-6-0 0.34 0.25 1.00 12.639 20.801 10.606  0.06
7 0-1-2-4-5-3-6-0 0.50 0.25 1.00 12.639 12.973 8.485 0.02
8 0-2-1-5-4-3-6-0 0.56 0.25 1.00 11.565 11.232 8.485  0.02
Average 0.80 0.25 0.86 15.779 12.765 12.917

Std. error 0.105 0 0.112 2.190 0.992 0.941

Multi-vehicle fleet

Based on the same network, we run the Fig. 6 algorithm for the multi-vehicle scenario with a
maximum of 6 iterations as the stopping condition. In Fig. 8, there are two vehicles serving three
passengers simultaneously. The green and blue lines represent two observed tours. Travel
sequences, arrival times at each node, and real travel time of each passenger are included in Table
4. Similarly, we run the proposed algorithm with and without 1O filter.
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Fig. 8. Vehicle tours with a fleet of two vehicles.

Table 4 Sequence and arrival time of real tour for two-vehicle fleet example

Node Arrival Time Node Arrival Time
0 0 0 0
1 2.236 2 3
4 10.298 3 7
0 20.298 5 10.605

6 15.605

0 29.059
Passenger True travel time  Passenger True travel time
Passenger 1 true travel time (t; — t;) 8.062 Passenger 2 true travel time 7.605

(ts — t2)

Passenger 3 true travel time 8.605

(te — t3)

Table 5 Tour-set diffusion and 10 parameters without IO filter

k tour set 1, a B Y Passenger ride time X
1 2 3

1 0-2-3-5-6-0 1 0.25 1 8.062 9.606 10.606 0.348
0-1-4-0

2 0-2-5-3-6-0 1 025 02429  8.062 7.28 8.485 0.433
0-1-4-0

3 0-3-1-6-4-0 0 0 0 17.437 7.28 16.142 0.017
0-2-5-0

4 0-1-2-4-5-0 0 0 0 12.639  984.768 8.485 0.053
0-3-6-0

5 0-3-2-6-5-0 0 0 0 8.062 18.662 17.662 0.149
0-1-4-0

From Table 5, we conclude that even if the proposed algorithm without IO generates more
diffused tour sets, most of them are unrealistic. Running the algorithm with IO filter, on the other
hand, generates the k-anonymous dataset more efficiently as shown in Table 6. The standard error
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of y without the IO filter is 0.27. Note that with 2 realistic tours, the unconstrained upper bound
entropy is E, = 0.693 while the solution is E* = 0.687.

Table 6 Tour-set diffusion and 10 parameters with 1O filter

k tour set 1, a p Y Passenger ride time X
1 2 3

1 0-2-3-5-6-0 1 0.25 1 8.062 9.606 10.606 0.794
0-1-4-0

2 0-2-5-3-6-0 1 0.25 0.2429 8.062 7.28 8.485 0.103
0-1-4-0

3 0-1-3-4-6-0 0.479 0.250 1.000 10.214 7.28 11.508 0.103
0-2-5-0

Average 0.95 0.25 0.92 8.283656  9.126844 10.48044

Std. error 0.09 0 0.13 0.377656  0.543116 0.420871

We note that more of the parameters exhibit a standard error with the 1O filter in place. The
upper bound with three tours is E3 = 1.099 while the algorithm produces E* = 0.651. The
experiments demonstrate that the proposed algorithm is effective in generating tours, although
adding the IO filter can lead to poor performing entropy for a given tolerance.

4.2. Case study: Long Island simulated rideshare data

This section describes a real-world case study in Long Island, New York. Since the focus of
this study is on the ability to control for the privacy of a data set, as long as the data is created from
a methodology that is not a direct solution of a DARP it should be sufficiently valid. The data set
is obtained from dynamic routing algorithms from Ma et al. (2019). This data set is used because
the outcome tours are derived in a complex manner: they are the culmination of implementing
policies for dynamic dispatch, routing, idle vehicle rebalancing, and drop-offs and pickups at
transit stations. In addition, the vehicles act as microtransit by providing shared rides for up to 4
passengers at a time.

The policies are operated under a simulated scenario in which the demand data is drawn from
real trip data from the 2010/2011 NYMTC Regional Household Travel Survey (NYMTC, 2018).
The data corresponds to trips made between 7:00 to 9:00 AM for travelers commuting to and from
Long Island to New York City. The rideshare algorithm in the Ma et al. study either drops
passengers off at the final destination or at a LIRR commuter rail station (or vice versa).

There are 1440 vehicle trajectories in total and distances between each two nodes are
calculated using Euclidian distance. Assuming the travel speed in Long Island is 60 km/h (mostly
express road speed in sub-urban area), the travel time between two nodes is calculated with Eq.

(14).

d::
tij=6—l(;,Vi,jEN (14)

We assume that each vehicle tour is operated independently of the other vehicle tours. For
demonstration purposes, we select only thirty tours, as shown in Fig. 9, from the full tour data set
to make it easier to analyze them in detail. There are three depots for the thirty tours, which are
shown as yellow stars in Fig. 9 and different tours are represented in different colors. The following
tests are conducted:

19



e An evaluation of the computation time of the algorithm in the larger scale setting;

e A sensitivity test of the privacy control under different A settings to demonstrate the use of the
mechanism;

e A test demonstrating the effectiveness of the algorithm to adversarial attack and to user queries.

T o ._"’ P Bridgepor

(i)

mw City 1 Mewe Caman Westpert — Fairfield

o
= T Norwalk

e Stamfard

White Plains - T
<3 Greerwich
@

7'

New Rochelle

Yonkers

Jones BEash
Islansd

Fig. 9. Example vehicle tours in Long Island.

4.3. Computation time analysis

In this test we examine the computational performance of the algorithm. In the simulated tour
data, most of tours have two or three passengers. For tours with two passengers, there are only 6
different possible tours to select, which means k < 6. To keep a high computational efficiency,
we define stop criteria for tour data selection: k =5 or |U| = 200. Fig. 10(a) shows the
breakdown of the computation time for one example tour with three passengers.
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Fig. 10. (a) Computation time of an example tour data of three passengers; (b) Computation time of applying IO
filter to one tour data.

In Fig. 10(a), we can see that most of computation time is spent on the IO filter. As the number
of passengers increases, the computation time of applying 1O filter to one tour data object increases
exponentially, as Fig. 10(b) shows. The computation time for five passengers spikes up
considerably, perhaps because of the implicit presence of the 4-passenger capacity.
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Fig. 11 presents the relationship between the number of IO-feasible tour data objects selected
among those identified in SP1. If it takes many tours to be filtered, i.e. selected with SP1, before
reaching the desired k., that is inefficient. Two trends are observed. First, most of the 30 instances
can be diffused to k = 5 I0-feasible tours within 100 identified tours. For these tours, our method
works very efficiently. Second, the rest of tours are unable to reach k = 5 [O-feasible tours even
after identifying 200 tours with SP1. As shown in Fig. 11, this subset obtains two, three or four
tours efficiently but becomes inefficient beyond that. We assume that for these tours, they only
have a limited number of feasible tour data objects and it’s necessary to set a stop criterion for the
tour IO filtering in consideration of computational efficiency.
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Fig. 11. Relationship between number of I0-feasible tour data objects selected from those filtered.

4.4. Results analysis

Implementing the k-anonymous tour diffusion method on the 30 true tour data records leads
to a diffused dataset. The I0-feasible 5-anonymous diffusion for one sample record (identified as
1-2-4-3-5-6) is shown in Table 7 and the diffused tours are plotted in Fig. 12. The yellow star is
the depot, where vehicle starts and ends tour. The red tour is the real tour. From Table 7, we can
see that as A changes from 0.2 to 0.3, the probabilities assigned to each synthetic tour becomes
more diffused, resulting in an increase in entropy from 1.463 to 1.593.

Table 7 Example of tour diffusion with different delta

number tours delta=0.2 delta=0.3 o B Y
diffusion diffusion
1 1-2-4-3-5-6 0.415 0.209 1 1 1
2 1-4-2-5-3-6 0.138 0.220 1 0 0.1864
3 1-4-2-3-5-6 0.217 0.220 1 0 1
4 3-6-1-4-2-5 0.137 0.220 1 0 0.167
5 1-3-2-6-5-4 0.093 0.131 0.0415 0 1
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Fig. 12. An example of tour and diffusions.

To demonstrate the standard error that arises from these average values, suppose an adversary
runs the query ten times for one of these records. Each time, they run IO on the drawn results. The
result of 1O inference is shown in Table 8. The standard errors over these 10 queries under different
values of A are shown at the bottom of the table. The standard errors increase when A increases.
This empirically demonstrates how the privacy control can increase the standard error, and how
this controlled by the degree of A in passenger ride time accuracy. Still, this result alone does not
prove there is an explicit equivalency or relationship; further research is needed to study this

relationship between the entropy maximization and the IO error maximization.

Table 8 Average 10 parameters of ten samples with different delta

A=0.2 A=03

a B 14 a B 14

1 0.35 0 1 0.35 0 1

2 0.35 0 1 0.35 0 1

3 0.35 0 1 0.35 0 1

4 0.35 0 1 0.35 0 1

S 0.35 0 1 1 0 1
6 1 0 1 1 0 0.77

7 0.35 0 1 0.35 0 1

8 0.35 0 1 0.35 0 1

9 0.35 0 1 1 0 1
10 1 0 0.77 1 0 0.86
Average 0.48 0 0.98 0.61 0 0.96
Std. error 0.28 0 0.07 0.34 0 0.08




Now suppose a user queries the dataset to access the 30 records. The privacy control
mechanism would randomly draw from the diffused tours to return one synthesized set of 30
records. Suppose the user runs the query ten times and average the passenger ride time across the
30 synthetic records in each query. The Fig. 13 presents the passenger ride time accuracy under
different values of A. The average passenger ride times under both A = 0.2 and A = 0.3 are within
the error threshold. Comparing ride times under A = 0.2 with A = 0.3, we find that ride times
under A = 0.2 are closer to the real travel time, like the 3™ object and 22" object. Table 9
summarizes the averages over the 10 queries and shows how the standard error increases with A.
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Fig. 13 Average passenger ride times of all 30 objects in one sample under different 4.

Table 9 Average passenger travel times of ten samples of one object with different 4

Sample A=0.2 A=0.3
1 3.90 3.90
2 3.90 3.90
3 3.90 3.90
4 3.90 2.75
] 3.90 3.90
6 3.90 2.75
7 2.11 2.11
8 3.90 3.90
9 2.75 2.75
10 3.90 3.90
Average 3.61 3.37
Std. error 0.64 0.70
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5. Conclusion and future work

Ultimately, operator data is exposed by virtue of operating in a public setting. The advantage
of not making the data automatically public on an open data exchange is that building up
adversarial databases take enough time and resources that an innovating company that
continuously improves and modifies their algorithms should be able to nullify the value of older
collected data. The key point is that the same network-oriented data set (e.g. vehicle route data)
shown from different perspectives (vehicle locations, routes, pickups, etc.) can have different risks
for adversarial attacks and it is a nontrivial problem to quantify these risks. Our study opens the
door to studying the privacy control of network-oriented data sharing.

We propose a first k-anonymous diffusion mechanism to control the privacy of operators’
network-oriented data to address the increasingly urgent problem of data sharing between private
operators and public agencies. A heuristic algorithm that is shown to be exact when applied to the
full enumerated data set has several applications in reality, including idle vehicle assignment
decision, transaction timestamp, vehicle tour decision, etc. To summarize, we made the following
contributions to the literature:

e Proposed an algorithm to generate synthetic network data objects (tours) such that accuracy of
certain desired performance measures of the data (e.g. passenger ride time) can be controlled
for (generally a heuristic, but exact when applied with a full enumerated data object set);

e Proved the sublinear convergence rate of the algorithm with measurable upper bound gap;

e Numerically investigated the effectiveness of applying an IO filter to ensure only “realistic”
data objects are generated, resulting in higher standard errors for reverse engineering attempts,
but at a significant computational cost;

e Numerically verified the applicability of the algorithm to multi-vehicle fleet tour data
(although it is shown to have more significant performance issues in identifying realistic tours
with IO filter);

e Conducted a case study using realistic tour data from a Long Island travel study by Ma et al.
(2018) and found:

o A threshold in number of passengers for the tour where computational performance
jumps;

o Under certain stopping conditions the diffused data can be used to synthesize query
responses that have A-controllable standard errors for [0-reversed parameters (for
adversaries) and average passenger ride times (for users).

In the future, other applications of the k-anonymous diffusion model should be tested and
verified. For example, we can study k-anonymous idle vehicle assignment diffusion algorithms to
preserve the privacy of operators’ vehicle dispatching strategies. Key points would be the design
of SP2, how to select data objects to be diffused with the real data object in the direction of
maximizing anonymity, and the definition of IO filter. A better search routine that more directly
incorporates the IO filter as an explicit constraint or objective would likely lead to improved
computational performance of the algorithm. For example, multi-armed bandit algorithms
incorporate a nonlinear objective that maximizes the L,-norm of solutions found from prior
solutions (see Zhou et al., 2019), which may be a more effective formulation for SPI1.
Alternatively, Bell et al. (1993) proposed a column generation approach that maximize entropy;
this approach might be adapted to the original formulation of Eq. (2) to implicitly enumerate
consistent routes. The 10 constraints, i.e. the duality conditions in Eq. (1), would be modified to
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be incorporated directly into the formulation of Eq. (2). These efforts will be investigated in future
research.

A prototype privacy mechanism applied to a real database of operator would be useful for
practitioners. The error tolerance A is a required variable from public agencies to ensure the
accuracy of shared data. This may constrain the efficiency of privacy preservation methods.
Another idea is designing the A according to what kind of learning the public agencies are looking
for. The level of tolerance may be subject to many factors, like size of market, the threat level over
time, etc. Having designed a privacy control mechanism, we can embed this into a network design
problem so that, in the same spirit of Dong et al. (2015), we can simultaneously design a network
and the tolerance A by endogenously capturing the effect on the data quality needed for calibrating
the parameters. Blockchain designs can be considered for such data exchanges as well.

In this study we chose the most complex type of network data object to test our mechanism
on (NP-hard vehicle routing problems with integer programming inverse optimization) to get a
sense of the computational boundaries. There are also many other network data objects that can be
solved more efficiently without resorting to NP-hard problems or integer programming-based
inverse optimization (e.g. shortest paths, assignment, passenger pickup/drop-off locations, fares
paid, group sizes, etc.). In future research more efficient solution algorithms will be studied for
this type of data object, but as other simpler data objects are explored we should likely see the
computational burden taper down. For example, inverse shortest path problems can be solved very
efficiently (Burton and Toint, 1992) so the hurdle that we are experiencing in the computational
cost observed in Fig. 10 should subside significantly for that type of data.
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