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ABSTRACT 

 

Traditionally vehicles act only as servers in transporting passengers and goods. With 

increasing sensor equipment in vehicles, including automated vehicles, there is a need to 

test algorithms that consider the dual role of vehicles as both servers and sensors. We 

formulate a sequential route selection problem as a shortest path problem with on-time 

arrival reliability under a multi-armed bandit setting, a type of reinforcement learning 

model. A decision maker has to sequentially make a finite set of decisions on departure 

time and path between a fixed origin-destination pair such that on-time reliability is 

maximized while travel time is minimized. The Upper Confidence Bound algorithm is 

extended to handle this problem. We conduct several tests. First, simulated data 

successfully verifies the method. We then construct a real-data New York City scenario of 

a hotel shuttle service from midtown Manhattan providing hourly access to the John F 

Kennedy International Airport. Results suggest that route selection with multi-armed 

bandit learning algorithms can be effective but neglecting passenger scheduling constraints 

can negatively impact on-time arrival reliability by as much as 4.8% and combined 

reliability and travel time by 66.1%.  
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1. INTRODUCTION 

 

Route selection under uncertainty involves selecting a route to get from an origin to a 

destination with incomplete information about the underlying network. It is a well-studied 

topic with an abundant literature (e.g. (1)) as travel times can be highly stochastic due to 

random fluctuations in travel demand and supply degradation (2). A deeper review is 

provided in Section 2. A subset of this literature deals with the sequential route selection 

problem, where routes are selected repeatedly between a common origin and destination 

and random travel time outcomes are observed. Applications of this problem can be found 

in long haul truck routing, flight navigation between designated airports, emergency 

medical services, and local airport shuttle services. 

In the age of automation and ubiquitous sensors (3), mobile servers also act as sensors: 

vehicles can be equipped to provide operators with such information on their routes as 

travel time, local traffic densities, nearby pedestrians, local weather conditions, emergence 

of incidents, etc. Services like Waze already make use of travelers as sensors for updating 

network state information while most operator fleets (truck, transit, urban service vehicles, 

etc.) are equipped with devices like GPS and video equipment to provide information on 

the vehicle’s traversed route. In most cases, fleet operators may just route vehicles to 

optimize service. However, if uncertainty in the network traffic state is significant or costly 

to obtain from external sources, there is value to using the vehicles as sensors as well. An 

example is to deploy a vehicle to deviate from a de facto route to gather more intelligence 

to be shared with subsequent trips serving that origin/destination (OD) pair, which some 

fleets already do if a traffic incident occurs. 

The dual role of vehicles as both servers and sensors is especially relevant with 

automated vehicle (AV) fleets since much more information is continuously obtained as 

shown in Figure 1. AVs are rapidly becoming a reality and hold great promise for 

increasing efficiency and safety (4). A particularly attractive operational paradigm involves 

routing shared AV (SAV) fleets to provide service on-demand to customers. In recent years, 

there has been a surge of interest in testing such services like Uber in the U.S. and 

nuTonomy in Singapore (5 – 6), and more recently with deployments in Arizona, California, 

and Texas. There is clearly a need for algorithms to select routes for vehicles acting as both 

servers and sensors making repeated OD trips. 

The decision of whether a vehicle should act more as a server or a sensor can be cast 

as a classic trade-off in reinforcement learning (9). A decision-maker makes a finite 

sequence (or an infinite sequence with nonstationary state variables) of repeated decisions 

where the underlying distribution of the reward for different options is initially unknown. 

Choosing an option is equivalent to sampling the reward, but if the reward is low, it is an 

opportunity cost if there is another option in which the expected reward is higher. This 

opportunity cost is measured as regret. The classic trade-off is whether to “exploit” known 

options or to “explore” other options to improve the potential for better exploitation in 

future decisions. The more the decision-maker samples from an alternative, the more they 

will learn the parameters of the distribution. On the other hand, if one alternative appears 

to be significantly better than the other after a few samples, it may make more sense to 

allocate the remaining choices to the first alternative. In a finite sequence, there is typically 

more exploration in the beginning and more exploitation later. Algorithms designed under 

such a setting are called multi-armed bandit (MAB) algorithms (10). 
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 There are many different types of MAB algorithms. For the sake of brevity, we focus 

on the ones that have been developed for sequential path selection (e.g. (11 – 13)). These 

have been primarily applied to non-passenger networks, such as transmission networks, 

where only the shortest travel cost is desired over multiple samples.  

 Our contribution to this literature is based on the recognition that design of path 

selection algorithms for SAV fleets and urban service fleets handling a given OD pair needs 

to consider the schedule constraints of passengers and goods. Passengers care not only 

about the shortest travel time, but they also care about on-time arrival reliability and 

minimized schedule delay (1, 14 – 17). The empirical studies among this literature have 

found that travelers do place a fairly high value of time to schedule delay. For example, 

Small (15) found that work commuters delayed one minute would be equivalent to 2 to 11 

minutes of travel time, depending on how far it is beyond the desired arrival time. Clearly, 

any MAB algorithm applied to finding shortest paths and learning about the paths should 

also consider the passenger objective of on-time arrival, especially when employed in a 

dynamic route choice setting with explicit departure time consideration. If they do not, how 

much worse can the results be? That is the research question we seek to address empirically 

in our experiment using real data.  

 We formulated and studied a Multi-Armed Bandit On-Time Arrival Problem 

(MABOTAP) that considers the dual role of vehicles as servers and sensors (of which 

SAVs are a major target technology) in repeated trips serving schedule-constrained 

passengers for a fixed OD pair. We empirically evaluated an algorithm customized to solve 

this problem. We designed a controlled experiment using real data collected from 504 real-

time Google queries made over a 14-hour period (169 observations/path) to see how they 

would fare against conventional MAB algorithms based on shortest travel time only.  

 

2. RELATED WORK 

 

The shortest path problem on probabilistic graphs has been studied extensively under 

different considerations. Probabilistic path queries using weights as random variable 

following different distributions was first introduced by Frank (18). A Monte Carlo 

simulation was proposed to approximate the distribution of the shortest path. Loui (19) 

applied a utility function to define the preference among paths. More recently, adaptive 

routing has been studied as well. In these cases, decisions are made progressively within 

one trip to select which remaining links or subroutes to take based on updated information 

(e.g. (20 – 21)). 

In a priori route selection problems under uncertainty, route optimization decisions 

that also consider optimizing learning efficiency for subsequent route selection decisions 

are multi-armed bandit problems. In the classical multi-armed bandit problem (MAB), a 

decision-maker must choose an arm from a list of arms to play. After playing an arm, the 

decision maker realizes a reward whose distribution is unknown. The objective is to 

maximize their total accumulated reward over a sequence of trials. 

Thompson (22) first proposed an algorithm to address the MAB problem by playing 

the arm with the highest possibility of being the best arm. A widely used MAB algorithm 
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is the ε-greedy algorithm due to its simplicity. In each round 𝑡, the algorithm chooses with 

probability 1 − 𝜀 the arm with the highest empirical mean and randomly selects any other 

arm with probability 𝜀 (23). Agrawal et al. (24) proved that the regret in that algorithm 

increases at a logarithmic rate as a worst case bound. Another popular algorithm is the 

upper confidence bound (UCB) method proposed by Auer et al. (25). UCB also achieves 

logarithmic regret with bounded support while satisfying the exploration and exploitation 

dilemma. 

In recent years, bandit algorithms have gained increasing attention in solving shortest 

path problems. Each path is modeled as an arm. In the classical MAB setting, the arm 

rewards may be independent of each other (26). In the shortest path MAB, the arms are 

dependent through common links. Ignoring the dependence has led to poor regret 

performance. Table 1 summarizes some of the major studies that have applied MAB to 

path selection problems. We note that none of these studies have considered passenger on-

time arrival reliability as a measure for quantifying regret, nor have they considered joint 

route-departure time choice.  

Signal routing has been studied extensively using multi-armed bandit algorithms as 

shown in Table 1. Both signal routing and vehicle route selection aim to reach a destination 

with highest payoff. However, the amount of information that a signal can send back is 

limited. In vehicle route selection, with improving emerging technologies like the 5G 

network and ubiquitous sensors, AVs and connected vehicles can send back much more 

information. 

Shortest path problems with on-time reliability find paths that maximize the 

probability that the path length does not exceed a specified threshold (30 – 33). It is known 

as the “stochastic on-time arrival problem” (SOTA). Based on the concept of on-time 

arrival, many algorithms have been developed to find reliable paths in a stochastic network. 

Chen and Ji (33) proposed solving the on-time arrival problem by using a simulation-based 

genetic algorithm. Nie and Wu (1) introduced a label-correcting algorithm to find the most 

reliable paths by generating all non-dominated paths under the first-order stochastic 

dominance (FSD). A case study was conducted in Chicago (34) and heterogeneous risk-

taking behavior was considered in Wu and Nie (35). Ji et al. (36) proposed an 𝛼-reliable 

path finding method for networks with correlated stochastic link costs. Chen et al. (37 – 

39) introduced new algorithms based on dominance conditions to find reliable shortest 

paths under various correlated or time-dependent scenarios. These studies demonstrate the 

need to consider path selection under uncertainty with on-time arrival reliability. However, 

none of these cited studies consider joint learning and optimization in a sequential route 

selection setting.  

Our work differs as follows: we used MAB algorithms to find the most reliable paths 

given a certain threshold. Previous reliable path finding algorithms have focused only in 

finding the most reliable path, while using MAB we can add the benefit of exploration 

when routing a vehicle over the same set of route alternatives (e.g. a shuttle service from a 

hotel to the airport, or flexible route microtransit service) over multiple trials.  

To illustrate the difference from using only shortest path, consider an example where 

there are two parallel paths 𝑃1 and 𝑃2 between A and B along with two departure times 𝑡1 

and 𝑡2, where 𝑡1 > 𝑡2. These departure times are relative to the desired arrival time. There 

are four alternatives to choose from: 𝑃1,𝑡1 , 𝑃1,𝑡2 , 𝑃2,𝑡1 , 𝑃2,𝑡2 , with some unobserved 

distribution for each. The left side of Figure 2 shows how the distributions for travel time 
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can differ from the distributions of on-time arrival reliability, while the right-hand side 

shows how the on-time reliability distributions as estimated at the nth trial may still differ 

from the true distributions.   

As illustrated in Figure 2, at a certain iteration 𝑛 one alternative may seem to be best 

(𝑃1,𝑡2) but with enough exploration one will realize that another (𝑃1,𝑡1) is better. There is a 

need to incorporate the on-time reliability factors into the reward function because the 

distribution of on-time arrivals is different at different departures. To our best knowledge, 

this problem is not addressed in previous bandit literature.  

 

3. PROPOSED METHODOLOGY 

 

3.1. Preliminaries 

𝐺(𝑉, 𝐸, 𝑇) is a simple directed probabilistic graph. 𝑉 is the set of vertices, 𝐸 is the set 

of edges, and 𝑇 is the period/trial of interest. This is the typical setup of a road network 

where the vertices are intersections and edges are roads between intersections. The period 

of interest is defined as 𝑛𝛥, where 𝑛 is an integer and 𝛥 is the length of a time interval. 

Within a time interval, there are multiple departure times (DTs) 𝜏 ∈ {1, … , 𝑠}. A trip is 

performed by selecting both a path 𝑃 ∈ {1,2, … , 𝑘}, which is a sequence of time-dependent 

links connecting an OD pair, and a departure time, resulting in 𝑘𝑠 different path-time 

choices. This is illustrated in Figure 3 where there are three paths and three departure times 

(DTs) with a single preferred arrival time (PA). Depending on departure time, a path might 

be better or worse than another path in travel time and in terms of on-time arrival. This 

problem can be naturally cast as a sequential decision problem over multiple trials; e.g. a 

hotel shuttle to the airport departing each hour needs to decide both departure time and 

which route to take. While departure time is conventionally a continuous variable, fleet 

operations may schedule departures so using discrete time options makes sense.  

The traveler conducts multiple trials of route selection and observes only the costs 

corresponding to the chosen paths in those trials. We define the arms as 𝑎𝑘,𝑠  ∈
{(1,1),… , (𝑘, 𝑠)}. At each trial 𝑡 = 1,… , 𝑛, for a corresponding preferred arrival time 𝑃𝐴𝑡 
the traveler picks an arm 𝑎𝑘,𝑠  from a subset of all possible path-times 𝑃𝑡,𝑘,𝑠  where the 

departure times relative to the 𝑃𝐴𝑡 are fixed across trials. For example, a trial may occur 

with preferred arrival times at the start of every hour, and the arms may be defined as a set 

of paths that depart 70 minutes, 60 minutes, and 50 minutes prior to that preferred arrival 

time. The observed choice at each trial 𝑡 is denoted as 𝐼𝑡 ∈ 𝑃𝑡,𝑘,𝑠 with associated cost 𝐶𝐼𝑡. 

To facilitate performance analysis in the bandit setting, we define the reward as 𝑔𝐼𝑡 = 1/𝐶𝐼𝑡 

for each path-time choice 𝐼𝑡 made. This conversion is used as most bandit algorithms are 

based on maximizing the reward (25). 

 

3.2. Multi-Armed Bandit On-Time Arrival Problem (MABOTAP) 

 We introduce the Multi-Armed Bandit On-Time Arrival Problem (MABOTAP). The 

objective is to identify the arm with both the shortest travel time and most likely to arrive 

on time. In the traditional MAB road network setting, the objective is to find the arm 

leading to the largest reward 𝐺𝐼𝑡 , where the reward is a function of travel time (40). Here 

we focus on the problem of finding the arm the minimizes the travel time and maximizes 

the on-time arrival reliability of the paths chosen over multiple trials.  

To consider the early arrival time and later arrival time, we adopt Eq. (1) (see (41)). 
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𝐶𝐼𝑡 = 𝑡𝑡𝐼𝑡 + 𝛼𝐸 + 𝛽𝐷 (1) 

Where 

𝐶𝐼𝑡 is the realized weighted cost for path-time 𝐼𝑡 

𝑡𝑡𝐼𝑡  (minutes) is the travel time of chosen path-time 𝐼𝑡  

𝜏𝐼𝑡 (00:00) is the departure time of chosen path-time 𝐼𝑡  

𝐸 is early arrival time defined as 𝐸 = {
𝜏𝐼𝑡 + 𝑡𝑡𝐼𝑡 − 𝑃𝐴, 𝑖𝑓 (𝑃𝐴𝑡 − 𝜏𝐼𝑡 − 𝑡𝑡𝐼𝑡)  ≥ 0 

0,   𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
 

𝐷 is the late arrival time defined as 𝐷 = {
(𝑃𝐴𝑡 − 𝜏𝐼𝑡 − 𝑡𝑡𝐼𝑡 , 𝑖𝑓 (𝑃𝐴𝑡 − 𝜏𝐼𝑡 − 𝑡𝑡𝐼𝑡) < 0 

0,   𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
 

𝛼 is the penalty per unit of time for arriving early 

𝛽 is the penalty per unit of time for arriving late 

𝑃𝐴𝑡 (00:00) is the preferred arrival time for the user in trial 𝑡  
 

To measure the on-time reliability of different departure times of the paths, Pu (42) 

uses a reliability measure based on failure rate on road networks. However, Pu assumes a 

known distribution to find the failure rate while in our case the distributions of the path 

departure times are unknown. As such we measure the success and failure of arriving on 

time empirically as 𝑄𝑡 shown in Eq. (2). 

 

𝑄𝑡,𝑘,𝑠 =
𝑠𝑡,𝑘,𝑠

𝑠𝑡,𝑘,𝑠 + 𝑓𝑡,𝑘,𝑠
 (2) 

 

where 

𝑠𝑡,𝑘,𝑠 is the number of counts of on-time arrivals after trial 𝑡 for arm 𝑎𝑘,𝑠, which is 

updated each trial as Eq. (3). 

 

𝑠𝑡,𝑘,𝑠 = {
 𝑠𝑡−1,𝑘,𝑠 + 1, 𝑖𝑓 𝑃𝑡,𝑘,𝑠 = 𝐼𝑡 and (𝑃𝐴𝑡 − 𝜏𝐼𝑡 − 𝑡𝑡𝐼𝑡)  ≥ 0

𝑠𝑡−1,𝑘,𝑠,   𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (3) 

 

𝑓𝑡,𝑘,𝑠 is the number of counts of late arrivals after trial 𝑡 for arm 𝑎𝑘,𝑠, which is updated 

each trial as Eq. (4). 

 

𝑓𝑡,𝑘,𝑠 = {
 𝑓𝑡−1,𝑘,𝑠 + 1, 𝑖𝑓 𝑃𝑡,𝑘,𝑠 = 𝐼𝑡 and (𝑃𝐴𝑡 − 𝜏𝐼𝑡 − 𝑡𝑡𝐼𝑡) < 0

𝑓𝑡−1,𝑘,𝑠,   𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (4) 

 

Eq. (2) for the on-time reliability measure decreases if a late arrival is recorded at time 𝑡 
and 𝑎𝑘,𝑠  is chosen. For the unchosen arms, 𝑄𝑡,𝑘,𝑠  stays the same because no new 

information is collected about the unchosen paths and the on-time reliability measure is not 

updated.  
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3.3. Proposed On-Time UCB Algorithm 

We introduce an on-time reliability bandit algorithm called On-Time Confidence 

Bound (On-Time UCB) algorithm to achieve regret minimization of minimum travel time 

while achieving a good on-time reliability. Our algorithm uses the padding function derived 

from the original UCB (25) which is the logarithmic part of Eq. (5). This function is proven 

to help achieve a regret bounded to log order. The proposed Algorithm 1 is presented here. 

 

Algorithm 1: On-time Upper Confidence Bound Algorithm 

For each arm 𝑘 = 1,…𝑁 and 𝜏 ∈ {1,… , 𝑠} 
Play each arm at least once 

 Compute 𝜌𝑡−1,𝑘,𝑠 for all arms 𝑘 = 1,…𝑁 and 𝜏 ∈ {1,… , 𝑠}   
For each 𝑡 =  𝑁 + 1, 𝑁 + 2…n Do 

 Play arm 𝐼𝑡 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑘,𝑠 𝜌𝑡−1,𝑘,𝑠  
 Receive reward 𝑔𝑡,𝑘,𝑠 based on Eq. (1) 

 Update 𝑄𝑡,𝑘,𝑠 using Eq. (2) 

Update 𝜌𝑡,𝑘,𝑠 using Eq. (5)  

Update 𝐺𝑡,𝑘,𝑠 using Eq. (6) 

 Update 𝑇𝑡,𝑘,𝑠 = 𝑇𝑡−1,𝑘,𝑠 + 1 

End 

Compute regret using Eq. (7) 

 

The reliability score is shown in Eq. (5).  

𝜌𝑡,𝑘,𝑠 =

{
 

 
𝑄𝑡,𝑘,𝑠 ∗ 𝐺𝑡,𝑘,𝑠 + √

2log (𝑛)

𝑇𝑡,𝑘,𝑠
, 𝑖𝑓 𝑃𝑡,𝑘,𝑠  =  𝐼𝑡

𝜌𝑡−1,𝑘,𝑠  , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (5) 

 

𝑇𝑡,𝑘,𝑠 is the cumulative number of times arm 𝑎𝑘,𝑠 is chosen up through trial t.  𝐺𝑡,𝑘,𝑠 is the 

mean reward of arm 𝑎𝑘,𝑠 based on all trials up to t and is updated each trial using Eq. (6). 

 

𝐺𝑡,𝑘,𝑠  = {
𝑔𝑡−1,𝑘,𝑠 + 

1

𝑇𝑡,𝑘,𝑠
(𝑔𝑡,𝑘,𝑠 − 𝑔𝑡−1,𝑘,𝑠), 𝑖𝑓 𝑃𝑡,𝑘,𝑠  =  𝐼𝑡

𝑔𝑡−1,𝑘,𝑠 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 
(6) 

 

The variable 𝑔𝑡,𝑘,𝑠 = 1/𝐶𝐼𝑡  is the reward received from choosing 𝐼𝑡  and 𝐶𝐼𝑡  is obtained 

from Eq. (1). To compute the regret, we compare the cumulative reward of the action taken 

at each time 𝑡 with the overall best reward observed thus far, which is summarized in Eq. 

(7). 

𝑅 =  𝑛𝐺∗𝑡,𝑘,𝑠 −∑𝐺𝑡,𝑘,𝑠

𝑛

𝑡=1

 (7) 

 

where 𝐺∗ denotes the true optimal mean reward of all observed actions at all times (23). 

This optimal mean reward is obtained by assuming that in a hypothetical scenario, we can 
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pull each arm 𝑎𝑘,𝑠 at each 𝑡. After 𝑛, we observe the mean reward of all arms and use that 

as the true optimal mean reward.  

   

3.4. Numerical Example 

 We illustrate three scenarios using our proposed methodology. We randomly generated 

3 paths with normally distributed travel times (in which we hide the parameters from the 

algorithm) for 𝑛 = 200  rounds in each scenario. Each interval 𝑡  is 5 minutes. The 

characteristics in each scenario are described in Table 2.  

In this example we have 9 arms in our MABOTAP setting at each trial 𝑡. The traveler 

is faced with the decision to choose between three paths at three different departure times.  

For example, if 𝑡 = 1 and a traveler’s preferred arrival time (𝑃𝐴1) is 8:45, then the choice 

may be to depart between 8:00, 8:05 or 8:10 as displayed in Figure 4. At 𝑡 = 2, 𝑃𝐴2 is 8:50 

and the departure time choices are 8:05, 8:10 or 8:15 for each path.  

What should we expect to see? First, all the scenarios should see the average regret 

reduce with the number of trials until some bottom range. Second, the algorithm should 

sift through the options over time to eventually prefer the option that has the best combined 

minimum travel time (option A) and on-time arrival reliability (DT1 options). Third, there 

should be more fluctuation in the learning algorithm when standard deviation is higher (for 

example, comparing Scenario 3 to Scenario 2). Lastly, running the learning algorithm 

assuming only shortest path and ignoring on-time reliability should end up having a worst 

regret when that regret is measured in terms of on-time reliability as well (Eq. (6)).  

For the scenarios shown in Table 2, we used our methodology to compute the regret 

and compared with the algorithm presented by György et al. (12), which is one of the most 

famous algorithms on selecting shortest path in a bandit setting. The results of the two 

different regrets are displayed in Figure 5.  

The numerical results of the different scenarios are shown in Table 3. After running n 

iterations, the On-Time UCB algorithm performs better in terms of regret, empirical mean 

rewards and on-time arrivals. The regret difference between the SP and On-Time UCB was 

quite significant in Scenario 1, which can be explained by the higher variance in the 

rewards and because the proposed algorithm is more efficient in selecting more reliable 

arms. In Scenarios 2 and 3, when the variation between arms increase together uniformly, 

the differences in regret between the two algorithms are smaller. This experiment illustrates 

the effectiveness of the proposed algorithm in capturing on-time reliability. 

 

 

4. EMPIRICAL EXPERIMENTATION 

 

4.1. Experiment design and data 

In this section, we empirically analyze the performance of our method. A case study 

in New York City is presented to validate our methodology. We setup the experiment to 

represent an artificial intelligence used in navigating a hotel shuttle from midtown 

Manhattan to the JFK International Airport. Real time route travel time data was collected 

using Google Maps API. The area of analysis is limited to a small section of New York 

City. We collected travel times of edges between the center of New York City and JFK 

Airport because we consider these as origin and destination respectively. The top 3 paths 

are shown in Figure 6. 
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We collected data for 30 days over 5-minute intervals from 7 am to 9 am.  We chose 

a typical weekday (September 21st, 2017) among this data set to test the algorithm. We ran 

the SP and On-Time UCB algorithms on the data in a simulated online setting. For this 

experiment we had 𝑛 = 169 intervals. We used 9 arms as in the previous example and the 

first iteration 𝑡 = 1 was set to a 𝑃𝐴1 = 8: 05 𝑎𝑚 with departure times of each path as 

7:00am, 7:05am or 7:10am. The Google data is highly stochastic with variation in standard 

deviation and distribution throughout the day as shown in Figure 7. The data will be made 

available on https://github.com/BUILTNYU upon publication of this work. 

 

 

4.2. Results 

The average regret curve is shown in Figure 8. The On-Time UCB outperforms SP in 

terms of regret difference shown in Figure 8 and in terms of on-time arrivals and mean 

rewards in Table 4. The on-time arrivals between the two algorithms are very close because 

in some cases the traveler will arrive late no matter which path and departure times they 

choose. As shown in the travel time distribution of paths in Figure 7, there were about 30 

iterations (~18% of iterations) which produced late arrivals. This decreased the on-time 

arrivals of our On-Time UCB.  

The results suggest that multi-armed bandit algorithms can be effective in learning 

which routes to select but applying them without considering behavioral preferences of 

travelers can be counterproductive. Testing the algorithms on the real data experiment 

shows that the proposed algorithm was able to improve on the arrival time percentage by 

4.8% and total reward value by 66.1%.  

 

 

5. CONCLUSION 

 

We studied the use of bandit algorithms to solve sequential on-time arrival route 

selection problems. One primary application is the operation of autonomous vehicle fleets. 

Under the MABOTAP setting, a traveler must choose a path that maximizes their on-time 

arrival reliability while minimizing their expected travel time. An Upper Confidence 

Bound algorithm from Auer et al. (25) was extended to incorporate the on-time arrival 

criterion. Reward and regret measures appropriate to this criterion are introduced to guide 

the algorithm.  

 We conducted two sets of experiments. The first were computational experiments used 

on simulated data to demonstrate and verify the algorithm. The second set of experiments 

were performed using real time Google Maps API queries for three routes from a hotel in 

midtown Manhattan to the JFK International Airport. There are 169 intervals with three 

routes queried, resulting in 507 different route query observations used. We simulated an 

online environment of observing these routes based on applying a benchmark MAB 

algorithm assuming only shortest path and one using our proposed algorithm. The 

experimental results showed operating MAB algorithms using only shortest path without 

considering traveler scheduling preferences could negatively impact the on-time arrival 

probability (4.8% in our experiments) and total reward considering travel time as well 

(66.1%).  

https://github.com/BUILTNYU
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For future work, we will explore other bandit algorithms that can better address the 

stochasticity in road networks. Testing the algorithm in field settings would enable a fleet 

of AVs to effectively learn the road conditions used. MAB learning for routing to serve 

customers using vehicle routing problems can be another extension.  
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Figure 8. Mean regret accrued throughout the day based on proposed and benchmark algorithms. 
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Table 1. Summary of studies involving MAB applications for path selection 

 

Author(s)        Applications    Objective 

 

Awerbuch & Kleinberg (11)    Network signal routing  Shortest Path Selection 

Chen et al. (33)        

György et al. (12) 

Liu and Zhao (13) 

Zou et al. (27) 

Talebi et al (28) 

Chorus (29)   Traffic Route Planning  Shortest Path Selection 

Ramos et al. (40)        
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Table 2. Synthetic data scenarios used to test proposed algorithm  

Preferred 

Arrival Time 

𝑃𝐴𝑡 (00:00) 

Departure Times Mean 

(minutes) 

Scenario Standard 

Deviation 

(%mean) 

On Time 

Probability 

DT1 DT2 DT3 

𝑃𝐴1 = 08: 45 

am 

𝑃𝐴2 = 08: 50 

am 

 

… 

 

 

𝑃𝐴𝑛=200 =
01: 20 am 

  
  
  
  
  
  
  

𝑡=1,  𝐷𝑇1 = 8: 00 am, 

𝐷𝑇2 = 8: 05 am, 

𝐷𝑇3 = 8: 10 am;  

A. 30 

B. 35 

C. 33 

1 

A. 33 0.94 0.84 0.69 

B. 17 0.95 0.80 0.50 

C. 24 0.94 0.81 0.60 

 𝑡=2, 𝐷𝑇1 = 8: 05 am, 

𝐷𝑇2 = 8: 10 am, 

𝐷𝑇3 = 8: 15 am;  

2 

A. 10 1.00 0.99 0.95 

  

B. 10 

  

0.99 

  

0.92 

  

0.50 

  

… 

C.10 0.99 0.98 0.73 

𝑡=n,  𝐷𝑇1 = 00: 45 am, 

𝐷𝑇2 = 00: 50 am, 

𝐷𝑇2 = 00: 55 am; 

3 

A. 20 0.99 0.95 0.80 

B. 20 0.92 0.76 0.50 

C. 20 0.97 0.86 0.62 
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Table 3. Numerical results after running the 3 scenarios. 

Scenario SP On time 

Arrivals 

On-Time UCB 

On-time Arrivals 

SP 

Mean rewards 

On-Time UCB  

Mean rewards 

1 47% 75% 0.0347 0.0394 

2 87% 91% 0.0325 0.0351 

3 70% 77% 0.0305 0.0320 
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Table 4. Numerical results of the algorithms 

Scenario SP On time 

Arrivals 

On-Time UCB 

On-time Arrivals 

SP 

Mean rewards 

On-Time UCB  

Mean rewards 

Google data (Sept 

21, 2018) 

62% 65% 0.180 0.299 
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