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ABSTRACT

Traditionally vehicles act only as servers in transporting passengers and goods. With
increasing sensor equipment in vehicles, including automated vehicles, there is a need to
test algorithms that consider the dual role of vehicles as both servers and sensors. We
formulate a sequential route selection problem as a shortest path problem with on-time
arrival reliability under a multi-armed bandit setting, a type of reinforcement learning
model. A decision maker has to sequentially make a finite set of decisions on departure
time and path between a fixed origin-destination pair such that on-time reliability is
maximized while travel time is minimized. The Upper Confidence Bound algorithm is
extended to handle this problem. We conduct several tests. First, simulated data
successfully verifies the method. We then construct a real-data New York City scenario of
a hotel shuttle service from midtown Manhattan providing hourly access to the John F
Kennedy International Airport. Results suggest that route selection with multi-armed
bandit learning algorithms can be effective but neglecting passenger scheduling constraints
can negatively impact on-time arrival reliability by as much as 4.8% and combined
reliability and travel time by 66.1%.
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1. INTRODUCTION

Route selection under uncertainty involves selecting a route to get from an origin to a
destination with incomplete information about the underlying network. It is a well-studied
topic with an abundant literature (e.g. (/)) as travel times can be highly stochastic due to
random fluctuations in travel demand and supply degradation (2). A deeper review is
provided in Section 2. A subset of this literature deals with the sequential route selection
problem, where routes are selected repeatedly between a common origin and destination
and random travel time outcomes are observed. Applications of this problem can be found
in long haul truck routing, flight navigation between designated airports, emergency
medical services, and local airport shuttle services.

In the age of automation and ubiquitous sensors (3), mobile servers also act as sensors:
vehicles can be equipped to provide operators with such information on their routes as
travel time, local traffic densities, nearby pedestrians, local weather conditions, emergence
of incidents, etc. Services like Waze already make use of travelers as sensors for updating
network state information while most operator fleets (truck, transit, urban service vehicles,
etc.) are equipped with devices like GPS and video equipment to provide information on
the vehicle’s traversed route. In most cases, fleet operators may just route vehicles to
optimize service. However, if uncertainty in the network traffic state is significant or costly
to obtain from external sources, there is value to using the vehicles as sensors as well. An
example is to deploy a vehicle to deviate from a de facto route to gather more intelligence
to be shared with subsequent trips serving that origin/destination (OD) pair, which some
fleets already do if a traffic incident occurs.

The dual role of vehicles as both servers and sensors is especially relevant with
automated vehicle (AV) fleets since much more information is continuously obtained as
shown in Figure 1. AVs are rapidly becoming a reality and hold great promise for
increasing efficiency and safety (4). A particularly attractive operational paradigm involves
routing shared AV (SAV) fleets to provide service on-demand to customers. In recent years,
there has been a surge of interest in testing such services like Uber in the U.S. and
nuTonomy in Singapore (5 — 6), and more recently with deployments in Arizona, California,
and Texas. There is clearly a need for algorithms to select routes for vehicles acting as both
servers and sensors making repeated OD trips.

The decision of whether a vehicle should act more as a server or a sensor can be cast
as a classic trade-off in reinforcement learning (9). A decision-maker makes a finite
sequence (or an infinite sequence with nonstationary state variables) of repeated decisions
where the underlying distribution of the reward for different options is initially unknown.
Choosing an option is equivalent to sampling the reward, but if the reward is low, it is an
opportunity cost if there is another option in which the expected reward is higher. This
opportunity cost is measured as regret. The classic trade-off is whether to “exploit” known
options or to “explore” other options to improve the potential for better exploitation in
future decisions. The more the decision-maker samples from an alternative, the more they
will learn the parameters of the distribution. On the other hand, if one alternative appears
to be significantly better than the other after a few samples, it may make more sense to
allocate the remaining choices to the first alternative. In a finite sequence, there is typically
more exploration in the beginning and more exploitation later. Algorithms designed under
such a setting are called multi-armed bandit (MAB) algorithms (/0).
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There are many different types of MAB algorithms. For the sake of brevity, we focus
on the ones that have been developed for sequential path selection (e.g. (/1 — 13)). These
have been primarily applied to non-passenger networks, such as transmission networks,
where only the shortest travel cost is desired over multiple samples.

Our contribution to this literature is based on the recognition that design of path
selection algorithms for SAV fleets and urban service fleets handling a given OD pair needs
to consider the schedule constraints of passengers and goods. Passengers care not only
about the shortest travel time, but they also care about on-time arrival reliability and
minimized schedule delay (/, /4 — 17). The empirical studies among this literature have
found that travelers do place a fairly high value of time to schedule delay. For example,
Small (/5) found that work commuters delayed one minute would be equivalent to 2 to 11
minutes of travel time, depending on how far it is beyond the desired arrival time. Clearly,
any MAB algorithm applied to finding shortest paths and learning about the paths should
also consider the passenger objective of on-time arrival, especially when employed in a
dynamic route choice setting with explicit departure time consideration. If they do not, how
much worse can the results be? That is the research question we seek to address empirically
in our experiment using real data.

We formulated and studied a Multi-Armed Bandit On-Time Arrival Problem
(MABOTAP) that considers the dual role of vehicles as servers and sensors (of which
SAVs are a major target technology) in repeated trips serving schedule-constrained
passengers for a fixed OD pair. We empirically evaluated an algorithm customized to solve
this problem. We designed a controlled experiment using real data collected from 504 real-
time Google queries made over a 14-hour period (169 observations/path) to see how they
would fare against conventional MAB algorithms based on shortest travel time only.

2. RELATED WORK

The shortest path problem on probabilistic graphs has been studied extensively under
different considerations. Probabilistic path queries using weights as random variable
following different distributions was first introduced by Frank (/8). A Monte Carlo
simulation was proposed to approximate the distribution of the shortest path. Loui (/9)
applied a utility function to define the preference among paths. More recently, adaptive
routing has been studied as well. In these cases, decisions are made progressively within
one trip to select which remaining links or subroutes to take based on updated information
(e.g. (20 - 21)).

In a priori route selection problems under uncertainty, route optimization decisions
that also consider optimizing learning efficiency for subsequent route selection decisions
are multi-armed bandit problems. In the classical multi-armed bandit problem (MAB), a
decision-maker must choose an arm from a list of arms to play. After playing an arm, the
decision maker realizes a reward whose distribution is unknown. The objective is to
maximize their total accumulated reward over a sequence of trials.

Thompson (22) first proposed an algorithm to address the MAB problem by playing
the arm with the highest possibility of being the best arm. A widely used MAB algorithm
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is the e-greedy algorithm due to its simplicity. In each round t, the algorithm chooses with
probability 1 — € the arm with the highest empirical mean and randomly selects any other
arm with probability € (23). Agrawal et al. (24) proved that the regret in that algorithm
increases at a logarithmic rate as a worst case bound. Another popular algorithm is the
upper confidence bound (UCB) method proposed by Auer et al. (25). UCB also achieves
logarithmic regret with bounded support while satisfying the exploration and exploitation
dilemma.

In recent years, bandit algorithms have gained increasing attention in solving shortest
path problems. Each path is modeled as an arm. In the classical MAB setting, the arm
rewards may be independent of each other (26). In the shortest path MAB, the arms are
dependent through common links. Ignoring the dependence has led to poor regret
performance. Table 1 summarizes some of the major studies that have applied MAB to
path selection problems. We note that none of these studies have considered passenger on-
time arrival reliability as a measure for quantifying regret, nor have they considered joint
route-departure time choice.

Signal routing has been studied extensively using multi-armed bandit algorithms as
shown in Table 1. Both signal routing and vehicle route selection aim to reach a destination
with highest payoff. However, the amount of information that a signal can send back is
limited. In vehicle route selection, with improving emerging technologies like the 5G
network and ubiquitous sensors, AVs and connected vehicles can send back much more
information.

Shortest path problems with on-time reliability find paths that maximize the
probability that the path length does not exceed a specified threshold (30 — 33). It is known
as the “stochastic on-time arrival problem” (SOTA). Based on the concept of on-time
arrival, many algorithms have been developed to find reliable paths in a stochastic network.
Chen and Ji (33) proposed solving the on-time arrival problem by using a simulation-based
genetic algorithm. Nie and Wu (/) introduced a label-correcting algorithm to find the most
reliable paths by generating all non-dominated paths under the first-order stochastic
dominance (FSD). A case study was conducted in Chicago (34) and heterogeneous risk-
taking behavior was considered in Wu and Nie (35). Ji et al. (36) proposed an a-reliable
path finding method for networks with correlated stochastic link costs. Chen et al. (37 —
39) introduced new algorithms based on dominance conditions to find reliable shortest
paths under various correlated or time-dependent scenarios. These studies demonstrate the
need to consider path selection under uncertainty with on-time arrival reliability. However,
none of these cited studies consider joint learning and optimization in a sequential route
selection setting.

Our work differs as follows: we used MAB algorithms to find the most reliable paths
given a certain threshold. Previous reliable path finding algorithms have focused only in
finding the most reliable path, while using MAB we can add the benefit of exploration
when routing a vehicle over the same set of route alternatives (e.g. a shuttle service from a
hotel to the airport, or flexible route microtransit service) over multiple trials.

To illustrate the difference from using only shortest path, consider an example where
there are two parallel paths P; and P, between A and B along with two departure times t;
and t,, where t; > t,. These departure times are relative to the desired arrival time. There
are four alternatives to choose from: Py ,Pi¢,, Por,,Payr, » With some unobserved
distribution for each. The left side of Figure 2 shows how the distributions for travel time
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can differ from the distributions of on-time arrival reliability, while the right-hand side
shows how the on-time reliability distributions as estimated at the nth trial may still differ
from the true distributions.

As illustrated in Figure 2, at a certain iteration n one alternative may seem to be best
(Py,t,) but with enough exploration one will realize that another (P, ;,) is better. There is a
need to incorporate the on-time reliability factors into the reward function because the
distribution of on-time arrivals is different at different departures. To our best knowledge,
this problem is not addressed in previous bandit literature.

3. PROPOSED METHODOLOGY

3.1. Preliminaries

G(V,E,T) is a simple directed probabilistic graph. V is the set of vertices, E is the set
of edges, and T is the period/trial of interest. This is the typical setup of a road network
where the vertices are intersections and edges are roads between intersections. The period
of interest is defined as n4d, where n is an integer and 4 is the length of a time interval.
Within a time interval, there are multiple departure times (DTs) 7 € {1, ..., s}. A trip is
performed by selecting both a path P € {1,2, ..., k}, which is a sequence of time-dependent
links connecting an OD pair, and a departure time, resulting in ks different path-time
choices. This is illustrated in Figure 3 where there are three paths and three departure times
(DTs) with a single preferred arrival time (PA). Depending on departure time, a path might
be better or worse than another path in travel time and in terms of on-time arrival. This
problem can be naturally cast as a sequential decision problem over multiple trials; e.g. a
hotel shuttle to the airport departing each hour needs to decide both departure time and
which route to take. While departure time is conventionally a continuous variable, fleet
operations may schedule departures so using discrete time options makes sense.

The traveler conducts multiple trials of route selection and observes only the costs
corresponding to the chosen paths in those trials. We define the arms as a,¢ €
{(1,1), ..., (k,s)}. Ateach trial t = 1, ..., n, for a corresponding preferred arrival time PA;
the traveler picks an arm a; ; from a subset of all possible path-times P; ¢ where the
departure times relative to the PA; are fixed across trials. For example, a trial may occur
with preferred arrival times at the start of every hour, and the arms may be defined as a set
of paths that depart 70 minutes, 60 minutes, and 50 minutes prior to that preferred arrival
time. The observed choice at each trial t is denoted as I; € Py ; with associated cost Cj,.

To facilitate performance analysis in the bandit setting, we define the reward as g;, = 1/C;,

for each path-time choice I; made. This conversion is used as most bandit algorithms are
based on maximizing the reward (25).

3.2. Multi-Armed Bandit On-Time Arrival Problem (MABOTAP)

We introduce the Multi-Armed Bandit On-Time Arrival Problem (MABOTAP). The
objective is to identify the arm with both the shortest travel time and most likely to arrive
on time. In the traditional MAB road network setting, the objective is to find the arm
leading to the largest reward G,,, where the reward is a function of travel time (40). Here
we focus on the problem of finding the arm the minimizes the travel time and maximizes
the on-time arrival reliability of the paths chosen over multiple trials.

To consider the early arrival time and later arrival time, we adopt Eq. (1) (see (41)).
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C,, = tt;, + aE + D (1)
Where
Cy, 1s the realized weighted cost for path-time /;
tt;, (minutes) is the travel time of chosen path-time I;
77, (00:00) is the departure time of chosen path-time /;
T, + tt;, — PA, if (PA,— 7, —tt;) =0
0, Otherwise
(PA, — ), — tty, if (PA,—7,— tt,) <0
0, Otherwise

E is early arrival time defined as E = {

D is the late arrival time defined as D = {

a is the penalty per unit of time for arriving early
B is the penalty per unit of time for arriving late
PA; (00:00) is the preferred arrival time for the user in trial t

To measure the on-time reliability of different departure times of the paths, Pu (42)
uses a reliability measure based on failure rate on road networks. However, Pu assumes a
known distribution to find the failure rate while in our case the distributions of the path
departure times are unknown. As such we measure the success and failure of arriving on
time empirically as Q; shown in Eq. (2).

S tk,s

Quks =17 — 2
* St,k,s + ft,k,s ( )
where
St ks 1s the number of counts of on-time arrivals after trial ¢ for arm ay, 5, which is
updated each trial as Eq. (3).
St—ips+ 1, if Pogs = Iyand (PA, — 1, — tt,) =0
Seis = | 3)
St—1ks Otherwise

ftk,s 1s the number of counts of late arrivals after trial ¢ for arm a; g, which is updated
each trial as Eq. (4).

{ft—l,k,s + 1, lf Pt,k,S = It and (PAt - Tlt - ttlt) <0 (4)

Jews = fi—1iks Otherwise

Eq. (2) for the on-time reliability measure decreases if a late arrival is recorded at time t
and aj ¢ 1s chosen. For the unchosen arms, Qs stays the same because no new
information is collected about the unchosen paths and the on-time reliability measure is not
updated.
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3.3. Proposed On-Time UCB Algorithm

We introduce an on-time reliability bandit algorithm called On-Time Confidence
Bound (On-Time UCB) algorithm to achieve regret minimization of minimum travel time
while achieving a good on-time reliability. Our algorithm uses the padding function derived
from the original UCB (25) which is the logarithmic part of Eq. (5). This function is proven
to help achieve a regret bounded to log order. The proposed Algorithm 1 is presented here.

Algorithm 1: On-time Upper Confidence Bound Algorithm

Foreacharmk =1,..Nand 7 € {1, ..., s}
Play each arm at least once
Compute p;_q s forallarms k = 1,..N and 7 € {1, ..., 5}
Foreacht = N+ 1,N+2...nDo
Play arm Iy = argmaxy s pr—1xs
Receive reward g, ¢ based on Eq. (1)
Update Qs using Eq. (2)
Update p; j, s using Eq. (5)
Update Gy ¢ using Eq. (6)
Update Ty js = Tp—q s + 1
End
Compute regret using Eq. (7)

The reliability score is shown in Eq. (5).

Q Geps + 2log(n) if P I
* ) l =
Ptis =i t,k,s t,k,s Tt,k,s t,k,s t (5)
Pt-1ks » otherwise

T ks 1s the cumulative number of times arm ay s is chosen up through trial 7. G s is the
mean reward of arm ay, ¢ based on all trials up to # and is updated each trial using Eq. (6).

1 .
gt-1ks t T Gtks — Ge-1k,s) if Pops = I (6)

tk,s
Ji-1ks otherwise

Gt,k,s =

The variable g,y s = 1/Cj, is the reward received from choosing I; and C;, is obtained
from Eq. (1). To compute the regret, we compare the cumulative reward of the action taken
at each time t with the overall best reward observed thus far, which is summarized in Eq.

(.

n
R = nG"rs = ) Grs ™
t=1

where G* denotes the true optimal mean reward of all observed actions at all times (23).
This optimal mean reward is obtained by assuming that in a hypothetical scenario, we can
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pull each arm a; ; at each t. After n, we observe the mean reward of all arms and use that
as the true optimal mean reward.

3.4. Numerical Example

We illustrate three scenarios using our proposed methodology. We randomly generated
3 paths with normally distributed travel times (in which we hide the parameters from the
algorithm) for n = 200 rounds in each scenario. Each interval t is 5 minutes. The
characteristics in each scenario are described in Table 2.

In this example we have 9 arms in our MABOTAP setting at each trial t. The traveler
is faced with the decision to choose between three paths at three different departure times.
For example, if t = 1 and a traveler’s preferred arrival time (PA;) is 8:45, then the choice
may be to depart between 8:00, 8:05 or 8:10 as displayed in Figure 4. At t =2, PA, is 8:50
and the departure time choices are 8:05, 8:10 or 8:15 for each path.

What should we expect to see? First, all the scenarios should see the average regret
reduce with the number of trials until some bottom range. Second, the algorithm should
sift through the options over time to eventually prefer the option that has the best combined
minimum travel time (option A) and on-time arrival reliability (DT1 options). Third, there
should be more fluctuation in the learning algorithm when standard deviation is higher (for
example, comparing Scenario 3 to Scenario 2). Lastly, running the learning algorithm
assuming only shortest path and ignoring on-time reliability should end up having a worst
regret when that regret is measured in terms of on-time reliability as well (Eq. (6)).

For the scenarios shown in Table 2, we used our methodology to compute the regret
and compared with the algorithm presented by Gyodrgy et al. (/2), which is one of the most
famous algorithms on selecting shortest path in a bandit setting. The results of the two
different regrets are displayed in Figure 5.

The numerical results of the different scenarios are shown in Table 3. After running n
iterations, the On-Time UCB algorithm performs better in terms of regret, empirical mean
rewards and on-time arrivals. The regret difference between the SP and On-Time UCB was
quite significant in Scenario 1, which can be explained by the higher variance in the
rewards and because the proposed algorithm is more efficient in selecting more reliable
arms. In Scenarios 2 and 3, when the variation between arms increase together uniformly,
the differences in regret between the two algorithms are smaller. This experiment illustrates
the effectiveness of the proposed algorithm in capturing on-time reliability.

4. EMPIRICAL EXPERIMENTATION

4.1. Experiment design and data

In this section, we empirically analyze the performance of our method. A case study
in New York City is presented to validate our methodology. We setup the experiment to
represent an artificial intelligence used in navigating a hotel shuttle from midtown
Manhattan to the JFK International Airport. Real time route travel time data was collected
using Google Maps API. The area of analysis is limited to a small section of New York
City. We collected travel times of edges between the center of New York City and JFK
Airport because we consider these as origin and destination respectively. The top 3 paths
are shown in Figure 6.
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We collected data for 30 days over 5-minute intervals from 7 am to 9 am. We chose
a typical weekday (September 21, 2017) among this data set to test the algorithm. We ran
the SP and On-Time UCB algorithms on the data in a simulated online setting. For this
experiment we had n = 169 intervals. We used 9 arms as in the previous example and the
first iteration t = 1 was set to a PA; = 8: 05 am with departure times of each path as
7:00am, 7:05am or 7:10am. The Google data is highly stochastic with variation in standard
deviation and distribution throughout the day as shown in Figure 7. The data will be made
available on https://github.com/BUILTNYU upon publication of this work.

4.2. Results

The average regret curve is shown in Figure 8. The On-Time UCB outperforms SP in
terms of regret difference shown in Figure 8 and in terms of on-time arrivals and mean
rewards in Table 4. The on-time arrivals between the two algorithms are very close because
in some cases the traveler will arrive late no matter which path and departure times they
choose. As shown in the travel time distribution of paths in Figure 7, there were about 30
iterations (~18% of iterations) which produced late arrivals. This decreased the on-time
arrivals of our On-Time UCB.

The results suggest that multi-armed bandit algorithms can be effective in learning
which routes to select but applying them without considering behavioral preferences of
travelers can be counterproductive. Testing the algorithms on the real data experiment
shows that the proposed algorithm was able to improve on the arrival time percentage by
4.8% and total reward value by 66.1%.

5. CONCLUSION

We studied the use of bandit algorithms to solve sequential on-time arrival route
selection problems. One primary application is the operation of autonomous vehicle fleets.
Under the MABOTAP setting, a traveler must choose a path that maximizes their on-time
arrival reliability while minimizing their expected travel time. An Upper Confidence
Bound algorithm from Auer et al. (25) was extended to incorporate the on-time arrival
criterion. Reward and regret measures appropriate to this criterion are introduced to guide
the algorithm.

We conducted two sets of experiments. The first were computational experiments used
on simulated data to demonstrate and verify the algorithm. The second set of experiments
were performed using real time Google Maps API queries for three routes from a hotel in
midtown Manhattan to the JFK International Airport. There are 169 intervals with three
routes queried, resulting in 507 different route query observations used. We simulated an
online environment of observing these routes based on applying a benchmark MAB
algorithm assuming only shortest path and one using our proposed algorithm. The
experimental results showed operating MAB algorithms using only shortest path without
considering traveler scheduling preferences could negatively impact the on-time arrival
probability (4.8% in our experiments) and total reward considering travel time as well
(66.1%).
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For future work, we will explore other bandit algorithms that can better address the
stochasticity in road networks. Testing the algorithm in field settings would enable a fleet
of AVs to effectively learn the road conditions used. MAB learning for routing to serve
customers using vehicle routing problems can be another extension.
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Table 1. Summary of studies involving MAB applications for path selection

Author(s) Applications Objective

Awerbuch & Kleinberg (/1) Network signal routing Shortest Path Selection
Chen et al. (33)

Gyorgy et al. (12)

Liu and Zhao (13)

Zouetal. (27)

Talebi et al (28)

Chorus (29) Traffic Route Planning Shortest Path Selection
Ramos et al. (40)
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Table 2. Synthetic data scenarios used to test proposed algorithm

Preferred Departure Times Mean Scenario | Standard | On Time
Arrival Time (minutes) Deviation | Probability
PA; (00:00) (Yomean)
DT1 | DT2 | DT3
t=1, DT, = 8:00 am,
DT, = 8:05 am,
DTy = 8:10 am; A.33 0.94 | 0.84 | 0.69
1
B. 17 095 | 0.80 | 0.50
C.24 094 | 0.81 | 0.60
t=2, DT, =8:05 am,
DT, = 8:10 am,
DT3 = 8:15 am; A. 10 1.00 | 0.99 | 0.95
PA, = 08:45 A. 30
am B. 35 2
PA, = 08:50 C.33 B. 10 0.99 | 0.92 | 0.50
am
C.10 099 | 098 | 0.73
t=n, DT, = 00:45 am,
PAyeso0 = DT, = 00:50 am,
n= - . .
01:20 am DT; = 00:35 am; A.20 0.99 | 0.95 | 0.80
3
B. 20 092 | 0.76 | 0.50
C.20 097 | 0.86 | 0.62
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Table 3. Numerical results after running the 3 scenarios.

17

Scenario SP On time On-Time UCB SP On-Time UCB
Arrivals On-time Arrivals Mean rewards Mean rewards
1 47% 75% 0.0347 0.0394
87% 91% 0.0325 0.0351
3 70% 77% 0.0305 0.0320
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Table 4. Numerical results of the algorithms

Scenario SP On time On-Time UCB SP On-Time UCB
Arrivals On-time Arrivals | Mean rewards Mean rewards
Google data (Sept | 62% 65% 0.180 0.299

21,2018)




Zhou et al.

19



