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Kostant’s weight multiplicity formula and the
Fibonacci and Lucas numbers

KEVIN CHANG*, PAMELA E. HARRIST, AND ERIK INSKO

Consider the weight A that is the sum of all simple roots of a simple
Lie algebra g. Using Kostant’s weight multiplicity formula we de-
scribe and enumerate the contributing terms to the multiplicity of
an integral weight p in the representation of g with highest weight
A, which we denote by L(\). We prove that in Lie algebras of type
A and B, the number of terms contributing a nonzero value in
the multiplicity of the zero-weight in L()\) is given by a Fibonacci
number, and that in the Lie algebras of type C' and D, the analo-
gous result is given by a multiple of a Lucas number. When p is a
nonzero integral weight we show that in Lie types A and B there
is only one term contributing a nonzero value to the multiplicity
of pin L(\), and that in the Lie algebras of type C and D, all
terms contribute a value of zero. We conclude by using these re-
sults to compute the g-multiplicity of an integral weight p in the
representation L(\) in all classical Lie algebras.
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1. Introduction

Let G be a simple linear algebraic group over C, T' a maximal algebraic torus
in G of dimension r, and B, T'C B C G, a choice of Borel subgroup. Then
let g, b, and b denote the Lie algebras of G, T, and B respectively. We let
® denote the set of roots corresponding to (g,h), and @+ C @ is the set of
positive roots with respect to b. Let A C ®T be the set of simple roots. The
denote the set of integral and dominant integral weights by P(g) and P, (g)
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respectively. Let W = Normg(T')/T denote the Weyl group corresponding
to G and T', and for any w € W, we let £(w) denote the length of w.

We recall that with a choice of a Cartan subalgebra it is well known that
the finite-dimensional irreducible representations of a Lie algebra g on the
vector space V' can be studied by decomposing

(1) V = @Va

where the direct sum is indexed by a finite set of weights. Given a weight «,
the corresponding subspace V,, is called a weight space and the dimension
of V, is called the multiplicity of a. Thus to study representations of g it
suffices to determine the multiplicity of the weights appearing in (1). For a
more detailed account of this theory we refer the reader to [2].

In this work we consider the weight A\ which is the sum of all simple
roots of g. We formally use Kostant’s weight multiplicity formula to compute
the multiplicity of p an integral weight in the representation with highest
weight A, which we denote by m(\, u). When p is the zero weight, this
representation is the adjoint representation in the Lie algebra of type A
and the defining representation in type B; these cases were considered by
Harris in [3] and [5], respectively. In the remaining Lie types it is a virtual
representation: a representation arising from a nondominant integral highest
weight.

One way to compute the multiplicity of a weight 1 is via Kostant’s weight
multiplicity formula [9]:

(2) m\ ) = > (-=1)"Doa(X +p) = (n+p)),
oceW

where W denotes the Weyl group of g, o denotes Kostant’s partition func-
tion, and p = %Za€¢+ o, with ®* denoting the set of positive roots of g.
We recall that the Weyl group is generated by reflections about hyperplanes
lying perpendicular to the simple roots of the Lie algebra g, and for each
o € W, the length ¢(0) represents the minimum number k such that o is
a product of k reflections. Kostant’s partition function p : h* — Z is the
nonnegative integer-valued function such that for each £ € h*, ©(§) counts
the number of ways £ may be written as a nonnegative Z-linear combination
of positive roots.

A challenge in using Equation (2) for weight multiplicity computations is
the fact that the order of the Weyl group, indexing the sum, increases factori-
ally as the rank of the Lie algebra considered increases. Additionally, many
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Weyl group elements contribute trivially to the alternating sum, thereby
yielding another source of great inefficiency. In light of this, our work focuses
on describing the elements of the Weyl group that contribute a nonzero term
to the multiplicity formula, which leads to the following definition.

Definition 1. For A, u integral weights of g, we define the Weyl alternation
set by

(3) A p) ={o e W:p(e(A+p) = (n+p)) > 0}.

The above definition implies that o € W satisfies 0 € A(A, p) if and only
if o(A+ p) — (u+ p) can be written as a nonnegative Z-linear combination
of positive roots.

Harris, Insko, and Williams described and enumerated the Weyl alter-
nation sets for the zero weight in the adjoint representation of the classical
Lie algebras and showed that the cardinality of these sets is given by linear
recurrences with constant coefficients [4, 8]. In addition, Harris, Lescinsky,
and Mabie have provided visualizations for the Weyl alternation sets for
different pairs of integral weights A and p in the Lie algebra sl3(C) [4, 6].

Our research continues this work by describing and enumerating the
elements of the Weyl alternation sets A(\, 1), where X is the sum of all the
simple roots of a simple Lie algebra and p is an integral weight. We find
that when p is the zero weight the cardinality of these Weyl alternation sets
in the Lie algebras of type A and B, are given by a Fibonacci number [5]
and in the Lie algebras of type C' and D, the analogous result is given by a
multiple of a Lucas number. Our main results are summarized in Table 1,
where F, and L, denote the r*" Fibonacci and Lucas numbers, respectively.
We remark that the results of Table 1 for the exceptional Lie algebras is
a finite computation that was verified using the computer implementation
presented in [7]. In this work, we also consider the cases where y is a nonzero
integral weight and show that in Lie types A and B the sets A(\, p) consist
of only the identity element of the Weyl group, while in Lie types C' and D
the sets A(\, p) are empty.

We note that these results give a glimpse into the complicated nature
of weight multiplicity computations. Although our results establish that the
number of terms contributing nontrivially to m(\,0) is given by either a Fi-
bonacci or a multiple of a Lucas number, thereby reducing the computation
from a factorial number of terms, to a number that grows exponentially, and
one cannot reduce the computation any further. However, this reduction is
enough to allow the development of new formulas for the partition func-
tion involved in the weight multiplicity formula. We present such results in
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Table 1: Summary of main results

| Exceptional Lie Algebras | [A(X,0)] |

| Classical Lie Algebras | [A(,0)] ]

LD 7. f} :
B, (r >2) Frp E4 5
C, (r>5) 2L, Eﬁ 05
D, (r>7) 2L, _3 E; 20

Section 6 by working more generally with the g-analog of Kostant’s weight
multiplicity formula, a polynomial valued function that when evaluated at
q = 1 recovers (2). Our results in this section establish the following.

Theorem 1.1. Let A = a1 + a2+ - - - + o, and p be an integral weight of a
simple Lie algebra g. If

r ifu=20
e g==5b41(C), then m(A\,u) =<1 ifpuecd
0 otherwise
1 ifu=0o0rpeW- A
0 otherwise

where W - A denotes the orbit of A under the action of the Weyl group
e g=5p,(C) or s0s,.(C), then m(\, u) = 0.

e g==509,.41(C), then m(\, u) =

This work is organized as follows: In Sections 2-5 we consider a specific
Lie algebra (in alphabetical order), provide needed background and present
the results regarding the Weyl alternation sets A(\, 1) when p is an integral
weight and A = a3 + as + - -+ + a,.. The results in each of these sections is
separated by whether u is the zero weight, or a nonzero integral weight. Sec-
tion 6 uses the results in the previous sections to compute the ¢g-multiplicity
of 1 an integral weight in the representation with highest weight A. Thereby
establishing Theorem 1.1.

2. Lie algebra of type A

In this section, we consider the Lie algebra sl,1(C) for » > 2. In this case,
the set of simple roots is given by A = {a1, a9, -+, .}, and the set of
positive roots is given by ®* = AU{a; + jp1 +--+a;: 1 <i<j<r}
The weight p is defined as the half sum of the positive roots, p = % Y oacwt X
which is equivalent to p = wy + wa + - - - + w,, where A, wy,...,w, are the
fundamental weights of sl,11(C). The Weyl group elements are generated by



KWMEF and the Fibonacci and Lucas numbers 145

reflections about the hyperplanes that lie perpendicular to the simple roots
«;. We denote these simple reflections by s;, where 1 < ¢ < r, whose action
on the simple roots is defined by s;(a;) = oy if |i — j| > 1, si(a) = —ay if
i =j, and sij(j) = o; + o if |i — j| = 1. The Weyl group elements act on
the fundamental weights by s;(w;) = w; — 0; jo;, where 0; ; =1 when i = j
and 0 otherwise. We separate the results of this section into the cases where
1 is the zero weight and when it is a nonzero weight.

2.1. Zero weight space

We now state the main result of this section.

Theorem 2.1. Let g = sl,;(C) with r > 2. Then o € A(A,0) if and only
ifo=1o0r o =s;8s;, S for some collection of nonconsecutive integers
2§i1,i2,...,ik S?“—l.

Theorem 2.1 first appeared in [3, Proposition 2.1] and its proof used
the fact that the Weyl group of sl is isomorphic to the symmetric group
S,41. Below we present a new proof using the fact that the Weyl group
is generated by the root reflections si,ss,...,s,. In particular, this proof
technique illustrates the use of the root reflection action on A\ 4+ p,which
provides us with a more direct style of proof..

Proof of Theorem 2.1. (=) We prove this by establishing the contraposi-
tive. Suppose that o is neither the identity nor s;, s;, - - - s;, for some non-
consecutive integers 2 < 41,%9,...,7; < 7 — 1. Then ¢ must contain si, or
sr, or s;s; for consecutive integers ¢ and j. If 0 = s1, then we have that
siA+p)—p=5s1(A)+s1(p) —p=A—a1+p—a1 —p=A—2q;, which
cannot be written as a sum of positive roots given the negative coefficient of
aq. Hence, s1 ¢ A(A,0). Now [8, Proposition 3.4] shows that if o ¢ A(\,0),
then neither is any o’ containing o in its reduced word expression. Thus any
o € W containing s; in its reduced word expression cannot be in A(A,0).
Similarly, if o = s,, then we have that s,(A+ p) — p = s,(A) + s.(p) — p =
A—aqp+p—a —p=\—2aq,, which cannot be written as a sum of positive
roots because of the negative coefficient of c,.. This implies that s, ¢ A(X,0),
and so any o containing s, in its reduced word expression is not in A(A, 0).

Now suppose we have an arbitrary pair of consecutive integers ¢, ¢ + 1
such that 2 <4 < r — 1. Using the property that the action of Weyl group
elements on weights behave linearly, we have that s;s,11(A+p) —p = s;( A+
p—ait1) —p=A+p—a; —si(ai+1)) — p = A — 2a; — @11, which cannot
be written as a nonnegative Z-linear combination of the positive roots and,
thus, s;jsit1 ¢ A(\,0). Therefore any o containing s;s;+1 as a subword in
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its reduced word expression cannot be in A(\,0). A similar argument shows
that s;115; ¢ A(X,0). Thus, if 0 € A(X,0), then 0 =1 or 0 = 55,84, - - - S5,
for some nonconsecutive integers 2 < i1,149,...,% < r — 1, as claimed.

(<) Ifo =1, then 1(A+p)—p = A. Hence 1 € AN, 0). If 0 = 54,84, - - - Siy,
for some nonconsecutive integers 2 < i1,13,...,4 < r — 1 we observe that

k
(4) sisiy s A p) —p=A=>
j=1

which can be written as a sum of positive roots. Thus o = s;,8;, - -+ 55, is in
A(X0). O

Before stating our next result, we recall that the Fibonacci numbers
follow the recurrence F, = F,._1 + F,_o with F; = F5, = 1.

Corollary 2.1. If » > 2 and A is the highest root of sl, 11, then |A(X,0)| =
F,, where F, denotes the r*" Fibonacci number.

The above result first appeared in [3, Theorem 2.1], but for sake of
completeness we present a proof below, which uses the description of the
elements of the Weyl group as products of root reflections.

Proof of Corollary 2.1. We proceed by induction. If » = 2, then by Theorem
2.1 we know A2(\,0) = {1}, which shows that |[A3(\,0)] = 1 = Fy. If
r = 3, then A3()\,0) = {1,s2}, which shows that |A3(\,0)] = 2 = F5.
Assume that for all r, with 3 < r < k, |A,()\,0)| = F,. We consider the
case when r = k + 1. Notice that all of the elements o € W consisting of
nonconsecutive products of the generators ss, ss, ..., s will either contain
sg or not. If they do not contain s, then by our induction hypothesis, the
number of Weyl group elements consisting of nonconsecutive products of
the generators so,s3,...,Sk_1 is given by F. If the Weyl group element
contains s, then we must count the number of nonconsecutive products of
the reflections so, s3, ..., Sk_9, which by our induction hypothesis is given
by kal- Therefore ’.Ak-Jrl(A, 0)’ = Fk,1 + Fk = Fk+1. L]

2.2. Nonzero weight spaces

For the Lie algebra of type A, we consider the case where pu is a positive
root of the Lie algebra was considered in the work of Harris [3], where the
following result was established.
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Theorem 2.2 (Theorem 4.1 [3]). If 1 # 0 is a dominant integral weight of
{1} ifpu=2X

sl,11(C) and A is the highest root, then A(\, pu) = {@ or
otherwise.

3. Lie algebra of type B

In this section, we consider the Lie algebra s09,41(C) for » > 2. Whenever
1 <i<r,let g denote the it standard basis vector in R”. If o; = ¢; — €it1
for 1 <i¢<r—1and o, = &,, then the set of simple roots of s09,1(C) is
given by A = {a1,...,a,} and the set of positive roots is given by

Ot ={e;—¢cjeitej: 1<i<j<n}uU{e:1<i<r}

The fundamental weights of s09,41(C) are defined by w; =¢e1 + --- 4 ¢; for
1< <r—-1, w, = %(51+52—|—~-+5r), and p = wy + - - - + w,. Note that
A=art+az+ -+ =61 =w.

The simple root reflections act on the simple roots and fundamental
weights as follows. If 1 <14 <r—1, then s;(;) = —ay, si(@i—1) = i1 + g,
si(ig1) = a; + aiy1, and sp(ay) = —ap, Sp(ar—1) = ap—1 + 2. For any
1<i,j <7, si(wj) = @ — bijou.

We separate the results of this section into the cases where yu is the zero
weight and when it is a nonzero weight.

3.1. Zero weight space

We begin with the following technical result for sog,41(C).

Proposition 3.1. Let 0 = s;,s;,---5;, where the indices of the simple
reflections form a collection of nonconsecutive integers 2 < 41,...,4 < 7.
Then c(A+p) —p=A— Z?:l «;, is a nonnegative Z-linear combination of
positive roots.

Proof. Let 0 = s;,8;,---s;, for some collection of nonconsecutive integers
2 < p,...,i < r. Note that o(\) = A, and o(p) = p — Z?:l a;,. Thus

oA +p)—p=A— Z?:l a;, which is a nonnegative Z-linear combination of

positive roots. O
Theorem 3.1. Let g = $09,11(C) withr > 2. Then o € A(\,0) if and only if
o=1oro =s;s;,- s for some nonconsecutive integers 2 <iq,..., 7, <.

Proof. (<) Let 0 = 1, then 1(A + p) — p = A is a nonnegative Z-linear
combination of positive roots, thus 1 € A(\,0), and Proposition 3.1 implies
that if ¢ = $;, 84, - - - 54, for some nonconsecutive integers iy, ..., i; between
and including 2 and r, then o € A(,0).



148 Kevin Chang et al.

(=) Suppose o € A(A,0). We proceed by induction on ¢(o). If £(c) = 0,
then o = 1, which satisfies the needed condition. If /(o) = 1, then o = s;
for some 1 < i < r.If i =1, then s;(A+ p) — p = A — 2a;, which implies
s1 ¢ A(\0), a contradiction. Thus, o € A(A,0) cannot contain s; in its
reduced word expression. If 1 < i < r, then s;(A+ p) — p = A\ — a4, and
si € A(X,0) and s; is of the required form.

If £(0) = 2, then o = s;s; for distinct integers i, j satisfying 1 < 4,5 <.
Without loss of generality, assume i < j. If ¢, j are consecutive integers, then
t=7—1,withl <i,j<rori=r—1andj=r. In either case we note
5j-15j(A+p)—p = A—a;—20j and 5,15, (A+p)—p = A—a,—1—3, neither of
which can be written as a nonnegative Z-linear combination of positive root.
Thus, sp—15r, 8,89—1, $j—154, 5j8j—1 ¢ A(XA,0), a contradiction. Moreover,
any o € W containing sjs;j_1 or s;_15; in its reduced word expression cannot
be in A(A,0) for all 2 < j < r. The case were i, j are consecutive was already
considered in Proposition 5.1.

Suppose that for all o € A(X,0) with 1 < ¢(0) < k, there exists some
nonconsecutive integers 2 < i1, ... i) < r such that o = s;,8i, - i,(5)-
Now consider 7 € A(A\,0) with £(7) = k+1. Then 7 = s;0 for some 2 <[ < r
and for some ¢ € W with ¢(c) = k. Note that in fact o € A(\,0), as
otherwise 7 would not be in A(\,0), giving a contradiction. Hence, by our
induction hypothesis there exist nonconsecutive integers 2 < iy,42,--- , i <
r such that o = s;, - - - 8;,. By Proposition 3.1, c(A+p) = A+ p— Z?Zl ;.
Hence T(A+p) —p=sic(A+p)—p=A—a; — Z;?:l sifag,) = X —a; —
E?zl(aij + ci,00) where ¢, = 2 if ip = r and i; = r —1, ¢, = 0 if
|l —i;| > 1 and ¢;;;, = 1 otherwise. Observe that whenever ¢;j;, = 1 or
2, the expression 7(\ + p) — p contains a negative coefficient on a simple
root, and thus 7 ¢ A(\,0), a contradiction. Therefore, ,41,- - ,i; must be
nonconsecutive integers between and including 2 and r. O

Corollary 3.1. If »r > 2 and A\ = a1 + as + -+ + «a, is a fundamental
weight of 509, 41(C), then |A(X,0)| = F,41, where Fy, 1 denotes the (r -+ 1)
Fibonacci number.

The proof of Corollary 3.1 is analogous to that of Corollary 2.1, hence
we omit it.

We remark that the results in this section first appeared in an unpub-
lished preprint of the second author as [5, Proposition 2.1, Theorem 2.1,
and Theorem 1.1], respectively. However, the proofs presented in this cur-
rent manuscript are new and, as in the previous section, they use the action
of root reflections on A+ p without using the definition of the root reflections
involving the symmetric bilinear form on h* corresponding to the trace form
as in [2].
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3.2. Nonzero weight spaces

Throughout this section r > 2 and as before A = a3 + as + -+ - + .

Theorem 3.2. If y # 0 is a dominant integral weight of s09,41(C), then

{1} ifp=2A
AN\ p) =
p) {@ otherwise.
We begin by proving the following technical results from which Theorem
3.2 follows.

Proposition 3.2. If A = ) _. « is a fundamental weight of soz,41(C),
then A(X, ) = {1}.

Proof. Since A = a1+ - -+, notice o(A+p)—p—A is a nonnegative Z-linear
combination of positive roots only if o(A+p)—p is. By Theorem 3.1 we know
o(A+p)—p is a nonnegative Z-linear combination of positive roots if and only
if o = 54,84, - - - 8, , for some nonconsecutive integers iy, . .., i between 2 and
r. Hence A(X\, ) C A(A,0). Suppose that o € A\, A) with 4(o) = k > 1,
then there exist nonconsecutive integers i1, . .., % between 2 and r such that
0 = 8;,Si, - - - i, - By Proposition 3.1 we have that o(Ap)—p = A—Z?Zl ;-
Then notice o(A+ p) — p— A will not be a nonnegative Z-linear combination
of positive roots, reaching a contradiction. Thus ¢(c) =0 and o = 1. O

Proposition 3.3. Let u # 0 be a dominant integral weight of s0g,1(C).
Then there exists o € W such that p(a(A+ p) — p — p) > 0 if and only if
w=A

Proof. (=) Let p € P(s02,41(C)) with p # 0, and assume o € W such
that (c(A+ p) — p — p) > 0. By [2, Proposition 3.1.19], we know that
Py (s02,+1(C)) consists of all weights u = kie1 + keeo + -+ + kyep, with
k1 > kg > --- >k, > 0 and satisfy that 2k; and k; — k; are integers for all
i, 7. Now observe that

1 3 3 1
0(A+p)—p—u=0<<r+§>€1+(T—§>€z+---+§sr1+§€r>

((-3)er (-3 o)

— (kier+ -+ krey)
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Let a; denote the coefficient of «; in o(A + p) — p — p. Then

—i+1—k ifo(g
—2r+i1—k ifo
1—Fk if o
—2r — k1 if o(e1) = —e1.

=gy forsome2<i<r

)

g;) = —¢e; for some 2 <i<r
)
)

Since r > 2 and ay € N, it must be that o(e1) =1 and a1 = 1 — ky. If
k1 =0, then k; = 0 for all 1 < ¢ < r, and so 4 = 0, a contradiction. Hence
k1 = 1. Since k; — k; € Z for all i and j, and since 1 = k1 > ko > k3 > --- >
k. > 0, we have that k; =0or 1, for all 2 < i < r. We want to show that
ki=0forall 2 <q:<r It sufﬁces to show ko = 0. A simple computation
shows that

—i 42— ko if o0(g;) = €9 for some 3 <i<r
) 2r i+l -k 1fa(£z):—52forsom63<z<r
2= —ks if o(e2) =
—2r +3 — ko if o(e2) =

Since r > 2 and ag € N, it must be that o(e3) = €2, and hence ky = 0. Thus
w=ec1 =\

(<) By Proposition 3.2, we know if = A, then p(c(A+p)—p—A) >0
when o = 1. O

4. Lie algebra of type C

In this section, we consider the Lie algebra sp,,.(C) for » > 3. Whenever
1 < i <rlet g denote the i™ standard basis vector in R”. If a; = &; — €it1
for 1 <i¢ <r—1and a, = 2¢,, then the set of simple roots of sp,,(C) is
given by A ={a1,...,a,} and the set of positive roots is given by

t={ei—gjeite: 1<i<j<riu{2g:1<i<r}.

The fundamental weights of sp,, (C) are w; =e1+---+¢; for 1 <i <r, and
p = w1 + -+ + w,. The simple root reflections act on the simple roots and
fundamental weights as follows. If 1 < i < r, then s;(¢j) = o if | — j| > 1,
si(oj) = —ajif i =7, si(aj) =i +ajif|i—jl|=1and i #r—1, j #r, and
sp—1(ow) = 2a,-1 + .. As before s;(w;) = w; — 9 ja; for all 1 < 4,5 < r.
Throughout this section, we let A = a1 + as + -+ - + ..

We separate the results of this section into the cases where p is the zero
weight and when it is a nonzero weight.
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4.1. Zero weight space

We begin with the following technical result for sp,,.(C).

Proposition 4.1. Let 0 = s;,s;, -+, for some nonconsecutive integers
2 <iq,...,1 <r—1.1If o contains s,_1 in its reduced word expression, then
oA +p)—p=A+a,_1— Z?:l a;,, otherwise o(A+p) —p = A — Z?:l a;,,
both of which are nonnegative Z-linear combinations of positive roots.

Proof. Let 0 = s;,8;, -+ for some nonconsecutive integers satisfying
2 <4y,...,1 <r—1. Note that

sre1(A+p)=ar+ar+ - a3+ (ot 1) — a1
+ Qa1+ ap) +p—ap_y
=A+p.

Hence, if o contains s,_1, without loss of generality, let iy = r — 1, and
observe that o(A+p) —p = 84,86, "+~ Si,_ Sr—1(A+p)—p = 83,81, S, (A+
p)—p=A+a,_1— Zf;ll i, = A+ a1 — Z?:l a;,. If o does not contain
Sp—1, then c(A+p)—p =584, 85, - Si, A+ p)—p = )\+p—p—2§:1 o, = A—
Z?Zl ;. Lastly, note that both expressions can be written as nonnegative
integrals sum of positive roots. ]

Proposition 4.2. If o0 = s;, 54, - - - 5;, for some nonconsecutive integers sat-
isfying 2 < 41,...,1i <r —4, then

e 08p25r—1(A+p)—p=A— (Z?:l aij> — Q2

e 05_18r—2(A+p)—p=08—25_15—2A+p)—p=A— <Z?:1 aij> —
Qp—2 — Qpr—1

all of which can be represented as nonnegative Z-linear combinations of
positive roots.

Proof. The result follows from Proposition 4.1 and by computing the action
of the simple roots s,_s and s,_1 on A + p. O

The following result describes all of the elements of A(\,0) for the Lie
algebra of type C.

Theorem 4.1. Let g = sp,,.(C) with » > 3. Then o € A(A,0) if and only if

1. o=1or
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2. 0 = 8;8;, - S for some nonconsecutive integers 2 < iy,42,...,9 <
r—1or
3. 0 =84, 8i, - - 8;, 7 for some nonconsecutive integers 2 < 41,49, ...,k <

r—4and m € {281, S,—187-2, Sr—25r—15r—2}.

Proof. (<) Let 0 = 1, then 1(A + p) — p = A is a nonnegative Z-linear
combination of positive roots, thus 1 € A(\,0). Propositions 4.1 and 4.2
show that if o is of the form listed in (2) or (3) above, then then o € A(\,0).

(=) Suppose o € W is not of the three forms listed above. Then o
contains s or s,, or s;s; where 7, j are consecutive integers, but not of the
forms s,_28,_1 or $,_15,—2. We observe that s;(A+p)—p = (A—a1+p—ay)—
p=A—2aj and s,(A+p)—p=(A—ar+p—a,)—p = A—2a,, which cannot
be written as sums of positive roots because of the negative coefficient of
aq and of ., respectively. This implies that s, s, ¢ A(X,0), and hence if o
contains s; or s, in its reduced word expression, then o ¢ A(\,0).

For consecutive integers 1 < j —1,j <7 —1 we have s;_15j(A+p) —p =
A =201 — o and sj5;_1(A+ p) — p = X — oj—1 — 2¢, which implies
that s;_15;,s55j—1 ¢ A(X,0). Hence if o contains s;s; for some consecutive
integers 2 < i,j < r — 2 then o ¢ A(A,0). Thus o must be of one of the
three forms listed in the theorem in order for o € A(\,0). O

Recall that the Lucas numbers follow the recurrence L, = L,_1 + L,_»,
with L1 = 1 and Ly = 3. We can now connect our work with this famous
sequence of integers.

Corollary 4.1. If r > 3 and A = a1 + as + - - - + a, is a weight of sp,,.(C),
then |A(X,0)| = 2L,_5, where Lj denotes the k' Lucas number.

Proof. As in Corollary 2.1, we know that there are F,. Weyl group elements
in A(),0) arising from parts 1 and 2 of Theorem 4.1. By the same reasoning,
there are F,_3 elements o = s;,s;, - - - s;, ™ for some nonconsecutive integers
2 <iy,i9,...,1; < r—4, for each 7 as specified in part 3 of Theorem 4.1. This
yields an additional 3F,_3 elements in A(\, 0). Thus |A(\,0)| = F, +3F,_3,
where F}, denotes the k" Fibonacci number. The result follows from the fact
that F. + 3F,_3 = 2L,_o. ]

4.2. Nonzero weight spaces

Throughout this section » > 3 and as before A = a; + as + - -+ + «;.

Theorem 4.2. If ;1 # 0 is a dominant integral weight of sp,,.(C), then
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We begin by proving the following technical results from which Theorem
4.2 follows.

Proposition 4.3. Let © # 0 be a dominant integral weight of sp,,(C). If
there exists o € W such that p(o(A+ p) — p — p) > 0, then p = w;.

Proof. (=) Let pn € Pi(spy,(C)) with p # 0, and assume o € W such
that p(c(A+ p) — p — p) > 0. By [2, Proposition 3.1.19], we know that
P, (sp,,(C)) consists of all weights p = kie1 + kaca + - - - + krer, satisfying
ki > ko >---> k. >0 with k; an integer for all 1.

Now observe that

o A+p)—p—p=oc((r+ e+ (r—1)ez+---+ 3,2+ 26,1 + 2¢,)
—(rer+(r—1)ea+ -+ 261 +¢&;)
— (k1e1 + koea + -+ + kyey).

Let a; denote the coefficient of a; in o(\ + p) — p — p. Then

(1-F if o(e1) = &1
—2r—1—-F if o(e1) = —e1

(5) a1 = —i+1—F if o(g;) =e1 forsome 2 <i<r—1
—2r—1+i—k ifo(g)=—e1 forsome2<i<r-—1
2-r—h ifa(gr)szl
—2-r—k if o(e,) = —e1.

Since r > 3 and a; € N, it must be that o(e1) = €1 and a; = 1 — k;. Hence,
ki =0o0r kg =1.If ky =0, then k;, =0 for all 1 <+i¢ < r, and so u = 0,
a contradiction. Thus k1 = 1. Since 1 = k1 > ko > ks > --- > k. > 0, we
have that k; = 0 or 1, for all 2 < ¢ < r. We want to show that k; = 0 for all
2 <4 < r. It suffices to show ko = 0. A simple computation shows that

—ko if o(e2)
—2(r—1) —ky if o(e2)
—i4+2— ko ifO'(EZ)
(&)
(er)
(er)

gforsom63<z<7’—1

(6) ax= . .
—2r+1i— ko if o(g; :—sgforsome3<z<r—1
3—1r—ky if o(e,) =
\—r—1— ko if o(e,) =

Since r > 3 and as € N, it must be that either
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L. 0(52) = &9 and ay = —k2 or
2. r=3,0(¢,) =€, and ag = 3 — 1 — ko = —kn.

However, in either case it must be that ks = 0 in order for as € N. This
implies that k; = 0 for all 2 < ¢ <7r. Thus p =¢1 = wi. O

Proposition 4.4. If w; is a fundamental weight of the Lie algebra sp,,.(C),
then A\, 1) = 0.

Proof. We begin by noting that @y =1 = a1+ -+ a1 + %ar. Now we
compute

7 1A+ 9) —p— 1 = o

(8) st A+p)—p—w1 =201 + %ar

9) si()\—i-p)—p—wl:—ai—i-%ar for2<i<r—2
(10) Sr—1(A+p)—p—wy = %@T

(11) SO p)—p—m = —sar

none of which are nonnegative Z-linear combinations of positive roots. Hence
1¢ A\, wi) and s; ¢ A(A\, 1) for all 1 < i < r. Then by [8, Proposition
3.4] it follows that since s; ¢ A(X, @) for any 1 <4 < r, then neither is any
o € W containing any s; in its reduced word expression. This establishes
that A(\, 1) = 0. ]

5. Lie algebra of type D

In this section, we consider the Lie algebra g = s05,(C) for » > 4. For
1 <i <rlet g; denote the i*" standard basis vector in R”. If o; = ¢; — €it1
for1 <¢ < r—1and ap, = €1 + &5, then the set of simple roots is
given by A = {a1,...,a,} and the set of positive roots is given by &+ =
{ei —¢gj,ei+¢5+ 1 <i < j <r}. The fundamental weights of sog,(C)
are w; =1 +--+eg for1 <i<r—2 w1 = %(61—1—-'-4—57«_1—57«),
Wy = %(51—#- 4er_14€,), and p = wi+- - -+w,. The simple root reflections
act on the simple roots and fundamental weights as follows. If 1 < ¢ < r, then
si(a)) =—a;. If1<i<j<r—1lwith|i—j|=1orifi=r—2andj=r,
then Si(@j) = Sj(Oéz') = o; + «j. Lastly, 87«-1(%) = o, Sp(ap_1) = 1,
and in all other cases s;(a;) = «;. As before s;j(w;) = w; — §; ja; for all
1 <4,7 < r. Throughout this section, we let A = a; +as +--- + ;.
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We separate the results of this section into the cases where yu is the zero
weight and when it is a nonzero weight.

5.1. Zero weight space

We begin with the following technical result for sos,(C).

Proposition 5.1. Let 0 = s;,s;, -+ S, for some nonconsecutive integers
satisfying 2 < iy,...,ix < r — 2. If o contains s,_2, then o(A + p) — p =
A Qg — Z?:l ;,, otherwise o(A+p) —p =\ — Z;?:l ;,, both of which
are nonnegative Z-linear combinations of positive roots.

Proof. Let 0 = s;,8;, -+ for some nonconsecutive integers satisfying
2 < iq,...,1, < r— 2. If 0 contains s,_o, then without loss of general-
ity assume i, = r —2 and note o(A+p) —p = 54,84, - Sip_,Sr—2(A+p)—p =
8i,8iy Si A+ p)—p=A— Zf;ll i, = A+ opg — 2521 «;,. However,
if o does not contain s,_s, then o(A+ p) — p = 8;,8i, - Si, A+ p) —p =
A— Z?Zl ;. Lastly, note that both expressions can be written as a non-
negative Z-linear combination of positive roots. O

Proposition 5.2. If 0 = s;, 4, - - - 5;, for some nonconsecutive integers sat-
isfying 2 <iq,...,4 <7 —5, then
k
. O’ST_?,ST_Q()\ + p) —p=A— <Zj:1 Otij> — Olp_3,

i UST—2ST—3()\ + /)) —p= 0'57"—387’—237"—3()‘ + P) —p=A- <Z§:1 aij) -
Op—3 — Qr—2,

both of which can be written as nonnegative Z-linear combinations of posi-
tive roots.

Proof. The result follows from Proposition 5.1 and by computing the action
of the simple roots s,_3 and s,_2 on A + p. O

Theorem 5.1. Let g = s09,(C) with 7 > 4. Then o € A(A,0) if and only if

l.o=1or

2. 0 = 8; i, - s;, for some nonconsecutive integers 2 < iy, ..., i < r—2
or

3. 0 = s4,8i, - 8,7 for some nonconsecutive integers 2 < ij,... 0 <

r—>5and w e {S'r—33'r’—27 Sp—28r—3, S'r—33r—23r—3}~

Proof. (<) Let 0 = 1, then 1(A+p) — p = A is a nonnegative Z-linear com-
bination of positive roots. Hence 1 € A(A,0). If o € W has one of the forms
listed in (2) or (3), then Propositions 5.1 and 5.2 show that o € A(\,0).
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(=) Suppose o € W is not of the three forms listed above. Then o
contains si, sy—1, Sy, or consecutive reflections s; and sj, where {i,j} #
{r—3,r—2}. Note that s;(A+p)—p=A—2a1, s,_1(A+p)—p = A—2a,_1,
and s, (A+p)—p = A—2a,, none of which can be written as sums of positive
roots because of the negative coefficients of a1, a,—1 and «,., respectively.
This implies that s1,s,-1,s, ¢ A(X,0), and hence if o contains s;, s,_1, or
sy in its reduced word expression, then o ¢ A(\,0).

For consecutive integers 2 < j—1,j <r —3 we have s;_15;(A+p) —p =
A—20j-1 — aj and sjsj_l()\ +p) — p= X —j_1 — 20, which implies that
sj—18j, $j8j—1 ¢ A(X,0). Hence if o contains s;, s; for some consecutive in-
tegers 2 < 4,7 <r — 3 then o ¢ A(\,0). Thus o must be of one of the three
forms listed in the theorem in order for o € A(),0). O

Corollary 5.1. If r >4 and A = a1 + e + - - - + «, is a weight of s05,(C),
then |A(X,0)| = 2L,_3, where Lj, denotes the k" Lucas number.

The proof of Corollary 5.1 is analogous to that of Corollary 4.1, hence
we omit it.

5.2. Nonzero weight spaces

Throughout this section r > 4 and as before A = a3 + as + - -+ 4+ .

Theorem 5.2. If ;1 # 0 is a dominant integral weight of s0s,(C), then
A()‘a M) = 0.

We begin by proving the following technical results from which Theorem
5.2 follows.

Proposition 5.3. Let u # 0 be a dominant integral weight of sog,(C). If
there exists o € W such that p(o(A+ p) — p — p) > 0, then p = wy.

Proof. (=) Let pu € Py(s02,.(C)) with u # 0, and assume o € W such that
p(a(A+p)—p—p) > 0. By [2, Proposition 3.1.19], we know that Py (s02,(C))
consists of all weights u = kie1 + koga + - -+ + kye,, satisfying ky > ko >
-+ > |ky| where 2k; and k; — k; are integers for all i. Now observe that

o A+p)—p—p=oc(rer+ (r—2)ea+ (r—3)eg+ -+ + 26,9+ 26,_1)
—((r=1e1+(r—2)e2+---+2e_2+6_1)
— (kie1 + koea + - + krer).
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Let a; denote the coefficient of a; in o(\ + p) — p — p. Then

(1—/{1 ifO’(El):

—2r+1—1Fk if o(e1) =

—i+1—k if o(e;) = 1f0rsome2<z<r—1
(12) a1 = . :

—2r+1+4+1i—k 1f0(51):—51forsome2<z<r71

3—r—Fk if o(e,) =

—1—r—k if o(ey) =

Since r > 4 and a; € N, it must be that o(e1) = €1 and a; = 1 — k;. Hence,
ki =0o0r ky =1.If ky =0, then k; =0 forall1 <i<r,sou=0,a
contradiction. Thus k1 = 1. Since k; — k; € Z for all ¢ and j, and since
1=k >ky>ks>---> |k, we have that k; = 0 or 1, for all 2 < i <.
We want to show that k; = 0 for all 2 < i < r. It suffices to show kg = 0. A
simple computation shows

—k'Q if 0(82) = &9
—2(’/” — 2) — k:g if 0(62) = —&9
—i+2—ko if o(e;) for some 3 <i<r—1
(13) ag = .
—2r+i+4+2—ky ifo(g) =—egforsome3d <i<r-—1
4—T—k2 ifa(é“r):z’fg
(er)

—-r — kQ if o Epr) = —€2.

Since r > 4 and as € N, it must be that either

1. ( 9) = e and ag = —ky or
2. r=4,0(e) =eg,and ag =4 —r — ko = —ko.

However, in either case it must be that ko = 0 in order for as € N. This
implies that k; = 0 for all 2 < i <r. Thus y =¢1 = wy. O

Proposition 5.4. If w; is a fundamental weight of the Lie algebra so2,(C),
then A\, 1) = 0.

Proof. We begin by noting that w; =e¢; =a1+ -+ a9+ %aT_l + %ozr.
Now we compute

1
5 (Oérfl + OZT)

1
(15) s1(A+p) —p—w1 = —2a1 + 5(017"71 + )

(14) 1A +p)—p—m =
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1
(16) siA+p)—p—w1 =—a;+ =(ap_1 + ), for2<i<r-—3

2
1
A7) sr2(A+p) —p-w1 = 5(%4 + o)
3 1
(]‘8) 57"—1(>\ + p) —p— w1 = _QaT—l + §O[T
1 3
(19) ST(A + p) —p— W = 5051"—1 — §ar

none of which are nonnegative Z-linear combinations of positive roots. Hence
1¢ AN\ wi) and s; ¢ A(\ ) for all 1 < ¢ < r. Then by [8, Proposition
3.4] it follows that since s; ¢ A(X, 1) for any 1 <4 < r, then neither is any
o € W containing any s; in its reduced word expression. This establishes
that A(\, 1) = 0. O

6. A g-analog

The g-analog of Kostant’s partition function is the polynomial valued func-
tion, g, defined on h* by p4(§) =co+cig+---+ cxq”, where ¢; equals the
number of ways to write £ as a nonnegative Z-linear combination of exactly
J positive roots, for & € h*. The g-analog of Kostant’s weight multiplicity
formula is defined, in [10], as:

my) = X (~) D p, 0\ + p) — (1 + p)).
ceW
In the sections that follow we consider the classical Lie algebras and

provide formulas for the value of mg (A, ) when A = a1 +az+--- + o, and
w1 is a dominant integral weight.

6.1. Lie algebra of type A

Note A = a1 + ag + -+ + a, is the highest root of sl,;11(C). In this case
it is known that mg(\,0) = YI_, ¢*, where 1,2,...,r are the exponents of
sl,41(C) [10]. A combinatorial proof of this result was presented in [3]; how-
ever, we provide the results and their proofs here for sake of completeness.

Theorem 6.1. If A\ = a3 + ag + -+ + «, is the highest root of sl.;1(C),
then m,(\,0) =q+¢*>+ - +¢".

In order to establish Theorem 6.1, we will make use of the following
technical result.

Lemma 6.1. The cardinality of the set {o € A(),0) | £(c) = k} is (T_llg_k)
and max{ £(c) | 0 € A(X,0)} = [5].
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Proof. This result follows from Theorem 2.1 and the fact that for any n, k €
N satisfying k£ < n
1. the number of ways to select & nonconsecutive numbers from the set
{1,2,...,n} is given by (”JIEH) and
2. the maximum number of nonconsecutive numbers that can selected
from the set {1,2,...,n}is 2. O

We now prove the following combinatorial identity.

Proposition 6.1. If A = a; + ag + - - - + «, is the highest root of sl,41(C)
and o € A(A,0), then py(a(X+ p) — p) = ¢ 7 (1 4 g7~ 172,

Proof. If 0 € A(\,0) with (o) =0, then 0 = 1 and c(A+p) —p =\ =
ar+--+ap. Since T ={a; : 1 <i<r}U{a;+-+a;:1<i<j<r}
for any i > 0, we can think of ¢; 1, the coefficient of ¢"*! in pqla1+--+ay),
as the number of ways to place ¢ lines in r — 1 slots. Hence ¢;41 = (’71) and
pa(N) = Sy (71 = a(1+9)

If o € A(X0) with ¢(0) = k # 0, then Theorem 2.1 implies that o =
$182 - - - Sk, for some nonconsecutive integers 2 < iy,49,...,ix < r — 1. Then
by (4), c(A+p)—p=A— 2?21 i,. Let ¢; denote the coefficient of ¢/ in
©q(c(A+p) —p). Since o subtracts k many nonconsecutive simple roots from
A, we will at a minimum need k + 1 positive roots to write X\ — Z?Zl a;;. So

c¢;j = 0, whenever j < k + 1. Also observe that A\ — 2521 @, can be written
with at most r — k positive roots. Hence ¢; = 0, whenever j > n — k.

For ¢ > 0, we can think of c¢x114; as the number of ways to place ¢ lines
in r — 1 — 2k slots. This is because for each simple root that o removes
from A, we lose 2 slots in which to place a line, one before and one after. So
Chtl4i = (T_ll._%), whenever 0 < i < r—1—2k. Therefore p4(c(A+p)—p) =
T_lz_% (T 2) g g1 (] )12k, 0

7
i=0
The following proposition will be used in the proof of Theorem 6.1.
Lr;l

—-1-k
Proposition 6.2. For r > 1, Z (—1)* <T >q1+k(1 41 =

k
. k=0
D4
i=1

Proof. Equation (4.3.7) in [11] shows that for integers k and n > 0

(20) S v g =t

k<2

—2

- qn+1

1—g¢q
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Suppose r > 1, and let n =7 — 1 > 0. Then by (20) we have that

=]

> (—F <r B z— k) ¢4+ =g <11_7_qnq+1> :

k=0

Now observe that

T n+1 n 1_qn+1
Sa=a=add=a( 0.
=1 =1 —a
Therefore
e r—1—k
k - 1+k r 1-2k
> () (") et Zq =

Proof of Theorem 6.1. By Lemma 6.1 and Propositions 6.1 and 6.2, if &k =
{(0), then

mg(\,0) = Y (=1)"py(a(A +p) — p)

oceW
= > (=)o (a(X+p) - p)
oc€A(N0)
Lr_l
r—1—k 1
Z < >q1+k(1+q)r 1-2k
k=
:q+q +@++ 4 -

We now present the multiplicity result when p is an integral weight of
5[r+1(C).

r ifu=20
Corollary 6.1. If y € P(sl,41(C)), then m(A\,p) =<1 if ued

0 otherwise.

Proof. The fact that m(\,0) = r follows from Theorem 6.1 and the fact that
mg(X,0)[g=1 = m(A,0). To see that m(\, u) = 1 when p is a positive root,
recall that if 4 € P(sl,1(C)), then there exists w € W and £ € Py (sl,+1(C))
such that w(§) = p [2, Proposition 3.1.20]. Also by [2, Proposition 3.2.27]
we know that weight multiplicities are invariant under W. Thus it suffices to
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compute m(A, ) for p € Py (sl,4+1(C)). By Theorem 2.2 we know A(\,\) =
{1}, and A(\, u) = Q) whenever p € Py (sl11(C)) — {0, \}. This implies that

m(AA) = p(L(A+p) —p—A) = p(0) = 1, and that m(A, u) = 0 whenever
e P+(5[r+1( ) — {0 A} 0

6.2. Lie algebra of type B

It is known that the multiplicity of the zero weight in the representation
with highest weight A = ay + e+ - - +a, = w; is equal to 1, see [1]. In this
section, we give a combinatorial proof of this result by proving the following.

Theorem 6.2. Let r > 2 and let A\ = a1 + a9 + -+ + o = w1 be a
fundamental weight of s09,41(C). Then mq(X,0) = ¢".

Observe that the subset of positive roots of s02,11(C) used to write
oA+ p) — p, for any o € A(A,0), is equal to the set of positive roots of
sl,11(C). Thus we state the following technical results.

Lemma 6.2. The cardinality of the sets
{0 € A(\,0) : £(0) = k and o does not contain s, }

and
{o0 € A(\,0) : £(c) = k+ 1 and o contains s, }
are (Tfllifk) and (Pi*k), respectively. Also

r—1
2

max{{(c) : 0 € A(X,0) and o does not contain s, } = { J and

max{{(o) : 0 € A(\,0) and o contain s, } = V ; 2J .

Lemma 6.2 is analogous to Lemma 6.1 and hence we omit the proof.

Proposition 6.3. Let » > 2 and let A = a3 + as + -+ + o, = w be a
fundamental weight of s09,41(C). If o € A(A,0), then

ql+é(a)(1 + q)”_l_w") if 0 does not contain s,
¢" (1 + q)r—24) if o contains s,..

pq(c(A+p) —p) = {

To see that the statement of Proposition 6.3 holds, it suffices to note
that whenever o does not contain s,, then the count is precisely that of
Proposition 6.3, while if o contains s,, then it reduces to Proposition 6.3
with r replaced by r — 1 and ¢(o) replaced by ¢(o) — 1. With the results at
hand we can now prove Theorem 6.2.



162 Kevin Chang et al.

Proof of Theorem 6.2. Observe that

me(X0) = Y (=) DX +p) - p)
o€A(X0)

no s, in o

+ ) (=D g (c(A+p) - p).
O’GA.()\,O)

S, in o

By Lemma 6.2, Proposition 6.3 and Proposition 6.2 it follows that

Y D) @py(a(A+p) —p)

o€ A(X,0)

no s, in o

-1
15

° (7" - ]1— k) gUHE(L 4 )12
1

d

> (-1
k=0

T
> ¢ a
=1

> (=) gy(a(A+p) —p)

c€A(X0)

Lz r—2—~Fk
— Z (_1)1+k< . >q1+k(1 + q)r7272k

k=0
r—1
=1

Therefore, my(\, 0) = (¢+¢*+ - +¢" 1 +¢") —(g+@P+ - +¢" ) =¢". O

We can now present the following multiplicity result regarding the nonzero
weight spaces.

Corollary 6.2. If ;4 € P(s09,+1(C)), then

1 ifu=0o0rpeWw:-A

0 otherwise

m(A, p) = {

where W - A denotes the orbit of A under the action of the Weyl group.
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Proof. The fact that m(\,0) = 1 follows directly from Theorem 6.2, since
m(A,0) = my(A,0)[q=1 = 1. Recall that given 1 € P(s02,41(C)), there exists
w € Wand ¢ € Py (s02,41(C)) such that w(§) = p and also recall that weight
multiplicities are invariant under W [2, Propositions 3.1.20, 3.2.27]. Thus it
suffices to consider p € P (s02,41(C)). Theorem 3.2 implies m(A\,\) = 1
and hence m(\, ) = 1 whenever € W - X\. Moreover, Theorem 3.2 also
shows m(A, ) = 0, whenever p € Py (s02,41(C)) \ {0, A}. O

6.3. Lie algebra of type C

In this section, we give a result regarding the multiplicity of an integral
weight p in a highest weight representation of sp,,(C) with highest weight
A=a1 +ag+ -+ qp.

Theorem 6.3. If r > 3 and A\ = a3 + as + - - - + ;. is a fundamental weight
of §p,,.(C), then mgy(X,0) = 0.

Proof. By Corollary 4.1 we know that the number of elements in A(\,0) is
even. Hence, we will establish this result by showing that we can pair up
elements 0,7 € A(\,0) such that £(7) =l(0) £ 1 and o(A+p) —p=7(A+
p) — p- This implies that the value pq(o(A+p) — p) appears in my (A, 0) with
opposite signs. Thus the contributions of these terms cancel in mg4(X,0). By
pairing all of the elements in A(X,0) in this way, we establish m4(X,0) = 0.

To prove the claim we recall that by Theorem 4.1 the elements of A(\, 0)
consist of

l. o=1or

2. 0 = 88, S;, for some nonconsecutive integers 2 < iy,49,...,0, <
r—1or
3. 0 =84 8i, - s;, ™ for some nonconsecutive integers 2 < 41,49, ..., 0 <

r—4and we {Sr—25r—1u Sr—15r—2, 5r—25r—13r—2}-

By Propositions 4.1 and 4.2 note that if 0 = s;,s;, - - - 54, for some non-
consecutive integers 2 < i1,13,...,4 < r — 3, then

c(A+p)—p=osr—1(A+p) —p.

Thus, we pair o with 7 = os,_1, which satisfies ¢(7) = ¢(c) + 1, and the
contribution of these terms cancel each other out.

The only remaining elements in A(\, 0) are of the form o = s;, 54, - - - 55,
for some nonconsecutive integers 2 < i1,49,...,1 < 7 — 4, where ™ €

s
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{Sr—2, Sr—28r—1,Sr—18r—2, Sp—287—15r—2}. Then by Propositions 4.1 and 4.2
note that

0sr2(A+p) —p=08—25_1(A+p)—p
0'57“—157"—2(>\ + P) —p= Usr—er—lsr—Z()\ + p) - p.

Thus, we pair os,_o with 7 = 0s,_9s,_1 and we pair ¢s,_18,_o with 7 =
08r—28r—18r—2 which satisfy ¢(7) = ¢(o) + 1, and the contributions of these
terms cancel each other out. This completes the proof. O

Corollary 6.3. If ;1 € P(sp,,(C)), then m(\, ) = 0.
The above result follows directly from Theorems 4.2 and 6.3.

6.4. Lie algebra of type D

In this section, we give a result regarding the multiplicity of an integral
weight p in a highest weight representation of soy, with highest weight A\ =
ap +az+ -+ Q.

Theorem 6.4. If r >4 and A\ = a3 +as + - - - + «, is a fundamental weight
of s02,(C), then mg(X,0) = 0.

Proof. By Corollary 5.1 we know that the number of elements in A(A,0) is
even. Hence, we will establish this result by showing that we can pair up
elements o, 7 € A(X,0) such that ¢(7) =£¢(oc) £ 1 and c(A+p) —p=T(A+
p) — p. This implies that the value pq(o(X+p) — p) appears in mg (A, 0) with
opposite signs. Thus the contributions of these terms cancel in mg(A,0). By
pairing all of the elements in A(\, 0) in this way, we establish m4(X,0) = 0.

To prove the claim we recall that by Theorem 5.1 the elements of A(\, 0)
consist of

l. o=1or

2. 0 = 8;8;, - S for some nonconsecutive integers 2 < iy,42,...,9 <
r—2or
3. 0 = s, 8i, - - - 8,7 for some nonconsecutive integers 2 < 7,149, ..., <

r—>5and e {Sr—Ssr—27 Sr—28r—3, 87‘—387‘—287‘—3}'
By Propositions 5.1 and 5.2 note that if o = s;,s;, - - - 5;, for some noncon-

secutive integers 2 < i1,%9,...,1 < 7 — 4, then

c(A+p)—p=o0sr—2(A+p)—p
05725, 3(A+p) —p=08_308_253(A+ p) —p.
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Thus, we pair ¢ with 7 = 0s,_9, and 0s,_98,_3 with 7 = 0s,_308,_25,_3.
In either case ¢(1) = ¢(0) + 1, and the contributions of these terms cancel
each other out.

The only remaining elements in A(\, 0) are of the form o = s;,s;, -+ - 8;, 7
for some nonconsecutive integers 2 < i1,42,...,i < r — 5, where 7 = s,_3
or m = S,_3S,—2. Then by Propositions 5.1 and 5.2 note that

0sr—3(A+p) — p=08—_35—2(A+p) — p.

Thus, we pair 0s,_3 with 7 = 0s,_35,_2, which satisfies ¢(1) = ¢(0) + 1,
and the contributions of these terms cancel each other out. This completes
the proof. O

Corollary 6.4. If ;1 € P(s09,(C)), then m(\, u) = 0.

The above result follows directly from Theorems 5.2 and 6.4.
7. Future work

Determining Weyl alternation sets is a new way to describe the complexity
of computing weight multiplicities, having only been defined in 2011 by the
second author. The only cases where a concrete description of the elements
of the Weyl alternation sets exists is in the adjoint representation of the
classical Lie algebras (i.e. the representation whose highest weight is the
highest root) [5, 8] and in the present work, where we considered the weight
A as the sum of the simple roots and p and integral weight of the classical Lie
algebras. Extending these techniques to other representations can be rather
difficult as the Weyl group action on the highest weight of the representation
is not as straight forward to describe as in these cases. However, it would be
of interest to provide a classification of highest weights where the techniques
presented in this manuscript can be extended to describe the elements of
other Weyl alternation sets.
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