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ABSTRACT

Multiparty computation as a service (MPSaa$) is a promising ap-
proach for building privacy-preserving communication systems.
However, in this paper, we argue that existing MPC implementa-
tions are inadequate for this application as they do not address
fairness, let alone robustness. Even a single malicious server can
cause the protocol to abort while seeing the output for itself, which
in the context of an anonymous communication service would cre-
ate a vulnerability to censorship and de-anonymization attacks. To
remedy this we propose a new MPC implementation, HoneyBadger-
MPC, that combines a robust online phase with an optimistic offline
phase that is efficient enough to run continuously alongside the
online phase. We use HoneyBadgerMPC to develop an application
case study, called AsynchroMix, that provides an anonymous broad-
cast functionality. AsynchroMix features a novel MPC program that
trades off between computation and communication, allowing for
low-latency message mixing in varying settings. In a cloud-based
distributed benchmark with 100 nodes, we demonstrate mixing a
batch of 512 messages in around 20 seconds and up to 4096 messages
in around two minutes.
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Millions of users employ the Tor [43] network to protect the anonymity

of their communication over the Internet today. However, Tor
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can only provide a weak form of anonymity against traffic anal-
ysis [42] and has been successfully attacked using strong adver-
saries [14, 76]. Furthermore, emerging applications such as dis-
tributed ledgers (or blockchains), thanks to their close relation
with payments and the financial world, demand a stronger form of
anonymity [48, 52]. For example, even the use of zero-knowledge
proofs in blockchains [13, 66, 75] is undermined unless users submit
transactions through a Tor-like service. Designing and implement-
ing practical and scalable systems for anonymous communication
with stronger anonymity guarantees is, therefore, an active and
important area of research and development [3, 33, 49, 59, 77].
Anonymous Communication from MPC. Secure multi-party
computation (MPC) is a natural approach for building distribu-
ted applications with strong privacy guarantees. MPC has recently
made great strides towards practical implementation and real-world
deployment and consequently, several general-purpose compilers
(or front-ends [51]) and implementations are now available sup-
porting a range of performance and security tradeoffs [4, 8, 15,
26, 40, 55, 56, 78]. Recent implementation efforts [8, 26, 73] have
bolstered their security guarantees by focusing on the malicious
rather than semi-honest setting (i.e., they tolerate Byzantine faults),
and can scale to larger networks (e.g., more than 100 servers) while
tolerating an appreciable number of faults. Further, in contrast to
early MPC realizations centered around one-off ceremonies [16, 17],
there has been increased interest in the MPC system-as-a-service
(MPSaaS) [3, 8, 46, 65] setting, where a network of servers continu-
ously process encrypted inputs submitted by clients. As scalable and
maliciously secure MPSaaS becomes increasingly practical, there’s
an increasingly more convincing argument that it can be success-
fully used for highly desirable internet services such as anonymous
communication.

The Need for Robustness in MPC. Despite the aforementioned
progress towards practical MPC, in this paper, we highlight ro-
bustness as an essential missing component. All of the MPC imple-
mentations we know of do not guarantee output delivery in the
presence of even a single active fault. Even worse, these implemen-
tations do not guarantee fairness, in the sense that an adversary
can see the output even if the honest servers do not. In the context
of an anonymous communication service, unfair MPC could be
catastrophic since an adversary could link the messages of clients
who retry to send their message in a new or restarted instance.
Thus the primary goal of our work is to fill this gap by advancing
robustness in practical MPC implementations and demonstrating
the result through a novel robust message mixing service.
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Challenges in Providing Robust MPC. For MPC based on ad-
ditive (n-of-n) secret sharing such as SPDZ [40] and EMP [78], the
guaranteed output is inherently infeasible. However, even among
guaranteed output protocols based on Shamir sharing, we find that
the vast majority [10, 38, 39, 41, 53] are sensitive to assumptions
about network synchrony. In short, their confidentiality and in-
tegrity guarantees rely on synchronous failure detectors, such that
if a server is temporarily unresponsive, then it is "timed out” and
ejected from the network and the fault tolerance among the surviv-
ing servers is reduced. If t honest parties are timed out, e.g., because
of a temporary network partition, then a single corruption among
the remaining servers could compromise the client’s confidential
inputs. Hence for a robust distributed service based on an MPC, we
would desire safety properties even in an asynchronous network. In
this setting, a Byzantine fault tolerance of t < n/3 is a lower bound
even for agreement tasks that do not require any confidentiality.
Our Approach: Asynchronous MPSaaS. To address the above
challenges, we base our message mixing service, AsynchroMix, on
anew MPC implementation, called HoneyBadgerMPC, which is the
first to guarantee fairness and output delivery in a malicious setting
without depending on network timing assumptions. AsynchroMix
proceeds in asynchronous epochs, wherein each epoch the sys-
tem selects a subset of k clients and mixes their inputs together
before publishing them. Unlike HyperMPC [8], which relies on a
central coordinator service, HoneyBadgerMPC employs asynch-
ronous broadcast protocols to receive secret shared inputs from
untrusted clients and initiate mixing epochs in a robust and distribu-
ted way. Like many MPC protocols, HoneyBadgerMPC relies on the
online/offline preprocessing paradigm. In our protocol the cost of
the offline phase is comparable to that of the online phase, hence it
can run continuously in the background as mixing proceeds. While
the online phase is entirely robust, more efficient (but non-robust)
protocols are chosen to generate preprocessing elements in the
offline phase. In this way, less work is required overall and a buffer
of preprocessed values can be used to guarantee robustness in the
presence of faults.

Realizing Low-Latency, Robust Mixing. We evaluate two ap-

proaches for mixing inputs in MPC. The first is straightforward and

implements a switching network [34] that requires log? k rounds

and O(nk log2 k) communication to shuffle k client inputs. To im-

prove on this, we present PowerMixing, a novel mixing technique

for reducing the number of rounds to two and the communication

overhead to only O(nk) by increasing computation to O(nk + k%)

per node. We show that this allows for messages to be mixed with

a lower latency than we could otherwise achieve, with larger mixes

being available to servers with more computational power.
To summarize our contributions,

e Robust MPC System-as-a-Service. We advocate for a new op-
erating point for MPC implementations, which features a robust
online phase, but an efficient non-robust offline phase used to fill a
buffer of preprocessing values. This fills a gap between protocols
from the literature, which forego an important security property
(asynchronous safety) in order to provide a robust offline phase,
and implementations, which are not robust at all. We also show
how to use fully-distributed asynchronous broadcast primitives,
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rather than a central cloud coordinator (like MATRIX [8]), to
receive client inputs and initiate MPC computations.

e Novel MPC program for mixing. We design and implement a
novel MPC program that can mix an arbitrarily large number of
messages in only two communication rounds. We evaluate this
program against a switching network implementation and show
the operating points at which it demonstrates mixing with lower
latency. We also demonstrate a method to create arbitrarily many
powers of a shared secret in one online communication round,
which may be of independent interest.

e First implementation of robust asynchronous MPC. As a
practical contribution, our prototype offers the first implemen-
tation of asynchronous MPC primitives with the guaranteed
output which may be employed for robust secure computations
beyond anonymous broadcast. In our cloud-based distributed
experiments, we show it is practical to mix inputs from up to
k = 4096 clients using n = 100 servers located across five conti-
nents just in a few minutes of end-to-end latency. Additionally,
using our novel low-latency mixing program, we can mix a more
modest k = 512 messages in just over 20 seconds.

2 PRELIMINARIES: MPC BASED ON SHAMIR
SECRET SHARING

Our standard MPC setting involves n parties {P1, ..., Pp}, where
up to t < n/3 of those can be compromised by a Byzantine adver-
sary. HoneyBadgerMPC relies on many standard components for
MPC [10, 28, 31, 41] based on Shamir secret-sharing [71]. Here, we
detail the most relevant techniques and notation.

2.1 Shamir Secret Sharing and Reconstruction

Notation. For prime p and a secret s € Fp, [s], denotes Shamir
secret sharing (SSS) with threshold ¢ (i.e., a t-sharing). Specifically, a
degree-t polynomial ¢ : F, — [, is sampled such that #(0) = s. The
share [s] (t') is the evaluation ¢(i). The superscript and/or subscript
of a share may be omitted when clear from the context.

Robust interpolation of polynomials. Reconstructing a secret
s from [[s]] requires interpolating the polynomial ¢ from shares
received from other parties. Since we want to achieve security
against an active (Byzantine) attacker, up to ¢ of the shares may be
erroneous. Furthermore, in an asynchronous network, we cannot
distinguish a crash fault from an intentional withholding of data
and can consequently only expect to receive shares from n — ¢
parties in the worst case.

Figure 1 outlines the standard approach [10, 28, 30, 31] for robust
decoding in this setting, Robust-Interpolate. First, we optimistically
attempt to interpolate a degree-t polynomial ¢ after receiving any
t + 1 shares. If the resulting ¢ coincides with the first 2¢ + 1 shares
received, then we know it is correct. If the optimistic case fails, we
wait to receive more shares and as they arrive to attempt to correct
errors. In the worst case, we receive t incorrect shares and need to
wait for 3t + 1 total shares before we can correct ¢ errors and find a
degree-t polynomial that coincides with all 2¢ + 1 honest shares.

In Appendix A we discuss implementations of RSDecode and
Interpolate. We use FFTs to achieve robust decoding with quasi-
linear overhead (i.e., incurring an O(nlog? n) computational cost),
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rather than superlinear algorithms based on Vandermonde matrix
multiplication which incur ~ O(n?) overhead.

Algorithm Robust-Interpolate

e Input: yo, ..., yp—1 sSymbols, up to t erasures (y; € Fp U {1})

e Output: ay, ..., ar, coefficients of a degree-t polynomial ¢, such
that y; = ¢(a;) for i € I where I C [1..n] and |I| = 2t + 1, or
else L

e Procedure (case of t erasures):

(1) Interpolate a polynomial ¢ from any ¢ + 1 points (y;, ;)
(2) Output ¢ if it coincides with all 2t + 1 points, otherwise
output L

e Procedure (case of t — e erasures):

(1) Run RSDecode decoding to correct up to e errors

Figure 1: Robust Polynomial Interpolation

Batch reconstruction. We recall an algorithm for the amortized
batch public reconstruction (BatchRecPub) of ¢-sharings for the
t < n/3 setting by Damgard and Nielsen [41] in Figure 2. The
idea is to apply a Vandermonde matrix M to expand the shared
secrets [x1], ..., [x¢+1] into a set of sharings [y1], ..., [yn]. In the
first round, each server P; locally computes their shares of each
[[yi}](j) and sends it to PP;. Each P; then uses Robust-Interpolate to
reconstruct a different share y;. In the second round, the servers
exchange each yj, and again use Robust-Interpolate to recover
X1, ..., Xt+1. When defining an MPC program, we use the notation
xi < Open([x;]) for reconstructing an individual share, implicitly
making amortized use of the BatchRecPub protocol.

2.2 SSS-Based MPC

Linear combinations of SSS-shared secrets can be computed locally,
preserving the degree of secret sharing without any necessary in-
teraction between parties. However, in order to be able to realize an
arbitrary arithmetic circuit using MPC, we need a way to multiply
secrets together. In this work, we use Beaver’s trick to multiply two
t-sharings [x], and [y]); by consuming a preprocessed Beaver triple.
Beaver triples are correlated ¢-sharings of the form [a],, [b] ,, [ab],,
for random a, b € F, which can be used to find [xy], by using the
following identity:

lab], = (a—x)b—y) + (@ —x)[y], + (b - y)x], + [xv],.
If a and b are random and independent of x and y, then Open([la — x])
and Open([[b — y]) do not reveal any information about x or y. Each
multiplication then requires the public opening of (a—x) and (b—y)
and the spending of a Beaver triple.

We follow the standard online/offline MPC paradigm, where the
online phase assumes it can make use of a buffer of preprocessed
values that were created during the offline phase. By utilizing pre-
computed triples and using BatchRecPub to open (a—x) and (b —y)
for many multiplication gates at once, we can process many gates
at the same circuit depth simultaneously.

Offline phase. In order to fulfill the computational needs of our
online phase, we need to generate a steady supply of Beaver Triples
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Protocol BatchRecPub

e Input: [x1], ..., [xz+1]
e Output: x1,..., %41
e Procedure (as server P;):
(1) Let M be the (n,t + 1) Vandermonde matrix M; ; = orl’
evaluating a degree-t polynomial at (a1, ..., an).
(2) Compute ([g1],..., [ynDT = M([x, .., Persa])T
(3) (Round 1) For each j, send [y;] to party P;.
(4) Wait to receive between 2t + 1 and n shares of [y;] and
decode y; using Robust-Interpolate.
(5) (Round 2) Send y; to each party P;.
(6) Wait to receive between 2¢ +1 and n values y, then robustly
decode x1, ..., x¢4+1 using Robust-Interpolate.

Figure 2: Batch Reconstruction [10, 28, 41]

offline (prior to when inputs for an MPC circuit are given). As the
offline phase can be run for an indefinite amount of time, we relax
the robustness requirements and focus on more efficient protocols.
In this way, the offline phase can proceed with less work while still
gradually building up a buffer and allowing for guaranteed output
in the online phase.

The first step of the offline phase is randomness extraction [10],
where secret-shared random values are produced from the contribu-
tions of different servers. To produce t-sharings of random elements
of Fp, we apply an (n, n) hyperinvertible matrix M, (concretely, a
Vandermonde matrix) and compute

([[ﬁ]], veey [[Vn]]) = M([[SI]], ceey [[Sn]])

where each [s;] is contributed by a distinct server P;, and we output
[ril,-- -, [re+1]- The choice of M ensures the [r;] are random and
unknown, despite of the influence of t corrupt parties. To check that
the secret sharings are of the correct degree, 2t + 1 of the servers
attempt to reconstruct one column each of [rp—2¢—1], ..., [rn]. The
hyperinvertibility property of M ensures that if all of the inputs are
of the correct degree, then so are all of [r1], ..., [rs+1]. Since all n
parties must be online to provide input for this process, this cannot
guarantee output if any parties crash.

To generate Beaver triples, we make use of random double shar-
ings, which are t- and 2¢-sharings of the same random value [r],
and [[r]]Z,. For this we use RanDouSha [10, 41], wherein each server
contributes a pair of shares, [s;], and [s;],;. The first ¢ + 1 pairs
[r1]¢¢,2¢y> - - - [res1l 4 24y after applying M are taken as output,
and the remaining 2t + 1 pairs are reconstructed as a checksum (by
one server each). All together, this protocol is given in Figure 3.

Given the double sharing, we generate a Beaver triple by gen-
erating random shares [a] ,, [b],, calculating [ab],, = [a], - [],,
and performing degree reduction:

lab]; := Open([ab],, — [rl2,) + [r];-
Besides random field elements and multiplication triples, the offline
phase is also used to prepare random bits, and k powers of random
elements using standard techniques [36]. In general, we can imple-
ment any necessary preprocessing task by combining the above
two ingredients. The overall cost of the offline phase is summarized
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Protocol RanDouSha

e Input: pairs {[s;];, [si],;} contributed by each server

e Output: [r1];, [rilys - oo [resalys [reeallzy
e Procedure (as server P;):

1) [r1s...ral; & M([s1];, - -5 [snl,)

@) [r1,- - ralay < M([s1lyys - - [snlop)

(3) Each party P; where t + 1 < i < n privately reconstructs
[ril;, [ri],; and checks that both shares are of the correct
degree, and that their 0-evaluation is the same. Reliable-
Broadcast OK if the verification succeeds, ABORT otherwise.

(4) Wait to receive each broadcast and abort unless all are 0K

(5) Output [r1];, [r1llass - - -» [resalys [re+1lla,

Figure 3: Generating random double sharings [10, 36, 41]

by the number of batch reconstructions and the number of random
shares needed. We summarize the offline costs for our two mixing
approaches in Section 5.

2.3 Asynchronous Reliable Broadcast and
Common Subset

We employ an asynchronous reliable broadcast primitive in order
to receive client inputs. A reliable broadcast (RBC) protocol satisfies
the following properties:

e (Validity) If the sender (i.e., the client in our case) is correct and

inputs v, then all correct nodes deliver v
o (Agreement) If any two correct servers deliver v and v’, then

v="0'.

e (Totality) If any correct node delivers v, then all correct nodes

deliver v.

While Bracha’s [20] classic reliable broadcast protocol requires
O(n?|v|) bits of total communication in order to broadcast a mes-
sage of size |v|, Cachin and Tessaro [24] observed that Merkle trees
and erasure coding can reduce this cost to merely O(n|v| + n® log n)
(assuming constant size hashes), even in the worst case. The non-
linear factor of this cost comes from the need to send branches of a
Merkle tree created over the erasure-coded shares to ensure data
integrity.

In order to reach an agreement on which instances of RBC have
terminated, and to initiate each mixing epoch, we rely on an asynch-
ronous common subset protocol [12, 23, 67]. In CommonSubset,
each server begins with an input b; (in our application each b; is
a k-bit vector). The protocol outputs an agreed-upon vector of n
values that includes the inputs of at least n — 2t correct parties, as
well as up to t default values. CommonSubset satisfies following
properties:

e (Validity) If a correct server outputs a vector b’, then b} = b; for
at least n — 2t correct servers;
e (Agreement) If a correct server outputs b’, then every server

outputs b’;

o (Totality) All correct servers eventually produce output.
To stick to purely asynchronous primitives, we concretely instanti-
ate CommonSubset with the protocol from HoneyBadgerBFT [12,
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67]; as an alternative, BEATO [44] is similar but offers more effi-
cient cryptographic primitives. For small messages, the overhead
for either protocol grows with n?, although for very large mes-
sages it achieves linear overhead. If asynchronous liveness is not
needed, then any partially synchronous consensus protocol, such
as PBFT [25], would suffice here as well.

3 ROBUSTNESS IN MPC PROTOCOLS AND
IMPLEMENTATIONS

In practice, distributed computing protocols should successfully
protect against not just benign failures like system churn, but also
network partitions and denial of service attacks. Distributed consen-
sus protocols and systems employed in practice (e.g., [25, 54, 61]) put
significant emphasis on achieving this robustness property, and the
same also holds for prominent blockchain systems [5, 21]. Various
notions of robustness have also been explored in the context of MPC,
although we observe that the practical MPC tool-kits [4, 8, 36, 40]
available today have not made a similar effort to incorporate this
robustness. We therefore place a strong emphasis on achieving
robustness in this paper.

In this section we evaluate the robustness of existing MPC imple-
mentations and protocols (summarized in Table 1), and use this eval-
uation to inform the design of HoneyBadgerMPC and AsynchroMix.
We focus mainly on three forms of robustness: fairness, guaranteed
output, and safety in asynchronous communication setting. In our
work we focus on the MPC-System-as-a-Service model [3, 8, 46, 65],
where clients submit secret inputs to servers for processing. How-
ever, in the usual MPC setting, the servers themselves are the clients.
Thus for the sake of comparison, in this section we assume n = k
(where n is the number of servers and k is the number of clients).
In this evaluation we leave implicit the need to agree on which
inputs to include. In a synchronous network, MPC typically en-
sures that every honest party’s inputs are included [11], while in
an asynchronous network it is inherent that up to t honest parties
may be left out [28]; to accommodate asynchronous protocols we
assume the weaker definition. We also elide discussion of protocols
and implementations that offer only semi-honest security, such as
PICCO [80] or Fairplay [64], or that rely on trusted hardware [27].
Fairness and Guaranteed Output. Fairness is widely studied in
MPC. Roughly speaking, it means that either all parties receive their
output, or else none of them do [50]. Unfair protocols allow the ad-
versary to peek at the output of the computation, while the honest
parties observe the protocol fail. In the context of anonymous com-
munications, unfair protocols pose a severe hazard of intersection
attacks. For example, if a client retries to send their message in a
new session with a different anonymity set, the adversary would
learn which messages were common to both sessions [70]. To the
best of our knowledge, none of the practical implementations of
MPC aim to provide fairness against an active adversary. Instead,
they focus on the weaker notion of security with abort, meaning that
the honest parties reach consensus on whether or not the protocol
aborts, which admits the intersection attack above.

Guaranteed output delivery is usually considered synonymous
with robustness in MPC. It is a stronger notion than fairness that
further requires that corrupt parties cannot prevent honest parties
from receiving output. MPC Protocols based on n-of-n sharing
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Table 1: Summary of Robustness in Active Secure MPC Protocols and Toolkits

¢+ < | Fairness Guaranteed Output | Asynchronous | Complexity | Communication
Protocol Designs Online  Offline Safe  Live Assumption | Overhead
BGW [6, 11] | n/3 [ ) [ ) O @) quadratic
HNO6 [53] | n/2 [ ) [} O O SHE linear
BHO8 [10],DN07 [41] | n/3 ° ° ° o 0 linear
DNO7 [41] | n/2 [ ) [} [ O O Dlog linear
DIK+08 [38,39]' | n/8 ° ° ® O O linear
COPS15 [29] | n/2 [ ) o [ [} O HE quadratic
CHP13[28],CP17[31] | n/4 o [ J [ [ J ] linear
CP15 [30] | n/3 [ ) o [ o o SHE linear
MPC Toolkits
Viff [36] | n/3 O O O (] O quadratic
SPDZ [40, 55, 56] | n o o O ™ o SHE or OT | linear
EMP (78] | n O O @) [ ) @) oT quadratic
SCALE-MAMBA [4] | n/2 O O O [ J O quadratic
HyperMPC [8] | n/3 O O @) [ ) @) linear
CGH+18 [26] | n/2 O O @) (] O linear
This paper
hbMPC | n/3 ] @ ® ) [ ® o | [ linear

for the dishonest majority setting t < n, such as EMP [78] as
well as SPDZ [40] and its descendants, are inherently unable to
provide guaranteed output. However, as long as t < n/3, then the
online phase techniques for degree-t SSS described in Section 2.1-
2.2 suffice. HyperMPC [8], for example, cannot guarantee output
in the t < n/3 setting as it works with 2¢-sharings in the online
phase. Unlike fairness, guaranteed output is primarily a concern
for liveness rather than safety. A fair protocol that aborts can in
principle be restarted with a new set of parties. In any case, the
protocols we evaluate satisfy both or neither.

Asynchronous Safety and Liveness. MPC protocols that guar-
antee output typically fall into one of two camps. The first camp
is based on (bounded) synchronous broadcast primitives and in-
volves restarting the computation after detecting and eliminating
one or more faulty parties. Such protocols can be unconditionally
secure when ¢ < n/3 [6, 10, 11, 41] and using cryptography can
reach t < n/2 [41, 53]. Dispute resolution is also used by virtualized
protocols that boost a low-resilience outer protocol (i.e., t < n/8)
to t < n/2 — € [38, 39].2 However, we observe that these protocols
rely on the ability to time out nodes that appear to be unrespon-
sive, restarting the computation with the remaining parties. If ¢
honest nodes are temporarily partitioned from the network, then
any failures among the remaining parties could compromise the
safety properties, including confidentiality. Using this approach to
guarantee output, therefore, leads to an inherent trade-off between
the liveness and safety properties—the more faults tolerated for
liveness, the fewer tolerated for safety. Furthermore, the preference
for performance would be to set the timeout parameter low enough
to tolerate benign crashes, though this means even shorter dura-
tion network partitions weaken the security threshold among the
remaining nodes.

2We only consider the outer protocols of DIK+08,DIK10. By composing with an inner
protocol, these can obtain security of ¢ = n/2+ €, though this requires large randomly
selected committees, and in any case, inherits the robustness and practicality of the
inner protocol.
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We say a protocol has asynchronous safety if its safety properties
hold even in an asynchronous network and up to t parties are
corrupt.® The second camp of guaranteed MPC protocols relies
on asynchronous primitives rather than dispute resolution, and
proceed with the fastest n — t nodes regardless of the network
time [28-31]. We notice that since the MPC implementations do
not aim for guaranteed output anyway and block on all n parties
before proceeding, trivially satisfy this property.

Purely asynchronous MPC protocols [28, 30, 31] further guar-
antee liveness as well as safety without assuming bounded syn-
chrony and broadcast channels. In this setting, even a replicated
state machine task — without any secrecy properties at all — re-
quires ¢t < n/3, hence this is also a lower bound for asynchronous
MPC. We know of two unconditionally secure asynchronous MPC
protocols with linear overhead for the ¢t < n/4 setting [28, 31], as
well as a protocol for the t < n/3 relying on Somewhat Homomor-
phic Encryption (SHE) [30]. Other related protocols for asynch-
ronous MPC include a constant-round online phase, independent
of the circuit depth [32, 37]; however, these incur quadratic com-
munication overhead in n.

Communication Overhead. Communication overhead is a criti-
cal factor in how well the network size n can scale. We mainly focus
on amortized overhead over suitably large batches of operations.
An MPC protocol has linear communication overhead if, for a given
task, as a function of a network size n, the total communication cost
grows with O(n). In particular, this means that as additional nodes
are added, the bandwidth required by each node remains constant.
Besides communication overhead, we also discuss computation
overhead in Section 6.1.

Informing the design of HoneyBadgerMPC. Concerns of in-
tersection attacks are the primary reason not to use existing (unfair)

3 Asynchronous safety is a requirement even for the stronger partially synchronous
network model [45], where a protocol must guarantee safety at all times, but liveness
only during periods of synchrony.
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Figure 4: Overview of the AsynchroMix protocol

MPC implementations for AsynchroMix. We note that several re-
cent works use a blockchain cryptocurrency and security deposits
to provide financial compensation in case the protocol aborts un-
fairly [57, 58], though we aim to prevent such failures at all. We
wish to avoid the tradeoff between safety and availability associ-
ated with asynchronous-unsafe protocols, which rules out protocols
based on the synchronous broadcast.

This leaves the (partially) asynchronous protocols [28-31] as
candidates. These guarantee liveness in the offline phase as well as
the online phase, which means that service can continue indefinitely
even if some nodes fail. However, these require either additional
cryptography overhead or else offer less resilience (¢ < n/4 rather
than ¢ < n/3). To avoid these problems, our approach is to start from
the unconditionally secure protocols for ¢ < n/3 [10, 28], but relax
guaranteed output in the offline phase. We envision optimistically
running the offline phase ahead of time to build up a sufficiently
large reserve of preprocessed values.

4 OVERVIEW OF ASYNCHROMIX AND
HONEYBADGERMPC

AsynchroMix is an application of the MPC-System-as-a-Service
(MPSaaS) [8] approach to the problem of anonymous broadcast com-
munication. We consider a typical client-server setting for anony-
mous communication networks [43, 59, 77], where clients send
their confidential messages to server nodes and server nodes mix
clients messages before making them public. As our primary focus
is robustness, we model an asynchronous communication network
such that we must not make use of timeouts and do not rely on
time-bound parameters to be correctly configured. The communi-
cation network is assumed to be under the adversary’s control such
that the adversary may arbitrarily delay messages, duplicate them,
or deliver them out of order. For system liveness, we assume that
the adversary cannot drop messages between two honest parties.*

4 Although it is tempting to treat the network to be bounded-synchronous (bounded
message delivery delays) [33, 70] and develop similar protocols using well-known
message delivery time bounds and system run-time assumptions, deciding these time
bounds correctly is a difficult problem to solve and will require frequent readjustments.
Moreover, asynchronous protocol executions may often be faster than the protocol
executions with the bounded-synchrony assumption as in most cases messages delivery
may take significantly less time than timeout values.
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As mentioned in Section 5, the goals of AsynchroMix include Safety
(anonymity properties) as well as liveness - the system continues to
work. The strong threat model includes a fraction being maliciously
corrupted and does not rely on timing assumptions.

System Model: Assume a set of clients C = {C; }j=1---kpvp
put messages m;, who communicate to a set of n servers, {P; }i=1...n.
We assume that at most ¢t < n/3 of the servers are Byzantine cor-
rupted by a global adversary, and similarly, any number of clients
are corrupted as well. All servers are connected to each other over
asynchronous channels, and every client is connected to all servers
over asynchronous channels. The messages themselves are fixed
sizes of |m| bits (or field elements, depending on context).

AsynchroMix proceeds in sequential mixing epochs, where in
each epoch we mix input messages provided by k < kpop clients.
Fig. 4 offers a high-level overview of the process. The protocol
satisfies the following security properties:

with in-

e Anonymity (Safety): During every mixing epoch, even when
all but 2 selected clients are compromised, the adversary cannot
link an included message m; to its honest client C; except with
probability negligibly better than 1/2.

Specifically, for input vector my, ..., mg from k clients, the output

is a permutation 7 (mj, ..., my) such that the output permutation

is at least almost independent of the input permutation.

o Availability (Liveness): Every honest client’s input is eventu-
ally included in a mixing epoch, and every mixing epoch eventu-
ally terminates.

AsynchroMix is built upon a new MPC prototype, called Honey-
BadgerMPC, which realizes secure computation through the use
of asynchronous and maliciously-secure primitives. In particular,
HoneyBadgerMPC makes use of asynchronous reliable broadcast
to receive secret shared inputs from untrusted clients, and asynch-
ronous common subset to reach agreement on the subset of clients
whose inputs are ready and should be mixed in the next epoch.
Each mixing epoch involves a standard robust MPC online phase
based on Beaver triples and batched public reconstruction [10].
The offline phase [8, 10] runs continuously to replenish a buffer of
preprocessing elements used by the online phase. The offline phase
is optimistic in the sense that all server nodes must be online and
functioning to replenish the buffer. These components are described
in more detail below and illustrated overall in Figure 4.

4.1 Receiving Client Inputs using
Preprocessing and Asynchronous Broadcast

Since clients are untrusted, we need a way to receive secret shared
inputs while guaranteeing that the inputs are valid, consistent, and
available at every server node. In principle, we could use Asynch-
ronous Verifiable Secret Sharing (AVSS) [7, 22], though this would
lead to additional communication and computation overhead. In-
stead, we make use of a preprocessing approach due to Choudhury
et al. [29]. The idea is that for each input m from client C, we con-
sume a preprocessed random share [r], which was generated in
the offline phase and privately reconstructed to C (i.e., each server
node sends their share of [r] to C, who robustly interpolates r). The
client then blinds its message m := m+r and broadcasts the blinded
message m ((1) in Figure 4). The servers then each locally compute
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their share [m] := m — [r], without leaking any information about
m.

To broadcast m, we make use of the asynchronous broadcast
protocol ReliableBroadcast, which guarantees, roughly, that if any
server receives m, then every correct server also receives m. More
details on the reliable broadcast protocol are given in the Appendix.

4.2 Asynchronous Mixing Epochs

Each mixing epoch begins when servers have received inputs from
enough clients. Servers must reach an agreement on a subset of
k client inputs [2, 44, 67] which are deemed to be available for
processing. Every epoch, this agreement is made using the asynch-
ronous broadcast primitive CommonSubset [12]. At the beginning
of CommonSubset, each server inputs its view of which client in-
puts are available for mixing. For honest servers, this will be the set
of inputs for which a value has been received by ReliableBroadcast.
The output of CommonSubset will be a set of k available inputs
that will be used in the next mixing epoch.

4.3 Robust Online Phase

Once the inputs to a mixing epoch are determined, the mixing
proceeds as an online phase of MPC, running one of two programs,
power-mix or iterated-butterfly, as we detail in the next Section. The
online phase itself is standard, based on Beaver triples [9], and only
requires batch reconstruction of t-sharings, which in the t < n/3
setting we can achieve through Reed Solomon decoding [10, 41].
In Appendix A we discuss implementation improvements based on
FFT.

4.4 Continuously Running Offline Phase

Since AsynchroMix is a continuously running service, the offline
phase could be run concurrently to replenish a buffer of preprocess-
ing values. Here latency is not critical, although it should ideally be
efficient enough to keep up with the demand from the online phase.
Our offline phase is an implementation of [10], the same as used
in HyperMPC. It is based on decoding 2¢-sharings and therefore
makes progress only when all n nodes are responsive. As mentioned
earlier in Section 3, we consider it reasonable to use a non-robust
protocol for the offline phase which runs ahead of time in order
to provide a reserve buffer of preprocessed values. If one or more
nodes fail, eventually the reserve will be depleted and clients will
have to move to a new instance of the service.

4.5 Security Analysis of AsynchroMix

THEOREM 4.1. Assuming that sufficient preprocessing elements
are available from a previously-completed offline phase, then the
AsynchroMix protocol defined in Figure 5 satisfies the anonymity and
availability properties defined earlier.

Proor. For anonymity, it is clear that each mixing epoch only
proceeds with k inputs from different clients. The use of prepro-
cessed random sharings ensures that the secret shared inputs de-
pend only on broadcast values from clients, and hence are valid
sharings. The PowerMix program, thanks to perfect symmetry in
its equation format, outputs the k values in a canonical ordering
that depends only on their values, not their input permutation order.
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Protocol AsynchroMix

o Input: Each client C; receives an input m;
e Output: In each epoch a subset of client inputs my, . .., my are
selected, and a permutation z(my, . .., my) is published where
7 does not depend on the input permutation
e Preprocessing:
- For each mj, a random [[rj]], where each client has received
Tj
— Preprocessing for PowerMix and/or Switching-Network
e Protocol (for client Cj):
(1) Setmj :=mj +r;
(2) ReliableBroadcast m;
(3) Wait until m; appears in the output of a mixing epoch
e Protocol (for server P;):
- Initialize for each client C;
input; := 0 // No. of inputs received from C;
donej :=0 // No. of messages mixed for C;
- On receiving m; output from ReliableBroadcast client C; at
any time, set input; := input; +1
- Proceed in consecutive mixing epochs e:
Input Collection Phase
Let b; be a |C|-bit vector where b; j = 1if input; > done;
Pass b; as input to an instance of CommonSubset
Wait to receive b from CommonSubset, where b is an nx|C|
matrix, each row of b corresponds to the input from one
server, and at least n — t of the rows are non-default. Let
b.,j denote the column corresponding to client C;.

For each C;j,
[m)] = mj— [[rjﬂ 2bjxt+1
J 0 otherwise
Online Phase

// Switch Network Option
Run the MPC Program switching-network on {[m; x,]},
resulting in (my, ..., my)
Requires k rounds,
// Powermix Option
Run the MPC Program power-mix on {[m; [}, resulting
in ﬂ(ml, veey mk)
Set done; := done; + 1 for each client C; whose input was
mixed this epoch

Figure 5: Protocol for asynchronous mixing of values.

The Switching-Network induces a random permutation, which is
sampled from a nearly uniform distribution.

For availability, we need to show that a) each honest client’s
input is eventually included in a mixing epoch, and that b) each
mixing epoch completes robustly. For a), notice that once a broad-
cast m; from client Cj is received by every honest server, then the
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corresponding bits b; ; in the next epoch will be set for every hon-
est server. Therefore m; is guaranteed to be included in the next
mixing epoch. For b), notice that if at least ¢ + 1 of the bits b. ; are
set for Cj, then we know at least one honest server has received
the client’s broadcast, and hence by the agreement property of
ReliableBroadcast we can rely on this input to be available to every
honest server. O

4.6 Comparing AsynchroMix with Other
Strong Anonymity Solutions

We observe that most anonymous communication systems do not
focus on robustness and thus cannot achieve strong availability
guarantees in the presence of faults. For example, in protocols
following mix-nets strategies such as [59, 60, 62, 69, 77], nodes
encrypt/decrypt layers of encryptions of user/cover traffic or re-
encrypt batches of messages, and many failures has to result in
users resending their messages. Similarly, in protocols following
DC-net strategies such as [33, 70], nodes collaborate to randomly
permute a set of messages while decrypting those, and any partic-
ipating node may abort the execution and force re-execution. In
order for these protocols to handle failures, it is necessary to rely on
synchronous network assumptions to timeout a node, potentially
restarting a computation or requiring users to resend messages.
This introduces many potential issues. The first is that compromised
nodes may attempt to degrade performance, such as by stalling
until the last moment before being timed out. Attempting to opti-
mize the protocol for speed by reducing the timeouts would only
make it more likely that honest participants who experience a fault
would be removed, thus degrading security. More importantly, by
DoSing some honest nodes during re-running, it is also possible to
launch inference attacks leading to deanonymization [18, 70, 79].
On the other hand, most of these schemes can indeed maintain
anonymity/privacy against much larger collusion among the nodes,
while liveness requirements of AsynchroMix in the asynchronous
setting mandate us to restrict the adversarial collusions to ¢ < n/3
nodes.

Our approach to MPC mixing is closely related to MCMix [3],
which implements an anonymous messaging system based on MPC.
Instead of a switching network, they associate each message with
a random tag and obliviously sort the tags using MPC comparison
operations.

5 MPC PROGRAMS FOR MESSAGE MIXING

Once the inputs are selected, [m1], ..., [mg], each asynchronous
mixing epoch consists of an online MPC phase, computing either
the Iterated Switching Network or PowerMix MPC programs.

The first approach is based on an iterated butterfly switching
network [34] which yields an almost-ideal random permutation
of inputs. Each switch uses a secret-shared random bit from the
offline phase and a single MPC multiplication. Overall this method
requires O(log? k) asynchronous rounds. The communication and
computation cost per server are both O(n log2 k) per input.

As an alternative to the switching network, we present a constant-
round protocol called PowerMix, based on Newton’s sums. To mix
a batch of k messages [m;] through [my], the servers first com-
pute the powers [[m{]] where i, j range from 1 to k. We then locally
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MPC Program switch
o Input : [i1], [iz]
e Output:[o;], [oz] which are i; and iz swapped with 1/2 proba-
bility
e Preprocessing: random bit [b], b € {-1,1}
e Procedure:

[ =[] - (Il - [iaD)
[o] =27 ([ia] + [i2] = )
loz] = 27 ([ia] + [i2] + [
MPC Program switching-network

Input : [m1], ..., [mg]
e Output:z(my,...,my) where 7 < D

e Procedure:
— for each of log2 k iterations, evaluate a switch layer, that uses
k calls to switch to randomly permute all k/2 pairs of inputs,
where the arrangement of pairs is laid out as log k iterations
of a butterfly permutation
— finally, reconstruct the output of the
Open(r([mi]..... [mc]))

final layer,

Figure 6: Permutation based on a switching network

compute the sums of each power, [S;] = 2;‘:1 [[m;]] and publicly
reconstruct each S;. Finally, we use a solver for the set of m; using
Newton sum methods. Ordinarily, computing [mjl]] using Beaver
multiplication would require at least O(log k) rounds of commu-
nication. However, in PowerMix we use a novel way to trade-off
communication for computation, generating all the powers in a
single round of communication by using some precomputed powers
of the form [r],[r?].. . ..[rX]. As a result, PowerMix only requires
two rounds of communication to finish mixing.

5.1 Option I: Switching Network

Our first approach is to use an MPC program to randomly permute
a set of k secret shared values using a switching network.

Switching networks are implemented in layers, where each layer
applies a permutation to the inputs by conditionally swapping each
pair. However, the resulting permutations are biased [1, 68]. For
example, while a random Benes network can express every possi-
ble permutation, some permutations are more likely than others.
Czumaj and Vocking showed that O(log k) iterations of random but-
terfly networks (each of which consists of O(log k) layers) provide
adequate shuffling [34] in the sense that the combined permutation
is nearly uniform. The round complexity of the switching network
is O(log? k), and the overall communication cost is O(k log? kn)
considering there are O(log? k) layers in total and O(k) multipli-
cations are needed in each layer. Computation cost is O(k log? kn)
since O(k log? kn) multiplications are needed in total. (See Figure 6
for a secure switching network instantiation with standard MPC
operations.)
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Table 2: Summary of Online Phase computation and com-
munication cost overhead (per client input) for Iterated But-
terfly and PowerMix MPC programs

Protocol Rounds | Comm. complexity | Compute
PowerMix 2 O(n) O(n + k?)
Switching Network | log? k O(nlog? k) O(nlog? k)

5.2 Option II: PowerMix

To contrast with the switching network, we propose a novel proto-
col PowerMix, which results in reduced communication at the cost
of computation. Our approach follows two steps. First, we compute
the k powers of each shared secret, [m?], ..., [mX] from just [m].
Surprisingly, we show how to achieve this using only O(1) commu-
nication per shared secret, our protocol for computing powers may
be of independent interest. The second step, inspired by Ruffing et
al. [70], is to to use Newton’s Identities [63] to solve a system of
equations of the form S; = m; +...+ m;(

The servers can obtain S; by computing locally [S;] and publicly

reconstructing. Then we solve the system of equations to obtain
{m}} in canonical ordering. We next describe this approach in more
detail.
Computing powers with constant communication. For each
secret share [m] sent by clients, we need to compute [m?], [m?],.. .,
[mK]. The naive way is to directly use Beaver triples k — 1 times. If
we cared only round complexity, we could also use the constant-
round unbounded fan-in multiplication [35], though it adds a 3x
factor of additional work. In either case, we’d need to reconstruct
O(k) elements in total.

We instead make use of a preprocessing step to compute all
of [m?], [m®],..., [m*] by publicly reconstructing only a single
element. Our approach makes use of precomputed powers of a
random element, [r], [r2], ..., [r¥] obtained from the preprocessing
phase. We start with the standard factoring rule

k-1
mk -k = (m-r) (Z mk_l_[r[) .
=0

Taking C = (m — r), and annotating with secret share brackets, we
can obtain an expression for any term [m’r/] as a sum of monomials
of smaller degree,
i-1
[m'r] = [r*] +C (Z [mi=1=Cri+¢ ﬂ) : (1)
=0
Based on Equation (1), in Figure 7, we give pseudocode for an
efficient algorithm to output all the powers [m?], ..., [m*] by mem-
oizing the terms [m!r/]. The algorithm requires a total of k%/2
multiplications and k? additions in the field. The memory require-
ment for the table can be reduced to O(k) by noticing that when
we compute [m!r/], we only need monomials of degree i +j — 1, so
we can forget the terms of lower degree. Table 2 summarizes the as-
ymptotic communication and computation costs of each approach.
Solving Newton’s Identity. We now discuss how to reconstruct
the shuffled values from the power sums. We have S; = Zéc:l m]l.
where m; is the message provided by client C;. So we require an
algorithm to extract the message m; from S;.
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MPC Program compute-powers

e Input: [m]
Output:[m?], [m?] . .. [m*]
e Precompute: k powers of random b, [b], [b%], [6°] . . . [b¥]
e Procedure:

Initialize Array[k + 1][k + 1]

for i from 1 to k: Array[0][i] := [b']

¢ = Open([m] - [b])

for ¢ from 1 to k: // compute all Array[i][j] where € =i + j

sum :=0
forifromlto({—1),j=¢—i:
sum += Array[i — 1][/]
// Invariant: sum = Y ; [m'~17%b/*k]
Array[i][j] = [b**/] + C - sum
// Tnvariant: Array[i][j] will store [m’b/] by (1)
for i from 2 to k output [m’] := Array[i][0]

Figure 7: Algorithm for calculating k powers of input [m]
using preprocessing in the Powermix online phase

Assuming that our goal is to mix k messages m1, ma, ms, ..., m,
the servers first run Algorithm 7 to compute the appropriate pow-
ers. Then all servers calculate [S;] = Zé‘zl [[mjl ] locally and then
publicly reconstruct each ;.

Let f(x) = agx® +ap_xkF"1+ . +ajx+agbe a polynomial such
that f(x) = 0 has roots mj, ma, ms, ..., mr. And we have a = 1
given that it is the coefficient of x¥ resulting from the product of
(x—m1)(x—my)...(x—mg). According to Newton’s identities [70],
we can calculate all coefficients of f(x) by:

S1+ap_1=0

So+ap_151 +2a5_5,=0

S3 4+ ap_1S2 +axp_251 +3ap_3=0

Knowing S; we can recover all a; by solving these equations
one by one. Once we know the coefficients of f(x) we can then
find k roots of f(x) = 0 with O(k?) computation complexity in our
implementation [19]. Then we recover all m;. Our final mixing set
consists of these k messages.

To conclude, Figure 8 shows the overall protocol of Power-
mixing.

5.3 AsynchroMix Offline Phase Requirements

The offline phase supporting AsynchroMix needs to be able to
generate the requisite preprocessing elements for both converting
client inputs into secret sharings and for realizing either mixing
program. Of these, handling client inputs is the most straightfor-
ward as it only requires generating a t-shared random value for
each input. For simplicity, we note that the randomness extraction
protocol is just RanDouSha, but with only one matrix operation
performed and with half the number of inputs and outputs. We,
therefore, write randomness extraction as simply half of a call to
RanDouSha.
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MPC Program power-mix

e Input: [mq], [mz], ..., [mc],

e Output: a shuffling of (m1,ma, ..., my)

e Precompute: k sets of precomputed powers, for k instances of
compute-powers
(ie. [b7] for i € [1..K],j € [1.k],
k beaver triples

e Procedure:

(Step 1) for i from 1 to k:
Run compute-powers (Algorithm 7) on [m;] to obtain
(2 [ [ ]

- (Step 2) for j from 1 to k:

Locally compute [S;] := Z{;l [m]

Si == Open([S;1)
(Step 3) Apply Newton’s identities to solve (S1, Sz, . .
covering a shuffling of (my, ma, ..., my).

., Sg), re-

Figure 8: Power-mixing protocol for shuffling and open se-
cret shared values [m1], ..., [mg]

Table 3: Offline phase requirements to run AsynchroMix ¢+1
times

Preprocess Task [ RanDouSha [ BatchRecPub [ Needed for
Client input:

random [r] ‘ 0.5 ‘ 1 ‘ each input
Switch Network:

beaver triple 2 1 each switch

random bit [b] 1.5 1 each switch

Total: | 1.75k log? k klog? k each epoch

PowerMix:
k-powers k k each input
Total: k2 k2 each epoch

Running our mixing programs requires additional preprocessing
inputs. The Switching-Network program requires the generation
of random selector bits as well as the Beaver triples needed to use
them. Meanwhile, our PowerMix program needs k secret-shared
powers of the same random value. These preprocessing costs are
given in terms of invocations of RanDouSha and BatchRecPub in
Table 3.

5.4 Supporting Larger Messages

We have so far assumed that each client message consists of a
single 32-byte field element, but AsynchroMix can easily be adapted
to support larger (fixed-size) messages of multiple field elements
each. Since the switching network choices depend only on the
preprocessed selection bits, we can simply apply the same selection
bits to each portion of input (i.e., the 1st element of clients’ messages
are permuted in the same way as the 2nd element, and so on). For
PowerMix, we could reserve a portion of each message element
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(e.g., k = 40 bits) to use as a tag which would be used to link parts
of a message together. Since no information about mixing inputs is
leaked until the mix is opened, tags will not collide except for with
27¥ probability.

6 IMPLEMENTATION AND EVALUATION

We have developed a prototype implementation that includes all of
the protocols needed to realize both the offline and online phases
of AsynchroMix. Our prototype is written primarily in Python
3, although with computation modules written in C++ (to use
NTL [72]). For batch computations on secret sharings, both the
FFT-based and matrix-based algorithms are implemented in C++
using the NTL library. We carried out a distributed benchmarking
experiment with several aims: to validate our analysis, to demon-
strate the practicality of our approach, and to identify bottlenecks
to guide future improvement. We are mainly concerned with two
performance characteristics: cost and latency. Latency is the user-
facing cost, the time from when the user initiates a message to when
the message is published. Computation and bandwidth costs are
a complementary metric since we can improve latency by adding
more resources, up to the extent that sequential computations and
communication round trips are unavoidable. We are mainly inter-
ested in configurations with varying the mix size k, as well as the
number of servers n (and assuming n ~ 3t + 1). We evaluated not
only the online phase of the MPC protocols, but also the offline
phase which generates precomputed Beaver triples, powers, and
bits.

6.1 Microbenchmarks for Robust
Reconstruction

Evaluating FFT-based and matrix- based decoding. For the
switching network, the main cost in the online phase is batch recon-
struction. We implemented two variations of the batch reconstruc-
tion operation, one based on matrix multiplication (superlinear)
as in HyperMPC [8] and others, and an alternative based on FFT
(quasilinear time).® The use of FFT-based methods has been sug-
gested by Damgird et al. [41], but to our knowledge it has not been
included in any MPC implementation. We give a detailed explana-
tion of the FFT-based algorithms we use in the Appendix. Clearly
for some large enough value of n, FFT-based methods would lead to
a performance improvement, but we want to determine if it could
provide benefits for the network sizes in our experiments.

Figure 9 shows the results of microbenchmarks for a single-core
C++ implementation of the reconstruction algorithms, using a sin-
gle t2.mediumnode for a series of 144 batch reconstructions of 4096
shares each, corresponding to a run of the switching network pro-
gram for mixing k = 4096 client messages. The primary crossover
point is at around n = 2048. For network sizes of n = 2048 and
larger, FFT-based methods offer a significant (greater than 2x)
improvement. For context, while our distributed experiment only
goes to n = 100, HyperMPC [8] ran with up to n = 1000, hence the
n = 2048 could be considered within a practical range.

We noticed that NTL switches strategies for matrix multiplica-
tion at n = 70. Hence at n = 64 the FFT evaluation performed

Shttps://github.com/initc3/HoneyBadgerMPC
®A function f(n) is quasilinear if f = O(n log® n) for some constant c.
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Batch reconstruction compute time (Batch size=4096)
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Figure 9: Compute costs for switching network application
at k = 4096 (144x batch reconstructions of 4096 shares each)
using FFT vs. Matrix Multiplication algorithms

marginally better (a 23.5% speed up) using the hybrid approach
compared to just using Vandermonde matrix-based interpolation
and evaluation at n = 64. Similarly, at n = 1000, the performance is
close, but using FFT for evaluation but Vandermonde matrices for
interpolation offers an overall benefit compared to either.

Establishing the feasibility of error correction. We imple-

mented two algorithms for Reed Solomon error correcting, Berlekamp-

Welch and Gao [47]. For up to n = 100, correcting errors for a single
polynomial requires less than 1 second. The overall performance of
the MPC system is not too dependent on the cost of error correction,
because we only apply the error correction once per faulty party.
Once an error is identified in any batch, we discard all the other
shares from that party, and resume batch interpolation using the
remaining parties. Hence even in the worst case wheret = 33
servers fail sequentially, the maximum delay added would be
under 33 seconds.

6.2 Distributed Experiment for AsynchroMix

To evaluate the performance of AsynchroMix and identify the trade-
offs and bottlenecks involved in our two mixing approaches, we
deployed our prototype on clusters of AWS t2.medium instances
(2 cores and 4GB RAM) in 10 regions across 5 continents. We con-
ducted baseline tests for bandwidth and latency between instances
in different regions, which we detail in Appendix B. For each ex-
periment, we ran three trials for each configuration of n and k, and
recorded the bandwidth, and running times.

Online Phase for PowerMix. Figure 10 (solid lines) shows the
running time for PowerMix to mix and open from k = 64 to k = 1024
messages on up to n = 100 server nodes. It takes around 5 seconds
tomix k = 256 messages on n = 100 servers and around 130 seconds
to mix k = 1024 messages. We can see that PowerMix is mostly
insensitive to the size of n, since the bottleneck is the computational
costs, which depend mostly on k. Besides the computation steps
could be parallelized to make use of more computation resources.
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Figure 10: Online phase latency for varying number of client
inputs, using PowerMix or Switching Network.
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Figure 11: Communication cost (per node) of PowerMix in
distributed experiment. Dashed line indicates the predicted

limit as 2% approaches 6.

Figure 11 shows the communication cost of PowerMix, measured
as outgoing bytes sent by each server, amortized per each client
input. Since PowerMix requires two batch reconstructions of k
shares each, and BatchRecPub has a linear asymptotic communi-
cation overhead to open a linear number of shares, we expect the
per-server per-share cost to reach a constant for large enough n
and k. We estimate this constant (the dashed line in the figure)
as 2-6-1.06 ~ 12X, where the 2 is for the two batch reconstruc-
tion instances used in PowerMix, 6 is the is the overhead for each
batch reconstruction (the limit approached by %) and 1.06 is the
observed overhead of Python pickle serialization in our imple-
mentation. As n grows larger, since there is an additive overhead
quadratic in n, larger values of k are necessary for the amortization
to have effect. However, even at n = 100, only around 400 bytes are
needed to mix each 32-byte message with k = 512 or higher.
Online Phase for Switching Network. Figure 10 (dashed lines)
shows the running time for Switching Network to mix from k = 64
to 4096 messages. We can shuffle k = 4096 messages on n = 100
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Figure 12: Communication cost (per node) of switching net-
work in distributed experiment Dashed line indicates the
predicted limit as ; +1 N approaches 6.

servers in around 2 minutes. Since the number of batch reconstruc-
tion rounds grows with log? k, the sensitivity to n also increases as
k increases.

Based on the microbenchmarks (Figure 9), at k = 4096 and
n = 100, the inherent computation time should account for only
about 3 seconds out of the total 120 seconds observed. The rest
is due to a combination of serialization and Python overhead as
well as communication. Fig 12 shows the overall communication
cost of the Switching network. For k = 4096 client inputs with
n = 100 servers, each input requires each server to transmit nearly
30 kilobytes. The dashed line here is y = 32 - 6 - log? k where 6 is
reconstruction overhead and log? k corresponds to the number of
total rounds. From our baseline experiment, the worst per-instance
bandwidth is 221Mbps (Sao Paolo) and the longest round trip latency
is 328ms (Sdo Paolo to Mumbai), hence up to 50 seconds can be
explained by transmission time and latency. Hence at this setting,
computation, and communication contribute about equally (neither
is the sole bottleneck), although there appears to a considerable
room to eliminate overhead due to serialization and Python function
calls in our implementation.
Tradeoffs between PowerMix and Switching Network. In the
online phase, PowerMix requires considerably more computation
but less communication than Switching Network. Given the re-
sources available to our t2.medium instances, PowerMix results
in more than 2X reduction in overall latency at n = 100 for up to
k = 512 clients, but for larger values of k, Switching Network is
preferable. PowerMix would naturally be useful for larger values
of k in more bandwidth-constrained or computationally-powerful
networks.
Overall cost for AsynchroMix. Figures 13 and 14 show the esti-
mated overall cost, per server and per client input, combining both
computation ($0.05 per core hour for an EC2 node) and bandwidth
($0.02 per gigabyte transferred out) costs based on AWS prices. The
stacked bar charts show the costs broken down by phases (offline,
online, and client input). The offline phase contributions are based
on a distributed experiment for the RanDouSha algorithm, multi-
plied out by the necessary number of preprocessing ingredients
of each type (see Table 3). The offline cost of PowerMix is always
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more expensive than Switching Network at the same setting, and
the difference increases with more clients (k versus than log? k).
Using Switching Network, at n = 100 and k = 4096, the overall
cost (including all 100 servers) is 0.08 cents per message using
geographically distributed t2 .medium instances.
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7 CONCLUDING REMARKS

Emerging Internet-scale applications such as blockchains and cryp-
tocurrencies demand a robust anonymous communication service
offering strong security guarantees. Along the way towards build-
ing a robust anonymous communication service on top of MPC,
we have highlighted robustness as a first-class concern for prac-
tical MPC implementations. Using an existing MPC implementa-
tion means accepting an unfair computation, which can enable
intersection attacks when used for asynchronous communication.
Furthermore, even a single faulty node could disrupt the service.
Fortunately, we have shown through our AsynchroMix application
case study that robust MPC can be practical. Whereas related work
explicitly foregoes robustness, we show that it is an achievable goal
that is worth paying for.

AsynchroMix features a novel MPC program for anonymous
broadcast that trades off local computation for reduced communi-
cation latency, allowing for low-latency message mixing in varying
settings. Through an extensive experimental evaluation, we demon-
strate that our approach not only leverages the computation and
communication infrastructure available for MPC but also offers
directions towards further reducing the latency overhead.

In the future, our effort should motivate other MPC implementa-
tions to consider robustness as well as a computation vs communi-
cation trade-off.
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A BATCH SECRET SHARING WITH
QUASILINEAR COMPUTATION

Damgird et al. [38, 39] first suggested the use of FFT-based opera-
tions for batch secret sharing, although to our knowledge this has
never been implemented previously. We would naturally expect
quasilinear operations to be necessary when scaling n to extreme
large networks. However, even at the smaller values of n up to 100
that we consider, we investigated whether FFT-based operations
could offer performance improvements.

A.1 Shamir Sharing in FFT-friendly fields

In Section 2 we give a description of Shamir sharing and batch
operations for arbitrary prime-order field Fj, and for arbitrary
evaluation points ;. To enable FFT-based operations, we choose
[Fp such that 2¥|p — 1, and hence we can find a 2*-th root of unity,
w. Concretely, in our implementation we choose p as the order of
the BLS12-381 elliptic curve, such that 232|p — 1, and p ~ 255 bits.

A.2 Batch secret share operations using FFT

Given a polynomial ¢(-) in coefficient form, it is clear how to use
FFT to evaluate it at points w’ for i < n. The offline phase makes use
of randomness extraction. As mentioned in Section 2, the standard
approach is to perform multiplications by a hyperinvertible matrix
multiplication, such as the Vandermonde matrix. By choosing the
Vandermonde matrix defined by a; = «, this can be evaluated
efficiently using FFT.

As defined in Section 5, Robust-Interpolate depends on a subrou-
tine to interpolate a polynomial from an arbitrary subset of ¢ + 1
shares. Soro and Lacan [74] give a transformation that relies on
several FFTs and is quasilinear overall. Soro and Lacan’s approach
has a setup cost of O(nlog? n) which depends on the points we
are interpolating from, and a cost of O(n log n) per interpolation
after that. More specifically, the cost per interpolation consists of
a standard inverse FFT and a polynomial multiplication which is
done using an FFT/CRT based approach by NTL. In A.4 we give a
detailed explanation of this method.

If the first attempt at decoding 2t + 1 received shares fails, we
know there is at least one error, but we don’t know where it is. With
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each additional value we wait for, we either identify the error, or
learn the number of errors is one more, in which case we wait for
an additional point. This is known as Online Error Correction [28].
We implement Gao’s algorithm for Reed Solomon decoding, which
is O(nlog n) when using using FFT for polynomial multiplication.

A.3 Vandermonde interpolation

Given ¢ + 1 points ((x0, Yo0), (*1, Y1), - - - » (xz, y¢)) for distinct values
(x0, %1, . . ., x¢), polynomial interpolation means finding the lowest
degree polynomial P(X) such that P(x;) = y;. In general, given ¢ + 1
points we can always find such a polynomial that is of degree at
most t. Lagrange interpolation is the standard algorithm used for
polynomial interpolation,

t t
X —xj
P(X) = i 2
0=\l | 5= @
i J#I

However, this has a quadratic computational cost of O(tz), and is
impractical for large ¢. An alternative approach to interpolation,
as in HyperMPC [8] for example, is to use matrix multiplication
with the inverse Vandermonde matrix, M~1, where M ij= x{ . To
summarize:

Step 1 (depends only on xy, . .., x):

- Compute the inverse of M~}

S Ut):
.,a,)T = M~ Y(yo, ..

Step 2 (depends also on yp, . .

— Matrix multiply (ay, . . ., y;)T such that
P(X)=3; a; X"

To interpolate a batch of k polynomials at once, we multiply M~

by a matrix of size {t + 1} X k.

A.4 FFT-based interpolation

Here we give a self-contained explanation of the FFT-based poly-
nomial interpolation algorithm from Soro and Lacan [74]. In this
setting we assume the additional constraint that each x; is a power
of w, a primitive n'" root of unity,

xi = 0% zi €{0,1,...,n—1}

The goal is to get an expression for P(X) that can be com-
puted within O(n log n) steps depending on yp, . . ., y;, along with
a precomputation phase depending only on xo, . . ., x;. We start by
rewriting Equation (2) as

P(X)/AX) = Zt: % ®)
where we define l
AX) = ﬁ(x - xj), 4)
and :
=] o - = s 5

J#i
The degree-t polynomial A(X) as well as each b; depends only

on {x;} and so we compute them explicitly during an initialization
phase. The right hand side is intractable to compute directly, but
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we can make use of the Taylor series expansion 1/(X — x;) =
-2 xl._J ~1XJ. We therefore have

t t
POO/AX) = = Y [ Y i/bx %7 | mod X1 (6)
i\
Rearranging, we have
t t
POOJAC) == ) ( (yi/b»x;f-l)xf mod X1 (7)
J i

and finally since x; = w?, we can replace each coefficient with a
polynomial evaluation

t
POX)/AX) = = » N ™)X/  mod X**!
J

®)
where we define the polynomial
t
N(X) = > (yi/bi)X*. 9)
i

To summarize, we can compute P(X) through the following
steps:

Step 1 (depends only on xy, . . ., xz):
— Compute A(X), {b;}.
Step 2 (depends also on yo, . . ., Yz ):

— Compute N(X) from coefficients {y;/b;}.
- Evaluate each N(w/) using FFT to obtain the coefficients of
P(X)/A(X) mod X*+1,

— Multiply by A(X) to recover P(X).
For interpolation of a batch of k polynomials from shares received
from the same set of t +1 parties, Step 1 can be computed once based
on the party identifiers. Soro and Lacan [74] give an algorithm to
compute this step in O(nlog? n) overall time. Step 2 can clearly be
computed in O(nlogn) time, and must be computed for each of
polynomial in the batch.

A.5 Microbenchmarks

We now perform microbenchmarks to evaluate when FFT-based
methods are more performant than Vandermonde matrix multipli-
cations. We consider the following tasks and algorithms:

Task ‘ ~ O(n1*°) ‘ ~ O(nlog€ n)
Encode Shares Matrix Mul FFT
Interpolate Matrix Mul Soro-Lacan [74]
RSDecode Berlekamp-Welch Gao

We implemented all algorithms in C++ using the NTL library.
Additional details on costs for interpolation, evaluation, matrix
inversions, etc and on methodology are given below.

Timing evaluation algorithms: The core component of eval-
uation using Vandermonde matrices is multiplication of a n X (¢ + 1)
matrix and a (¢ + 1) X k matrix, where k is the number of poly-
nomials to evaluate. We use NTL for matrix multiplication. We
set k = 8192 to be large enough to estimate the amortized cost
per evaluated polynomial. For FFT-based evaluation, the operation
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Figure 15: Interpolation (Step 2) and Evaluation Micro-
Benchmarks

consists simply of an FFT applied to each of the k polynomials in
turn. Figure 15 shows the costs of these components.

Timing interpolation algorithms: The interpolation algorithms
both have a setup phase which only depends on the x-coordinates
of the points we are interpolating on. In the context of batch recon-
struction, these coordinates only depend on the first t + 1 parties
we received shares from. Therefore, the setup phase only needs to
be done once within a single round of batch reconstruction. The
primary component of the interpolation algorithms are also depen-
dent on the batch sizes. We time these two parts of all algorithms
separately which helps us accurately predict how our execution
time would vary with both n and the batch size.

Vandermonde-based interpolation and evaluation costs roughly
O(n?), while their FFT-counterparts take O(n log n) time. However,
FFT has a relatively large constant behind the big-O notation but is
only better than Vandermonde-based operations at relatively larger
values of n (n > 8192). When the costs for matrix inversion, as
shown in Figure 16, are included in the total costs, in practice we
see a cross-over much earlier since matrix inversion.

Total cost for batch reconstruction: Our current implemen-
tation of batch reconstruction requires 3 evaluations and 2 inter-
polations. Additionally, we perform batch size/(t + 1) evaluations /
interpolations per batch. Therefore, the total cost of a single batch
reconstruction is given by

2 X Cost per interpolationX
batch size/(t + 1) + 3X
Cost per evaluation X batch size/(t + 1)

B DETAILS ON DISTRIBUTED EXPERIMENT
SETUP

To launch distributed experiments on both Powermix and Swtiching
Network, we set up AWS machines in up to 10 regions across 5
continents around the world. We tested the performance of both
methods in the following settings: n = 4,n = 10,n = 16,n = 50,n =
100 and corresponding region settings are recorded in Table 4.
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Figure 16: Interpolation preparation (Step 1) time micro-
benchmarks

Regions n=4 n=10 | n=16 | n=50 | n=100
Virginia 1 1 2 5 10
Ohio 0 1 1 5 10
Oregon 0 1 2 5 10
Frankfurt 0 1 1 5 10
Tokyo 1 1 2 5 10
Mumbai 1 1 1 5 10
South America 1 1 2 5 10
Canada 0 1 1 5 10
London 0 1 2 5 10
Paris 0 1 2 5 10

Table 4: Table of Region Setting for AsynchroMix Online
Phase Benchmark (n is the number of peers)

For a better understanding of the network situation among dif-
ferent AWS nodes, we launched tests to measure the latency and
bandwidth among AWS peers in different regions. The result of
latency experiment could be found at Table 5 and we measured it by
letting peers ping each other. With the help of iper f3, we managed
to measure the per link bandwidth among the peers. The result of
bandwidth experiment is available in Table 6. Besides per link band-
width, we also get total outgoing bandwidth which are measured
when all peers communicate with all other peers. Total outgoing
bandwidth provides a better view of actual communication and
benchmark result is available in Table 7.
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Regions Virginia | South America | Tokyo | Frankfurt | Canada | Paris | Ohio | Oregon | London | Mumbai
Virginia X 145 162 91.2 16.4 81.6 11.6 79.8 75.9 187
South America 145 X 271 233 123 221 151 184 213 328
Tokyo 162 271 X 241 154 234 155 100 236 129
Frankfurt 91.1 233 241 X 99.1 19.6 101 155 12.8 133
Canada 16.4 123 154 99.1 X 93.9 25.6 65.1 85.8 196
Paris 81.5 221 234 10.6 93.9 X 92.3 153 8.56 106
Ohio 11.6 151 155 103 25.6 92.7 X 70.2 85.9 196
Oregon 79.7 184 100 155 65.2 152 70.1 X 141 224
London 75.9 213 237 12.8 85.9 8.52 86 141 X 114
Mumbai 187 328 129 113 196 106 196 224 114 X

Table 5: Latency tests of AWS machines across different regions. (round trip time in ms, instance type: t2.medium)

Regions Virginia | South America | Tokyo | Frankfurt | Canada | Paris | Ohio | Oregon | London | Mumbai
Virginia X 38.6 39.6 72.7 159 35.6 200 94.2 48.9 23.7
South America 46.4 X 28 28.2 63.8 25 60.2 27.6 254 17.4
Tokyo 33.4 22.9 X 32.6 33 22.6 45.1 354 25.7 36.8
Frankfurt 42.6 253 32.6 X 56.1 114 56.6 28.4 196 43.1
Canada 116 60.4 52.1 54.2 X 62 280 45.3 67.5 32.9
Paris 36.1 23.9 18.9 433 56 X 115 61.9 335 34.9
Ohio 104 45.6 38 61 92.5 42.8 X 52.9 54 28.7
Oregon 56.9 353 60.8 46.8 87.2 393 91.7 X 47.4 294
London 58 30.7 254 300 51.1 600 70.9 66.1 X 43.9

Mumbai 22.6 15 50.2 71.5 29.9 43 313 23 45.7 X

Table 6: Per link bandwidth test of AWS machines across different regions (per link bandwidth in Mbps, instance type:
t2.medium)

Regions Total Outgoing Bandwidth (Mbps)
Virginia 618.5
South America 221.5
Tokyo 236.2
Frankfurt 487.2

Canada 529

Paris 377.65
Ohio 450.5
Oregon 259.38
London 305.4
Mumbai 401.1

Table 7: Overall bandwidth test for AWS machines across different regions (total outgoing bandwidth in Mbps, instance type:
t2.medium)
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