RIVA: Robust Integrity Verification Algorithm for
High-Speed File Transfers

Batyr Charyyev and Engin Arslan, Member, IEEE

Abstract—End-to-end integrity verification is designed to protect file transfers against silent data corruption by comparing checksum of
files at source and destination end points using cryptographic hash functions such as MD5 and SHA1. However, existing
implementations of end-to-end integrity verification for file transfers fall short to detect undetected disk errors that causes inconsistency
between disk and cache memory. In this paper, we propose Robust Integrity Verification Algorithm (RIVA) to strengthen the integrity of
file transfers by forcing checksum computation tasks to read files directly from disk. RIVA achieves this by invalidating memory
mappings of file pages after their transfer such that when the file is read again for checksum calculation, it will be fetched from disk and
silent disk errors will be captured. We design and conduct extensive fault resilience experiments to evaluate the robustness of integrity

verification algorithms against undetected disk write errors. The results indicate that while the state-of-the-art integrity verification
algorithms fail to detect the injected errors for almost all file sizes, RIVA captures all of them with the help of cache invalidation. We
further run statistical analysis to assess the probability of missing silent disk errors and find that RIVA reduces the likelihood by 10 to
15 orders of magnitude compared to the existing approaches. Finally, enforcing disk read in integrity verification introduces an
inevitable overhead in exchange of increased robustness against silent disk errors, but RIVA keeps its overhead below 15% in most
cases by running transfer, cache invalidation, and checksum computation processes concurrently for different portions of the same file.

Index Terms—End-to-end integrity verification, file transfers, high performance networks, undetected disk errors, silent data

corruption.

1 INTRODUCTION

Large scientific experiments such as environmental and
coastal hazard prediction [1f], climate modeling [2], genome
mapping [3], and high-energy physics simulations [4], [5]
generate data volumes reaching petabytes per year. This
massive amount of data often needs to be moved to ge-
ographically distributed sites for various purposes includ-
ing processing, collaboration, and archival. The integrity of
transfers is crucial for many applications whose computa-
tions are extremely sensitive to the content of the data such
as Dark Energy Survey [6] and Sky Survey [7] projects.
Although some components of file transfers have built-in
integrity verification mechanisms, they are either weak or
available only in a subset of network and end systems.
For example, TCP uses 16-bit checksum to capture data
corruption but it fails to detect errors once in 16 million to 10
billion packets [8], which is not rare in today’s high-speed
networks that operate at the speed of hundreds of gigabits
per second.

Moreover, data corruption can also happen at storage
systems during file read and write operations as disk
drives are prone to silent data corruption referred as un-
detected disk error (UDE) [9]-[11]]. UDEs occur mainly due
to firmware or hardware malfunctions in disk drives and
corrupt file contents silently. UDEs are categorized into two
groups as undetected read error (URE) and undetected write
error (UWE). UREs manifest as mostly transient errors and

o B. Charyyev is with Stevens Institute of Technology.
E-mail: bcharyye@stevens.edu
o E. Arslan is with University of Nevada, Reno

Mr. Charyyev was with the University of Nevada, Reno when this work was
performed.

are unlikely to affect system state beyond causing transfer
repetitions. UWEs, on the other hand, are persistent errors
which are only detectable during a read operation subse-
quent to the faulty write, and thus posing a significant threat
to data reliability [9].

Storage systems implement several techniques to detect
and recover from UDEs such as file system scrubbing and
RAID reconstruction, studies show that errors can still go
undetected [10]. As an example, parity-enabled RAID ar-
chitectures are designed to be more resilient against disk
failures and latent sector errors, however previous studies
found that they are also susceptible to silent data cor-
ruption [9]-[11]. Although several techniques have been
proposed to prevent UDEs in RAID systems, the empir-
ical results show that they incur up-to 43% performance
overhead [12]]. Moreover, even if disks are error-proof, data
corruption can still happen during data transmission from
memory to disk due to faulty cables and firmware bugs,
thus a comprehensive solution is required to prevent silent
errors to go undetected.

Application-layer end-to-end integrity check is proved
to be a robust solution to detect and recover from silent
data corruption as it relies on secure cryptographic hash
functions and covers all operations in between [13]-[17]. A
typical implementation of end-to-end integrity verification
for file transfers works as follows: Sender first reads the
file from disk and sends it to receiver to save it. Once
data transfer is completed, the sender reads the file again
to compute its checksum using a hash algorithm such as
MDS5 and SHA1. Receiver also reads the file to compute the
checksum and then sends it to the sender to compare. If
the checksum values match, then the transfer is marked as
successful. Otherwise, the file at the receiver side is assumed

Source

=

=

= F
=

= [|]
=

—

=

==

=

Destination

G Ok

Current coverage

Coverage extension with RIVA

Fig. 1: RIVA extends the coverage of end-to-end integrity verification by checking for errors that might happen between

memory and storage subsystems.

to be corrupted and the transfer is restarted. However,
we discover that existing implementations of end-to-end
integrity verification for data transfers are vulnerable to
UDEs due to calculating checksum on cached data which
might be different than the disk copy in the presence of
UDEs.

In this paper, we propose Robust Integrity Verification
Algorithm (RIVA) to detect and mitigate silent data corrup-
tions for file transfers by enforcing checksum calculations to
read files directly from disk. RIVA works as follows: When
the transfer of a file is completed, RIVA first finds the virtual
address space of the file. Then, it deletes the mappings for
the specified address space such that further references to
the address space will generate invalid memory references
(i.e., page faults). As a result, when the file is read to
calculate its checksum, operating systems (OS) will not be
able to locate the file pages in page cache and will fetch them
directly from the disk, allowing the detection of UDEs that
might have happened while transferring the file data from
memory to disk. It is important to note that by invalidating
cached copy of files before comparing checksums, RIVA ex-
tends the coverage of end-to-end integrity verification without los-
ing existing error-detection capabilities (e.g., capturing network
errors) as showed in Figure |1} We conducted extensive ex-
periments using different network, storage subsystem, and
dataset configurations and observed that unlike state-of-
the-art solutions, RIVA always captures injected disk errors
even under extreme conditions. RIVA can also capture errors
that may happen while transmitting data from memory to
disk, however this work only evaluates its capability in
detecting silent disk errors. On the other hand, invalidating
memory copy of the files and forcing OS kernels to read
data from storage increases the execution time of transfers.
But, RIVA keeps its overhead at minimum by splitting
large files into blocks and concurrently executing transfer,
cache eviction, and checksum computation operations for
different blocks. Contributions of this paper are as follows:

o We propose RIVA to enhance resilience of end-to-
end integrity verification for data transfers against
UDEs by enforcing checksum calculations to read
files directly from disk.

e We introduce an extreme fault injection technique to
reproduce undetected disk write errors and evaluate
RIVA and the state-of-the-art integrity verification
algorithms in terms of the reliability against such
erTors.

e We conduct extensive experiments using variety of
network, dataset, and fault injection scenarios to
evaluate robustness and performance of RIVA.

o We calculate the likelihood of silent data corruption
with and without RIVA and confirm that RIVA re-
duces the probability of UDEs to go undetected by a
significant margin.

The rest of the paper is organized as follows: Section [2]
defines undetected disk errors and describes the typical
approach to run end-to-end integrity verification for file
transfers. Section [3] presents related work and Section [
details design principles of the proposed solution. Section
discusses experimental results and Section [f] concludes the
paper with the summary and future directions.

2 BACKGROUND AND MOTIVATION

In this section, we provide background on the end-to-end
integrity verification and undetected disk errors.

2.1

UDEs can be caused by several reasons such as Latent Sector
Errors (LSEs), lost, torn and off-track writes [10]], [11], [18].
LSEs stem from physical problems within the disk drive
such as media scratches and mostly detected by drive’s
internal error-correcting codes (ECC) [10]. Lost writes also
referred as dropped writes that occur when the write head
fails to overwrite existing data on a track, causing the disk
to remain in its previous state as if the write never occurred.
In torn writes disk drives end up writing only a portion
of the sectors in a given write request and the rest of
the sector contains stale data. This often occurs when the
drive is power-cycled in the middle of processing the write
request. Off-track writes also referred as misdirected writes
which happen when write head is not properly aligned with
target track and data is partially or completely written to a
adjacent tracks. Near off-track writes happen when the data
is written to the gap between tracks adjacent to the intended
track. As a result, the original disk location does not receive
the write it is supposed to receive (lost write) and data in
a adjacent track is overwritten. LSEs occur more frequent
compared to other errors affecting about 19% of nearline
and about 2% of enterprise class disks within 2 years of
use [11]. Luckily, they can mostly be detected by existing
fault tolerance techniques of storage systems. On the other
hand, lost, torn, and off-track writes can go undetected.

Undetected Disk Errors

Application Memory _[-)_Is_lf Application Memory Disk o ME__n]?ry Disk
read (n) file | write () (T | e Transter Application [Fie

read (n) : S flush (n) : [Tn] write (n) § 4 flush (n) |

g Em BN mm (e)| B iwm ww EE

S W 72 e

| \mEm Success |mEm done (n) U Em

| | 2 |_read (n) jiem (2 |

(a) Undetected Read Error (URE)

(b) Undetected Write Error (UWE)

(c) UWE-exposed transfer

Fig. 2: Undetected disk errors can happen during file read (a) and write (b) operations. When undetected read errors
happens, page cache keeps corrupt data while disk holds genuine version. In case of undetected write error, corrupted
data is written to disk while genuine version is cached in memory. If checksum computation is performed on cached data,

UWESs can cause permanent data loss for file transfers (c).

Krioukov et al. reported that lost and off-track writes occur
in about 0.04% of nearline and 0.007% of enterprise class
disks within the first 17 months of operation whereas these
values for torn writes are 0.6% and 0.06% respectively [11].
In a different study, Bairavasundaram et al. estimated UDE
probability to be between 10~'2 and 10~ [10], [19].

Undetected disk errors can be categorized into two
groups as undetected read errors (URE) and undetected
write errors (UWE). UREs cause applications to see a dif-
ferent version of data than the one stored on the disk. As
shown in Figure while disk hosts the genuine data,
URE leads to corrupted file page n to be served to the data
transfer application. On the other hand, UWEs corrupt data
while it is being written to disk. In Figure file page n is
exposed to a UWE during disk write operation despite the
success response. UWEs can corrupt one or more bits of a
file page and if not recovered would lead to permanent data
loss.

2.2 End-to-end Integrity Verification

A simple implementation of integrity verification for file
transfers (aka sequential) involves three steps. In the first
step, the file is read from the disk of source server and
transferred to destination. Once the transfer is finished and
the file is written to the disk at the destination, the checksum
of original file at the source and the transferred copy at
destination are computed using a hash function such as
MDS5 or SHA1 as a second step. In the third and final step,
checksum values of the original file and the transferred
copy are exchanged between the source and the destination
servers to compare. If they match, then the file transfer is
assumed to be successful. Otherwise, the transferred copy
of the file at destination is considered corrupt and file is
transferred again.

The main objective of running end-to-end integrity check
is to detect possible data corruption by comparing the
checksum of a file at the source and the destination servers.
On the other hand, operating systems are designed to min-
imize cache misses, so if a file is recently read or written, it
will be kept in the memory to optimize successive accesses
to the file content. In turn, this causes checksum compu-
tation to access the cached copy of the file when file size
is small, preventing the detection of silent data corruption
that may occur during disk read and write operations at
the transfer phase. For example, if a URE happens at the

source server during the transfer of a file, then receiver will
receive and store corrupted data on the destination server.
After file transfer completes, both sender and receiver read
the file again to compute and compare checksum values to
verify the integrity of the transfer. If the file size is small,
then the OS kernel on the sender side will keep the corrupt
data on page cache, causing the checksum calculation to be
executed based on the corrupted data. This will then trigger
checksum match, so transfer of the file will be deemed as
successful despite the URE. Similarly, if file write operation
on the receiver side is exposed to UWE and checksum is
computed based on cached copy, then UWE will be missed
since the page cache would still hold the correct version of
the file. Figure illustrates how integrity verification can
fail to capture UWEs. The transfer application receives the
page n and writes it to disk during which UWE corrupts the
page. However, OS still keeps the genuine copy on memory
uses it when checksum thread attempts to read the file. As
a result, the checksum c is calculated based on genuine data
and the UWE goes undetected.

Transfer of a file with integrity verification involves three
file read and one file write operations. The first file read
happens when sender reads the file from the disk for the
first time to initiate the transfer. The other two file read
operations take place when both sender and receiver read
their copy of the file to calculate the checksum. The file write
is done at the receiver server to save the transferred file
to storage system. Hence, three file read and one file write
operations can be exposed to UREs and UWEs. Although
UWESs pose more serious threat to the integrity of transfers,
UREs can also lead permanent data loss when integrity ver-
ification operates on cache data as described in Section[5.2.3]

2.3 Motivating Example

As running checksum computation on cache makes file
transfers vulnerable to UDEs, we evaluated the sequential
end-to-end integrity verification approach in terms of its
receiver-side cache behaviour during the checksum compu-
tation process in HPCLab-WS network where servers are
equipped with 16 GB of RAM and direct-attached hard
drives. We transferred a mixed dataset that contains 273 files
with total size of 274 GB. Out of 273 files in the dataset, only
three files are larger than the memory size. We monitored
page miss value on the receiver server to infer disk access
behavior. Increased page miss value can be used to deduce

60000

50000

40000

30000

Page Misses

20000

10000

o I
0 200 400 600 800
Time (s)

1000 1200

Fig. 3: Transferring a mixed dataset with integrity verifi-
cation reveals that only files that are larger than memory
size contribute to page misses during the checksum compu-
tation. Thus, majority of files are vulnerable to undetected
disk errors.

disk read for checksum computation since receiver does not
perform read I/O during the transfer phase. The Figure
demonstrates that page misses occur in three intervals dur-
ing which checksum process attempts to read the three large
files. For the remaining 270 files, operating system returns
file access requests from cache memory (i.e. page hit) as they
are cached during the transfer. The total number of page
misses is around 145M that corresponds to 56GB, the total
size of three large files. We also confirmed that other im-
plementations of integrity verification (i.e. block-level [20]
and FIVER [21]) exhibit similar behavior of reading small
files from page cache during checksum calculation. Hence,
existing integrity verification approaches for file transfers
are susceptible to UDEs for files that are smaller than the
memory size. A recent analysis on data transfers in high
performance computing facilities revealed that average file
size of file transfers is in the order of megabytes [22]. When
combined with the fact that most production systems use 64
GB or larger memory units in their transfer nodes, it raises
significant concerns on the reliability data transfers despite
enabling end-to-end integrity verification. Moreover, even
if a storage system is resilient to UDEs, data path between
memory and storage can cause silent data corruptions due
to faulty cables and driver firmware bugs. As a result,
despite the availability of integrity verification solutions, file
transfers are still vulnerable to silent data corruption since
existing implementations of integrity verification fall short
to offer an “true” end-to-end coverage.

3 RELATED WORK

In this section, we discuss related work on high-
performance data transfers, end-to-end integrity verifica-
tion, and data corruption in storage systems.
High-performance data transfers: High-speed data
transfer studies mostly focus on scheduling [23], [24],
throughput optimization [25]-[27], and power consumption
optimization [28]. In a recent study, Yun et al. proposed
ProbData to tune the number of parallel streams and buffer
size for TCP transfers using stochastic approximation [27].
ProbData uses Simultaneous Perturbation Stochastic Ap-
proximation algorithm to identify optimal transfer config-
urations for TCP and UDP based transport methods. Rao et
al. presented stochastic gradient descent based algorithm to

4

discover the number of parallel TCP streams that yields the
maximum network throughput [29]. HARP runs regression
analysis based on historical data and active probing, and
then uses the derived model to explore the application layer
transfer parameters that maximize transfer throughput [25],
[30]. Alan et al. [28] proposed energy-efficient data transfer
algorithms to tune application layer parameters, and find a
balance between transfer throughout and energy consump-
tion at the end hosts. They monitor CPU usage of end
hosts and estimate energy consumption with the help of
models that relate CPU usage to energy consumption. A
cost function is then used to measure the energy efficiency
of different configurations based on throughput and energy
consumption results.

Integrity verification: Researchers studied integrity ver-
ification in the context of storage outsourcing [15], [31],
[32], long term archiving [16], [33]], file systems [34]-[36],
databases [17], provenance [37], and data transfer [20], [21],
[38]. Zhang et al. [36] evaluated Zetabyte Files System (ZFS)
in terms of robustness to disk and memory fault injections.
It has been found that while ZFS is able to detect and
mostly recover from disk corruptions with the help of end-
to-end integrity verification of data blocks, it is vulnerable
to memory corruptions since it does not check the integrity
of data blocks when they reside in the memory.

Globus [39] supports end-to-end integrity verification for
data transfers. It pipelines transfer and checksum computa-
tion processes for different files to minimize the overhead
of integrity verification. However, its pipelining technique
does not work as expected when a dataset consist of files
with mixed sizes. Liu et al. propose block-level pipelining
to optimize integrity verification for mixed size datasets by
dividing large files into blocks [20]. It reduces execution time
considerably especially when dataset is composed of files
with mixed sizes, however it requires careful tuning of block
size to perform well. In a previous work, we proposed Fast
Integrity Verification Algorithm (FIVER) to run transfer and
checksum operations of each file simultaneously and enable
I/0 sharing between these the two [21]]. FIVER outperforms
file-level and block-level pipelining solutions by reducing
the overhead of integrity verification from up-to 60% to less
than 10%. However, we discovered that none of the existing
file transfer end-to-end integrity verification algorithms can
detect injected disk errors, thus they all fail to offer “true”
end-to-end coverage.

Data corruption in storage systems: Studies on disk
fault analysis investigate drive failures [40]-[42], latent sec-
tor errors [19], and data corruption [10], [11]], [36]. Shah et
al. investigated the underlying reasons for disk failures and
identified several factors including media errors, scratch in
disk, high-fly writes, rotational vibration, hard particles,
and head slap [41]. Schroeder et al. [42] analyzed data
from 100,000 disks over a five- year period and found
that disk failures have positive correlation with disk ages.
Hence, most modern storage systems store checksum of
file blocks next to the block in the disk to detect data
corruption, however it can develop checksum mismatch
which is defined as the discrepancy between the stored
checksum and calculated checksum of a block. It can happen
because of several reasons such as (i) a misdirected write in
which the data is written to an incorrect disk location, thus

RIVA Memory Disk
M'ﬁle flush (n) ¥ file
ransfer = “
done(n o :
1 o evict (k) kil }
Cache Evictor ||————— itk i
UWE .
done(k) :
. \EN
read (3) page miss(3)
e g2
________ rerssnsannunneas (UN - _______

Fig. 4: System architecture of RIVA. When Checksum thread
attempts to read UWE-exposed page-3, it will trigger a page
miss since Cache Evictor has evicted it. Consequently, page-3
will be read from the disk and the UWE will be detected.

overwriting and corrupting data, (ii) write error in which
only a portion of the data block is written successfully, and
(iif) data corruption caused by components within the data
path [13], [43].

Bairavasundaram et al. monitored 1.53 million disk
drives over 41 months and observed more than 400,000
checksum mismatches [10]. They also found that nearline
disks have an order of magnitude higher probability of de-
veloping checksum mismatches than enterprise-class disks.
Yet, corrupt enterprise-class disks tend to develop more
checksum mismatches. Although data scrubbing and RAID
reconstruction can detect and possibly recover checksum
mismatches, they take a long time to finish during which
data becomes inaccessible. In another work, Bairavasun-
daram et al. monitored 1.5 million hard drives over 32
months and found that 8.5% of all disks developed at
least one latent sector error during observation period [19].
Moreover, Krioukov et al. showed that even tough silent
data corruption is detected, the system may not recover the
block, causing data to be lost permanently [11].

4 SYSTEM DESIGN

RIVA enforces checksum calculations to read files from disk
rather than page cache of memory to detect silent disk
errors that might happen while transmitting data between
memory and disk or reading/writing from/to disk. Hence,
it clears page cache before reading files to compute their
checksum. Figure [depicts RIVA receiver which consists of
three threads. The Transfer thread receives file pages from
network and flushes them to the disk, the Cache Evictor
thread evicts file pages from the memory, and the Checksum
thread reads the evicted pages back from the disk to calcu-
late the checksum. The Cache Evictor uses mmap and munmap
system calls to locate and evict file pages. When a file is
recently transferred and written to the disk, its pages are
kept in the page cache by operating system (OS) to optimize
future accesses, however we found that this paves the way
for UDEs to go undetected. Thus, Cache Evictor runs mmap
to locate file pages in the virtual address space which is
used to keep track of the memory mapping of file pages
that are stored on the disk. If the mapping points to a valid
memory address for a file page, it indicates that the file
page is currently cached in the page cache, thus subsequent
accesses will be served from the cache. Since RIVA aims to

5

avoid cached data, it executes munmap system call to delete
virtual address space mapping of file pages such that when
the Checksum thread attempts to read the file, OS would
not be able to locate valid mappings (i.e. page miss) and
fetch it from disk. Moreover, munmap ensures coherence
between page cache and Translation Lookaside Buffer (TLB)
by flushing related entries in TLB to avoid using stale data
in CPU caches (i.e., L1, L2, and L3) as well [44]. Moreover,
RIVA’s cache invalidation works in the file-level — it only
invalidates only the pages of transferred file from cache —,
thus it neither requires root privileges nor interferes with
the operation of the rest of the system.

Although single execution of munmap is generally suf-
ficient to clear the pages from cache, it is possible that OS
brings some of the pages back to the cache immediately.
Hence, Cache Evictor checks whether the file is completely
evicted from cache using mincore syscall. If the file pages
are not fully removed from the page cache, then the Cache
Evictor will keep calling munmap until mincore confirms
that none of the pages reside in the memory. Once the pages
are successfully removed from page cache, they are passed
to the Checksum thread to calculate checksum and send it to
RIVA sender to verify the integrity of the received file. It is
worth to note that cache eviction may not be necessary for
large files since OS automatically evicts old file pages when
page cache is full. However, since most transfers in scientific
facilities are dominated by small files [22], clearing file
pages from page cache is necessary to avoid UDEs. Besides,
relying on OS to evict file pages for large files is not reliable
choice since cache eviction policy can be manipulated to
remove the recently inserted pages and cause the Checksum
thread to locate some pages in page cache.

As an example, assume that page 3 is exposed to a UWE
as shown in Figure |4} Instead of reading page 3 back again
immediately for checksum calculation, RIVA first lets Cache
Evictor to remove its memory mapping from virtual address
space. This way, when Checksum thread attempts to read the
page 3 to calculate checksum, it will trigger a page miss
and the corrupted page will be fetched from the disk. As
a result, this trigger a checksum mismatch between source
and destination and the file will be transferred, allowing
RIVA to detect and recover from the UWE. RIVA sender will
operate in a similar way to locate and clear page cache after
the file is read for the transfer such that checksum process
can detect and avoid UREs that might happen during the
transfer of a file. When checksum mismatch is identified,
RIVA assumes that the sender copy of the file is the genuine
one and retransfers the file from sender to receiver again.
While this may cause redundant retransfers in cases where
successful transfer is followed by miscalculated checksum
due to undetected read errors, this is a trade-off to avoid
undetected write errors.

A simple approach to implement integrity verification
with RIVA would involve running Transfer, Cache Evictor,
and Checksum threads sequentially for each file in dataset.
However, it would significantly increase execution time of
transfers especially for large files. For example, transferring
a 100GB file first and then running cache eviction and
checksum computation would lead to total execution time to
be sum of all three operations. RIVA thus take advantage of
multithreading by runs its threads concurrently on different

Specs Storage CPU Memory (GB) | Bandwidth (Gbps) | RTT (ms)
HPCLab-WS SATA HDD (8) Intel Core i5-7600 @3.50GHz 16 1 0.2
Chameleon Cloud | SATA HDD | (12) Intel Xeon E5-2670 @2.30GHz 128 10 0.2
Pronghorn GPFS (16) Intel Xeon E5-2683 @2.10GHz 192 10 0.1
HPCLab-DTN NVMe SSD | (16) Intel Xeon E5-2623 @2.60GHz 64 40 30
ESnet RAID-0 (12) Intel Xeon E5-2643 @3.40GHZ 128 100 89

TABLE 1: System specification of test networks.

portions of files to lower the total execution time. In Figure[d]
Transfer thread is transferring page n, Cache Evictor thread
is evicting page k from memory, and Checksum thread is
reading page 3 to calculate checksum. Transfer thread sends
periodic signals to Cache Evictor to inform about received
pages after writing to disk so that those pages could be
removed from page cache. Similarly, Cache Evictor thread
sends messages to Checksum to notify it about evicted pages.

Most operating systems define page size as 4 KB, so
running thread communication for each file page could be
prohibitively expensive for large files. For example, it would
require 262,144 messages to be exchanged between Transfer
and Cache Evictor threads for a 1 GB file. Thus, RIVA threads
send messages for a collection of pages (aka block) to reduce
communication overhead. Block size is configurable and
is by default set to 256MB, so each block contains 65,536
file pages for a page size of 4KB. As an example, when
the transfer of a 1 GB file is requested with block size 256
MB, the Transfer thread will start by moving the first block
(0-256MB) of the file. Once the first block is received and
written to disk, it will move to the transfer of the second
block (256M-512M). At the same time, Cache Evictor will
remove the first block from memory and let Checksum thread
to start reading the first block to calculate its hash. So, while
the Transfer thread is sending the second block, Cache Evictor
and Checksum can start processing the first block. As a result,
all three operations (i.e., file transfer, cache eviction, and
checksum computation) can execute in parallel, leading to
shorter execution time compared to sequential execution
of them. It is also worth to note that these operations can
take different execution times, so overall execution time will
be determined by the speed of slowest operation. Another
benefit of processing file in blocks is the cost of recovery
in the case of checksum mismatch as RIVA only needs to
resend the failed blocks.

5 EVALUATIONS

We run the experiments using two types of dataset; uniform
and mixed. Uniform datasets contain of one or more files
in same size and mixed datasets consist of files with var-
ious sizes. We evaluated RIVA in four different networks:
HPCLab, ESnet, Pronghorn, and Chameleon Cloud whose
specifications are given in Table[l| In HPCLab, we have two
sets of servers; workstations (HPClab-WS) and data transfer
nodes (HPCLab-DTN). The workstations are connected with
a 1G link whereas data transfer nodes are connected with
a 40G link. Although data transfer nodes are located in the
same local area network, we injected artificial delay between
them to emulate wide-area network condition using traffic
controller (tc) of Linux. Pronghorn is a campus cluster
and its nodes are connected with 10G links. Chameleon

0.2
0.18
0.16
0.14 |
0.12
0.1}
0.08 |-
0.06 |
0.04 |
0.02 -

Pronghorn —»— ‘

Chameleon Cloud —e— |-

HPCLab-DTN .
HPCLab-WS

Time (s)

0 > ! ! !
16 32 64 128 256 512 1024 2048

File Size (MB)

Fig. 5: Cache eviction times for different file sizes. It takes
less than 0.03 seconds for 256MB files.

Cloud is an OpenStack based cloud service and its nodes are
connected with 10G links. ESnet testbed offers a dedicated
100G bandwidth and 89 ms delay between end points.
Finally, we used one Pronghorn server as a sender and one
Chameleon Cloud server as a receiver to run Pronghorn-
Chameleon experiments. We repeated the experiments at
least five times and present average results unless stated
otherwise.

5.1 Execution Time Analysis

RIVA executes transfer, cache eviction, and checksum com-
putation tasks to transfer a file with integrity verification.
The transfer task involves disk read at source, network
transfer, and disk write at destination. As these three opera-
tions are executed in parallel, transfer time approximately
equals to runtime of the the slowest operation. On the
other hand, checksum computation runs disk read and
hash calculation operations sequentially (i.e, read a set of
file pages and digest them for checksum before moving to
next set), so its execution time becomes sum of runtime
of these two routines. Since both source and destination
end points calculate checksum, the overall checksum speed
is dictated by the slower end point. Finally, both source
and destination end points performs cache eviction for files
before the checksum computation.

To shed a light on the total execution time of RIVA, we
investigate the runtime of transfer, checksum computation
and cache eviction procedures. Figure [f| presents the cost of
cache eviction for different file sizes. It is clear that it is a
lightweight procedure and takes less than 0.2s for a 2 GB
file. Since RIVA splits files into blocks with default size of
256 MB, cache eviction would take less then 0.03s for a file
block. On the other hand, the transfer time of a 256 MB file
block would generally take between 0.5s-2s depending on
I/0 and network speeds (0.5s with HPCLab-DTN, and 2s in
HPCLab-WS). Checksum computation operates at a rate of
360 MB/s with Intel Xeon E5 @2.60GHz CPU and 450MB/s
with Intel i5 @3.50GHz CPU and takes between 0.5s-0.7s.

10 HPCLab-DTN == J
— HPCLab-WS =42
S
S —_
LU 6 = -

§ 417 B |

— ==

o =

g 2 T e

0 i

100MB 1GB 10GB 50GB mixed

File Size
Fig. 6: Error rate of RIVA execution time estimation in two
networks. Bottleneck operation is file transfer in HPCLab-
WS and checksum computation in HPCLab-DTN.

As a result, transfer and checksum calculation speeds are
in the order of a magnitude slower than cache eviction
speed. When combined with RIVA’s concurrent execution
of transfer, cache eviction, and checksum calculation, this
would result in either transfer or checksum computation
to be the bottleneck for RIVA. Thus, we can formulate the
runtime of RIVA as given in Equation [I| where ¢, t., and
t. are transfer, checksum computation and cache eviction
times for a single block and nocks is the number of file
blocks which is calculated by dividing file size to block size.

frrya = ty X Nplocks +te +te, ifty > 1. 1)
te X Nplocks + tt + te, otherwise
t —t
¢ — 100 + [tRIVA ~ tactual|)

actual

If the transfer speed is slower than the checksum speed,
the execution time will be determined by transfer time of
all blocks (t+ X npiocks plus cache eviction and checksum
calculation times for the last block. Similarly, if the check-
sum computation is slower, then total time can be calculated
by the transfer and cache eviction time for the first block
plus checksum computation time for all the blocks. Figure 6]
evaluates the accuracy of the model in two networks; in one
transfer is the bottleneck (i.e., HPCLab-WS) and in another
checksum computation is the bottleneck. Error is calculated
as percentage of difference between predicted, trry 4 and
actual measurement ¢,ctyq: time as shown in Equation
The results show that the model is able to predict the
execution time with less than 7% error rate in both networks
for all data types. We observed that concurrent execution of
checksum and transfer operations leads up-to 10% degra-
dation of I/O speed of both operations both in HPCLab-
WS and HPCLab-DTN networks. This in turn increases
execution time a bit compared to isolated execution times
of these operations as used in Equation [i}

Compared to “transfer only” (i.e., without integrity ver-
ification) scenario, RIVA’s overhead depends on the bottle-
neck operation. If the transfer is the bottleneck, then the
overhead will be the slowdown ratio in transfer speed due
to concurrent checksum computation, nearly 10% in most
networks. On the other hand, if checksum computation is
the bottleneck, then RIVA will extend the runtime by the
ratio of checksum and transfer times for a single block,
t./ti. Yet, we showed in our previous work that one can

7

take advantage of multicore architectures to run multiple
checksum instances simultaneously to mitigate it from be-
ing the bottleneck [38]. Moreover, because RIVA does not
introduce the integrity verification, rather aims to increase
its robustness, it would be fair to evaluate its performance
against other integrity verification approaches. Thus, in the
rest of the paper we compare RIVA against existing integrity
verification algorithms; file-level pipelining (FileLevelPpl),
block-level pipelining (BlockLevelPpl), and FIVER.
FileLevelPpl overlaps the transfer of a file with the
checksum calculation of another file. BlockLevelPpl splits
large files into blocks similar to RIVA and overlaps the
transfer of a block with the checksum of another block
of the same file. Finally, FIVER overlaps transfer of a file
with the checksum of the same file to share I/O between
the two. Experimental results indicate that FIVER always
yields the shortest execution time [21]. Hence, we calculate
the performance of different approaches relative to FIVER
and define overhead as shown in Equation [3| ¢{rrvEr and
taigorithm refer to the times it takes to transfer a dataset with
integrity verification using FIVER and a different algorithm.
For example, if a transfer takes 120 seconds with FIVER,
and 130 seconds with RIVA, then the overhead becomes
8.3% (100% 13%;&20). The main difference between RIVA and
FIVER is that the former enforces disk read for checksum
computation whereas the latter uses cached pages for the
same task. Since cache eviction system call has negligible im-
pact on the runtime of RIVA, the potential cost of RIVA can
be explained by the 1/0 slowdown triggered by concurrent
disk accesses of transfer and checksum operations. Theoret-
ically, the slowdown can be up-to 100% (checksum I/O can
be blocked completely while the transfer is running) but in
practice we observed that it is around 10% in most networks.

Latgorithm — ¢
OU@’I’head — 100 % algorithm FIVER (3)
tFIVER

We conducted extensive experiments in six different net-
works which are grouped as local-area network (Figure [7)
and wide-area network (Figure |8) results. The overhead
of RIVA is always less than 5% in HPCLab-WS transfers
(Figure which can be attributed to slow transfer speed.
Since RIVA pipelines cache eviction and checksum com-
putation operations with file transfers, it incurs negligible
overhead when the transfer speed is the bottleneck. The
overhead of FileLevelPpl reaches up-to 30% for 10GB and
50GB files since there is only one file in those datasets,
causing FileLevelPpl to perform transfer and checksum
operations sequentially. On the other hand, the overhead
of RIVA increase to 15% in Pronghorn as its disk read
speed is worse than disk write and transfer speeds. Fi-
nally, the overhead of RIVA exceeds that of FileLevelPpl
in Chameleon Cloud as given in Figure Chameleon
Cloud nodes are customized for high-performance com-
puting with large memory size and multi-core CPUs, and
exhibit poor disk read/write performance. However, the
OS is able to cache file writes in the memory and flush
them to the disk at a slower rate, effectively increasing disk
write speed as long as file size is smaller than free memory
space. On the other hand, slow disk read speed cannot be
improved in similar way as OS kernels cannot predict which
file to cache in advance. Disk read speed is even further

AN, 6B (aBP oGP (yed

File Size

(a) HPCLab-WS

60

RIVA mmm RIVA mmm
35 -{BlockLevelPpl cooosa BlockLevelPpl oo
FileLevelPpl | 50 | FileLevelPpl |
g %0 g 40
g 3
2 20 2 30
g 15 8 20
O 10 o
5 10
B 0

File Size

(b) Pronghorn

| s

\OM®. 6B (oGP oGP (yed

Overhead (%)

RIVA |
["|BlockLevelPpl coswoa ‘
L.| FileLevelPpl

Ao e
File Size

(c) Chameleon Cloud

QG g el

Fig. 7: Performance comparison of algorithms in LAN experiments. While RIVA is able to keep its overhead below 17% in
HPCLab and Pronghorn networks, slow disk speed and large memory size cause its performance to deteriorate significantly

in Chameleon Cloud.

50 RIVA s ‘ 60 RIVA s 30 RIVA s
45 BlockLevelPpl BlockLevelPpl BlockLevelPpl
40 FileLevelPpl 50 r FileLevelPpl | 25 FileLevelPpl |
&35 240
- 30 °
925 930 |
= 20 =
25 I 220
(©] o]
10 1 10
5 E E]
0 0

AONBGB (0B ge® \ued
File Size

(a) HPCLab-DTN

YOIV CRPIC EINYCS
File Size

(b) ESnet

File Size

(c) Pronghorn-Chameleon Cloud

Fig. 8: RIVA is able to keep its overhead below 12% in WAN experiments.

degraded when it is overlapped with disk write operation
as RIVA does. However, BlockLevelPpl and FileLevelPpl do
not experience slow disk speed as they mostly read files
from page cache for checksum computation because OS
kernel keeps them in memory after they are transferred.
As a result, FIVER, BlockLevelPpl, and FileLevelPpl per-
form transfer and checksum computations faster than disk
speeds whereas RIVA enforces disk read to be able to detect
UDEs, imposing significant performance penalty. On the
other hand, we noticed drastic performance degradation
for FileLevelPpl (nearly 70% overhead) when a file whose
size it larger than memory size (128 GB) as it cannot take
advantage of write caching anymore.

RIVA keeps its overhead less than 12% in all WAN
experiments as shown in Figure [§ Checksum computation
is the bottleneck operation in HPCLAb-DTN and ESnet
networks, thus FileLevelPpl suffers significantly for the
single file transfers (i.e., 10GB and 50GB) and takes up-to
50% more time than FIVER. FileLevelPpl also performs 40%
worse than FIVER for mixed dataset since it fails to benefit
from overlapping of transfer and checksum processes when
dataset contains both small and large files. BlockLevelPpl,
however, achieves the lowest overhead in almost all cases
since its pipelining method overcomes the overlapping issue
that FileLevelPpl experiences.

5.2 Fault Resilience

5.2.1 Cache Hit Analysis

We investigate the disk access behavior of different solutions
by measuring page miss values during checksum computa-

tion phase. Page miss value defines the number of file pages
that the OS fetches from disk since they are not located in
the page cache of the server. Figuref|shows the receiver-side
page miss behavior for a 10 GB file transfer in three testbeds.
The transfer speed in HPCLab-DTN and ESnet networks is
higher than that of checksum computation, letting Checksum
thread to run uninterrupted. As a result, RIVA sustains
consistent disk I/O rate (around 2.4 Gbps) as shown in
Figure and P(b)} On the other hand, RIVA returns
different behaviour in Chameleon Cloud where disk read
speed is significantly worse than transfer and disk write
speeds for files that are smaller than 100GB. Moreover, when
the disk read and write operations overlap, the read perfor-
mance degrades even further. Consequently, RIVA has short
periods of disk reads until disk write completely finishes.
The transfer of the file completes at around 150s after which
disk read performance recovers and RIVA’s Checksum thread
obtains high and consistent read I/O rate. On the other
hand, all the other approaches reads the file completely from
page cache in all networks, leading to negligible page misses
throughout the checksum calculation phase.

We further calculated total page misses for RIVA and
verified that it is close to 10GB. While page miss behavior
can be used to infer I/O access pattern of an algorithm, it
alone cannot be used to guarantee cache avoidance. This is
because the measured pages miss value may include misses
caused by other operations such as network transfer and
disk write. Thus, we introduce extreme-injection test in the
next section to confidently claim that none of the pages of a
file is read from the page cache of main memory.

350 RIVA —o— 350 ‘ 140 RIVA —o—

300 | pesmtenn " FIVER 1 300 PPN 120 | FIVER
= i BlopkLevelPpl —&— = s ¥ V ’ \ = BlockLevelPpl —a—
§ 250 FlleLevelPpl § 250 1 g 100 FileLevelPpl
x x x
gzoo gzoo ¢ § 80
éwo éwo é 60 [

RIVA —o— | |

g100 £100 FIVER S 40
o 0 a8 50 BlockLevelPpl —&— | | a 20

5 I - FileLevelPpl ig

0 0 . 0
0 10 20 30 40 50 60 0 10 20 30 40 50 60 0 50 100 150 200 250
Time (s) Time (s) Time (s)
(a) HPCLab-DTN (b) ESnet (c) Chameleon Cloud

Fig. 9: RIVA causes high page misses as it evicts file pages from memory and reads directly from disk to capture UWEs.

\
} memory| disk }
} L 1 1] = }
[2 ‘
} E original iigcted]) |
} g | » ® |
| 2 flush ‘
‘ : H \
} fault |
‘ 3 injection }
AL L1 S ault

[
} @ injection |

e ——e————_ Y —————— .

Fig. 10: Extreme-injection test involves injecting UWEs to all
pages of files to determine if transfer applications read any
pages from page cache during checksum calculation.

5.2.2 Error Injection

Given that the rate of UWE occurrence is low, testing
RIVA in the real world would be costly, probably requiring
a prohibitively large number of disks to observe within a
reasonable period of time. Hence, we reproduced UWEs by
injecting faults to files pages on hard disks. We first identify
the disk sectors that file pages reside, then update the
content of pages by writing directly to disk partition which
is not reflected to file pages in page cache. For example,
when we inject fault to the page &+ 1 in Figure [the cached
copy will not be updated, creating a similar impact of UWEs
as shown in Figure 2(b)}

In extreme-injection test, all pages of a file are exposed to
a UWE to verify that RIVA does not read even a single file
page from page cache during the checksum computation.
We first create a copy of the file on sender side and flip the
first bit of all file pages (step 1 in in Figure[I0). This copy is
called injected and used to validate the output of the receiver
side checksum. The sender then transfers the original file to
the receiver which is written to disk (step 5). As file is being
written to disk, we flip the first bit of all file pages that are
flushed to disk just before checksum computation starts. We
flip same bit of pages at the sender and the receiver to be
able to compare injected copies. Upon completion of fault
injection to all file pages, we let checksum thread to read
the file and compute its checksum (step 7). The computed
checksum value is then sent to the sender to be compared
against the injected copy (step 8 and 9).

If checksum values match, we can then confidently claim
that the checksum thread of the receiver must have read all
file pages from the disk. If the receiver reads even one page
of the file from page cache, then its checksum value will

1IMB | 100MB | 1GB | 10GB | 20GB | 50GB
FIVER - - - - - —
BlockLevelPpl - - - - - _
FileLevelPpl - - - - - v/
RIVA v v v v v v

TABLE 2: The results of extreme-injection experiment in
HPCLab-WS network with 16GB main memory. RIVA is
able to detect all injected faults whereas FileLevelPpl can
only detect them for 50GB files.

be different than that of the sender’s injected version. We
conducted the extreme-injection test in HPCLab-WS using
several files that are smaller and larger than the memory
size, 16GB. Table [2| presents the results of integrity verifica-
tion algorithms in terms of being able to detect all injected
errors. FIVER and BlockLevelPpl failed to pass the test for
all file sizes as their checksum threads always read the files
from page cache. FileLevelPpl is able to catch the faults only
for 50GB file which is three times larger than memory size.
Surprisingly, FileLevelPpl fails to pass the test for the 20GB
file despite yielding high page misses, implying that at least
one file page is read from page cache on the receiver side.
Finally, RIVA is able to capture all fault injections regardless
of file size by means of invalidating cache copies of file
pages before running the checksum computation.

5.2.3 Statistical Analysis On The Likelihood of UDEs

In overall, there are four I/O operations that take place
during the transfer of a file with integrity verification. They
are (i) file read on the source server to transfer file content
(Read(S) in Table , (ii) file write on the destination server
to save the transferred data to disk (Write(D)), (iii) second
file read on the source to compute the checksum of the
transferred file (Read(S)), and (iv) file read on the destination
to compute the checksum of the received file (Read(D)).
Although RIVA is resilient against UDEs that affect one of
these 1/O operations, it may fail if multiple I/O operations
are exposed to similar UDEs. For instance, if a UWE on
receiver is followed by a URE again on receiver (while
reading the file from disk to compute the checksum) in a
way that it is exactly reverse of the UWE, then RIVA will
miss the UWE and corrupted data will be stored in the disk.

Table [3|lists few examples of single and multi-bit errors
that affect one or more I/O operations during the transfer

Row | # of I/Os Transfer Checksum Detected by
ID |Impacted|Read (S)|Write (D)|Read (S) [Read (D)| RIVA?
1 1 01 01 00 01 Yes
2 1 00 11 00 11 Yes
3 1 00 00 01 00 Yes
4 2 01 01 00 01 Yes
5 2 01 01 01 01 No
6 2 00 11 00 00 No
7 3 10 00 01 00 Yes
8 3 01 01 10 10 No
9 3 00 10 11 11 No
10 4 01 10 11 01 Yes
11 4 11 10 11 11 No
12 4 01 00 10 10 No

TABLE 3: Examples of UDEs that affect disk read /write I/O
during the transfer of a two bit data with original value
of “00” at the source. Out of four I/O operations (two for
transfer and two for integrity verification), RIVA is able to
capture all errors which affect only one operation. However,
RIVA may miss errors if they appear in multiple operations
in a way that source (S) and destination (D) checksum
values match.

of a two-bit data which is originally stored on the disk of
source server as “00”. Note that when any one I/O operation
(i.e. the number of I/Os impacted is 1) is exposed to single
or multi-bit errors, RIVA can guarantee its detection it since
it is impossible for single UDE to result in checksum match
(RIVA will only miss UDE:s if checksum comparison returns
positive result) while the stored data is different than the
original one. On the other hand, when multiple I/O oper-
ations are affected by UDEs, then RIVA may miss them if
they happen in a way that source and destination checksum
values match. As an example, assume that a URE happened
at the source server during file transfer and caused data
to be read as 01 (row 5 on Table [3). The receiver then
will receive the corrupted data and saves it to disk as it
receives, 01. Once the transfer operation is complete, both
source and destination servers read the data from disk to
compute checksum. Assume also that the second UDE took
place when reading the file on source server and causes data
to be read as 01, again. Then, since destination server saved
the data as 01 as well and checksum I/O on destination
is not exposed to a UDE, it will cause checksum values
of source and destination servers to match, preventing the
detection of silent data corruption. In the rest of this section,
we calculate the probability for RIVA to miss UDEs caused
by uncorrectable single or multiple bits flip.

Undetected bit error rate (UBER) is defined as the rate of
errors that have escaped from ECC [35]. The probability of
an undetected bit flip is equal to UBER assuming each bit
error in a data block is independent and the number of bit
errors follows a binomial distribution. Equation #shows the
probability of ¢ bit flips in a b-bit block with uncorrectable
bit error rate £ assuming that there exist at most one flip for
each bit [35]], [45]. Then, Equation [5| defines the probability
of undetected bit error for a block, which is the sum of the
probabilities of all possible combinations of bit flips (from
total of 1 bit flip to b bit flips).

Pc(blOCk7i) = (l;) X El(l _ E)b—z’ (4)

10

b
P.(block) = (i’) x Bi(1— E)’? (5)
’L:bl .
= (Z xE'(1-E)’ - (1-E)
=0
=(E+(1—-E))®—-(1—-E)" (Binomial Theoremﬂ)
=1-(1-E)
~bE

RIVA will miss UDEs if they appear in more than one
1/0 operation as described above. Hence, two or more I/O
operations must be exposed to UDEs out of total four disk
read/write operations. Among those, we first explore the
possibility UDEs that leads to data corruption in two I/O
operations. Equation [] defines the probability of ¢ uncor-
rectable bit flips in an operation with block size of b. Since
UDEs in two I/O operations must be similar (see rows 4
and 5 in Tablg3) or complementary (row 6), for RIVA to
miss them, the probability becomes the multiplication of
i bit UDE combinations and the probability of a UDE to
happen twice, as shown in Equation [6} Then, the Equation 7]
shows the cumulative probability of all bit errors to appear
in two I/0O operations.

. (D i b—i
P(block,i) = (Z_)bx (Eix (1—E)"H? (6)
-3 (i) < xo

i=1

Prrva(block) — E)b1)? 7)

i()xE’lE)

b

_ 2b + Z (b> E21 b—1)

i (1-B)

=—(1-) (+(1- E)Q) (Binomial Theorem)
=(E?+(1-EP®’ - (1-E)*
=(1+2E*-2E)Y - (1-E)*

expanding both terms
= ((S) 1°(2E? —2F)° + G) 1°71(2E? — 2E)!
ot (Z) 1°(2E? - 2E)") — (<2Ob) 12(—E)°
2b 2b—1 1 2b 0 2b
+<1>1 (=E)" +-+ | I (=E))
E° E*' ... E* F3 << E? YE <107%, thus

ignoring terms with power of E is greater than 2
b b
~ ((0> 1°(2E? —2F)° + (1> 1"71(2E% - 2F)Y)

— ((20b> 12b(—E)0 + (21b) 12b—1(_E)1>
= (1+b(2E* - 2E)) — (1 — 2bE)
=14 20E? —2bE — 1+ 20E

= 20E>

1. Binomial Theorem: (a + b)™ = >_1_, (7)a"~*b*

250

Transfer Only
BlockLevelPpl — 4 —
RIVA

200
S

o 150
[
3

S 100
o
(@)

50

0

0 100 200 300 400 500 600
Time (s)

Fig. 11: CPU utilization analysis for mixed dataset transfer
in HPCLab-DTN network. While RIVA has different CPU
usage pattern than BlockLevelPpl, average utilization is
same for both algorithms.

Since there are six possible combinations for two of four
I/0 operations to be affected by UDEs, the maximum prob-
ability of RIVA to miss UDEs becomes 6 x 2bE? = 12bE?.
Please note that this is an upper bound as it counts all
possible UDEs that happen twice whereas many of such
error will be captured as shown in row 4 in Table 3 In
addition, the likelihood of three or four I/O operations to
be exposed to UDEs in a way that it will mislead RIVA is
much lower than that of two I/Os to be impacted since
E? >> E? >> E* when E is lower than 10710, Thus,
we can conclude that while the probability of UDEs to
go undetected is bE with existing integrity verification
algorithms, RIVA reduces it to bE?. To better evaluate
the impact of such decrease in probability on real-world
scenarios, let’s take E = 10710 and b = 256 MB which
leads error rate (P(error) = bE) to be 0.2 for traditional
integrity verification algorithms whereas it is reduced to
107! with RIVA. Even for more conservative F value of
10715, the probability of error is reduced from 107% to
10721, As a result, although RIVA cannot completely rule
out undetected disk errors to happen in file transfers, it
significantly reduces their likelihood compared to existing
solutions.

5.3 Processing Overhead

In addition to execution time, integrity verification also
incurs processing overhead as checksum computation is a
CPU intensive operation. Figure [11| illustrates CPU usage
for transfer-only, BlockLevelPpl, and RIVA for the transfer
of a mixed dataset in HPCLab-DTN network. Since check-
sum computation is the bottleneck, transfer-only method
finishes earlier than the others. Moreover, since it only
create one transfer thread, its utilization is capped at 100%.
BlockLevelPpl concurrently executes checksum and transfer
tasks on separate threads, so its CPU usage reaches to
150%. Checksum computation contributes to 100% of total
usage and remaining comes from transfer thread. Since
BlockLevelPpl enforces transfer and checksum threads to
synchronize after each block processing, transfer thread
completes its operation and sits idle while checksum is still
working on, causing CPU usage of transfer thread to be
between 20% and 50%.

On the other hand, despite running transfer and
checksum computation concurrently, RIVA does not im-

11

Pronghorn —¢—
Chameleon Cloud —&—
ESNet
HPCLab-DTN
__HPCLab-WS

Time Propotional to Best Time

;‘ A ! : SN
16 32 64 128 256 512 1024 2048

Block Size (MB)

Fig. 12: While block size has negligible impact in most net-
works, it affects execution time by around 70% in Pronghorn
and up-to 30% in Chameleon Cloud.

pose thread synchronization between threads other than
consumer-producer relationship. For instance, the Cache
Evictor can only evict file blocks that Transfer thread pro-
cessed, so it cannot run faster than Transfer thread. On
the other hand, if file transfer is faster than checksum
computation, then the Transfer thread does not have to wait
for cache eviction and checksum computation threads to
complete. Consequently, RIVA’s CPU usage reaches to 200%
while both checksum and transfer threads execute, which
falls to 100% upon the completion of the transfer at around
220s. In addition, the Cache Evictor of RIVA has 5% peak
CPU utilization but only runs for few seconds, thus has
negligible impact on overall CPU utilization considering the
total runtime. Thus, RIVA and BlockLevelPpl have similar
(133%) CPU utilization on average.

5.4

As discussed in Section [} RIVA executes Transfer, Cache
Evictor, and Checksum threads concurrently for different
portion of the same file (aka block) to keep its overhead
at minimum. By default, we define the block size to be
256 MB, however, this might not be an optimal value in
all testbeds due to differences in storage subsystems. Thus,
we evaluated the impact of block size on execution time by
transferring a 30GB file with integrity verification as shown
in Figure 12 It is clear that block size has negligible impact
on the performance for HPCLab-DTN, HPCLab-WS, and
ESNet networks. On the other hand, it leads to 30% and
70% change in execution time for Chameleon Cloud and
Pronghorn testbeds, respectively. Interestingly, while small
block size yields the best performance in Chameleon Cloud,
it returns the worst performance in Pronghorn. As a result,
the default value of 256MB yields up-to 20% and 8% lower
performance compared to the best performing block size for
Chameleon Cloud and Pronghorn networks.

We further analyzed receiver-side disk read and write
1/0 throughput for various block size values for Chameleon
Cloud network in Figure Receiver side write I/0 is a
result of writing the file to disk after receiving it from the
network. Read 1/0O, on the other hand, is part of integrity
verification process for which the file is read back from
the disk to compute its checksum. Overlapping read and
write I/O operations in Chameleon Cloud slows down both
operations which is further exacerbated by increased block

Impact of Block Size

12

8 8
3x10 Read — &— 2.5x10
25)(108 o Write —=— s
. “ 2x10
S oxief s
& 1.5x10
o 1.5x10° [t
= - 1x10° |
% 1x10° s ;
[a]

5x107 [l A

5x107 o 5f

Read —&—
o Write —-=—

Read —&—
Write —=—

Time (s)

(a) 16MB

100 200 300 400 500 600 700 800 0

(b) 256MB

100 200 300 400 500 600 700 800
Time (s)

Time (s)

(c) 2048MB

Fig. 13: Disk I/O throughput for different block size values for the transfer of a 30GB file in Chameleon Cloud network.
Small block size yields higher throughput when file read and write operations are overlapped.

size. For example, while file write operation finishes at
around 350s for 16MB block size, it takes more than 400s
for block size of 2048MB. Moreover, when block size is
16MB, considerable amount of disk read activity can still
takes place, whereas it becomes less frequent as the block
size increases and almost disappears for 2048MB case. Con-
sequently, remaining read operation (after write operation
is complete,) takes longer for large block size values. For
instance, while it takes around 250s (from 350s to 600s) when
block size is 16MB, it increases to 340s (from 410s to 750s)
when block size is set to 2048MB.

In summary, while block size can have significant im-
pact on execution time, no single predefined value yields
the close-to-optimal performance in all networks. Thus, a
careful tuning is necessary to efficiently utilize underlying
storage subsystem and shorten execution time, however we
leave it as a future work.

6 CONCLUSION

End-to-end integrity verification is vital for many scientific
applications which cannot tolerate silent data corruptions.
However, its current implementations for file transfers fail
to capture undetected disk write errors, creating possibility
of permanent data loss. In this paper, we propose RIVA to
improve robustness of the end-to-end integrity verification
by enforcing checksum calculation to read files directly
from disk. RIVA invalidates the cached copies of file pages
such that checksum calculation can read disk copies and
detect undetected disk errors. Our extensive experiments
show that RIVA offers a robust solution to capture and
recover from all undetected disk write errors. In exchange,
RIVA increases transfer execution time, however it can keep
its overhead less than 15% in most cases by concurrently
executing transfer, cache eviction, and checksum operations.

As a future work, we aim to develop dynamic opti-
mization methods to tune parameters of RIVA to maximize
system utilization and minimize overhead. For example,
RIVA defines block size to logically split large files into
partitions, however we observed that optimal setting for the
value of block size can improve execution time by up-to 20%
in some networks compared to the default value. We also
plan to extend experiments to include more silent data cor-
ruption scenarios beyond undetected disk errors to demon-
strate that RIVA’s error detection capability is not limited

to storage-related errors. Moreover, while RIVA strengthens
end-to-end integrity verification against UWEs and UREs
that happen while reading and writing to disk, files can
still be corrupted while sitting on disk due to other errors
such as sector errors and misdirected writes. Hence, we will
investigate solutions to store the checksum of files in global
and immutable databases (e.g., blockchain) such that users
can periodically verify the authenticity of files by comparing
their checksum against the ones in the database. Finally, we
will also explore options to forecast UDE occurrences using
low-level disk statistics (i.e. SMART features) such that
integrity verification can be enforced only for error-prone
disks to alleviate the I/O and CPU overhead of integrity
verification.

ACKNOWLEDGMENTS

This project is in part sponsored by the National Sci-
ence Foundation (NSF) under award number OAC-1850353.
Some of the results presented in this paper were obtained
using the Chameleon testbed supported by the NSE.

REFERENCES

[1] R.J.T.Klein, R.]J. Nicholls, and F. Thomalla, “Resilience to natural
hazards: How useful is this concept?” Global Environmental Change
Part B: Environmental Hazards, vol. 5, no. 1-2, pp. 35 — 45, 2003.

[2] T. Kiehl, J. J. Hack, G. B. Bonan, B. A. Boville, D. L. Williamson,
and P. J. Rasch, “The national center for atmospheric research
community climate model: CCM3,” Journal of Climate, vol. 11:6,
pp. 1131-1149, 1998.

[3] S.E Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman,
“Basic Local Alignment Search Tool,” Journal of Molecular Biology,
vol. 3, no. 215, pp. 403-410, October 1990.

[4] CMS, “The US Compact Muon Solenoid Project,”
http:/ /uscms.fnal.gov/.
[5] “A Toroidal LHC ApparatuS Project (ATLAS),”

http://atlas.web.cern.ch/.

[6] “Dark Energy Survey,” https://www.darkenergysurvey.org/.

[7] S.Habib, A. Pope, H. Finkel, N. Frontiere, K. Heitmann, D. Daniel,
P. Fasel, V. Morozov, G. Zagaris, T. Peterka ef al., “HACC: Simulat-
ing sky surveys on state-of-the-art supercomputing architectures,”
New Astronomy, vol. 42, pp. 49-65, 2016.

[8] . Stone and C. Partridge, “When the CRC and TCP checksum dis-
agree,” in ACM SIGCOMM computer communication review, vol. 30,
no. 4. ACM, 2000, pp. 309-319.

[9] . L. Hafner, V. Deenadhayalan, W. Belluomini, and K. Rao, “Un-
detected disk errors in raid arrays,” IBM Journal of Research and
Development, vol. 52, no. 4.5, pp. 413-425, 2008.

[10]

(1]

[12]

(13]

[14]

[15]

[16]

[17]

(18]

(19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

L. N. Bairavasundaram, A. C. Arpaci-Dusseau, R. H. Arpaci-
Dusseau, G. R. Goodson, and B. Schroeder, “An analysis of data
corruption in the storage stack,” ACM Transactions on Storage
(TOS), vol. 4, no. 3, p. 8, 2008.

A. Krioukov, L. N. Bairavasundaram, G. R. Goodson, K. Srini-
vasan, R. Thelen, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau, “Parity lost and parity regained.” in FAST, vol. 2008,
2008, p. 127.

M. Li and P. P. C. Lee, “Toward i/o-efficient protection against
silent data corruptions in raid arrays,” 2014 30th Symposium on
Mass Storage Systems and Technologies (MSST), pp. 1-12, 2014.

W. Bartlett and L. Spainhower, “Commercial fault tolerance: A
tale of two systems,” IEEE Transactions on dependable and secure
computing, vol. 1, no. 1, pp. 87-96, 2004.

S. Ghemawat, H. Gobioff, and S.-T. Leung, The Google file systeimn.
ACM, 2003, vol. 37, no. 5.

G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z. Peter-
son, and D. Song, “Provable data possession at untrusted stores,”
in Proceedings of the 14th ACM conference on Computer and commu-
nications security. Acm, 2007, pp. 598-609.

M. Vigil, J. Buchmann, D. Cabarcas, C. Weinert, and A. Wiesmaier,
“Integrity, authenticity, non-repudiation, and proof of existence for
long-term archiving: a survey,” Computers & Security, vol. 50, pp.
16-32, 2015.

M. U. Arshad, A. Kundu, E. Bertino, A. Ghafoor, and C. Kundu,
“Efficient and scalable integrity verification of data and query
results for graph databases,” IEEE Transactions on Knowledge and
Data Engineering, vol. 30, no. 5, pp. 866-879, 2018.

E. W. Rozier, W. Belluomini, V. Deenadhayalan, J. Hafner, K. Rao,
and P. Zhou, “Evaluating the impact of undetected disk errors
in raid systems,” in 2009 IEEE/IFIP International Conference on
Dependable Systems & Networks. 1EEE, 2009, pp. 83-92.

L. N. Bairavasundaram, G. R. Goodson, S. Pasupathy, and
J. Schindler, “An analysis of latent sector errors in disk drives,”
in ACM SIGMETRICS Performance Evaluation Review, vol. 35, no. 1.
ACM, 2007, pp. 289-300.

S. Liu, E-S. Jung, R. Kettimuthu, X.-H. Sun, and M. Papka,
“Towards optimizing large-scale data transfers with end-to-end
integrity verification,” in Big Data (Big Data), 2016 IEEE Interna-
tional Conference on. IEEE, 2016, pp. 3002-3007.

E. Arslan and A. Alhussen, “A low-overhead integrity verification
for big data transfers,” in 2018 IEEE International Conference on Big
Data (Big Data). 1EEE, 2018, pp. 4227-4236.

Z. Liu, R. Kettimuthu, I. Foster, and N. Rao, “Cross-geography
scientific data transfer trends and user behavior patterns,” in
27th ACM Symposium on High-Performance Parallel and Distributed
Computing, HPDC, vol. 18, 2018, p. 12.

T. Kosar, E. Arslan, B. Ross, and B. Zhang, “Storkcloud: Data
transfer scheduling and optimization as a service,” in Proceedings
of the 4th ACM workshop on Scientific cloud computing. ACM, 2013,
pp- 29-36.

B. Allen, J. Bresnahan, L. Childers, I. Foster, G. Kandaswamy,
R. Kettimuthu, J. Kordas, M. Link, S. Martin, K. Pickett, and
S. Tuecke, “Software as a service for data scientists,” Communi-
cations of the ACM, vol. 55:2, pp. 81-88, 2012.

E. Arslan and T. Kosar, “High Speed Transfer Optimization Based
on Historical Analysis and Real-Time Tuning,” IEEE Transactions
on Parallel and Distributed Systems, 2018.

E. Yildirim, E. Arslan, J. Kim, and T. Kosar, “Application-level
optimization of big data transfers through pipelining, parallelism
and concurrency,” IEEE Transactions on Cloud Computing, vol. 4,
no. 1, pp. 63-75, 2015.

D. Yun, C. Q. Wu, N. S. Rao, and R. Kettimuthu, “Advising
big data transfer over dedicated connections based on profiling
optimization,” IEEE/ACM Transactions on Networking, 2019.

I. Alan, E. Arslan, and T. Kosar, “Energy-aware data transfer
algorithms,” in Proceedings of SC'15, ser. SC “15. New York, NY,
USA: ACM, 2015, pp. 44:1-44:12.

N. S. Rao, Q. Liu, S. Sen, G. Hinkel, N. Imam, I. Foster, R. Ket-
timuthu, B. W. Settlemyer, C. Q. Wu, and D. Yun, “Experimental
analysis of file transfer rates over wide-area dedicated connec-
tions,” in High Performance Computing and Communications; IEEE
14th International Conference on Smart City; IEEE 2nd International
Conference on Data Science and Systems (HPCC/SmartCity/DSS), 2016
IEEE 18th International Conference on. 1EEE, 2016, pp. 198-205.

E. Arslan, K. Guner, and T. Kosar, “HARP: Predictive Transfer Op-
timization Based on Historical Analysis and Real-Time Probing,”

[31]

[32]

[33]

[34]

[35]

[36]

[37]

(38]

[39]
[40]
[41]
[42]

[43]

[44]

[45]

13

in Proceedings of SC'16, ser. SC "16.
Press, 2016, pp. 25:1-25:12.

Y. Zhu, H. Hu, G.-]. Ahn, and M. Yu, “Cooperative provable data
possession for integrity verification in multicloud storage,” IEEE
transactions on parallel and distributed systems, vol. 23, no. 12, pp.
2231-2244, 2012.

C. Liu, C. Yang, X. Zhang, and J. Chen, “External integrity verifi-
cation for outsourced big data in cloud and IoT: A big picture,”
Future generation computer systems, vol. 49, pp. 58-67, 2015.

P. Maniatis, M. Roussopoulos, T. J. Giuli, D. S. Rosenthal, and
M. Baker, “The LOCKSS peer-to-peer digital preservation system,”
ACM Transactions on Computer Systems (TOCS), vol. 23, no. 1, pp.
2-50, 2005.

A. Ma, C. Dragga, A. C. Arpaci-Dusseau, R. H. Arpaci-Dusseau,
and M. K. Mckusick, “Ffsck: The fast file-system checker,” ACM
Transactions on Storage (TOS), vol. 10, no. 1, p. 2, 2014.

Y. Zhang, D. S. Myers, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau, “Zettabyte reliability with flexible end-to-end data in-
tegrity,” in Mass Storage Systems and Technologies (MSST), 2013 IEEE
29th Symposium on. 1EEE, 2013, pp. 1-14.

Y. Zhang, A. Rajimwale, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau, “End-to-end data integrity for file systems: A ZFS case
study.” in FAST, 2010, pp. 29-42.

R. Hasan, R. Sion, and M. Winslett, “The Case of the Fake Picasso:
Preventing History Forgery with Secure Provenance.” in FAST,
vol. 9, 2009, pp. 1-14.

B. Charyyev, A. Alhussen, H. Sapkota, E. Pouyoul, M. H. Gunes,
and E. Arslan, “Towards securing data transfers against silent
data corruption,” in IEEE/ACM International Symposium in Cluster,
Cloud, and Grid Computing, IEEE/ACM, 2019.

“Globus,” https:/ /www.globus.org/.

E. Pinheiro, W.-D. Weber, and L. A. Barroso, “Failure trends in a
large disk drive population.” in FAST, vol. 7, no. 1, 2007, pp. 17-23.
S. Shah and J. G. Elerath, “Reliability analysis of disk drive failure
mechanisms,” in Reliability and Maintainability Symposium, 2005.
Proceedings. Annual. 1EEE, 2005, pp. 226-231.

B. Schroeder and G. A. Gibson, “Disk failures in the real world:
What does an mttf of 1, 000, 000 hours mean to you?” in FAST,
vol. 7, no. 1, 2007, pp. 1-16.

V. Prabhakaran, L. N. Bairavasundaram, N. Agrawal, H. S. Gu-
nawi, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau, IRON file

Piscataway, NJ, USA: IEEE

systems. ACM, 2005, vol. 39, no. 5.

“Cache and TLB Flushing Under Linux,” 2019,
"https:/ /www.kernel.org/doc/html/latest/core-
api/cachetlb.html”.

S. O. K. J. Amy Tai, Andrew Kryczka and A. C. Michael J. Freed-

man, “Who's afraid of uncorrectable bit errors? online recovery of
flash errors with distributed redundancy,” in 2019 USENIX Annual
Technical Conference. I1EEE, 2019.

Batyr Charyyev is PhD student in Systems En-
gineering at the Stevens Institute of Technol-
ogy. He received his Masters degree in Com-
puter Science and Engineering from University
of Nevada Reno. His research interests are in
the areas of fault tolerance in data transfer be-
tween HPC platforms, trusted computing with In-
tel SGX and Trusted Platform Module and edge
computing for loT.

Engin Arslan is an Assistant Professor in the
Department of Computer Science and Engineer-
ing, University of Nevada, Reno. He received
his BS degree of Computer Engineering from
Bogazici University, MS degree from University
at Nevada, Reno and PhD degree from Com-
puter Science and Engineering at University at
Buffalo, SUNY. Prior to joining to UNR, he spent
a year in National Center for Supercomputing
Applications as a Postdoctoral Research Asso-
ciate. His research interests include high per-

formance networks, data intensive distributed computing, distributed
systems, computer networks, and cloud computing.

	Introduction
	Background and Motivation
	Undetected Disk Errors
	End-to-end Integrity Verification
	Motivating Example

	Related Work
	System Design
	Evaluations
	Execution Time Analysis
	Fault Resilience
	Cache Hit Analysis
	Error Injection
	Statistical Analysis On The Likelihood of UDEs

	Processing Overhead
	Impact of Block Size

	Conclusion
	References
	Biographies
	Batyr Charyyev
	Engin Arslan

